JPWO2015025649A1 - 固体電解質形燃料電池 - Google Patents

固体電解質形燃料電池 Download PDF

Info

Publication number
JPWO2015025649A1
JPWO2015025649A1 JP2015532768A JP2015532768A JPWO2015025649A1 JP WO2015025649 A1 JPWO2015025649 A1 JP WO2015025649A1 JP 2015532768 A JP2015532768 A JP 2015532768A JP 2015532768 A JP2015532768 A JP 2015532768A JP WO2015025649 A1 JPWO2015025649 A1 JP WO2015025649A1
Authority
JP
Japan
Prior art keywords
layer
cathode
anode
flow passage
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015532768A
Other languages
English (en)
Other versions
JP6146474B2 (ja
Inventor
和英 高田
和英 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2015025649A1 publication Critical patent/JPWO2015025649A1/ja
Application granted granted Critical
Publication of JP6146474B2 publication Critical patent/JP6146474B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

固体電解質形燃料電池において、燃料極層11に接触する燃料極接点層42と、空気極層13に接触する空気極接点層41とを備える。燃料極層11が金属単体または合金を含み、燃料極接点層42が導電性酸化物を含み、空気極層13が導電性酸化物を含み、空気極接点層41が金属単体または合金を含む。

Description

本発明は、一般的には固体電解質形燃料電池に関し、特に、燃料電池の各発電素子部(セル)で発生した電力を取り出すために、かつ、複数のセルを相互に電気的に接続するためにアノード層とカソード層のそれぞれに接触する接点層を有する固体電解質形燃料電池に関するものである。
一般的に、平板型の固体電解質形燃料電池(固体酸化物燃料電池(SOFC)ともいう)は、各々がアノード(負極)、固体電解質およびカソード(正極)からなる発電要素としての平板状の複数のセルと、複数のセルの間に配置されるセパレータ(インタコネクタともいう)とから構成される。セパレータは、複数のセルを相互に電気的に直列に接続し、かつ、複数のセルの各々に供給されるガスを分離するために、具体的にはアノードに供給されるアノードガスとしての燃料ガス(たとえば水素)と、カソードに供給されるカソードガスとしての酸化剤ガス(たとえば空気)とを分離するために、複数のセルの間に配置される。また、セパレータには、複数のセルを相互に電気的に直列に接続するために導電体が配置されている。具体的には、導電体は、アノードに接触するアノード接点と、カソードに接触するカソード接点と、アノード接点とカソード接点とを接続するようにセパレータ内に配置された充填材とから構成される。
たとえば、特許第3576881号公報(以下、特許文献1という)には、固体酸化物燃料電池用接続体が開示されている。
特許文献1に開示された固体酸化物燃料電池用接続体は、ガスセパレータープレートの接続孔内でアノード側に配置されたアノード充填材と、接続孔内でカソード側に配置されたカソード充填材と、アノードとアノード充填材とを接続するアノード接点と、カソードとカソード充填材とを接続するカソード接点とから構成される。アノード充填材とカソード充填材とが異なる組成から形成されている。アノード接点とアノード充填材の熱膨張係数が同一または実質的に同一である。カソード接点とカソード充填材の熱膨張係数が同一または実質的に同一である。アノード接点が、ニッケル、PLANSEE(商品名)と呼ばれる高クロム合金混合物、銀−パラジウム合金、または、ドープトランタンクロマイト(以下、LSMCと略称する)からなる。アノード充填材が、銀−パラジウム合金、ニッケル、PLANSEEとLSMCの混合物からなる。カソード接点が、銀−パラジウム合金、ランタンストロンチウムマンガナイト(以下、LSMと略称する)、ランタンストロンチウムコバルタイト(以下、LSCoまたはLSCと略称する)からなる。カソード充填材が、LSM、PLANSEE、または、LSMCとLSCoの混合物からなる。
特許第3576881号公報
特許文献1に開示された固体酸化物燃料電池用接続体において、アノードの材料がニッケル金属単体を含む場合、アノード接点の材料として挙げられたPLANSEE、銀−パラジウム合金がニッケル金属単体と反応する。この反応は時間の経過とともに徐々に進行する。このため、電気的接続が時間の経過とともに悪化するので、電池性能が時間の経過とともに低下し、その結果として電池の寿命または信頼性が低下する。
