JPWO2014208222A1 - 蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫 - Google Patents

蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫 Download PDF

Info

Publication number
JPWO2014208222A1
JPWO2014208222A1 JP2015523920A JP2015523920A JPWO2014208222A1 JP WO2014208222 A1 JPWO2014208222 A1 JP WO2014208222A1 JP 2015523920 A JP2015523920 A JP 2015523920A JP 2015523920 A JP2015523920 A JP 2015523920A JP WO2014208222 A1 JPWO2014208222 A1 JP WO2014208222A1
Authority
JP
Japan
Prior art keywords
heat storage
temperature
storage member
heat
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015523920A
Other languages
English (en)
Other versions
JP6293143B2 (ja
Inventor
別所 久徳
久徳 別所
知子 加瀬
知子 加瀬
山下 隆
山下  隆
夕香 内海
夕香 内海
知久 宮谷
知久 宮谷
井出 哲也
哲也 井出
大治 澤田
大治 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2014208222A1 publication Critical patent/JPWO2014208222A1/ja
Application granted granted Critical
Publication of JP6293143B2 publication Critical patent/JP6293143B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/006Self-contained movable devices, e.g. domestic refrigerators with cold storage accumulators
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/069Cooling space dividing partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • F25D2303/08222Shape of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • F25D2303/08222Shape of the element
    • F25D2303/08223Shape of the element having the shape of an ice cube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/084Position of the cold storage material in relationship to a product to be cooled

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本発明は、十分な放冷性能が得られる蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫を提供することを目的とする。対向する上面1aと下面1bとを備えた薄板状外形と、包装材2の内部に充填された蓄熱材3と、上面1a側の温度と下面1b側の温度に差が生じる場合に、上面1aと下面1bでの単位時間当りの熱伝導量の差を小さくさせる熱伝導量調整部4とを有する蓄熱部材1である。

Description

本発明は、保温用に用いられる蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫に関する。
冷蔵庫や温蔵庫のような、外気温とは異なる温度で貯蔵物を保管する保管容器が知られている。このような保管容器は、庫内扉の開閉や停電等の外的要因によって庫内温度が外気温に近づいてしまう。これを防止するために、庫内の任意の場所に蓄熱部材を配置し、通常運転時に蓄熱部材を凍結させておくことで、上記のような外的要因が発生しても、蓄熱部材の融解潜熱を利用することによって庫内を任意の温度に保持する保管容器が提案されている。この構成において、特に直冷式の保冷容器の場合、冷気の流れ(放冷特性)は自然対流のみに依存するため、庫内が均一に冷えないという課題がある。この課題の解決手段として、蓄熱部材と冷却器、或いは冷却器支持部材との間に空気層(空間層)を設けることで、意図的に冷気の流れを作り、庫内を効率的に冷却させる手段が提案されている。
特許文献1には、保冷庫の保冷室の天面を構成する仕切板の下面に蓄冷器を取付けると共に、前記仕切板の下面に山部と谷部からなる凹凸形状を形成して、前記蓄冷器の上方に空気通路を確保する構成が開示されている。
特許文献2には、保冷室と、蓄冷室と、前記蓄冷室内に設置する異なる融解温度を有する潜熱蓄熱材を内蔵する冷蔵アイスパックと冷凍アイスパックと、前記アイスパックを冷却する冷却器と前記アイスパックの温度を2つの異なる温度に制御する蓄冷温度調整器を備えたことを特徴とする蓄冷型保冷庫が開示されている。
特開2002−357380号公報 特開平02−143074号公報
しかしながら、特許文献1および2に開示された技術では、保冷庫運転停止後、蓄熱部材の放冷速度ムラの発生によって蓄熱部材の溶解時間が早まり、庫内の保冷時間が短くなるという課題がある。直冷式保冷庫の場合、時間経過に伴う庫内の温度分布は自然対流に依存する。一般に庫内にファン等の意図的な風の流れが存在しない場合、冷たい空気は下方に、温かい空気は上方に移動する。即ち、そのような庫内に蓄熱部材が水平に置かれている場合、蓄冷部材の下面側よりも上面側の方が高い温度と接するため、上面側から溶け始める。この溶け始める速度が蓄冷部材の場所によって異なる現象を「放冷速度ムラ」と定義する。以降の実施例で具体的に説明するが、放冷速度ムラが発生する場合、蓄冷部材が完全溶解するまでの時間が早まってしまう。また、保冷庫運転中に冷却器から放冷される冷気で蓄熱部材が完全に凍結できず、保冷庫運転停止後、蓄冷部材が不完全凍結のため、庫内の保冷時間が短くなるという課題がある。さらに、保冷庫内に蓄熱部材を搭載することによって、冷却器からの冷気が庫内全体に行き届かず、蓄熱部材を搭載しないときよりも庫内温度が上昇する箇所が発生するという課題がある。
本発明の目的は、十分な放冷性能、および保冷性能を有し、庫内温度分布に影響を与えない蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫を提供することにある。
上記目的を達成するための本発明の一態様によれば、
対向する上面と下面とを備えた内部が中空の包装材と、
前記包装材の内部に充填された蓄熱材と、
前記上面側の温度と前記下面側の温度に差が生じる場合に、前記上面側と前記下面側で温度が高い方の面側に、前記上面と前記下面での単位時間当りの熱伝導量の差を小さくさせる熱伝導量調整部と
を有することを特徴とする蓄熱部材であってもよい。
上記本発明の蓄熱部材であって、
前記熱伝導量調整部は、
前記温度が高い方の面側が、温度が低い方の面側よりも熱伝導率の低い低熱伝導性部材で構成されていることを特徴とする蓄熱部材であってもよい。
上記本発明の蓄熱部材であって、
前記低熱伝導性部材は、
前記包装材内に空隙層として存在することを特徴とする蓄熱部材であってもよい。
上記本発明の蓄熱部材であって、
前記熱伝導量調整部は、
前記上面側と前記下面側で、温度の高い方の面側の厚みが温度の低い方の面側よりも厚い層を有することを特徴とする蓄熱部材であってもよい。
上記本発明の蓄熱部材であって、
前記包装材は、ポリエチレンまたはポリプロピレンまたはポリカーボネートまたはアクリル等の樹脂類で成型された樹脂成型容器であること
を特徴とする蓄熱部材であってもよい。
上記本発明の蓄熱部材であって、
前記包装材は、樹脂類または金属類で形成されたフレキシブル性フィルム包装材であることを特徴とする蓄熱部材であってもよい。
上記本発明の蓄熱部材であって、
前記包装材の厚さが、一端から他端に向かって薄くなるように形成されていること
を特徴とする蓄熱部材であってもよい。
上記本発明の蓄熱部材であって、
前記蓄熱材または前記包装材の少なくとも一方に、任意の一定温度で変色する示温インキ材料が含まれていること
を特徴とする蓄熱部材であってもよい。
上記本発明の蓄熱部材であって、
前記包装材に、任意の一定温度で変色する示温シールが貼付されていること
を特徴とする蓄熱部材であってもよい。
上記目的を達成するための本発明の一態様によれば、
容器本体と、
前記容器本体内の空間を開閉自在とする開閉扉と、
前記空間に設けられ、通常運転時に外気温より低い温度で貯蔵物を保冷する保冷室と、 前記保冷室内上方から前記保冷室内を冷却する冷却器と、
前記保冷室内で前記冷却器の下方に配置され、前記冷却器の冷気で潜熱を蓄える上記本発明の蓄熱部材と、
前記保冷室内で前記蓄熱部材を保持する保持部材と
を有することを特徴とする保管容器であってもよい。
上記本発明の保管容器であって、
前記包装材は、
前記下面側の表面積より前記上面側の表面積の方が広いこと
を特徴とする保管容器であってもよい。
上記本発明の保管容器であって、
前記包装材は、
前記上面側が凹凸形状に形成されていること
を特徴とする保管容器であってもよい。
上記本発明の保管容器であって、
前記保持部材は、
前記冷却器から延びて下方に吊るされていること
を特徴とする保管容器であってもよい。
上記本発明の保管容器であって、
前記保持部材は、金属製の高熱伝導性材料で形成されていること
を特徴とする保管容器であってもよい。
上記本発明の保管容器であって、
前記蓄熱部材は水平面に平行な断面の面積が前記冷却器より小さいこと
を特徴とする保管容器であってもよい。
上記本発明の保管容器であって、
前記包装材は、周囲を封止した穴部が設けられていること
を特徴とする保管容器であってもよい。
上記本発明の保管容器であって、
前記保持部材は、
前記蓄熱部材を着脱可能な着脱機構を有していること
を特徴とする保管容器であってもよい。
上記本発明の保管容器であって、
前記着脱機構は、
前記蓄熱部材を摺動させて着脱させること
を特徴とする保管容器であってもよい。
上記目的を達成するための本発明の一態様によれば、
上記の保管容器を備えていることを特徴とする冷蔵庫であってもよい。
本発明によれば、十分な放冷性能を得ることができる。
本発明の第1の実施の形態の実施例1−1による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫を示す図である。 比較例1−1としての蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫を示す図である。 本発明の第1の実施の形態の実施例1−2で用いた冷蔵庫120の構造を説明する図である。 本発明の第1の実施の形態の実施例1−2で用いた冷蔵庫120の庫内の温度分布変化を示す図である。 本発明の第1の実施の形態の実施例1−2で用いた冷蔵庫120の庫内の温度分布変化を示すグラフである。 本発明の第1の実施の形態の実施例1−2で用いた冷蔵庫120の庫内の温度分布変化を示すグラフである。 本発明の第1の実施の形態の実施例1−2で用いた発泡断熱箱140の構造を示す図である。 本発明の第1の実施の形態の実施例1−2による発泡断熱箱140の冷却およびその後の室温放置による温度変化を計測する手順を示す図である。 本発明の第1の実施の形態の実施例1−2による発泡断熱箱140の冷却およびその後の室温放置による温度変化を示す図である。 本発明の第1の実施の形態の実施例1−2と比較例1−2による発泡断熱箱140の冷却およびその後の室温放置による温度変化を示す図である。 本発明の第1の実施の形態による実施例1−3で用いた蓄熱部材20と発泡断熱箱140の構造を示す図である。 本発明の第1の実施の形態の実施例1−3による発泡断熱箱140の冷却およびその後の室温放置による温度変化を示す図である。 本発明の第1の実施の形態の実施例1−4による蓄熱部材30の構造を示す図である。 本発明の第1の実施の形態の実施例1−5による蓄熱部材40、41の構造を示す図である。 本発明の第2の実施の形態の実施例2−1による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫を示す図である。 本発明の第2の実施の形態の実施例2−2で用いた冷蔵庫160の構造を示す図である。 本発明の第2の実施の形態の実施例2−2で用いた冷蔵庫160の冷凍室162と保冷室163の近傍を拡大して示す図である。 本発明の第2の実施の形態の実施例2−2の変形例を示す図である。 本発明の第2の実施の形態の実施例2−2による冷蔵庫160と比較例による冷蔵庫160との冷却性能の対比を示す表である。 本発明の第2の実施の形態の実施例2−3による保管容器、およびそれを用いた冷蔵庫の概略構成を示す図である。 本発明の第2の実施の形態の実施例2−4による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫の概略構成を示す図である。 本発明の第3の実施の形態の実施例3−1による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫の概略構成を示す図である。 本発明の第3の実施の形態の実施例3−2による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫の概略構成を示す図である。 本発明の第4の実施の形態の実施例4−1による蓄熱部材およびそれを用いた保管容器の概略構成を示す図である。 発明の第4の実施の形態の実施例4−2による蓄熱部材およびそれを用いた保管容器の概略構成を示す図である。 発明の第4の実施の形態の実施例4−3による蓄熱部材の概略構成を示す図である。
[第1の実施の形態]
本発明の第1の実施の形態による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫について、図1〜図14を用いて説明する。なお、以下の全ての図面においては、理解を容易にするため、各構成要素の寸法や比率などは適宜異ならせて図示している。
(実施例1−1)