一方、カソードの材料が金属酸化物であるLSM、ランタンストロンチウムコバルトフェレート(LSCF)、LSCを含む場合、カソード接点の材料として挙げられたLSM、LSCという金属酸化物が用いられる。この場合、カソード接点の材料として用いられる金属酸化物がカソードの材料として用いられる金属酸化物と異なると、カソード接点の材料がカソードの材料と反応することにより、カソードの組成が変化する。これにより、カソードの電気抵抗が高くなるので、初期の電池性能が低下する。
そこで、本発明の目的は、電池性能の低下を防止することが可能な電気的接続を有する固体電解質形燃料電池を提供することである。
本発明に従った固体電解質形燃料電池は、アノード層、固体電解質層およびカソード層の積層体からなるセルと、アノード層に接触するアノード接点層と、カソード層に接触するカソード接点層とを備える。アノード層が金属単体または合金を含み、アノード接点層が導電性酸化物を含み、カソード層が導電性酸化物を含み、カソード接点層が金属単体または合金を含む。
本発明の固体電解質形燃料電池においては、アノード接点層の材料である導電性酸化物は、アノード層の材料である金属単体または合金と反応しない。カソード接点層の材料である金属単体または合金は、カソード層の材料である導電性酸化物と反応しない。したがって、反応による電池性能の低下を防止することができ、良好な電気的接続を得ることができる。
カソード層は、マンガン、鉄、コバルト、および、ニッケルからなる群より選ばれた少なくとも1種の元素を含むペロブスカイト型構造を有する酸化物を含むことが好ましい。
カソード接点層は、銀、パラジウム、および、白金からなる群より選ばれた1種の元素を含む金属単体もしくは合金、または、ステンレス鋼を含むことが好ましい。
アノード層は、ニッケルと固体電解質材料とを含むことが好ましい。
アノード接点層は、ニオブ、タンタル、および、セリウムを除く希土類元素からなる群より選ばれた1種の元素がドープされた化学式ATiO(式中、AがCa、Sr、および、Baからなる群より選ばれた少なくとも1種の元素である)で表されるチタン複合酸化物を含むことが好ましい。
なお、本発明の固体電解質形燃料電池は、複数の積層されたセルと、隣り合う一方のセルのアノード層と他方のセルのカソード層との間に配置された分離層とを備えてもよい。分離層が、アノード接点層とカソード接点層とを接続する接続層を含んでもよい。この場合、接続層は、カソード層に含まれる酸化物と同じ材料を含むことが好ましい。
以上のように本発明によれば、電池性能の低下を防止することが可能な電気的接続を有する固体電解質形燃料電池を得ることができる。
図1は、本発明の一つの実施の形態として固体電解質形燃料電池の単位モジュールの概略的な構成を示す分解斜視図である。 図2は、本発明の実施形態Aとして、アノード層とカソード層との電気的接続を示す部分断面図である。 図3は、本発明の実施形態Bとして、アノード層とカソード層との電気的接続を示す部分断面図である。 図4は、本発明のカソード側接点材料の有無による電池性能を評価した図である。 図5は、本発明のアノード側接点材料の有無による電池性能を評価した図である。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の一つの実施の形態として固体電解質形燃料電池の単位モジュール1の概略的な構成を示す分解斜視図であり、焼成前の積層された成形体(グリーンシート)を分解して示す。
図1に示すように、下から順に、セル間分離部20、セル10、および、セル間分離部20が積層されることにより、固体電解質形燃料電池の単位モジュール1が構成されている。単一のセル10を挟むように二つのセル間分離部20が配置されている。図1の単位モジュールを複数備えることによって構成される固体電解質形燃料電池では、セル間分離部20が複数のセル10の間に配置される。
セル10は、アノード層としての燃料極層11、固体電解質層12、および、カソード層としての空気極層13の積層体からなる。セル10の空気極層13側に配置されるセル間分離部20は、分離層(セパレータ)21と、カソードガス流通路層としての空気流通路層23との積層体からなる。セル10の燃料極層11側に配置されるセル間分離部20は、分離層(セパレータ)21と、アノードガス流通路層としての燃料ガス流通路層22との積層体からなる。
セル間分離部20、セル10、および、セル間分離部20の積層体には、セル10にアノードガス(燃料ガス)とカソードガス(空気)を供給するためのガス供給流路構造部30が形成されている。ガス供給流路構造部30は、燃料極層11にアノードガス(燃料ガス)を供給するためのアノードガス供給流路としての燃料ガス供給流路31と、空気極層13にカソードガス(空気)を供給するためのカソードガス供給流路としての空気供給流路32とから構成される。
セル10の燃料極層11が配置される箇所では、燃料ガス供給流路31が、U字形平板状の電気絶縁体110に矩形平板状の燃料極層11を嵌めることによって電気絶縁体110と燃料極層11との間に形成される隙間に相当し、一方向に延在する開口、すなわち、一つの細長い矩形状の貫通孔で形成されている。電気絶縁体110には、空気供給流路32が、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。
セル10の空気極層13が配置される箇所では、空気供給流路32が、U字形平板状の電気絶縁体130に矩形平板状の空気極層13を嵌めることによって電気絶縁体130と空気極層13との間に形成される隙間に相当し、一方向に延在する開口、すなわち、一つの細長い矩形状の貫通孔で形成されている。電気絶縁体130には、燃料ガス供給流路31が、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。
固体電解質層12には、燃料ガス供給流路31と空気供給流路32のそれぞれが、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。
分離層(セパレータ)21には、燃料ガス供給流路31と空気供給流路32のそれぞれが、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。
燃料ガス流通路層22の焼成前のグリーンシートは、互い違いに並んだ複数の燃料ガス流通路形成層(アノードガス流通路形成層)2210と燃料ガス流通路壁部(アノードガス流通路壁部;リブ)222とをU字形平板状の電気絶縁体220に嵌めることによって形成されている。燃料ガス供給流路31が、電気絶縁体220と、複数の燃料ガス流通路形成層2210および燃料ガス流通路壁部222との間に形成される隙間に相当し、一方向に延在する開口、すなわち、一つの細長い矩形状の貫通孔で形成されている。燃料ガス流通路形成層2210は、焼成後において消失することによって、燃料極層11に燃料ガスを供給する燃料ガス供給流路31に通じ、かつ、燃料極層11に燃料ガスを流通させる燃料ガス流通路(アノードガス流通路)221になる。電気絶縁体220には、空気供給流路32が、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。
空気流通路層23の焼成前のグリーンシートは、互い違いに並んだ複数の空気流通路形成層(カソードガス流通路形成層)2310と空気流通路壁部(カソードガス流通路壁部;リブ)232とをU字形平板状の電気絶縁体230に嵌めることによって形成されている。空気供給流路32が、電気絶縁体230と、複数の空気流通路形成層2310および空気流通路壁部232との間に形成される隙間に相当し、一方向に延在する開口、すなわち、一つの細長い矩形状の貫通孔で形成されている。空気流通路形成層2310は、焼成後において消失することによって、空気極層13に空気を供給する空気供給流路32に通じ、かつ、空気極層13に空気を流通させる空気流通路(カソードガス流通路)231になる。電気絶縁体230には、燃料ガス供給流路31が、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。
セル10で発生した電力を取り出すために、かつ、複数のセル10を相互に電気的に接続するために導電体211、223、233が配置されている。導電体211は、分離層21の本体を構成する電気絶縁体210内に形成された複数のビアホールに充填されている。導電体223は、燃料ガス流通路壁部222内に形成された複数のビアホールに充填されている。導電体233は、空気流通路壁部232内に形成された複数のビアホールに充填されている。
以上のように構成された固体電解質形燃料電池の一つの実施形態において、アノード層とカソード層との電気的接続の実施形態Aでは、図2に示すように、アノード接点層としての燃料極接点層42が、アノード層としての燃料極層11に接触するように形成されている。カソード接点層としての空気極接点層41が、カソード層としての空気極層13に接触するように形成されている。この場合、図1と図2に示すように、燃料極接点層42が燃料ガス流通路壁部222内のビアホールに充填された導電体223を構成し、空気極接点層41が、分離層21の本体を構成する電気絶縁体210内のビアホールに充填された導電体211と、空気流通路壁部232内のビアホールに充填された導電体233とを構成する。
図示されていないが、燃料極接点層42が、燃料ガス流通路壁部222内のビアホールに充填された導電体223と、分離層21の本体を構成する電気絶縁体210内のビアホールに充填された導電体211の一部とを構成し、空気極接点層41が、分離層21の本体を構成する電気絶縁体210内のビアホールに充填された導電体211の一部と、空気流通路壁部232内のビアホールに充填された導電体233とを構成してもよい。また、燃料極接点層42が、燃料ガス流通路壁部222内のビアホールに充填された導電体223と、分離層21の本体を構成する電気絶縁体210内のビアホールに充填された導電体211とを構成し、空気極接点層41が、空気流通路壁部232内のビアホールに充填された導電体233を構成してもよい。
固体電解質形燃料電池の一つの実施形態において、アノード層とカソード層との電気的接続の実施形態Bでは、図3に示すように、アノード接点層としての燃料極接点層42が、アノード層としての燃料極層11に接触するように形成されている。カソード接点層としての空気極接点層41が、カソード層としての空気極層13に接触するように形成されている。燃料極接点層42と空気極接点層41との間には、接続層51、52が配置されている。この場合、図1と図3に示すように、燃料極接点層42が燃料ガス流通路壁部222内のビアホールに充填された導電体223を構成し、空気極接点層41が空気流通路壁部232内のビアホールに充填された導電体233を構成する。接続層51、52が、分離層21の本体を構成する電気絶縁体210内のビアホールに充填された導電体211を構成する。