図1は本実施形態の実施例1−1における蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫の概略構成を示している。蓄熱部材1は、対向する上面1aと下面1bとを備えた薄板直方体形状を有している。図1(a)は蓄熱部材1を薄板状表面の法線方向に切断した断面を示している。蓄熱部材1は、薄板直方体形状の外形を有して内部が中空の包装材2と、包装材2の内部空間に充填された蓄熱材3と、包装材2の内部空間に充填された気体層(例えば、空気層)4とを有している。
蓄熱材3は、所定の相変化温度で液相と固相との間で可逆的に相変化する潜熱蓄熱材が用いられる。本実施例の蓄熱材3は水であり、相変化温度は0℃である。また、蓄熱材3として水をゲル化して用いてもよい。また、潜熱蓄熱材の過冷却現象を防止する過冷却防止材が含まれていてもよい。また、潜熱蓄熱材の相分離を防止する相分離防止材が含まれていてもよい。また、包装材2は、ポリエチレンまたはポリプロピレンで成型された樹脂成型容器である。樹脂成型による包装材2は、所定の押圧力に対しても定型性を維持可能なので蓄熱材3が液相時においても蓄熱部材1全体として定型性を維持できる。なお、蓄熱材3がゲル化されているような場合には包装材2自体に定型性を持たせる必要はないので、包装材2として、ナイロンまたはアルミニウムで形成されたフレキシブル性フィルム包装材であってもよい。フィルム包装材を用いる場合には、包装・充填機を用いることによって短時間で大量生産することができる。
潜熱蓄熱を利用する蓄熱材3には、氷(水)、パラフィン(一般式C2n+2で表される飽和鎖式炭化水素の総称)、ポリエチレングリコール、無機塩水溶液、無機塩水和物、包接水和物などの潜熱蓄熱材が用いられる。
包接水和物には、例えば、弗化テトラブチルアンモニウム(25℃)、塩化テトラブチルアンモニウム(16℃)、臭化テトラブチルアンモニウム(11℃)、塩化トリブチル−n−ペンチルアンモニウム(8℃)、臭化トリブチル−n−ペンチルアンモニウム(6℃)、臭化トリブチル−n−プロピルアンモニウム(1℃)、テトラヒドロフラン(4℃)、シクロペンタン(7℃)などがあり、無機塩水溶液の無機塩には、例えば、炭酸ナトリウム(−2℃)、炭酸水素カリウム(−6℃)、塩化カリウム(−11℃)、塩化アンモニウム、硫酸アンモニウム(−18℃)、塩化ナトリウム(−21℃)、亜硝酸カリウム(−22.5℃)、ヨウ化カリウム(−23℃)、水酸化ナトリウム(−28℃)、臭化ナトリウム(−28℃)、ヨウ化ナトリウム(−32℃)、硝酸マグネシウム(−32.9℃)、塩化マグネシウム(−34℃)、炭酸カリウム(−36.8℃)、塩化カルシウム(−55℃)、塩化亜鉛(−62℃)、水酸化カリウム(−65℃)などが挙げられる。
無機塩水和物には、例えば、硫酸ナトリウム十水和物(NaSO・10HO)、酢酸ナトリウム三水和物、チオ硫酸ナトリウム五水和物、リン酸水素二ナトリウム12水和物とリン酸水素二カリウム6水和物との二元系組成物(融解点5℃)硝酸リチウム3水和物を主成分とする硝酸リチウム3水和物と塩化マグネシウム6水和物との二元系組成物(融解点8〜12℃)や硝酸リチウム3水和物−塩化マグネシウム6水和物−臭化マグネシウム6水和物の三元系組成物(融解点5.8〜9.7℃)などが挙げられる。これらは、蓄熱材の一例として挙げられるが、本発明において蓄熱材はこれらに限定されない。
過冷却防止材としては、無機塩水溶液の過冷却防止材としては、硫酸ナトリウム(NaSO)やホウ砂(四ホウ酸ナトリウム十水和物(Na(OH)・8HO))リン酸水素二ナトリウム(NaHPO)、ヨウ化銀(AgI)が用いられる。包接水和化合物の過冷却防止材としてリン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。包接水和化合物の過冷却防止材としては、リン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。これらは、過冷却防止材の一例として挙げられるが、本発明において過冷却防止材はこれらに限定されない。
相分離防止材としては、CMC(カルボキシメチルセルロース)、アタパルシャイ粘土、アクリル吸水性樹脂かんなくず、おがくず、パルプ、各種繊維混合物、澱粉、アルギン酸、シリカゲル、ケイ藻土、水溶性樹脂や架橋ポリアクリル酸塩、澱粉のグラフト重合物、セルロースのグラフト重合物、酢酸ビニル−アクリル酸エステル共重合体の部分ケン化物、架橋ポリビニルアルコール、架橋ポリエチレンオキサイドなどの高吸水性樹脂などや、天然系多糖類又はゼラチンなどが挙げられる。これらは、相分離防止材の一例として挙げられるが、本発明において相分離防止材はこれらに限定されない。
ゲル化材としては、ヒドロキシル基もしくはカルボキシル基、スルホン酸基、アミノ基、アミド基を1つ以上備えた分子を用いた合成高分子、天然系多糖類又はゼラチン等が挙げられる。合成高分子としては、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸誘導体等が挙げられる。天然系多糖類としては、寒天、アルギン酸、ファーセルラン、ペクチン、澱粉、キサンタンガム+ローカストビーンガムの混合物、タマリンド種子ガム、ジュランガム、カラギーナン等が挙げられる。これらは、ゲル化材の一例として挙げられるが、本発明においてゲル化材はこれらに限定されない。
ゲルとは一般に、分子が部分的に架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルの組成はほぼ液相状態であるが、力学的には、固相状態となる。ゲル化した蓄熱材3は、固相と液相との間で相変化しても全体として固体状態を維持し、流動性を有しない。ゲル状の蓄熱材3は、相変化の前後で全体として固体状態を維持できるので取扱いが容易である。
蓄冷材3には、カビなどの発生を防止するために防腐材が含まれていてもよい。特に水道水などを蓄熱材3に用いた場合には防腐材を配合することによってカビなどの発生を防止し、長期間に亘って蓄熱材3の使用が可能になる。防腐材として、例えば、安息香酸ナトリウム、ソルビン酸、ソルビン酸カリウム、パラオキシ安息香酸エチル、パラオキシ安息香酸ブチル、パラオキシ安息香酸、プロピル、パラオキシ安息香酸イソブチル、パラオキシ安息香酸イソプロピル、パラオキシ安息香酸イソブチル、デヒドロ酢酸ナトリウム、プロピオン酸、プロピオン酸カルシウム、プロピオン酸ナトリウム、ε − ポリリシン、ジフェニル、オルトフェニルフェノール、オルトフェニルフェノールナトリウム、チアベンダゾール、イマザリル、メチルイソチアゾリノン、メチルクロロイソチアゾリノン、塩素酸ナトリウムなどが挙げられるが、本発明において防腐材はこれらに限定されない。
包装材2には、所定の押圧力に対しても定型性を維持可能な樹脂成型容器と、フレキシブル性フィルム包装材がある。
樹脂成型容器の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS樹脂、アクリル樹脂(PMMA)、ポリカーボネート(PC)等のプラスチックが挙げられ、これらの材料を射出成形やブロー成形等によって成形したプラスチック容器から構成される。
フレキシブル性フィルム包装材の材料としては、ナイロン、ポリエチレンテレフタレート、アルミなどが挙げられ、これらの材料を溶液法、溶融法、カレンダー法等によって成膜されたフィルム包装材から構成される。
フィルム包装材の包装・充填機としては、縦ピロー型包装機、横ピロー型包装機、上包包装機、真空包装機などが挙げられ、包装材の材質や充填物の粘度などによって適宜選定される。
蓄熱部材1は、上面1aを鉛直上方に向け、下面1bを鉛直下方に向けて、上面1aと下面1bが水平面にほぼ平行になる状態で使用される。蓄熱部材1は、蓄熱材3が液相を呈している状態で使用状態に配置すると、空気が上面1a内側に集まって空隙層として空気層4を形成し、蓄熱材3が下面1b内側に集まって蓄熱材層を形成する。空気による空気層4は断熱層として機能して、上面1a外側の温度が下面1b外側の温度より高い場合に、上面1aと下面1bでの単位時間当りの熱伝導量(以下、単に「熱伝導量」と称する場合がある)の差を小さくさせる熱伝導量調整部となる。なお、蓄熱材3をゲル化している場合は、予め蓄熱材3を下面1b側に配置し、上面1a側に空気による空気層4を形成する。
図1(b)は本実施例による保管容器10の断面構成を示している。保管容器10は、全体視において鉛直方向に縦長の直方体形状の容器本体12を有している。保管容器10は内部が中空の箱体であり、箱体の一部に開閉扉が設けられている。保管容器10内には、外気温と異なる温度(例えば、外気温より低い温度)で貯蔵物を保冷する保冷室14が設けられている。不図示の開閉扉を開くことにより、保冷室14から貯蔵物を取り出したり、貯蔵したい物を保冷室14に置いたりできるようになっている。図1(b)では開閉扉側から見た保管容器10の断面を示している。
保冷室14の上方の天板部内壁には保冷室14を冷却する冷却器18が設けられている。冷却器18は保管容器10に設けられた冷却機構の一部をなしており、不図示の圧縮機、凝縮器、膨張弁をこの順に流通してきた液体の冷媒を気化して周囲に冷熱を放出する。また、ファン等は設けられておらず保冷室14内は自然対流により冷却される。本実施例の保管容器10は直冷式(冷気自然対流方式)の冷蔵庫である。
冷却器18の下方の所定位置の保冷室14の対向内壁には蓄熱部材1を保持する一対の保持部材16a、16bが設けられている。蓄熱部材1は上面1aを上方に向け、下面1bを下方に向けて、上面1a、下面1bが水平面にほぼ平行になる状態で、蓄熱部材1の対向2辺が一対の保持部材16a、16b上に載置される。保持部材16a、16bの蓄熱部材1の下面1bと当接する位置には、蓄熱部材1を着脱可能な着脱機構17a、17bが設けられている。着脱機構17a、17bの構造は種々の構成を採用可能だが最も低コストで安定した機構として、保持部材16a、16b上面の所定位置に開閉扉側から奥壁側に向かって平行に延びる一対の溝構造の案内部17a、17bを設けてもよい。蓄熱部材1の下面1bには案内部17a、17bで案内される被案内部が設けられている。案内部17a、17bの溝に被案内部を嵌め込むことにより、保持部材16a、16b上に蓄熱部材1を安定して載置することができる。また、蓄熱部材1を奥壁側から開閉扉側に引っ張ることにより、蓄熱部材1を保持部材16a、16b上面で摺動させて引き出して取り出すことができる。また、蓄熱部材1を開閉扉側から奥壁側に押し込むことにより、蓄熱部材1を保持部材16a、16b上面で摺動させて設置することができる。
次に、本実施例の蓄熱部材1を備えた保管容器10による冷却動作について説明する。保管容器10に電力が供給されて冷却機構が作動して冷却器18から所定温度(例えば、−2℃)の冷気が放出される。一定時間が経過すると、保冷室14内は所望の保冷温度(例えば、2℃)に維持されて貯蔵物が定温保管される。保冷室14内の蓄熱部材1は冷却器18からの冷気を受けて十分な時間の経過後に液相から固相に相変化する。定常運転時において冷却器18は、蓄熱部材1が固相を維持するように、且つ保冷室14内が所望の保冷温度に維持されるように冷熱を放出する。
停電等により保管容器10への電力供給が断たれて冷却器18による保冷室14の冷却が行われなくなると、保冷室14内の温度上昇に伴って蓄熱部材1に蓄熱された冷熱の放出により保冷室14内の温度が一定時間に亘って所望の温度範囲内に維持される。しかしながら、冷却器18による冷却の停止後の保冷室14内の温度上昇時は庫内温度に分布が生じる。冷たい空気は保冷室14の庫内下方域に、暖かい空気は庫内上方域に移動するので、鉛直方向において、冷却器18側の保冷室14の上側空間14aの温度の方が蓄熱部材1を挟んで反対側の保冷室14の下側空間14bの温度より高くなる温度差が生じる。蓄熱部材1は上面1aを上側空間14aに向け、下面1bを下側空間14bに向けて保冷室14内に配置されているので、蓄熱部材1の上面1aは下面1bの温度より高温度の空気に晒される。
しかしながら、本実施例の蓄熱部材1の上面1a側には熱伝導量調整部としての空気による空気層4が形成されており、空気層4が断熱材として機能する。このため、停電等により保管容器10の運転が停止して、上面1a側の庫内温度が下面1b側の庫内温度より高くなっても、上面1aでの熱伝導量を下面1bでの熱伝導量に近づけて、上面1aと下面1bでの単位時間当りの熱伝導量の差を小さくさせることができる。これにより、庫内温度差により発生する蓄熱部材1の表裏面の融解速度の差異を抑えることで蓄熱材3が完全に融解するまでの時間を長くし、結果として庫内温度の保冷時間の長時間化を図ることができる。
(比較例1−1)
図2は比較例1−1に係る蓄熱部材およびそれを用いた保管容器の概略構成を示している。蓄熱部材101は、全体視において薄板直方体形状を有している。図2(a)は蓄熱部材101を薄板状表面の法線方向に切断した断面を示している。蓄熱部材101は、全体視において薄板直方体形状の外形を有する中空の包装材102と、包装材102の内部空間に充填された蓄熱材103とを有している。
蓄熱材103は、所定の相変化温度で液相と固相との間で可逆的に相変化する潜熱蓄熱材が用いられる。本比較例の蓄熱材103は水であり、相変化温度は0℃である。蓄熱部材101は、薄板状の上面101aと下面101bが水平面にほぼ平行になる状態で使用される。
図2(b)は本比較例による保管容器110の断面構成を示している。保管容器110は、全体視において鉛直方向に縦長の直方体形状の容器本体112を有している。保管容器110は内部が中空の箱体であり、箱体の一部に開閉扉が設けられている。保管容器110内には、外気温より低い温度で貯蔵物を保冷する保冷室114が設けられている。不図示の開閉扉を開くことにより、保冷室114から貯蔵物を取り出したり、貯蔵したい物を保冷室114に置いたりできるようになっている。図2(b)では開閉扉側から見た保管容器110の断面を示している。
保冷室114の上方の保管容器110内壁には保冷室114を冷却する冷却器118が設けられている。冷却器118は冷却機構の一部をなしており、不図示の圧縮機、凝縮器、膨張弁をこの順に流通してきた液体の冷媒を気化して周囲を冷却する。また、ファン等は設けられておらず保冷室114内は自然対流により冷却される。本比較例の保管容器110は直冷式の冷蔵庫である。
冷却器118の下方の所定位置の保冷室114の対向内壁には蓄熱部材101を保持する一対の保持部材116a、116bが設けられている。蓄熱部材101は上面101aを上方に向け、下面101bを下方に向けて、上面101a、下面101bが水平面にほぼ平行になる状態で、蓄熱部材101の対向2辺が一対の保持部材116a、116b上に載置される。
次に、本比較例の蓄熱部材101を備えた保管容器110による冷却動作について説明する。保管容器110に電力が供給されて冷却機構が作動して冷却器118から所定温度(例えば、−2℃)の冷気が放出される。一定時間が経過すると、保冷室114内は所望の保冷温度(例えば、2℃)に維持されて貯蔵物が定温保管される。保冷室114内の蓄熱部材101は冷却器118からの冷気を受けて十分な時間の経過後に液相から固相に相変化する。定常運転時には冷却器118は蓄熱部材101が固相を維持するように冷却するとともに、保冷室114内が所望の保冷温度に維持されるように冷却し続ける。