図示されていないが、燃料極接点層42が、燃料ガス流通路壁部222内のビアホールに充填された導電体223と、分離層21の本体を構成する電気絶縁体210内のビアホールに充填された導電体211の一部とを構成してもよい。空気極接点層41が、空気流通路壁部232内のビアホールに充填された導電体233の一部と、分離層21の本体を構成する電気絶縁体210内のビアホールに充填された導電体211の一部とを構成してもよい。
本発明の実施形態では、燃料極層11が金属単体または合金を含む。たとえば、燃料極層11は、ニッケル(Ni)単体を含むことが好ましい。燃料極層11は、ニッケルと固体電解質材料とを含むことがより好ましい。具体的には、燃料極層11は、たとえば、ニッケルと、スカンジア(Sc)とセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)との混合物を含むことが好ましい。スカンジアセリア安定化ジルコニア(ScCeSZ)の代わりに、イットリア(Y)で安定化されたジルコニア(イットリア安定化ジルコニア:YSZ)、酸化カルシウム(CaO)で安定化されたジルコニア(酸化カルシウム安定化ジルコニア)、セリアで安定化されたジルコニア(セリア安定化ジルコニア:CeSZ)、等を用いてもよい。
燃料極接点層42が導電性酸化物を含む。たとえば、燃料極接点層42は、ニオブ(Nb)、タンタル(Ta)、および、セリウム(Ce)を除く希土類元素からなる群より選ばれた1種の元素がドープされた化学式ATiO(式中、AがCa、Sr、および、Baからなる群より選ばれた少なくとも1種の元素である)で表されるチタン複合酸化物を含むことが好ましい。具体的には、燃料極接点層42は、たとえば、酸化ニオブ(Nb)がドープされた(Ca0.8Sr0.2)TiO(CST)を含むことが好ましい。
空気極層13が導電性酸化物を含む。たとえば、空気極層13は、マンガン(Mn)、鉄(Fe)、コバルト(Co)、および、ニッケル(Ni)からなる群より選ばれた少なくとも1種の元素を含むペロブスカイト型構造を有する酸化物を含むことが好ましい。具体的には、空気極層13は、たとえば、La0.6Sr0.4Fe0.8Co0.2(ランタンストロンチウムコバルトフェレート:LSCF)を含むことが好ましい。LSCFの代わりに、たとえば、La0.8Sr0.2MnO(ランタンストロンチウムマンガナイト:LSM)、ランタンストロンチウムコバルトタイト(LSC)、(Sm,Sr)CoO(SSC),La(Ni,Fe)O(LNF)、等が用いられてもよい。
空気極接点層41が金属単体または合金を含む。たとえば、銀(Ag)、パラジウム(Pd)、および、白金(Pt)からなる群より選ばれた1種の元素を含む金属単体もしくは合金、または、ステンレス鋼を含むことが好ましい。具体的には、空気極接点層41は、たとえば、銀パラジウム合金(AgPd)、銀単体(Ag)、銀白金合金(AgPt)、白金単体(Pt)を含むことが好ましい。
なお、空気極接点層41に接触する接続層51は、上記の導電性酸化物を含むことが好ましい。この場合、接続層51に含まれる導電性酸化物は、空気極層13に含まれる酸化物と同じであることが好ましい。燃料極接点層42に接触する接続層52は、上記の金属単体または合金を含むことが好ましい。
以上のように構成された本発明の固体電解質形燃料電池においては、燃料極接点層42の材料である導電性酸化物は、燃料極層11の材料である金属単体または合金と反応しない。このため、電気的接続が時間の経過とともに悪化しないので、電池性能が時間の経過とともに低下することがなく、その結果として電池の寿命または信頼性が低下しない。
一方、空気極接点層41の材料である金属単体または合金は、空気極層13の材料である導電性酸化物と反応しない。このため、空気極層13の組成が維持される。これにより、空気極層13の電気抵抗が高くならないので、初期の電池性能が低下しない。
したがって、本発明の固体電解質形燃料電池においては、反応による電池性能の低下を防止することができ、良好な電気的接続を得ることができる。
燃料ガス流通路壁部222、および、空気流通路壁部232は、たとえば、電気絶縁性のセラミック材料から形成され、分離層21の本体を構成する電気絶縁体210、燃料ガス流通路層22を構成する電気絶縁体220、および、空気流通路層23を構成する電気絶縁体230と同一の材料から形成されるのが好ましい。このように構成することによって、空気極接点層41、燃料極接点層42、および、接続層51、52とともに、焼成によって一体的に連続して形成することができる。
なお、燃料ガス流通路壁部222、および、空気流通路壁部232は、機能的には導電性を有する必要があるため、導電体を充填するビアホールを形成しないで、導電性酸化物から形成されてもよい。
分離層21(セパレータ)の本体を構成する電気絶縁体210、燃料ガス流通路壁部222(リブ)、および、空気流通路壁部232(リブ)は、安定化ジルコニア、部分安定化ジルコニア、希土類元素がドープされたセリア、希土類元素がドープされたランタンガレート等の電解質材料; アルカリ土類金属元素がドープされたランタンクロマイト、希土類元素,ニオブまたはタンタルがドープされたチタン酸ストロンチウム、ランタンフェレート、アルミニウムで置換されたランタンフェレート等の導電性のセラミック材料; アルミナ、マグネシア、チタン酸ストロンチウム、これらの混合材料等の電気絶縁性のセラミック材料などによって形成することができる。
なお、電気絶縁体110、130、210、220、230は、たとえば、添加量3モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)、添加量12モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(セリア安定化ジルコニア:CeSZ)等を用いて形成される。
導電体211、223、233は、たとえば、銀(Ag)‐白金(Pt)合金、銀(Ag)‐パラジウム(Pd)合金等を用いて形成される。
固体電解質層12は、たとえば、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)、添加量11モル%のスカンジア(Sc)で安定化されたジルコニア(ZrO)(スカンジア安定化ジルコニア:ScSZ)等を用いて形成される。
以下、上述した実施形態に基づいて本発明の固体電解質形燃料電池を作製した実施例として、図2または図3の本発明のアノード接点層とカソード接点層を有する実施例1〜8と、本発明の電気接続構造と比較するために本発明のアノード接点層および/またはカソード接点層を持たない固体電解質形燃料電池を作製した比較例1〜3について説明する。
まず、図1に示す実施形態の固体電解質形燃料電池の単位モジュールを構成する部材(A)〜(H)の材料粉末を以下のとおり準備した。
(A)燃料極層11:ニッケル(Ni)60重量%と、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)40重量%との混合物(Ni−ScCeSZ)
(B)固体電解質層12:添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)
(C)空気極層13:La0.6Sr0.4Fe0.8Co0.2(ランタンストロンチウムコバルトフェレート:LSCF)
(D)燃料極接点層42:添加量5モル%の酸化ニオブ(Nb)がドープされた(Ca0.8Sr0.2)TiO(CST)
(E)空気極接点層41:30重量%のパラジウム(Pd)を含む銀パラジウム合金(AgPd)、銀単体(Ag)、銀白金合金(AgPt)、白金単体(Pt)
(F)接続層51:La0.8Sr0.2MnO(ランタンストロンチウムマンガナイト:LSM)
(G)接続層52:30重量%のパラジウム(Pd)を含む銀パラジウム合金(AgPd)、銀単体(Ag)、銀白金合金(AgPt)、白金単体(Pt)
(H)電気絶縁体110、電気絶縁体130、分離層21の電気絶縁体210、燃料ガス流通路層22の電気絶縁体220と燃料ガス流通路壁部(リブ)222、および、空気流通路層23の電気絶縁体230と空気流通路壁部(リブ)232:添加量3モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:3YSZ)
まず、図1に示すように、部材(H)を以下のように作製した。
分離層21の電気絶縁体210、燃料ガス流通路層22の電気絶縁体220と燃料ガス流通路壁部(リブ)222、および、空気流通路層23の電気絶縁体230と空気流通路壁部(リブ)232については、上記の材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、各部材のグリーンシートを作製した。
分離層21の電気絶縁体210、燃料ガス流通路層22の燃料ガス流通路壁部(リブ)222、および、空気流通路層23の空気流通路壁部(リブ)232のグリーンシートでは、図1に示すように、電気絶縁体に複数の導電体211、223、233を形成するための貫通孔を形成した。これらの貫通孔に、図2と図3に従って、実施例1〜8と比較例1〜3の各々において、表1に示す材料を充填することにより、部材(D)(E)(F)(G)として、導電体211、223、233を構成する空気極接点層41、燃料極接点層42、接続層51、接続層52の導電性ペースト充填層を作製した。
Figure 2015025649
また、図1に示すように、分離層21の電気絶縁体210、燃料ガス流通路層22の電気絶縁体220、および、空気流通路層23の電気絶縁体230には、燃料ガス供給流路31と空気供給流路32を形成するために、円形の貫通孔を形成した。円形の貫通孔は、直径が4.5mmで12mmの間隔で均等に5個配置した。
燃料ガス流通路層22のグリーンシートでは、図1に示すように、燃料ガス供給流路31を形成するための矩形の貫通孔に接続するように、ポリエチレンテレフタレート(PET)からなる燃料ガス流通路形成層2210を形成した。この燃料ガス流通路形成層2210は、焼成後において消失することにより、燃料ガスを供給する燃料ガス供給流路31に通じ、かつ、燃料極層11に燃料ガスを流通させる燃料ガス流通路221になる。なお、図1では3つの燃料ガス流通路221が形成されるようになっているが、実際には幅が0.8mmで長さが61.5mmの燃料ガス流通路221を0.8mmの間隔(リブ)で多数配置した。なお、上記の矩形の貫通孔は、幅が4.5mmで長さが61.5mmであった。
空気流通路層23のグリーンシートでは、図1に示すように、空気供給流路32を形成するための矩形の貫通孔に接続するように、ポリエチレンテレフタレート(PET)からなる空気流通路形成層2310を形成した。この空気流通路形成層2310は、焼成後において消失することにより、空気を供給する空気供給流路32に通じ、かつ、空気極層13に空気を流通させる空気流通路231になる。なお、図1では3つの空気流通路231が形成されるようになっているが、実際には幅が0.8mmで長さが61.5mmの空気流通路231を0.8mmの間隔(リブ)で多数配置した。なお、上記の矩形の貫通孔は、幅が4.5mmで長さが61.5mmであった。