停電等により保管容器110への電力供給が断たれて冷却器118による保冷室114の冷却が行われなくなると、保冷室114内の温度上昇に伴って蓄熱部材101に蓄熱された冷熱の放出により保冷室114内の温度が一定時間に亘って所望の温度範囲内に維持される。しかしながら、冷却器118による冷却の停止後の保冷室114内の温度上昇時は庫内温度に分布が生じる。冷たい空気は保冷室114の庫内下方域に、暖かい空気は庫内上方域に移動するので、鉛直方向において、冷却器118側の保冷室114の上側空間114aの温度の方が蓄熱部材101を挟んで反対側の保冷室114の下側空間114bの温度より高くなる温度差が生じる。蓄熱部材101は上面101aを上側空間114aに向け、下面101bを下側空間114bに向けて保冷室114内に配置されているので、蓄熱部材101の上面101aは下面101bの温度より高温度の空気に晒される。
このため、停電等により保管容器110の運転が停止した場合、蓄熱部材101の上面101aでの熱伝導量の方が下面101bでの熱伝導量より大きくなる。これにより、蓄熱材103は温度の高い上側空間114aに面した上面101a側が先に溶け始めてしまい、結果的に蓄熱部材全体の保冷可能時間が低下する。庫内温度差により発生する蓄熱部材101の表裏面の融解速度の差異を抑えることができないため蓄熱材103が完全に融解するまでの時間が短くなり、結果として庫内温度の保冷時間が短くなってしまう。
(実施例1−2)
本実施の形態による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫の実施例1−2について図3〜図10を用いて説明する。図3は、本実施例に用いた冷蔵庫120の構造を示している。図3は開閉扉の図示を省略して冷蔵庫120の庫内を開閉扉側から見た状態を示している。冷蔵庫120は外箱121内の上部から下方に向かって順に冷凍室122、保冷室123、冷蔵室124が設けられている。冷蔵室124下方は圧縮機等の冷却機構の一部が収容されている機械室129が設けられている。冷凍室122と保冷室123との間の奥側内壁部には、冷却器126が設けられている。冷蔵室124には上部から下方に向かって順に棚板127、128が配置されている。保冷室123の底板上部中央には温度センサ130aが配置され、棚板127の板上部中央には温度センサ130bが配置され、棚板128の板上部中央には温度センサ130cが配置され、冷蔵室124の底部中央には温度センサ130dが配置されている。温度センサ130a〜130dとして例えば熱電対が用いられる。
まず、冷蔵庫120の電源をオフにした後の庫内各部の温度変化を把握するため、次の測定条件および測定手順で庫内の温度分布変化の測定を実施した。測定条件として、外気温:30℃;冷蔵室ノッチ:「中」;庫内負荷:なし;扉開閉:なし;冷却時間:18時間とした。測定手順として、冷蔵庫120の電源をオンにして冷蔵運転を開始し、庫内温度が安定化するように電源投入から約18時間後に冷蔵庫120の電源をオフにした。その後、赤外線サーモグラフィで庫内の温度分布変化を測定した。
赤外線サーモグラフィでの測定結果を図4に示す。図4(a)〜(h)は、冷蔵庫120の庫内を開放扉側から見た庫内温度分布を示している。図4(a)〜(h)において、相対的に濃淡の濃い部分が低温領域で薄い部分が高温領域を示している。図4(a)は冷蔵庫120の電源をオフにした直後の庫内温度分布を示している。このときの庫内温度は庫内上段で−2.1℃であり、庫内中段で0.3℃であり、庫内下段で1.2℃であった。図4(b)は電源オフ後5分経過時の庫内温度分布を示している。このときの庫内温度は庫内上段で1.1℃であり、庫内中段で1.3℃であり、庫内下段で1.9℃であった。図4(c)は10分経過時の庫内温度分布を示している。このときの庫内温度は庫内上段で5.2℃であり、庫内中段で5.1℃であり、庫内下段で4.8℃であった。図4(d)は15分経過時の庫内温度分布を示している。このときの庫内温度は庫内上段で10.2℃であり、庫内中段で9.3℃であり、庫内下段で8.9℃であった。図4(e)は20分経過時の庫内温度分布を示している。このときの庫内温度は庫内上段で20.5℃であり、庫内中段で19.8℃であり、庫内下段で17.2℃であった。図4(f)は25分経過時の庫内温度分布を示している。このときの庫内温度は庫内上段で33.3℃であり、庫内中段で32.1℃であり、庫内下段で33.1℃であった。図4(g)は50分経過時の庫内温度分布を示している。このときの庫内温度は庫内上段で35.4℃であり、庫内中段で35.4℃であり、庫内下段で35.1℃であった。図4(h)は100分経過時の庫内温度分布を示している。このときの庫内温度は庫内上段で35.7℃であり、庫内中段で35.1℃であり、庫内下段で35.7℃であった。図示のように、時間の経過とともに庫内温度が上昇しており、更にその温度上昇割合は、冷蔵庫内の底面側よりも上面側の方が大きいことを確認した。
次に、冷蔵庫120の電源をオフにした後の庫内各部の温度変化を把握するため、次の測定条件および測定手順で庫内の温度分布変化の測定を実施した。測定条件として、外気温:30℃;冷蔵室ノッチ:「中」;庫内負荷:なし;扉開閉:なし;冷却時間:18時間とした。測定手順として、冷蔵庫120の電源をオンにして冷蔵運転を開始し、庫内温度が安定化するように電源投入から約18時間後に冷蔵庫120の電源をオフにした。その後、温度センサ130a〜130dを用いて測定点の温度を測定し、庫内の温度変化を確認した。
図5は、温度センサ130a〜130dでの測定結果を示すグラフである。縦軸は温度(℃)を表し、横軸は時間(h)を表している。横軸において、時間「0」(h)は冷蔵庫120の電源をオンにした時点から18時間が経過して電源をオフにした時点を示している。時間「0」(h)より右は電源オフ後の経過時間を示している。グラフ中の実線(1)は温度センサ130aで計測した温度を示している。一点鎖線(2)は温度センサ130bで計測した温度を示している。破線(3)は温度センサ130cで計測した温度を示している。点線(4)は温度センサ130dで計測した温度を示している。図5に示すように、電源オフ後はいずれの測定点でも時間の経過とともに温度上昇を生じている。
図6は、図5と同様に温度センサ130a〜130dでの測定結果を示すグラフである。但し、縦軸は電源オフ直後の絶対温度値を基準に規格化した温度上昇率を示している。横軸は時間(h)を表している。横軸において、時間「0.0」(h)は冷蔵庫120の電源をオフにした時点を示している。グラフ中の実線(1)は温度センサ130aで計測した温度上昇率を示している。実線(2)は温度センサ130bで計測した温度上昇率を示している。実線(3)は温度センサ130cで計測した温度上昇率を示している。実線(4)は温度センサ130dで計測した温度上昇率を示している。図6に示すように、電源オフ後は温度センサ130b〜130dで計測した温度に対し、温度センサ130aで計測した温度の方が時間の経過とともに急勾配で上昇している。
図5、図6から明らかなように、定常運転で所望の温度に維持された冷蔵庫120の電源をオフにした後の庫内温度上昇率は、庫内底面側が最も低く、庫内上部に行くに従って急激に高くなることが分かる。つまり、庫内で意図的に風の流れを作らない限り、冷たい空気は下方向へ、温かい空気は上方向へ移動することが確認できた。
図7は本実施例で用いた発泡断熱箱140の構造を示している。図7(a)は発泡断熱箱140の上面に配置された開閉扉140bを取り外して鉛直下方に内部を観察した状態を示している。図7(b)は、図7(a)のA−A線で切断した発泡断熱箱140の断面構造を示している。発泡断熱箱140は箱部140aと開閉扉140bとを有している。開閉扉140bを閉じた状態で発泡断熱箱140は内部に直方体空間142を有する鉛直方向に長い直方体形状となる。直方体空間142内にはほぼ水平方向に糸状部材144が網状に張り渡されている。網状の糸状部材144は、蓄熱部材1の上面1aおよび下面1bをほぼ水平にして蓄熱部材1を載置できる強度を有しており、さらに、網状の隙間を介して直方体空間上部142aと直方体空間下部142bとの間で空気が十分流通できるようになっている。
発泡断熱箱140は発泡材で作製されており、その大きさは例えば横幅a=400mm、縦幅b=300mmであり、直方体空間142の高さc=350mm、直方体空間上部142aの高さd=175mm、直方体空間下部142bの高さe=175mm、である。糸状部材144の径は約0.5mmである。
糸状部材144上に載置される蓄熱部材1の包装材2は例えばPE(ポリエチレン)を成型して作製されている。包装材2は例えば薄板直方体形状に成型されており、長辺の長さが250mm、短辺の長さが160mm、高さが20mmである、また包装材2のPEの板厚は12mmである。包装材2の内部空間も薄板直方体形状に成型されており、その容積は500ccである。包装材2の内部空間には蓄熱材3として300ccの水が封入されている。下面1b側を網状部材144上部に接触させて蓄熱部材1を配置すると、空気が上面1a側に集まって空気層4を形成し、蓄熱材3が下面1b側に集まって蓄熱材層を形成する。
直方体空間部142内には鉛直方向に所定間隔で6つの温度センサ(例えば熱電対)146a〜146fが配置されている。温度センサ146aは網状部材144に載置された蓄熱部材1の下面1b中央から下方にh=100mmの位置に配置されている。温度センサ146bは網状部材144に載置された蓄熱部材1の下面1b中央から下方にi=50mmの位置に配置されている。温度センサ146cは網状部材144に載置された蓄熱部材1の下面1b中央から上方にg=50mmの位置に配置されている。温度センサ146dは網状部材144に載置された蓄熱部材1の下面1b中央から上方にf=100mmの位置に配置されている。温度センサ146eは蓄熱部材1の上面1a中央部に配置されている。温度センサ146fは蓄熱部材1の下面1b中央部に配置されている。
図8は、本実施例による発泡断熱箱140の冷却およびその後の室温放置による温度変化を計測する手順を示している。図8(a)〜(e)は、発泡断熱箱140の冷却および室温放置を時系列で示している。図8(a)は、蓄熱部材1を糸状部材144上に載置して、開閉扉140bを取り外した箱部140aを冷蔵庫120の冷蔵室124内に設置した状態を示している。冷蔵庫120の冷蔵室124内の温度は−6℃に設定されている。図中の矢印のように冷気が流れて蓄熱部材1は冷却される。図8(b)は、蓄熱部材1が十分に冷却されて液相から固相に相変化した状態を示している。図8(c)は、開閉扉140bで箱部140aの内部空間を密閉して、さらに冷却状態を維持している状態を示している。図8(d)は、発泡断熱箱140を冷蔵庫120から取り出して室内に置いた状態を示している。自然対流により図中の矢印のように室温の空気が発泡断熱箱140の外壁に接触して熱交換が行われる。図8(e)は、発泡断熱箱140内の蓄熱部材1が固相から液相に相変化した状態を示している。図8(a)から(d)の状態に至るまで温度センサ146a〜146fによる温度計測が行われる。
図9は温度センサ146a〜146fによる温度計測結果を示すグラフである。図9において、縦軸は温度(℃)を表し、横軸は温度計測における経過時間(h)を表している。横軸において経過時間が「0」は図8(d)に示す発泡断熱箱140を冷蔵庫120から取り出して室内に置いた時点を示している。経過時間「0」より以前の蓄熱部材1を冷却している期間には負号「−」をつけて経過時間を表している。経過時間「0」から右は蓄熱部材1での放冷を示している。
図9において、発泡断熱箱140内に配置された蓄熱部材1の下面1b中央から下方のh=100mmの位置に配置された温度センサ146aでの計測結果は二点鎖線の曲線で示されている。蓄熱部材1の下面1b中央から下方のi=50mmの位置に配置された温度センサ146bでの計測結果は太い実線の曲線で示されている。蓄熱部材1の下面1b中央から上方のg=50mmの位置に配置された温度センサ146cでの計測結果は破線の曲線で示されている。蓄熱部材1の下面1b中央から上方のf=100mmの位置に配置された温度センサ146dでの計測結果は一点鎖線の曲線で示されている。蓄熱部材1の上面1a中央部に配置された温度センサ146eでの計測結果は点線の曲線で示されている。蓄熱部材1の下面1b中央部に配置された温度センサ146fでの計測結果は細い実線の曲線で示されている。
図9に示すように、冷却期間中の経過時間「−2」〜「0」までは各温度センサ146a〜146fの計測値は−4℃でほぼ一定である。つまり、十分な冷却期間を経過すると発泡断熱箱140の内部空間は場所によらずほぼ一定の温度で維持される。また、放冷が開始された経過時間「0」から概ね20分経過時点までは各計測点の温度は上昇して、発泡断熱箱140内の蓄熱部材1の下面1b中央から下方100mmの位置の温度は+12℃程度になり、蓄熱部材1の下面1b中央から下方50mmの位置の温度は+7℃程度になり、蓄熱部材1の下面1b中央から上方50mmの位置の温度は+17℃程度になり、蓄熱部材1の下面1b中央から上方100mmの位置の温度は+19℃程度になり、蓄熱部材1の上面1a中央部の位置の温度は+3℃程度になり、蓄熱部材1の下面1b中央部の位置の温度は+2℃程度になる。
放冷開始から20分経過時点までにおいて、蓄熱部材1の上面1a側にある蓄熱部材1の下面1b中央から上方50mmの位置の温度は+17℃程度であり、蓄熱部材1の下面1b中央から上方100mmの位置の温度は+19℃程度であるのに対し、蓄熱部材1の下面1b中央から下方100mmの位置の温度は+12℃程度であり、蓄熱部材1の下面1b中央から下方50mmの位置の温度は+7℃程度になっている。このように、蓄熱部材1の上面1a側の温度は下面1b側の温度より5〜12℃程度高くなっている。これにより、蓄熱部材1の上面1aの温度も下面1bの温度より1℃程度高くなっている。
また、放冷が開始された経過時間「0」から概ね20分が経過した後、約5時間経過時までは蓄熱部材1が固相から液相に変化する際の潜熱の吸熱により発泡断熱箱140の内部空間は場所によらず温度上昇が抑制される。放冷開始後4時間50分経過時点では、蓄熱部材1の下面1b中央から下方100mmの位置の温度は+18℃程度になり、蓄熱部材1の下面1b中央から下方50mmの位置の温度は+14℃程度になり、蓄熱部材1の下面1b中央から上方50mmの位置の温度は+20℃程度になり、蓄熱部材1の下面1b中央から上方100mmの位置の温度は+21℃程度になり、蓄熱部材1の上面1a中央部の位置の温度は+5℃程度になり、蓄熱部材1の下面1b中央部の位置の温度は+5℃程度になる。
放冷開始後4時間50分経過時点において、蓄熱部材1の上面1a側にある蓄熱部材1の下面1b中央から上方50mmの位置の温度は+20℃程度であり、蓄熱部材1の下面1b中央から上方100mmの位置の温度は+21℃程度であるのに対し、蓄熱部材1の下面1b中央から下方100mmの位置の温度は+18℃程度であり、蓄熱部材1の下面1b中央から下方50mmの位置の温度は+14℃程度になっている。このように、蓄熱部材1の上面1a側の温度は下面1b側の温度より2〜7℃程度高くなっている。上面1a側の温度と下面1b側の温度との温度差は、放冷開始から20分経過時点での温度差より小さくなっている。蓄熱部材1の上面1aの温度と下面1bの温度はほぼ同じ温度になっている。