次に、電気絶縁体130については、電気絶縁材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により電気絶縁体130のグリーンシートを作製した。
電気絶縁体130のグリーンシートでは、空気供給流路32を形成するために幅が4.5mmで長さが61.5mmの矩形の隙間を存在させて空気極層13のグリーンシートを嵌め合わせすることができるように、図1に示すように、ほぼU字形状のシートを作製した。また、図1に示すように電気絶縁体130に燃料ガス供給流路31を形成するために上記と同様の大きさの円形の貫通孔を電気絶縁体130のグリーンシートに形成した。
そして、電気絶縁体110については、電気絶縁材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により電気絶縁体110のグリーンシートを作製した。
電気絶縁体110のグリーンシートでは、燃料ガス供給流路31を形成するために幅が4.5mmで長さが61.5mmの矩形の隙間を存在させて燃料極層11のグリーンシートを嵌め合わせすることができるように、図1に示すように、ほぼU字形状のシートを作製した。また、図1に示すように電気絶縁体110に空気供給流路32を形成するために上記と同様の大きさの円形の貫通孔を電気絶縁体110のグリーンシートに形成した。
次に、部材(A)(B)(C)として、図1に示す空気極層13、燃料極層11、および、固体電解質層12のグリーンシートを以下のようにして作製した。
燃料極層11と空気極層13のそれぞれの材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により、燃料極層11と空気極層13のグリーンシートを作製した。
固体電解質層12の材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により固体電解質層12のグリーンシートを作製した。固体電解質層12のグリーンシートには、図1に示すように、燃料ガス供給流路31と空気供給流路32を形成するための上記と同様の大きさの円形の貫通孔を形成した。
以上のようにして作製された分離層21、燃料ガス流通路層22、燃料極層11が嵌め合わせられた電気絶縁体110、固体電解質層12、空気極層13が嵌め合わせられた電気絶縁体130、空気流通路層23、および、分離層21のグリーンシートを図1、図2、図3に示すように下から順に積層した。
このようにして、図2または図3に示すように、燃料極層11(焼成後の厚み:30μm)/分離層21(焼成後の厚み:360μm)/空気流通路層23(焼成後の厚み:240μm)/空気極層13(焼成後の厚み:60μm)/固体電解質層12(焼成後の厚み:30μm)/燃料極層11(焼成後の厚み:30μm)/燃料ガス流通路層22(焼成後の厚み:240μm)/分離層21(焼成後の厚み:360μm)/空気極層13(焼成後の厚み:60μm)からなる固体電解質形燃料電池の単位モジュール1Aまたは1Bを構成した。
次に、固体電解質形燃料電池の単位モジュール1Aまたは1Bを1000kgf/cmの圧力、80℃の温度にて2分間、温間静水圧成形することにより圧着した。この圧着体を温度400〜500℃の範囲内で脱脂処理を施した後、温度1150℃で2時間保持することにより、焼成した。このようにして実施例1〜8と比較例1〜3の固体電解質形燃料電池の試料(積層体において燃料極層11、固体電解質層12、および、空気極層13が重複する平面領域の面積(発電面積):65mm×65mm)を作製した。
(評価)
得られた実施例1〜8と比較例1〜3の各試料の燃料電池を750℃に昇温して、15.5体積%の水蒸気を含む66体積%水素ガス(H)−窒素(N)の混合ガス(温度60℃)と空気とをそれぞれ、燃料ガス供給流路31と空気供給流路32とを通じて供給することにより、発電して電池性能を評価した。
実施例1〜8では、比較例1〜3に比べて、空気極接点層41に金属単体または合金を用いているので、空気極層13の性能が低下せず、電流密度を増大させてもセル電圧の低下を抑制することができ、燃料極接点層42に導電性酸化物を用いているので、発電中の接続不良が起こらず、時間の経過とともにセル電圧が低下するのを抑制することができた。
たとえば、空気極接点層41にAgPtを用いた実施例1と、空気極接点層41を配置しなかった比較例1とにおける電流密度とセル電圧との関係を図4に示す。また、燃料極接点層42にCSTを用いた実施例5と、燃料極接点層42を配置しなかった比較例2とにおける時間とセル電圧との関係を図5に示す。
今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
1:固体電解質形燃料電池の単位モジュール
10:セル
11:燃料極層
12:固体電解質層
13:空気極層
20:セル間分離部
21:分離層
22:燃料ガス流通路層
23:空気流通路層
30:ガス供給流路構造部
31:燃料ガス供給流路
32:空気供給流路
41:空気極接点層
42:燃料極接点層
51,52:接続層
211,223,233:導電体
222:燃料ガス流通路壁部
232:空気流通路壁部

Claims (6)

  1. アノード層、固体電解質層およびカソード層の積層体からなるセルと、
    前記アノード層に接触するアノード接点層と、
    前記カソード層に接触するカソード接点層と、を備え、
    前記アノード層が金属単体または合金を含み、前記アノード接点層が導電性酸化物を含み、前記カソード層が導電性酸化物を含み、前記カソード接点層が金属単体または合金を含む、固体電解質形燃料電池。
  2. 前記カソード層が、マンガン、鉄、コバルト、および、ニッケルからなる群より選ばれた少なくとも1種の元素を含むペロブスカイト型構造を有する酸化物を含む、請求項1に記載の固体電解質形燃料電池。
  3. 前記カソード接点層が、銀、パラジウム、および、白金からなる群より選ばれた1種の元素を含む金属単体もしくは合金、または、ステンレス鋼を含む、請求項1または請求項2に記載の固体電解質形燃料電池。
  4. 前記アノード層が、ニッケルと固体電解質材料とを含む、請求項1から請求項3までのいずれか1項に記載の固体電解質形燃料電池。
  5. 前記アノード接点層が、ニオブ、タンタル、および、セリウムを除く希土類元素からなる群より選ばれた1種の元素がドープされた化学式ATiO(式中、AがCa、Sr、および、Baからなる群より選ばれた少なくとも1種の元素である)で表されるチタン複合酸化物を含む、請求項1から請求項4までのいずれか1項に記載の固体電解質形燃料電池。
  6. 複数の積層された前記セルと、
    隣り合う一方の前記セルの前記アノード層と他方の前記セルの前記カソード層との間に配置された分離層とを備え、
    前記分離層が、前記アノード接点層と前記カソード接点層とを接続する接続層を含み、 前記接続層が、前記カソード層に含まれる前記酸化物と同じ材料を含む、請求項1から請求項5までのいずれか1項に記載の固体電解質形燃料電池。
JP2015532768A 2013-08-22 2014-07-17 固体電解質形燃料電池 Expired - Fee Related JP6146474B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013171950 2013-08-22
JP2013171950 2013-08-22
PCT/JP2014/069059 WO2015025649A1 (ja) 2013-08-22 2014-07-17 固体電解質形燃料電池