また、放冷開始から5時間経過後は、蓄熱部材1は完全に液相に相変化して潜熱吸熱に代えて顕熱吸熱となる。このため、発泡断熱箱140の内部空間は場所によらず温度が上昇し、放冷開始後7時間経過時には、温度センサ146a〜146fでの計測温度が22〜25℃の範囲に上昇する。
(比較例1−2)
図10は、本実施例と比較例1−2による発泡断熱箱140の冷却およびその後の室温放置による温度変化を示す図である。図10(a)は、図9に示すグラフから、温度センサ146b、146c、146e、146fで計測された温度データを取り出して示している。図中の時間範囲X1は、蓄熱部材1の上面1aおよび下面1bの温度が放冷開始から5℃以下に維持される時間を示しており、本例ではX1≒5(時間)である。
図10(b)は、比較例1−2に係る発泡断熱箱140の冷却およびその後の室温放置による温度変化を示す図である。図10(b)のグラフの横軸および縦軸は図10(a)のグラフのそれらと同様である。グラフ中には、温度センサ146b、146c、146e、146fのデータを示している。本比較例では、図2に示す蓄熱部材101を発泡断熱箱140の糸状部材144上に載置して、図8に示す発泡断熱箱140の冷却およびその後の室温放置による温度変化を計測する手順を実行した。蓄熱部材101は、全体視において薄板直方体形状の外形を有する中空の包装材(フィルムパック)102と、包装材102の内部空間に空気が入らないように充填された蓄熱材103とを有している。
図10(b)に示すように、冷却期間中の経過時間「−2」〜「0」までは各温度センサ146b、146c、146e、146fの計測値は−4℃でほぼ一定である。つまり、十分な冷却期間を経過すると発泡断熱箱140の内部空間は場所によらずほぼ一定の温度で維持される。また、放冷が開始された経過時間「0」から概ね20分経過時点までは各計測点の温度は上昇して、蓄熱部材101の下面101b中央から下方50mmの位置の温度は+10℃程度になり、蓄熱部材101の下面101b中央から上方50mmの位置の温度は+18℃程度になり、蓄熱部材101の上面101a中央部の位置の温度は+3℃程度になり、蓄熱部材101の下面101b中央部の位置の温度は+2℃程度になる。
また、放冷が開始された経過時間「0」から概ね20分が経過した後、約2.5時間経過時までは蓄熱部材101が固相から液相に変化する際の潜熱の吸熱により発泡断熱箱140の内部空間は場所によらず温度上昇が抑制される。図中の時間範囲X2は、蓄熱部材101の上面101aおよび下面101bの温度が放冷開始から5℃以下に維持される時間を示しており、本例ではX2≒2.5(時間)である。放冷開始後2時間30分経過時点では、蓄熱部材101の下面101b中央から下方50mmの位置の温度は+14℃程度になり、蓄熱部材101の下面101b中央から上方50mmの位置の温度は+22℃程度になり、蓄熱部材101の上面101a中央部の位置の温度は+5℃程度になり、蓄熱部材101の下面101b中央部の位置の温度は+5℃程度になる。
また、放冷開始から2.5時間経過後は、蓄熱部材101は完全に液相に相変化して潜熱吸熱に代えて顕熱吸熱となる。このため、発泡断熱箱140の内部空間は場所によらず温度が上昇し、放冷開始後7時間経過時には、温度センサ各温度センサ146b、146c、146e、146fでの計測温度が27℃以上に上昇する。
このように、本実施例による蓄熱部材1は、対向する上面1aと下面1bとを備えた薄板状外形を備え、内部が中空の包装材2と、包装材2の内部に充填された蓄熱材3と、を有している。さらに、上面1a側の温度が下面1b側の温度より高い場合に、上面1aと下面1bでの単位時間当りの熱伝導量の差を小さくさせる熱伝導量調整部として上面1a側に断熱層を有している。本実施例の断熱層は空隙層であり具体的には空気が充填された空気層4となっている。この熱伝導量調整部により、上面1a側の温度が下面1b側の温度より高くなっても、上面1aでの熱伝導量を下面1bでの熱伝導量に近づけて、上面1aと下面1bでの単位時間当りの熱伝導量の差を小さくさせることができる。これにより、庫内温度差により発生する蓄熱部材1の表裏面の融解速度の差異を抑えることで蓄熱材3が完全に融解するまでの時間を長くすることができる。
一方、比較例1−2に係る蓄熱部材101は、全体視において薄板直方体形状の外形を有する中空の包装材(フィルムパック)102と、包装材102の内部空間に空気が入らないように充填された蓄熱材103とを有している。このように、蓄熱部材101には上面101aと下面101bでの単位時間当りの熱伝導量の差を小さくさせる熱伝導量調整部が設けられていない。このため、蓄熱部材101の上面101aでの熱伝導量の方が下面101bでの熱伝導量より大きくなる。これにより、蓄熱材103は温度の高い上面101a側が先に溶け始めてしまい、結果的に蓄熱部材全体の保冷可能時間が低下する。蓄熱部材101の表裏面の融解速度の差異を抑えることができないため蓄熱材103が完全に融解するまでの時間が短くなっている。
(実施例1−3)
本実施の形態による実施例1−3について図11および図12を用いて説明する。図11は、蓄熱部材20と発泡断熱箱140の構造を示している。蓄熱部材20は、対向する上面20aと下面20bとを備えた薄板直方体形状を有している。図11(a)は蓄熱部材20を薄板状表面の法線方向に切断した断面を示している。蓄熱部材20は、薄板直方体形状の外形を有して内部が中空の包装材22と、包装材22の内部空間に空隙部を作らずに充填された蓄熱材23を有している。上面20a外側には、上面20a側の温度が下面20b側の温度より高い場合に、上面20aと下面20bでの単位時間当りの熱伝導量の差を小さくさせる熱伝導量調整部が配置されている。熱伝導量調整部として、下面20b側の熱伝導率より低い熱伝導率を有する低熱伝導性部材26が上面20a側に貼付されている。本実施例では低熱伝導性部材として、厚さ2mmのPC(ポリカーボネート)製の板部材を用いている。
蓄熱材23は、所定の相変化温度で液相と固相との間で可逆的に相変化する潜熱蓄熱材が用いられる。本実施例の蓄熱材23は水であり、相変化温度は0℃である。また、蓄熱材23として水をゲル化して用いてもよい。
蓄熱部材20は、上面20aを鉛直上方に向け、下面20bを鉛直下方に向けて、上面20aと下面20bが水平面にほぼ平行になる状態で使用される。図11(b)は、本実施例で用いる発泡断熱箱140の断面構造を示している。図11(b)に示す発泡断熱箱140は実施例1−2に示すものと同様なのでその説明は省略する。蓄熱部材20を糸状部材144上に載置して、実施例1−2の図8に示す手順と同様に発泡断熱箱140の冷却およびその後の室温放置による温度変化を計測する。
図12は温度センサ146a〜146fによる温度計測結果を示すグラフである。図12において、縦軸は温度(℃)を表し、横軸は温度計測における経過時間(h)を表している。横軸において経過時間が「0」は図8(d)に示す発泡断熱箱140を冷蔵庫120から取り出して室内に置いた時点を示している。経過時間「0」より以前の蓄熱部材1を冷却している期間には負号「−」をつけて経過時間を表している。経過時間「0」から右は蓄熱部材1での放冷を示している。
図12において、発泡断熱箱140内に配置された蓄熱部材20の下面20b中央から下方100mmの位置に配置された温度センサ146aでの計測結果は二点鎖線の曲線で示されている。蓄熱部材20の下面20b中央から下方50mmの位置に配置された温度センサ146bでの計測結果は太い実線の曲線で示されている。蓄熱部材20の下面20b中央から上方50mmの位置に配置された温度センサ146cでの計測結果は破線の曲線で示されている。蓄熱部材20の下面20b中央から上方100mmの位置に配置された温度センサ146dでの計測結果は一点鎖線の曲線で示されている。蓄熱部材20の上面20a中央部に配置された温度センサ146eでの計測結果は点線の曲線で示されている。蓄熱部材20の下面20b中央部に配置された温度センサ146fでの計測結果は細い実線の曲線で示されている。図中の時間範囲X3は、蓄熱部材20の上面20aおよび下面20bの温度が放冷開始から5℃以下に維持される時間を示しており、本例ではX3≒4.5(時間)である。
図12に示すように、冷却期間中の経過時間「−2」〜「0」までは各温度センサ146a〜146fの計測値は−4℃でほぼ一定である。つまり、十分な冷却期間を経過すると発泡断熱箱140の内部空間は場所によらずほぼ一定の温度で維持される。また、放冷が開始された経過時間「0」から概ね20分経過時点までは各計測点の温度は上昇して、発泡断熱箱140内の蓄熱部材20の下面20b中央から下方100mmの位置の温度は+13℃程度になり、蓄熱部材20の下面20b中央から下方50mmの位置の温度は+10℃程度になり、蓄熱部材1の下面20b中央から上方50mmの位置の温度は+17℃程度になり、蓄熱部材20の下面20b中央から上方100mmの位置の温度は+19℃程度になり、蓄熱部材20の上面20a中央部の位置の温度は+2℃程度になり、蓄熱部材20の下面20b中央部の位置の温度は+2℃程度になる。
放冷開始から20分経過時点までにおいて、蓄熱部材20の上面20a側にある蓄熱部材20の下面20b中央から上方50mmの位置の温度は+17℃程度であり、蓄熱部材20の下面20b中央から上方100mmの位置の温度は+19℃程度であるのに対し、蓄熱部材20の下面20b中央から下方100mmの位置の温度は+13℃程度であり、蓄熱部材20の下面20b中央から下方50mmの位置の温度は+10℃程度になっている。このように、蓄熱部材20の上面20a側の温度は下面20b側の温度より6〜9℃程度高くなっている。これに対し、蓄熱部材20の上面20aは下面20bの温度とほぼ同じ温度になっている。
また、放冷が開始された経過時間「0」から概ね20分が経過した後、約4.5時間経過時までは蓄熱部材20が固相から液相に変化する際の潜熱の吸熱により発泡断熱箱140の内部空間は場所によらず温度上昇が抑制される。放冷開始後4時間30分経過時点では、蓄熱部材20の下面20b中央から下方100mmの位置の温度は+17℃程度になり、蓄熱部材20の下面20b中央から下方50mmの位置の温度は+15℃程度になり、蓄熱部材20の下面20b中央から上方50mmの位置の温度は+21℃程度になり、蓄熱部材20の下面20b中央から上方100mmの位置の温度は+21℃程度になり、蓄熱部材20の上面20a中央部の位置の温度は+5℃程度になり、蓄熱部材20の下面20b中央部の位置の温度は+5℃程度になる。
放冷開始後4時間30分経過時点において、蓄熱部材20の上面20a側にある蓄熱部材20の下面20b中央から上方50mmの位置の温度は+21℃程度であり、蓄熱部材20の下面20b中央から上方100mmの位置の温度は+21℃程度であるのに対し、蓄熱部材20の下面20b中央から下方100mmの位置の温度は+17℃程度であり、蓄熱部材20の下面20b中央から下方50mmの位置の温度は+15℃程度になっている。このように、蓄熱部材20の上面20a側の温度は下面20b側の温度より4〜6℃程度高くなっている。上面20a側の温度と下面20b側の温度との温度差は、放冷開始から20分経過時点での温度差より小さくなっている。蓄熱部材20の上面20aの温度と下面20bの温度はほぼ同じ温度になっている。
また、放冷開始から4.5時間経過後は、蓄熱部材1は完全に液相に相変化して潜熱吸熱に代えて顕熱吸熱となる。このため、発泡断熱箱140の内部空間は場所によらず温度が上昇し、放冷開始後7時間経過時には、温度センサ146a〜146fでの計測温度が23〜25℃の範囲に上昇する。
このように、本実施例による蓄熱部材20は、対向する上面20aと下面20bとを備えた薄板状外形を備え、内部が中空の包装材22と、包装材22の内部に充填された蓄熱材23と、を有している。さらに、上面20a外側には、上面20a側の温度が下面20b側の温度より高い場合に、上面20aと下面20bでの単位時間当りの熱伝導量の差を小さくさせる熱伝導量調整部として、下面20b側の熱伝導率より低い熱伝導率を有する低熱伝導性部材26が上面20a側に貼付されている。本実施例では低熱伝導性部材26として、厚さ2mmのPC(ポリカーボネート)製の板部材を用いている。この熱伝導量調整部により、上面20a側の温度が下面20b側の温度より高くなっても、上面20aでの熱伝導量を下面20bでの熱伝導量に近づけて、上面20aと下面20bでの単位時間当りの熱伝導量の差を小さくさせることができる。これにより、庫内温度差により発生する蓄熱部材20の表裏面の融解速度の差異を抑えることで蓄熱材23が完全に融解するまでの時間を長くすることができる。なお、本実施例では低熱伝導性部材26としてPC製の板部材を用いているが、これに限らず、庫内温度が相対的に高い上方側の面の蓄熱部材の熱伝導率を、庫内温度が相対的に低い下方側の面の熱伝導率よりも低くするために、蓄熱部材20の上面20aにフェノールフォームや硬質ウレタンフォーム等を塗布してもよい。塗布により容易に低コストで上面20a上に低熱伝導性部材26を作製できる。また、塗布により密着性を高めて低熱伝導性部材26を上面20aに作製できる。また、熱伝導量調整部として、上面20aに低熱伝導性部材26を設ける代わりに、包装材22の上面20a側の層の厚さを下面20b側の厚さより厚くするようにしてもよい。このようにしても、この熱伝導量調整部により、上面20a側の温度が下面20b側の温度より高くなっても、上面20aでの熱伝導量を下面20bでの熱伝導量に近づけて、上面20aと下面20bでの単位時間当りの熱伝導量の差を小さくさせることができる。
(比較例1−3)
比較例1−3として、実施例1−3の蓄熱部材20を用い、上面20aを下側にして下面20bを上側にして図11(b)に示す発泡断熱箱140の糸状部材144に載置して実施例1−2の図8に示す手順と同様に発泡断熱箱140の冷却およびその後の室温放置による温度変化を計測した。計測の結果、比較例1−3に係る蓄熱部材20の搭載形態では、上面(実施例1−3での下面20b)側の熱伝導率が下面(実施例1−3での上面20a)側の熱導電率より大きくなってしまうため、保冷効果が激減することを確認した。具体的には、発泡断熱箱140を冷蔵庫120から取り出して室内に置いた時点から、蓄熱部材20が5℃以下の温度を保持可能な保持時間は、約2.1時間と実施例1−3の4.5時間に比べて約45%低下した。
(実施例1−4)
図13は本実施形態の実施例1−4における蓄熱部材30の概略構成を示している。蓄熱部材30は、対向する上面30aと下面30bとを備えた薄板直方体形状を有している。図13(a)は蓄熱部材30を薄板状表面の法線方向に切断した断面を示している。蓄熱部材30は、薄板直方体形状の外形を有して内部が中空の包装材32と、包装材32の内部空間に充填された蓄熱材33と、包装材32の内部空間に充填された気体層(例えば、空気)34と、包装材32の内部空間に封止され、蓄熱材33よりも比重が低く熱伝導率も低い低比重/低熱伝導性材で形成された複数の球状物36とを有している。
蓄熱材33は、所定の相変化温度で液相と固相との間で可逆的に相変化する潜熱蓄熱材が用いられる。本実施例の蓄熱材33は水であり、相変化温度は0℃である。
蓄熱部材30は、上面30aを鉛直上方に向け、下面30bを鉛直下方に向けて、上面30aと下面30bが水平面にほぼ平行になる状態で使用される。蓄熱部材30は、蓄熱材33が液相を呈している状態で使用状態に配置すると、空気が上面30a内側に集まって空隙層として空気層34を形成し、蓄熱材33が下面30b内側に集まって蓄熱材層を形成する。空気による空気層34は断熱層として機能して、上面30a外側の温度が下面30b外側の温度より高い場合に、上面30aと下面30bでの単位時間当りの熱伝導量の差を小さくさせる熱伝導量調整部となる。
さらに、蓄熱部材30は、蓄熱材33が液相を呈している状態で使用状態に配置すると、蓄熱材33より比重が低い複数の球状物36が蓄熱材層と空気層34との界面から空気層34に浮揚して蓄熱部材30の上面30a側に集積される。複数の球状物36の集積層は、空気層34とともに断熱層として機能して、上面30a外側の温度が下面30b外側の温度より高い場合に、上面30aと下面30bでの単位時間当りの熱伝導量の差を小さくさせる熱伝導量調整部となる。
蓄熱材33よりも比重が低く、熱伝導率の低い材料としては、例えば、ポリエチレン(比重:0.9〜0.96,熱伝導率:0.41W/mK)、ポリプロピレン(比重:0.91〜0.96,熱伝導率:0.17〜0.19W/mK)、シリカエアロゲル(比重:0.01〜0.15,熱伝導率:0.017W/mK)等を用いることができる。これらの材料を1種類又は複数種類組み合わせて球状物36を形成して蓄熱材33に分散させて用いることができる。なお、蓄熱部材30は図13(b)に示すように、縦長方向を鉛直方向に平行にして用いることも可能である。
この構成によっても上面30a側の温度が下面30b側の温度より高くなっても、上面30aでの熱伝導量を下面30bでの熱伝導量に近づけて、上面30aと下面30bでの単位時間当りの熱伝導量の差を小さくさせることができる。これにより、庫内温度差により発生する蓄熱部材30の表裏面の融解速度の差異を抑えることで蓄熱材33が完全に融解するまでの時間を長くすることができる。
(実施例1−5)
図14は本実施形態の実施例1−5における蓄熱部材40の概略構成を示している。蓄熱部材40は、対向する上面40aと下面40bとを備えた薄板直方体形状を有している。図14(a)は蓄熱部材40を薄板状表面の法線方向に切断した断面を示している。蓄熱部材40は、薄板直方体形状の外形を有して内部が中空の包装材42と、包装材42の内部空間に空隙層が形成されないように充填された蓄熱材43とを有している。さらに蓄熱部材40は、蓄熱材43よりも熱伝導率の低い低熱伝導性部材45を上面40a側に有している。低熱伝導性部材45は例えば凹状の中空部を有し、上面40aと低熱伝導性部材45との間の閉空間に空気層44が形成されている。これにより、蓄熱部材40の上面40a上は低熱伝導性部材45と空気層44の二重断熱構成となり、放冷を遅らせることができる。
この構成によっても、上面40a側の温度が下面40b側の温度より高くなっても、上面40aでの熱伝導量を下面40bでの熱伝導量に近づけて、上面40aと下面40bでの単位時間当りの熱伝導量の差を小さくさせることができる。これにより、庫内温度差により発生する蓄熱部材40の表裏面の融解速度の差異を抑えることで蓄熱材43が完全に融解するまでの時間を長くすることができる。
図14(b)は変形例による蓄熱部材41を薄板状表面の法線方向に切断した断面を示している。蓄熱部材41は、薄板直方体形状の外形を有して内部が中空の包装材42と、包装材42の内部空間に空隙層が形成されないように充填された蓄熱材43とを有している。さらに蓄熱部材41は、蓄熱材43よりも熱伝導率の低い低熱伝導性部材45を上面40a側に有している。低熱伝導性部材45は例えば凹状の中空部を有し、中空部内に複数の櫛歯状の柱状部46が形成されている。上面40aには例えば包装材42と同じ材料で形成された柱状部47が櫛歯状に形成されており、柱状部46と柱状部47とが噛み合って低熱導電性部材45が固定されている。低熱導電性部材45裏面と柱状部47上面との間には空気層44が形成されている。これにより、蓄熱部材41の上面40a上は低熱伝導性部材45と空気層44の二重断熱構成となり、放冷を遅らせることができる。
この構成によっても上面40a側の温度が下面40b側の温度より高くなっても、上面40aでの熱伝導量を下面40bでの熱伝導量に近づけて、上面40aと下面40bでの単位時間当りの熱伝導量の差を小さくさせることができる。これにより、庫内温度差により発生する蓄熱部材40の表裏面の融解速度の差異を抑えることで蓄熱材43が完全に融解するまでの時間を長くすることができる。
[第2の実施の形態]
本発明の第2の実施の形態による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫について、図15〜図21を用いて説明する。
(実施例2−1)
図15は本実施形態の実施例2−1における保管容器、およびそれを用いた冷蔵庫の概略構成を示している。蓄熱部材50は、対向する上面50aと下面50bとを備えた薄板直方体形状を有している。図15(a)は蓄熱部材50を薄板状表面の法線方向に切断した断面を示している。蓄熱部材50は、薄板直方体形状の外形を有して内部が中空の包装材52と、包装材52の内部空間に空隙層ができないように充填された蓄熱材53とを有している。
蓄熱材53は、所定の相変化温度で液相と固相との間で可逆的に相変化する潜熱蓄熱材が用いられる。本実施例の蓄熱材53は水であり、相変化温度は0℃である。また、蓄熱材53として水をゲル化して用いてもよい。また、潜熱蓄熱材の過冷却現象を防止する過冷却防止材が含まれていてもよい。また、潜熱蓄熱材の相分離を防止する相分離防止材が含まれていてもよい。また、包装材52は、ポリエチレンまたはポリプロピレンで成型された樹脂成型容器である。樹脂成型による包装材52は、所定の押圧力に対しても定型性を維持可能なので蓄熱材53が液相時においても蓄熱部材50全体として定型性を維持できる。なお、蓄熱材53がゲル化されているような場合には包装材52自体に定型性を持たせる必要はないので、包装材52は、ナイロンまたはアルミニウムで形成されたフレキシブル性フィルム包装材であってもよい。フィルム包装材を用いる場合には包装・充填機を用いることによって短時間で大量生産することができる。蓄熱部材50は、上面50aを鉛直上方に向け、下面50bを鉛直下方に向けて、上面50aと下面50bが水平面にほぼ平行になる状態で使用される。
潜熱蓄熱を利用する蓄熱材3には、氷(水)、パラフィン(一般式C2n+2で表される飽和鎖式炭化水素の総称)、ポリエチレングリコール、無機塩水溶液、無機塩水和物、包接水和物などの潜熱蓄熱材が用いられる。
包接水和物には、例えば、弗化テトラブチルアンモニウム(25℃)、塩化テトラブチルアンモニウム(16℃)、臭化テトラブチルアンモニウム(11℃)、塩化トリブチル−n−ペンチルアンモニウム(8℃)、臭化トリブチル−n−ペンチルアンモニウム(6℃)、臭化トリブチル−n−プロピルアンモニウム(1℃)、テトラヒドロフラン(4℃)、シクロペンタン(7℃)などがあり、無機塩水溶液の無機塩には、例えば、炭酸ナトリウム(−2℃)、炭酸水素カリウム(−6℃)、塩化カリウム(−11℃)、塩化アンモニウム、硫酸アンモニウム(−18℃)、塩化ナトリウム(−21℃)、亜硝酸カリウム(−22.5℃)、ヨウ化カリウム(−23℃)、水酸化ナトリウム(−28℃)、臭化ナトリウム(−28℃)、ヨウ化ナトリウム(−32℃)、硝酸マグネシウム(−32.9℃)、塩化マグネシウム(−34℃)、炭酸カリウム(−36.8℃)、塩化カルシウム(−55℃)、塩化亜鉛(−62℃)、水酸化カリウム(−65℃)などが挙げられる。
無機塩水和物には、例えば、硫酸ナトリウム十水和物(NaSO・10HO)、酢酸ナトリウム三水和物、チオ硫酸ナトリウム五水和物、リン酸水素二ナトリウム12水和物とリン酸水素二カリウム6水和物との二元系組成物(融解点5℃)硝酸リチウム3水和物を主成分とする硝酸リチウム3水和物と塩化マグネシウム6水和物との二元系組成物(融解点8〜12℃)や硝酸リチウム3水和物−塩化マグネシウム6水和物−臭化マグネシウム6水和物の三元系組成物(融解点5.8〜9.7℃)などが挙げられる。これらは、蓄熱材の一例として挙げられるが、本発明において蓄熱材はこれらに限定されない。
過冷却防止材としては、無機塩水溶液の過冷却防止材としては、硫酸ナトリウム(NaSO)やホウ砂(四ホウ酸ナトリウム十水和物(Na(OH)・8HO))リン酸水素二ナトリウム(NaHPO)、ヨウ化銀(AgI)が用いられる。包接水和化合物の過冷却防止材としてリン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。包接水和化合物の過冷却防止材としては、リン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。これらは、過冷却防止材の一例として挙げられるが、本発明において過冷却防止材はこれらに限定されない。
相分離防止材としては、CMC(カルボキシメチルセルロース)、アタパルシャイ粘土、アクリル吸水性樹脂かんなくず、おがくず、パルプ、各種繊維混合物、澱粉、アルギン酸、シリカゲル、ケイ藻土、水溶性樹脂や架橋ポリアクリル酸塩、澱粉のグラフト重合物、セルロースのグラフト重合物、酢酸ビニル−アクリル酸エステル共重合体の部分ケン化物、架橋ポリビニルアルコール、架橋ポリエチレンオキサイドなどの高吸水性樹脂などや、天然系多糖類又はゼラチンなどが挙げられる。これらは、相分離防止材の一例として挙げられるが、本発明において相分離防止材はこれらに限定されない。
ゲル化材としては、ヒドロキシル基もしくはカルボキシル基、スルホン酸基、アミノ基、アミド基を1つ以上備えた分子を用いた合成高分子、天然系多糖類又はゼラチン等が挙げられる。合成高分子としては、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸誘導体等が挙げられる。天然系多糖類としては、寒天、アルギン酸、ファーセルラン、ペクチン、澱粉、キサンタンガム+ローカストビーンガムの混合物、タマリンド種子ガム、ジュランガム、カラギーナン等が挙げられる。これらは、ゲル化材の一例として挙げられるが、本発明においてゲル化材はこれらに限定されない。
ゲルとは一般に、分子が部分的に架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルの組成はほぼ液相状態であるが、力学的には、固相状態となる。ゲル化した蓄熱材3は、固相と液相との間で相変化しても全体として固体状態を維持し、流動性を有しない。ゲル状の蓄熱材3は、相変化の前後で全体として固体状態を維持できるので取扱いが容易である。
包装材2には、所定の押圧力に対しても定型性を維持可能な樹脂成型容器と、フレキシブル性フィルム包装材がある。
樹脂成型容器の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS樹脂、アクリル樹脂(PMMA)、ポリカーボネート(PC)等のプラスチックが挙げられ、これらの材料を射出成形やブロー成形等によって成形したプラスチック容器から構成される。
フレキシブル性フィルム包装材の材料としては、ナイロン、ポリエチレンテレフタレート、アルミなどが挙げられ、これらの材料を溶液法、溶融法、カレンダー法等によって成膜されたフィルム包装材から構成される。
フィルム包装材の包装・充填機としては、縦ピロー型包装機、横ピロー型包装機、上包包装機、真空包装機などが挙げられ、包装材の材質や充填物の粘度などによって適宜選定される。
図15(b)は本実施例による保管容器150の断面構成を示している。保管容器150は、全体視において鉛直方向に縦長の直方体形状の容器本体152を有している。保管容器150は内部が中空の箱体であり、箱体の一部に開閉扉が設けられている。保管容器150内には、外気温と異なる温度(例えば、外気温より低い温度)で貯蔵物を保冷する保冷室154が設けられている。不図示の開閉扉を開くことにより、保冷室154から貯蔵物を取り出したり、貯蔵したい物を保冷室154に置いたりできるようになっている。図15(b)では開閉扉側から見た保管容器150断面を示している。
保冷室154の上方の天板部内壁には保冷室154を冷却する冷却器158が設けられている。冷却器158は保管容器150に設けられた冷却機構の一部をなしており、不図示の圧縮機、凝縮器、膨張弁をこの順に流通してきた液体の冷媒を気化して周囲に冷熱を放出する。また、ファン等は設けられておらず保冷室154内は自然対流により冷却される。本実施例の保管容器150は直冷式(冷気自然対流方式)の冷蔵庫である。
蓄熱部材50は、冷却器158から延出した一対の支持部材157で支持される保持部材156の上面に載置されている。保持部材156は、冷却器158から延びた一対の支持部材157により冷却器158の下方に吊るされている。保持部材156は、蓄熱部材50の下面50b全面と接触可能な面積を持つ上平面を有している。保持部材156と支持部材157は一体的に作製されていてもよいし、別部品として作製して組み合わせて使うようにしてもよい。保持部材156と支持部材157は例えばアルミニウムや銅等の金属製の高熱伝導性材料で形成されている。このため、冷却器158からの冷熱を効率よく蓄熱部材50の下面50b全面に伝達することができる。蓄熱部材50は上面50aを上方に向け、下面50bを下方に向けて、上面50a、下面50bが水平面にほぼ平行になる状態で、保持部材156上に載置される。
次に、本実施例の蓄熱部材50を備えた保管容器150による冷却動作について説明する。保管容器150に電力が供給されて冷却機構が作動して冷却器158から所定温度(例えば、−2℃)の冷気が放出される。一定時間が経過すると、保冷室154内は所望の保冷温度(例えば、2℃)に維持されて貯蔵物が定温保管される。保冷室154内の蓄熱部材50は冷却器158からの冷気を上面50aで直接受けるとともに、図15(b)の矢印に示すように、冷却器158から延出した一対の支持部材157を介して保持部材156に伝達された冷却器158の冷熱を下面50bで直接受けることができる。このため、保管容器150の通常運転時に冷却器158からの冷気を蓄熱部材50が効率的に受けることができるため、蓄熱部材50は完全に凍結することができる。これにより、保管容器150の運転停止時に蓄熱部材50で保冷室154の庫内温度を所定温度に維持した十分な保冷ができる。
停電等により保管容器150への電力供給が断たれて冷却器158による保冷室154の冷却が行われなくなると、保冷室154内の温度上昇に伴って蓄熱部材50に蓄熱された冷熱の放出により保冷室154内の温度が一定時間に亘って所望の温度範囲内に維持される。
(比較例2−1)
実施例1−1での比較例1−1と同様の構成で保管容器110による保冷動作を行わせたところ、通常運転時に冷却器118からの冷気を蓄熱部材50が効率的に受けることができず、蓄熱部材50を完全に凍結することができなかった。蓄熱部材50が不完全凍結の状態では、融解潜熱量が不十分となり庫内保冷時間が短くなる。このため、保管容器110の運転停止時に庫内温度を十分に保冷できなかった。
(実施例2−2)
本実施の形態による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫の実施例2−2について図16および図17を用いて説明する。図16は、本実施例に用いた冷蔵庫160の構造を示している。図16は開閉扉の図示を省略して冷蔵庫160の庫内を開閉扉側から見た状態を示している。冷蔵庫160は外箱161内の上部から下方に向かって順に冷凍室162、保冷室163、冷蔵室164が設けられている。冷蔵室164下方は圧縮機等の冷却機構の一部が収容されている機械室169が設けられている。冷凍室162の下面には保冷室163との間に冷却器166が設けられている。冷蔵室164には上部から下方に向かって順に棚板167、168が配置されている。
冷凍室162の底面から約10cm上方に温度センサ131aが配置され、蓄熱部材101の上面101aのほぼ中央には温度センサ131bが配置され、保冷室163の底板から約2.5cm上方に温度センサ131cが配置され、棚板167の底面から約2.5cm上方に温度センサ131dが配置され、棚板128の底面から約2.5cm上方に温度センサ131eが配置されている。温度センサ131a〜131eとして例えば熱電対が用いられる。
図17は、冷蔵庫160の冷凍室162と保冷室163の近傍を拡大して示している。蓄熱部材101は、冷却器166から延出した線対称に対向配置された断面L字状の一対の保持部材165で保持されている。一対の保持部材165の冷却器166近傍の幅w1はw1=320mmであり冷却器166の幅より狭くなっている。冷却器166下面から測った蓄熱部材の保持面までの高さhはh=31mmである。保持部材165は板厚が約2mmの銅製である。蓄熱部材101は実施例1−1の図2に示したものと同等であり、使用した蓄熱材103は500gの量の水である。包装材102は、材質がPEでブロー成型により形成されている。蓄熱部材101の外形寸法は、幅w2がw2=160mmであり、奥行きが240mmの長方形平面を有し、厚さtはt=20mmに形成されている。保持部材165に保持された状態で蓄熱部材101の上面101aから冷却器166までの距離は約11mmである。蓄熱部材101の幅w2は、冷却器166の幅より狭い保持部材165の幅w1より狭い。このように、蓄熱部材101の水平面に平行な断面の面積は冷却器166の水平面に平行な断面の面積より小さくなっている。
まず、冷蔵庫160の電源をオフにした後の庫内各部の温度変化を把握するため、次の測定条件および測定手順で庫内の温度分布変化の測定を実施した。測定条件として、外気温:28℃〜33℃;測定開始時の庫内温度:30℃以上;冷却時間:18時間とした。測定手順として、冷蔵庫160の電源をオンにして冷蔵運転を開始し、庫内温度が安定化するように電源投入から約18時間後に冷蔵庫160の電源をオフにした。その後、温度センサ131a〜131eを用いて測定点の温度を測定し、庫内の温度変化を確認した。また、比較例2−2として冷蔵庫160から蓄熱部材101を取り外して蓄熱部材なしでの庫内温度変化も計測した。
測定の結果、蓄熱部材101を搭載することにより、蓄熱部材101を搭載しない場合に比べて冷蔵庫160の電源がオフになった後の保冷室163内の温度を10℃以下に維持できる時間が、蓄熱部材101がない場合は1時間であるのに対し、蓄熱部材101を搭載することにより2時間に拡大できることを確認した。
図18は、本実施例の変形例を示している。図18(a)は、冷蔵庫160の冷凍室162と保冷室163の近傍を拡大して示しており、外観形状は図17に示すものと同一である。本変形例では、保持部材165の材質を銅から熱導電性に優れたアルミニウムに代えた。これにより、銅製の保持部材165では蓄熱部材101を凍結するのに10時間を要していたのに対し、本変形例のアルミニウム製の保持部材165によれば約7時間で蓄熱部材101を凍結することができた。また、冷蔵庫160の電源がオフになった後の保冷室163内の温度を10℃以下に維持できる時間は銅製の保持部材165では約2時間であったが、本変形例のアルミニウム製の保持部材165によれば2.36時間に長くすることができた。
図18(b)は、冷蔵庫160の冷凍室162と保冷室163の近傍を拡大して示しており、図18(a)に示した変形例と同様に保持部材165の材質をアルミニウムに代えるとともに、保冷室163の側壁の高さを高くして保冷対象空間の密閉度を拡張した。これにより、銅製の保持部材165では蓄熱部材101を凍結するのに10時間を要していたのに対し、本変形例のアルミニウム製の保持部材165によれば約7時間で蓄熱部材101を凍結することができた。また、冷蔵庫160の電源がオフになった後の保冷室163内の温度を10℃以下に維持できる時間は銅製の保持部材165では約2時間であったが、本変形例のアルミニウム製の保持部材165および保冷室163の形状によれば3.57時間に長くすることができた。
図19は、本実施例による冷蔵庫160と比較例による冷蔵庫160との冷却性能の対比を示す表である。表は冷蔵庫160を定常運転時の温度が安定した状態での比較を示している。表の第一行は温度測定場所を示しており、左から右に「冷凍室(162)」、「蓄熱部材(101)」、「保冷室(163)」、「上部棚板(167)」、「下部棚板(168)」、「室温」である。表の第二行は、(1)蓄熱部材を搭載しない冷蔵庫160での「冷凍室」の温度が−10℃であり、「蓄熱部材」は搭載していないので温度を「−」で示し、「保冷室」の温度は−7.8℃であり、「上部棚板」の温度は−1.2℃であり、「下部棚板」の温度は2.7℃であり、「室温」が32.4℃であることを示している。表の第三行は、(2)蓄熱部材を搭載した冷蔵庫160での「冷凍室」の温度が−10℃であり、「蓄熱部材」の温度が−11.8℃であり、「保冷室」の温度は−5.8℃であり、「上部棚板」の温度は−0.2℃であり、「下部棚板」の温度は4.7℃であり、「室温」が33.3℃であることを示している。表の第四行は、蓄熱部材を搭載しない冷蔵庫160に対する蓄熱部材を搭載した冷蔵庫160の各場所での温度差を示している。冷凍室162は蓄熱部材101の有無に関わらず温度が安定した定常運転時で−10℃が得られている。保冷室163での温度は、蓄熱部材101を搭載した冷蔵庫160の方が+2.0℃だけ温度が高くなっている。上部棚板167では、蓄熱部材101を搭載した冷蔵庫160の方が+1.0℃だけ温度が高くなっている。下部棚板168では、蓄熱部材101を搭載した冷蔵庫160の方が+1.5℃だけ温度が高くなっている。なお、蓄熱部材101を搭載した冷蔵庫160の計測時の室温の方が+1.0℃だけ温度が高くなっている。
このように本実施例によれば、蓄熱部材101を搭載した冷蔵庫160の運転時の庫内温度上昇を、蓄熱部材101を搭載しない冷蔵庫160と比較して+2℃以内に抑えることができた。本実施例では蓄熱部材101の水平面に平行な断面の面積は冷却器166の水平面に平行な断面の面積より小さくなっている。このため、水平面内において冷蔵室164の大きさより蓄熱部材101の大きさを小さくして冷却器166からの冷気を流通させる隙間を大きくすることができる。従って、冷却器166からの冷気の流通を蓄熱部材101で阻害してしまうことを抑制でき、蓄熱部材101を搭載しない冷蔵庫160と比較して冷蔵室164内の温度が高くなってしまう箇所が発生するのを防止できる。蓄熱部材101の水平面内での大きさを冷却器166よりも小さくすることによって、冷却器166からの冷気を効率良く庫内全体に行き届かせ、庫内温度分布の均一化を図ることができる。
(実施例2−3)
図20は本実施形態の実施例2−3における保管容器、およびそれを用いた冷蔵庫の概略構成を示している。蓄熱部材70は、対向する上面70aと下面70bとを備えた薄板直方体形状を有している。図20(a)は蓄熱部材70を薄板状表面の法線方向に切断した断面を示している。蓄熱部材70は、薄板直方体形状の外形を有して内部が中空の包装材72と、包装材72の内部空間に空隙層ができないように充填された蓄熱材73とを有している。
蓄熱材73は、所定の相変化温度で液相と固相との間で可逆的に相変化する潜熱蓄熱材が用いられる。本実施例の蓄熱材73は水であり、相変化温度は0℃である。また、蓄熱材73として水をゲル化して用いてもよい。また、潜熱蓄熱材の過冷却現象を防止する過冷却防止材が含まれていてもよい。また、潜熱蓄熱材の相分離を防止する相分離防止材が含まれていてもよい。また、包装材72は、ポリエチレンまたはポリプロピレンで成型された樹脂成型容器である。樹脂成型による包装材72は、所定の押圧力に対しても定型性を維持可能なので蓄熱材73が液相時においても蓄熱部材70全体として定型性を維持できる。なお、蓄熱材73がゲル化されているような場合には包装材72自体に定型性を持たせる必要はないので、包装材72は、ナイロンまたはアルミニウムで形成されたフレキシブル性フィルム包装材であってもよい。フィルム包装材を用いる場合には包装・充填機を用いることによって短時間で大量生産することができる。蓄熱部材70は、上面70aを鉛直上方に向け、下面70bを鉛直下方に向けて、上面70aと下面70bが水平面にほぼ平行になる状態で使用される。
潜熱蓄熱を利用する蓄熱材3には、氷(水)、パラフィン(一般式C2n+2で表される飽和鎖式炭化水素の総称)、ポリエチレングリコール、無機塩水溶液、無機塩水和物、包接水和物などの潜熱蓄熱材が用いられる。
包接水和物には、例えば、弗化テトラブチルアンモニウム(25℃)、塩化テトラブチルアンモニウム(16℃)、臭化テトラブチルアンモニウム(11℃)、塩化トリブチル−n−ペンチルアンモニウム(8℃)、臭化トリブチル−n−ペンチルアンモニウム(6℃)、臭化トリブチル−n−プロピルアンモニウム(1℃)、テトラヒドロフラン(4℃)、シクロペンタン(7℃)などがあり、無機塩水溶液の無機塩には、例えば、炭酸ナトリウム(−2℃)、炭酸水素カリウム(−6℃)、塩化カリウム(−11℃)、塩化アンモニウム、硫酸アンモニウム(−18℃)、塩化ナトリウム(−21℃)、亜硝酸カリウム(−22.5℃)、ヨウ化カリウム(−23℃)、水酸化ナトリウム(−28℃)、臭化ナトリウム(−28℃)、ヨウ化ナトリウム(−32℃)、硝酸マグネシウム(−32.9℃)、塩化マグネシウム(−34℃)、炭酸カリウム(−36.8℃)、塩化カルシウム(−55℃)、塩化亜鉛(−62℃)、水酸化カリウム(−65℃)などが挙げられる。
無機塩水和物には、例えば、硫酸ナトリウム十水和物(NaSO・10HO)、酢酸ナトリウム三水和物、チオ硫酸ナトリウム五水和物、リン酸水素二ナトリウム12水和物とリン酸水素二カリウム6水和物との二元系組成物(融解点5℃)硝酸リチウム3水和物を主成分とする硝酸リチウム3水和物と塩化マグネシウム6水和物との二元系組成物(融解点8〜12℃)や硝酸リチウム3水和物−塩化マグネシウム6水和物−臭化マグネシウム6水和物の三元系組成物(融解点5.8〜9.7℃)などが挙げられる。これらは、蓄熱材の一例として挙げられるが、本発明において蓄熱材はこれらに限定されない。
過冷却防止材としては、無機塩水溶液の過冷却防止材としては、硫酸ナトリウム(NaSO)やホウ砂(四ホウ酸ナトリウム十水和物(Na(OH)・8HO))リン酸水素二ナトリウム(NaHPO)、ヨウ化銀(AgI)が用いられる。包接水和化合物の過冷却防止材としてリン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。包接水和化合物の過冷却防止材としては、リン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。これらは、過冷却防止材の一例として挙げられるが、本発明において過冷却防止材はこれらに限定されない。
相分離防止材としては、CMC(カルボキシメチルセルロース)、アタパルシャイ粘土、アクリル吸水性樹脂かんなくず、おがくず、パルプ、各種繊維混合物、澱粉、アルギン酸、シリカゲル、ケイ藻土、水溶性樹脂や架橋ポリアクリル酸塩、澱粉のグラフト重合物、セルロースのグラフト重合物、酢酸ビニル−アクリル酸エステル共重合体の部分ケン化物、架橋ポリビニルアルコール、架橋ポリエチレンオキサイドなどの高吸水性樹脂などや、天然系多糖類又はゼラチンなどが挙げられる。これらは、相分離防止材の一例として挙げられるが、本発明において相分離防止材はこれらに限定されない。
ゲル化材としては、ヒドロキシル基もしくはカルボキシル基、スルホン酸基、アミノ基、アミド基を1つ以上備えた分子を用いた合成高分子、天然系多糖類又はゼラチン等が挙げられる。合成高分子としては、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸誘導体等が挙げられる。天然系多糖類としては、寒天、アルギン酸、ファーセルラン、ペクチン、澱粉、キサンタンガム+ローカストビーンガムの混合物、タマリンド種子ガム、ジュランガム、カラギーナン等が挙げられる。これらは、ゲル化材の一例として挙げられるが、本発明においてゲル化材はこれらに限定されない。
ゲルとは一般に、分子が部分的に架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルの組成はほぼ液相状態であるが、力学的には、固相状態となる。ゲル化した蓄熱材3は、固相と液相との間で相変化しても全体として固体状態を維持し、流動性を有しない。ゲル状の蓄熱材3は、相変化の前後で全体として固体状態を維持できるので取扱いが容易である。
包装材2には、所定の押圧力に対しても定型性を維持可能な樹脂成型容器と、フレキシブル性フィルム包装材がある。
樹脂成型容器の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS樹脂、アクリル樹脂(PMMA)、ポリカーボネート(PC)等のプラスチックが挙げられ、これらの材料を射出成形やブロー成形等によって成形したプラスチック容器から構成される。
フレキシブル性フィルム包装材の材料としては、ナイロン、ポリエチレンテレフタレート、アルミなどが挙げられ、これらの材料を溶液法、溶融法、カレンダー法等によって成膜されたフィルム包装材から構成される。
フィルム包装材の包装・充填機としては、縦ピロー型包装機、横ピロー型包装機、上包包装機、真空包装機などが挙げられ、包装材の材質や充填物の粘度などによって適宜選定される。
図20(b)は本実施例による保管容器170の断面構成を示している。保管容器170は、全体視において鉛直方向に縦長の直方体形状の容器本体172を有している。保管容器170は内部が中空の箱体であり、箱体の一部に開閉扉が設けられている。保管容器170内には、外気温より低い温度で貯蔵物を保冷する保冷室174が設けられている。不図示の開閉扉を開くことにより、保冷室174から貯蔵物を取り出したり、貯蔵したい物を保冷室174に置いたりできるようになっている。図20(b)では開閉扉側から見た保管容器170断面を示している。
保冷室174の上方の天板部内壁には保冷室174を冷却する冷却器178が設けられている。冷却器178は保管容器170に設けられた冷却機構の一部をなしており、不図示の圧縮機、凝縮器、膨張弁をこの順に流通してきた液体の冷媒を気化して周囲に冷熱を放出する。また、ファン等は設けられておらず保冷室174内は自然対流により冷却される。本実施例の保管容器170は直冷式の冷蔵庫である。蓄熱部材70の水平面に平行な断面の面積は冷却器178の水平面に平行な断面の面積より小さくなっている。
冷却器188の下方の所定位置の保冷室184の対向内壁には蓄熱部材70を保持する一対の保持部材176a、176bが設けられている。蓄熱部材70は上面70aを上方に向け、下面70bを下方に向けて、上面70a、下面70bが水平面にほぼ平行になる状態で、蓄熱部材70の対向2辺が一対の保持部材176a、176b上に載置される。保持部材176a、176bには、蓄熱部材70が接触しない位置に保持部材176a、176bを貫通した開口部177a、177bが設けられている。図中の矢印で示すように、開口部177a、177bを介して上部空間174aと下部空間174bとの間で空気の流通を十分に行うことができるようになっている。
次に、本実施例の蓄熱部材70を備えた保管容器170による冷却動作について説明する。保管容器170に電力が供給されて冷却機構が作動して冷却器178から所定温度(例えば、−2℃)の冷気が放出される。一定時間が経過すると、保冷室174内は所望の保冷温度(例えば、2℃)に維持されて貯蔵物が定温保管される。保冷室174内の蓄熱部材70は冷却器178からの冷気を受けて十分な時間の経過後に液相から固相に相変化する。定常運転時には冷却器178は蓄熱部材70が固相を維持するように冷却するとともに、保冷室174内が所望の保冷温度に維持されるように冷却し続ける。
本実施例では蓄熱部材70の水平面に平行な断面の面積は冷却器178の水平面に平行な断面の面積より小さくなっているので、保持部材176a、176bに開口部177a、177bを設けることができる。開口部177a、177bを介して上部空間174aと下部空間174bとの間で空気の流通を十分に行うことができる。従って、冷却器178からの冷気の流通を蓄熱部材70で阻害してしまうことを抑制でき、保冷室174内の温度が高くなってしまう箇所が発生するのを防止できる。蓄熱部材70の水平面内での大きさを冷却器168よりも小さくすることによって、冷却器168からの冷気を効率良く庫内全体に行き届かせ、庫内温度分布の均一化を図ることができる。
(実施例2−4)
図21は本実施形態の実施例2−4における蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫の概略構成を示している。蓄熱部材80は、対向する上面80aと下面80bとを備えた薄板直方体形状を有している。図21(a)は蓄熱部材80を薄板状表面の法線方向に切断した断面を示している。蓄熱部材80は、薄板直方体形状の外形を有して内部が中空の包装材82と、包装材82の内部空間に空隙層ができないように充填された蓄熱材83とを有している。包装材82は、下面80b側の表面積より上面80a側の表面積の方が広くなるように上面80a側が凹凸形状に形成されている。
蓄熱材83は、所定の相変化温度で液相と固相との間で可逆的に相変化する潜熱蓄熱材が用いられる。本実施例の蓄熱材83は水であり、相変化温度は0℃である。また、蓄熱材83として水をゲル化して用いてもよい。また、潜熱蓄熱材の過冷却現象を防止する過冷却防止材が含まれていてもよい。また、潜熱蓄熱材の相分離を防止する相分離防止材が含まれていてもよい。また、包装材82は、ポリエチレンまたはポリプロピレンで成型された樹脂成型容器である。樹脂成型による包装材72は、所定の押圧力に対しても定型性を維持可能なので蓄熱材83が液相時においても蓄熱部材80全体として定型性を維持できる。なお、蓄熱材83がゲル化されているような場合には包装材82自体に定型性を持たせる必要はないので、包装材82は、ナイロンまたはアルミニウムで形成されたフレキシブル性フィルム包装材であってもよい。フィルム包装材を用いる場合には包装・充填機を用いることによって短時間で大量生産することができる。蓄熱部材80は、上面80aを鉛直上方に向け、下面80bを鉛直下方に向けて、上面80aと下面80bが水平面にほぼ平行になる状態で使用される。
潜熱蓄熱を利用する蓄熱材3には、氷(水)、パラフィン(一般式C2n+2で表される飽和鎖式炭化水素の総称)、ポリエチレングリコール、無機塩水溶液、無機塩水和物、包接水和物などの潜熱蓄熱材が用いられる。
包接水和物には、例えば、弗化テトラブチルアンモニウム(25℃)、塩化テトラブチルアンモニウム(16℃)、臭化テトラブチルアンモニウム(11℃)、塩化トリブチル−n−ペンチルアンモニウム(8℃)、臭化トリブチル−n−ペンチルアンモニウム(6℃)、臭化トリブチル−n−プロピルアンモニウム(1℃)、テトラヒドロフラン(4℃)、シクロペンタン(7℃)などがあり、無機塩水溶液の無機塩には、例えば、炭酸ナトリウム(−2℃)、炭酸水素カリウム(−6℃)、塩化カリウム(−11℃)、塩化アンモニウム、硫酸アンモニウム(−18℃)、塩化ナトリウム(−21℃)、亜硝酸カリウム(−22.5℃)、ヨウ化カリウム(−23℃)、水酸化ナトリウム(−28℃)、臭化ナトリウム(−28℃)、ヨウ化ナトリウム(−32℃)、硝酸マグネシウム(−32.9℃)、塩化マグネシウム(−34℃)、炭酸カリウム(−36.8℃)、塩化カルシウム(−55℃)、塩化亜鉛(−62℃)、水酸化カリウム(−65℃)などが挙げられる。
無機塩水和物には、例えば、硫酸ナトリウム十水和物(NaSO・10HO)、酢酸ナトリウム三水和物、チオ硫酸ナトリウム五水和物、リン酸水素二ナトリウム12水和物とリン酸水素二カリウム6水和物との二元系組成物(融解点5℃)硝酸リチウム3水和物を主成分とする硝酸リチウム3水和物と塩化マグネシウム6水和物との二元系組成物(融解点8〜12℃)や硝酸リチウム3水和物−塩化マグネシウム6水和物−臭化マグネシウム6水和物の三元系組成物(融解点5.8〜9.7℃)などが挙げられる。これらは、蓄熱材の一例として挙げられるが、本発明において蓄熱材はこれらに限定されない。
過冷却防止材としては、無機塩水溶液の過冷却防止材としては、硫酸ナトリウム(NaSO)やホウ砂(四ホウ酸ナトリウム十水和物(Na(OH)・8HO))リン酸水素二ナトリウム(NaHPO)、ヨウ化銀(AgI)が用いられる。包接水和化合物の過冷却防止材としてリン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。包接水和化合物の過冷却防止材としては、リン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。これらは、過冷却防止材の一例として挙げられるが、本発明において過冷却防止材はこれらに限定されない。
相分離防止材としては、CMC(カルボキシメチルセルロース)、アタパルシャイ粘土、アクリル吸水性樹脂かんなくず、おがくず、パルプ、各種繊維混合物、澱粉、アルギン酸、シリカゲル、ケイ藻土、水溶性樹脂や架橋ポリアクリル酸塩、澱粉のグラフト重合物、セルロースのグラフト重合物、酢酸ビニル−アクリル酸エステル共重合体の部分ケン化物、架橋ポリビニルアルコール、架橋ポリエチレンオキサイドなどの高吸水性樹脂などや、天然系多糖類又はゼラチンなどが挙げられる。これらは、相分離防止材の一例として挙げられるが、本発明において相分離防止材はこれらに限定されない。
ゲル化材としては、ヒドロキシル基もしくはカルボキシル基、スルホン酸基、アミノ基、アミド基を1つ以上備えた分子を用いた合成高分子、天然系多糖類又はゼラチン等が挙げられる。合成高分子としては、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸誘導体等が挙げられる。天然系多糖類としては、寒天、アルギン酸、ファーセルラン、ペクチン、澱粉、キサンタンガム+ローカストビーンガムの混合物、タマリンド種子ガム、ジュランガム、カラギーナン等が挙げられる。これらは、ゲル化材の一例として挙げられるが、本発明においてゲル化材はこれらに限定されない。
ゲルとは一般に、分子が部分的に架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルの組成はほぼ液相状態であるが、力学的には、固相状態となる。ゲル化した蓄熱材3は、固相と液相との間で相変化しても全体として固体状態を維持し、流動性を有しない。ゲル状の蓄熱材3は、相変化の前後で全体として固体状態を維持できるので取扱いが容易である。
包装材2には、所定の押圧力に対しても定型性を維持可能な樹脂成型容器と、フレキシブル性フィルム包装材がある。
樹脂成型容器の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS樹脂、アクリル樹脂(PMMA)、ポリカーボネート(PC)等のプラスチックが挙げられ、これらの材料を射出成形やブロー成形等によって成形したプラスチック容器から構成される。
フレキシブル性フィルム包装材の材料としては、ナイロン、ポリエチレンテレフタレート、アルミなどが挙げられ、これらの材料を溶液法、溶融法、カレンダー法等によって成膜されたフィルム包装材から構成される。
フィルム包装材の包装・充填機としては、縦ピロー型包装機、横ピロー型包装機、上包包装機、真空包装機などが挙げられ、包装材の材質や充填物の粘度などによって適宜選定される。
図21(b)は本実施例による保管容器180の断面構成を示している。保管容器180は、全体視において鉛直方向に縦長の直方体形状の容器本体182を有している。保管容器180は内部が中空の箱体であり、箱体の一部に開閉扉が設けられている。保管容器180内には、外気温より低い温度で貯蔵物を保冷する保冷室184が設けられている。不図示の開閉扉を開くことにより、保冷室184から貯蔵物を取り出したり、貯蔵したい物を保冷室184に置いたりできるようになっている。図21(b)では開閉扉側から見た保管容器180断面を示している。
保冷室184の上方の天板部内壁には保冷室184を冷却する冷却器188が設けられている。冷却器188は保管容器180に設けられた冷却機構の一部をなしており、不図示の圧縮機、凝縮器、膨張弁をこの順に流通してきた液体の冷媒を気化して周囲に冷熱を放出する。また、ファン等は設けられておらず保冷室184内は自然対流により冷却される。本実施例の保管容器180は直冷式(冷気自然対流方式)の冷蔵庫である。
冷却器188の下方の所定位置の保冷室184の対向内壁には蓄熱部材80を保持する一対の保持部材186a、186bが設けられている。蓄熱部材80は上面80aを上方に向け、下面80bを下方に向けて、上面80a、下面80bが水平面にほぼ平行になる状態で、蓄熱部材80の対向2辺が一対の保持部材186a、186b上に載置される。
次に、本実施例の蓄熱部材80を備えた保管容器180による冷却動作について説明する。保管容器180に電力が供給されて冷却機構が作動して冷却器188から所定温度(例えば、−2℃)の冷気が放出される。一定時間が経過すると、保冷室184内は所望の保冷温度(例えば、2℃)に維持されて貯蔵物が定温保管される。保冷室184内の蓄熱部材80は冷却器188からの冷気を上面80aで直接受ける。包装材82は、下面80b側の表面積より上面80a側の表面積の方が広くなるように上面80a側が凹凸形状に形成されている。このため、保管容器180の通常運転時に冷却器188からの冷気を蓄熱部材80が効率的に受けることができるため、蓄熱部材80は完全に凍結することができる。これにより、保管容器180の運転停止時に蓄熱部材80で保冷室184の庫内温度を所定温度に維持した十分な保冷ができる。
停電等により保管容器180への電力供給が断たれて冷却器188による保冷室184の冷却が行われなくなると、保冷室184内の温度上昇に伴って蓄熱部材80に蓄熱された冷熱の放出により保冷室184内の温度が一定時間に亘って所望の温度範囲内に維持される。
なお、蓄熱部材80を冷却器188に直接接触させるようにしてもよい。本実施例のように蓄熱部材80の少なくとも冷気を受ける面側に凹凸形状を形成し表面積を拡大することによって、蓄熱部材80の蓄熱効率の向上を図ることができる。
[第3の実施の形態]
本発明の第3の実施の形態による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫について、図22および図23を用いて説明する。
(実施例3−1)
図22は本実施形態の実施例3−1における蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫の概略構成を示している。蓄熱部材90は、対向する上面90aと下面90bとを備えた薄板直方体形状を有している。図22(a)は蓄熱部材90を薄板状表面の法線方向に切断した断面を示している。蓄熱部材90は、薄板直方体形状の外形を有して内部が中空の包装材92と、包装材92の内部空間に空隙層ができないように充填された蓄熱材93とを有している。包装材92は、上面90aから下面90bを貫通する穴部94が複数形成されている。穴部94の周囲は封止されており内部包装材92内部の蓄熱材93が漏洩しないようになっている。
蓄熱材93は、所定の相変化温度で液相と固相との間で可逆的に相変化する潜熱蓄熱材が用いられる。本実施例の蓄熱材93は水であり、相変化温度は0℃である。また、蓄熱材93として水をゲル化して用いてもよい。また、潜熱蓄熱材の過冷却現象を防止する過冷却防止材が含まれていてもよい。また、潜熱蓄熱材の相分離を防止する相分離防止材が含まれていてもよい。また、包装材92は、ポリエチレンまたはポリプロピレンで成型された樹脂成型容器である。樹脂成型による包装材92は、所定の押圧力に対しても定型性を維持可能なので蓄熱材93が液相時においても蓄熱部材90全体として定型性を維持できる。なお、蓄熱材93がゲル化されているような場合には包装材92自体に定型性を持たせる必要はないので、包装材92は、ナイロンまたはアルミニウムで形成されたフレキシブル性フィルム包装材であってもよい。フィルム包装材を用いる場合には包装・充填機を用いることによって短時間で大量生産することができる。蓄熱部材90は、上面90aを鉛直上方に向け、下面90bを鉛直下方に向けて、上面90aと下面90bが水平面にほぼ平行になる状態で使用される。
潜熱蓄熱を利用する蓄熱材3には、氷(水)、パラフィン(一般式C2n+2で表される飽和鎖式炭化水素の総称)、ポリエチレングリコール、無機塩水溶液、無機塩水和物、包接水和物などの潜熱蓄熱材が用いられる。
包接水和物には、例えば、弗化テトラブチルアンモニウム(25℃)、塩化テトラブチルアンモニウム(16℃)、臭化テトラブチルアンモニウム(11℃)、塩化トリブチル−n−ペンチルアンモニウム(8℃)、臭化トリブチル−n−ペンチルアンモニウム(6℃)、臭化トリブチル−n−プロピルアンモニウム(1℃)、テトラヒドロフラン(4℃)、シクロペンタン(7℃)などがあり、無機塩水溶液の無機塩には、例えば、炭酸ナトリウム(−2℃)、炭酸水素カリウム(−6℃)、塩化カリウム(−11℃)、塩化アンモニウム、硫酸アンモニウム(−18℃)、塩化ナトリウム(−21℃)、亜硝酸カリウム(−22.5℃)、ヨウ化カリウム(−23℃)、水酸化ナトリウム(−28℃)、臭化ナトリウム(−28℃)、ヨウ化ナトリウム(−32℃)、硝酸マグネシウム(−32.9℃)、塩化マグネシウム(−34℃)、炭酸カリウム(−36.8℃)、塩化カルシウム(−55℃)、塩化亜鉛(−62℃)、水酸化カリウム(−65℃)などが挙げられる。
無機塩水和物には、例えば、硫酸ナトリウム十水和物(NaSO・10HO)、酢酸ナトリウム三水和物、チオ硫酸ナトリウム五水和物、リン酸水素二ナトリウム12水和物とリン酸水素二カリウム6水和物との二元系組成物(融解点5℃)硝酸リチウム3水和物を主成分とする硝酸リチウム3水和物と塩化マグネシウム6水和物との二元系組成物(融解点8〜12℃)や硝酸リチウム3水和物−塩化マグネシウム6水和物−臭化マグネシウム6水和物の三元系組成物(融解点5.8〜9.7℃)などが挙げられる。これらは、蓄熱材の一例として挙げられるが、本発明において蓄熱材はこれらに限定されない。
過冷却防止材としては、無機塩水溶液の過冷却防止材としては、硫酸ナトリウム(NaSO)やホウ砂(四ホウ酸ナトリウム十水和物(Na(OH)・8HO))リン酸水素二ナトリウム(NaHPO)、ヨウ化銀(AgI)が用いられる。包接水和化合物の過冷却防止材としてリン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。包接水和化合物の過冷却防止材としては、リン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。これらは、過冷却防止材の一例として挙げられるが、本発明において過冷却防止材はこれらに限定されない。
相分離防止材としては、CMC(カルボキシメチルセルロース)、アタパルシャイ粘土、アクリル吸水性樹脂かんなくず、おがくず、パルプ、各種繊維混合物、澱粉、アルギン酸、シリカゲル、ケイ藻土、水溶性樹脂や架橋ポリアクリル酸塩、澱粉のグラフト重合物、セルロースのグラフト重合物、酢酸ビニル−アクリル酸エステル共重合体の部分ケン化物、架橋ポリビニルアルコール、架橋ポリエチレンオキサイドなどの高吸水性樹脂などや、天然系多糖類又はゼラチンなどが挙げられる。これらは、相分離防止材の一例として挙げられるが、本発明において相分離防止材はこれらに限定されない。
ゲル化材としては、ヒドロキシル基もしくはカルボキシル基、スルホン酸基、アミノ基、アミド基を1つ以上備えた分子を用いた合成高分子、天然系多糖類又はゼラチン等が挙げられる。合成高分子としては、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸誘導体等が挙げられる。天然系多糖類としては、寒天、アルギン酸、ファーセルラン、ペクチン、澱粉、キサンタンガム+ローカストビーンガムの混合物、タマリンド種子ガム、ジュランガム、カラギーナン等が挙げられる。これらは、ゲル化材の一例として挙げられるが、本発明においてゲル化材はこれらに限定されない。
ゲルとは一般に、分子が部分的に架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルの組成はほぼ液相状態であるが、力学的には、固相状態となる。ゲル化した蓄熱材3は、固相と液相との間で相変化しても全体として固体状態を維持し、流動性を有しない。ゲル状の蓄熱材3は、相変化の前後で全体として固体状態を維持できるので取扱いが容易である。
包装材2には、所定の押圧力に対しても定型性を維持可能な樹脂成型容器と、フレキシブル性フィルム包装材がある。
脂成型容器の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS樹脂、アクリル樹脂(PMMA)、ポリカーボネート(PC)等のプラスチックが挙げられ、これらの材料を射出成形やブロー成形等によって成形したプラスチック容器から構成される。
フレキシブル性フィルム包装材の材料としては、ナイロン、ポリエチレンテレフタレート、アルミなどが挙げられ、これらの材料を溶液法、溶融法、カレンダー法等によって成膜されたフィルム包装材から構成される。
フィルム包装材の包装・充填機としては、縦ピロー型包装機、横ピロー型包装機、上包包装機、真空包装機などが挙げられ、包装材の材質や充填物の粘度などによって適宜選定される。
図22(b)は本実施例による保管容器190の断面構成を示している。保管容器190は、全体視において鉛直方向に縦長の直方体形状の容器本体192を有している。保管容器190は内部が中空の箱体であり、箱体の一部に開閉扉が設けられている。保管容器190内には、外気温より低い温度で貯蔵物を保冷する保冷室194が設けられている。不図示の開閉扉を開くことにより、保冷室194から貯蔵物を取り出したり、貯蔵したい物を保冷室194に置いたりできるようになっている。図22(b)では開閉扉側から見た保管容器190断面を示している。
保冷室194の上方の天板部内壁には保冷室194を冷却する冷却器198が設けられている。冷却器198は保管容器190に設けられた冷却機構の一部をなしており、不図示の圧縮機、凝縮器、膨張弁をこの順に流通してきた液体の冷媒を気化して周囲に冷熱を放出する。また、ファン等は設けられておらず保冷室194内は自然対流により冷却される。本実施例の保管容器190は直冷式の冷蔵庫である。
冷却器198の下方の所定位置の保冷室194の対向内壁には蓄熱部材90を保持する一対の保持部材196a、196bが設けられている。蓄熱部材90は上面90aを上方に向け、下面90bを下方に向けて、上面90a、下面90bが水平面にほぼ平行になる状態で、蓄熱部材90の対向2辺が一対の保持部材196a、196b上に載置される。図中の矢印で示すように、蓄熱部材90の複数の穴部94を介して上部空間194aと下部空間194bとの間で空気の流通を十分に行うことができるようになっている。
次に、本実施例の蓄熱部材90を備えた保管容器190による冷却動作について説明する。保管容器190に電力が供給されて冷却機構が作動して冷却器198から所定温度(例えば、−2℃)の冷気が放出される。一定時間が経過すると、保冷室194内は所望の保冷温度(例えば、2℃)に維持されて貯蔵物が定温保管される。保冷室194内の蓄熱部材90は冷却器198からの冷気を受けて十分な時間の経過後に液相から固相に相変化する。定常運転時には冷却器198は蓄熱部材90が固相を維持するように冷却するとともに、保冷室194内が所望の保冷温度に維持されるように冷却し続ける。
本実施例では蓄熱部材90の包装材92は、上面90aから下面90bを貫通する複数の穴部94が複数形成されているので、複数の穴部94を介して上部空間194aと下部空間194bとの間で空気の流通を十分に行うことができる。従って、冷却器198からの冷気の流通を蓄熱部材90で阻害してしまうことを抑制でき、保冷室194内の温度が高くなってしまう箇所が発生するのを防止できる。蓄熱部材90に複数の穴部94を設けることによって、冷却器198からの冷気を効率良く庫内全体に行き届かせ、庫内温度分布の均一化を図ることができる。
(実施例3−2)
図23は本実施形態の実施例3−2における蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫の概略構成を示している。蓄熱部材200は、対向する上面200aと下面200bとを備えた薄板直方体形状を有している。図23(a)は蓄熱部材200を薄板状表面の法線方向に切断した断面を示している。蓄熱部材200は、薄板直方体形状の外形を有して内部が中空の包装材202と、包装材202の内部空間に充填された蓄熱材203と、包装材202の内部空間に充填された気体層(例えば、空気層)204とを有している。包装材202は、上面200aから下面200bを貫通する穴部205が複数形成されている。穴部205の周囲は封止されており内部包装材202内部の蓄熱材203が漏洩しないようになっている。
蓄熱材203は、所定の相変化温度で液相と固相との間で可逆的に相変化する潜熱蓄熱材が用いられる。本実施例の蓄熱材203は水であり、相変化温度は0℃である。また、蓄熱材203として水をゲル化して用いてもよい。また、潜熱蓄熱材の過冷却現象を防止する過冷却防止材が含まれていてもよい。また、潜熱蓄熱材の相分離を防止する相分離防止材が含まれていてもよい。また、包装材202は、ポリエチレンまたはポリプロピレンで成型された樹脂成型容器である。樹脂成型による包装材202は、所定の押圧力に対しても定型性を維持可能なので蓄熱材203が液相時においても蓄熱部材200全体として定型性を維持できる。なお、蓄熱材203がゲル化されているような場合には包装材202自体に定型性を持たせる必要はないので、包装材202は、ナイロンまたはアルミニウムで形成されたフレキシブル性フィルム包装材であってもよい。フィルム包装材を用いる場合には包装・充填機を用いることによって短時間で大量生産することができる。蓄熱部材200は、上面200aを鉛直上方に向け、下面200bを鉛直下方に向けて、上面200aと下面200bが水平面にほぼ平行になる状態で使用される。
潜熱蓄熱を利用する蓄熱材3には、氷(水)、パラフィン(一般式C2n+2で表される飽和鎖式炭化水素の総称)、ポリエチレングリコール、無機塩水溶液、無機塩水和物、包接水和物などの潜熱蓄熱材が用いられる。
包接水和物には、例えば、弗化テトラブチルアンモニウム(25℃)、塩化テトラブチルアンモニウム(16℃)、臭化テトラブチルアンモニウム(11℃)、塩化トリブチル−n−ペンチルアンモニウム(8℃)、臭化トリブチル−n−ペンチルアンモニウム(6℃)、臭化トリブチル−n−プロピルアンモニウム(1℃)、テトラヒドロフラン(4℃)、シクロペンタン(7℃)などがあり、無機塩水溶液の無機塩には、例えば、炭酸ナトリウム(−2℃)、炭酸水素カリウム(−6℃)、塩化カリウム(−11℃)、塩化アンモニウム、硫酸アンモニウム(−18℃)、塩化ナトリウム(−21℃)、亜硝酸カリウム(−22.5℃)、ヨウ化カリウム(−23℃)、水酸化ナトリウム(−28℃)、臭化ナトリウム(−28℃)、ヨウ化ナトリウム(−32℃)、硝酸マグネシウム(−32.9℃)、塩化マグネシウム(−34℃)、炭酸カリウム(−36.8℃)、塩化カルシウム(−55℃)、塩化亜鉛(−62℃)、水酸化カリウム(−65℃)などが挙げられる。
無機塩水和物には、例えば、硫酸ナトリウム十水和物(NaSO・10HO)、酢酸ナトリウム三水和物、チオ硫酸ナトリウム五水和物、リン酸水素二ナトリウム12水和物とリン酸水素二カリウム6水和物との二元系組成物(融解点5℃)硝酸リチウム3水和物を主成分とする硝酸リチウム3水和物と塩化マグネシウム6水和物との二元系組成物(融解点8〜12℃)や硝酸リチウム3水和物−塩化マグネシウム6水和物−臭化マグネシウム6水和物の三元系組成物(融解点5.8〜9.7℃)などが挙げられる。これらは、蓄熱材の一例として挙げられるが、本発明において蓄熱材はこれらに限定されない。
過冷却防止材としては、無機塩水溶液の過冷却防止材としては、硫酸ナトリウム(NaSO)やホウ砂(四ホウ酸ナトリウム十水和物(Na(OH)・8HO))リン酸水素二ナトリウム(NaHPO)、ヨウ化銀(AgI)が用いられる。包接水和化合物の過冷却防止材としてリン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。包接水和化合物の過冷却防止材としては、リン酸水素二ナトリウム(NaHPO)、ポリエチレングリコール(分子量600以上)、テトラアルキルアンモニウム塩などが挙げられる。これらは、過冷却防止材の一例として挙げられるが、本発明において過冷却防止材はこれらに限定されない。
相分離防止材としては、CMC(カルボキシメチルセルロース)、アタパルシャイ粘土、アクリル吸水性樹脂かんなくず、おがくず、パルプ、各種繊維混合物、澱粉、アルギン酸、シリカゲル、ケイ藻土、水溶性樹脂や架橋ポリアクリル酸塩、澱粉のグラフト重合物、セルロースのグラフト重合物、酢酸ビニル−アクリル酸エステル共重合体の部分ケン化物、架橋ポリビニルアルコール、架橋ポリエチレンオキサイドなどの高吸水性樹脂などや、天然系多糖類又はゼラチンなどが挙げられる。これらは、相分離防止材の一例として挙げられるが、本発明において相分離防止材はこれらに限定されない。
ゲル化材としては、ヒドロキシル基もしくはカルボキシル基、スルホン酸基、アミノ基、アミド基を1つ以上備えた分子を用いた合成高分子、天然系多糖類又はゼラチン等が挙げられる。合成高分子としては、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸誘導体等が挙げられる。天然系多糖類としては、寒天、アルギン酸、ファーセルラン、ペクチン、澱粉、キサンタンガム+ローカストビーンガムの混合物、タマリンド種子ガム、ジュランガム、カラギーナン等が挙げられる。これらは、ゲル化材の一例として挙げられるが、本発明においてゲル化材はこれらに限定されない。
ゲルとは一般に、分子が部分的に架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルの組成はほぼ液相状態であるが、力学的には、固相状態となる。ゲル化した蓄熱材3は、固相と液相との間で相変化しても全体として固体状態を維持し、流動性を有しない。ゲル状の蓄熱材3は、相変化の前後で全体として固体状態を維持できるので取扱いが容易である。
包装材2には、所定の押圧力に対しても定型性を維持可能な樹脂成型容器と、フレキシブル性フィルム包装材がある。
樹脂成型容器の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS樹脂、アクリル樹脂(PMMA)、ポリカーボネート(PC)等のプラスチックが挙げられ、これらの材料を射出成形やブロー成形等によって成形したプラスチック容器から構成される。
フレキシブル性フィルム包装材の材料としては、ナイロン、ポリエチレンテレフタレート、アルミなどが挙げられ、これらの材料を溶液法、溶融法、カレンダー法等によって成膜されたフィルム包装材から構成される。
フィルム包装材の包装・充填機としては、縦ピロー型包装機、横ピロー型包装機、上包包装機、真空包装機などが挙げられ、包装材の材質や充填物の粘度などによって適宜選定される。
図23(b)は本実施例による保管容器210の断面構成を示している。保管容器210は、全体視において鉛直方向に縦長の直方体形状の容器本体212を有している。保管容器210は内部が中空の箱体であり、箱体の一部に開閉扉が設けられている。保管容器210内には、外気温と異なる温度(例えば、外気温より低い温度)で貯蔵物を保冷する保冷室214が設けられている。不図示の開閉扉を開くことにより、保冷室214から貯蔵物を取り出したり、貯蔵したい物を保冷室214に置いたりできるようになっている。図23(b)では開閉扉