Publications (2)

Publication Number Publication Date
JPWO2015025649A1 true JPWO2015025649A1 (ja) 2017-03-02
JP6146474B2 JP6146474B2 (ja) 2017-06-14

Family

ID=52483431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015532768A Expired - Fee Related JP6146474B2 (ja) 2013-08-22 2014-07-17 固体電解質形燃料電池

Country Status (4)

Country Link
US (1) US9666881B2 (ja)
EP (1) EP3038196A4 (ja)
JP (1) JP6146474B2 (ja)
WO (1) WO2015025649A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133293A (ja) * 1998-09-16 2000-05-12 Sof Co 固体酸化物燃料電池用の接続孔充填式接続体
JP2010515226A (ja) * 2006-12-28 2010-05-06 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 固体酸化物燃料電池用の2層構造インターコネクタ
WO2012133263A1 (ja) * 2011-03-31 2012-10-04 株式会社村田製作所 燃料電池
JP2013069521A (ja) * 2011-09-22 2013-04-18 Nissan Motor Co Ltd 燃料電池、燃料電池スタック、及び燃料電池又は燃料電池スタックの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653009B2 (en) * 2001-10-19 2003-11-25 Sarnoff Corporation Solid oxide fuel cells and interconnectors
US20070082254A1 (en) * 2003-08-06 2007-04-12 Kenichi Hiwatashi Solid oxide fuel cell
US20050227134A1 (en) * 2004-04-13 2005-10-13 Ion American Corporation Offset interconnect for a solid oxide fuel cell and method of making same
JP4476689B2 (ja) * 2004-05-11 2010-06-09 東邦瓦斯株式会社 低温作動型固体酸化物形燃料電池単セル
US20080176113A1 (en) * 2007-01-22 2008-07-24 Jian Wu Systems and method for solid oxide fuel cell cathode processing and testing
EP2306568B1 (en) * 2008-07-14 2015-12-16 Murata Manufacturing Co., Ltd. Interconnector material, intercellular separation structure, and solid electrolyte fuel cell
JP5418723B2 (ja) * 2011-03-30 2014-02-19 株式会社村田製作所 燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133293A (ja) * 1998-09-16 2000-05-12 Sof Co 固体酸化物燃料電池用の接続孔充填式接続体
JP2010515226A (ja) * 2006-12-28 2010-05-06 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 固体酸化物燃料電池用の2層構造インターコネクタ
WO2012133263A1 (ja) * 2011-03-31 2012-10-04 株式会社村田製作所 燃料電池
JP2013069521A (ja) * 2011-09-22 2013-04-18 Nissan Motor Co Ltd 燃料電池、燃料電池スタック、及び燃料電池又は燃料電池スタックの製造方法

Also Published As

Publication number Publication date
US9666881B2 (en) 2017-05-30
US20160164109A1 (en) 2016-06-09
JP6146474B2 (ja) 2017-06-14
EP3038196A1 (en) 2016-06-29
EP3038196A4 (en) 2017-01-11
WO2015025649A1 (ja) 2015-02-26

Similar Documents

Publication Publication Date Title
JP5251982B2 (ja) インターコネクタ用材料、セル間分離構造体および固体電解質形燃料電池
JP5652545B2 (ja) 燃料電池
JP5718194B2 (ja) 固体酸化物形燃料電池セル及び固体酸化物形燃料電池
KR101869305B1 (ko) 셀, 셀 스택 장치, 모듈 및 모듈 수납 장치
JP5079991B2 (ja) 燃料電池セル及び燃料電池
EP2973810B1 (en) Fuel cell system including multilayer interconnect
WO2008044429A1 (fr) Structure support pour piles à combustible à électrolyte solide et module à piles à combustible à électrolyte solide doté de celle-ci
JP5888420B2 (ja) 燃料電池
JP5272572B2 (ja) インターコネクタ用材料、セル間分離構造体および固体電解質形燃料電池
JP5418723B2 (ja) 燃料電池
JP6803437B2 (ja) セル、セルスタック装置、モジュールおよびモジュール収納装置
JPWO2011138915A1 (ja) 高温構造材料、固体電解質形燃料電池用構造体および固体電解質形燃料電池
JP5920880B2 (ja) 積層型固体酸化物形燃料電池の実装構造
JP6146474B2 (ja) 固体電解質形燃料電池
US9865889B2 (en) Solid electrolyte fuel battery having anode and cathode gas supply channels with different cross-section areas
JP5418722B2 (ja) 燃料電池
JP6137326B2 (ja) 固体電解質形燃料電池とその製造方法
JP2012114033A (ja) 燃料電池用支持体、燃料電池セル、燃料電池セル装置、燃料電池モジュールおよび燃料電池装置
JP5954495B2 (ja) 固体電解質形燃料電池
JP2005166314A (ja) 燃料電池セル
JP6503746B2 (ja) 固体電解質形燃料電池の製造方法
JP2008060001A (ja) 単室型固体酸化物形燃料電池及びそのスタック構造
JP2016024951A (ja) 固体酸化物形燃料電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6146474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees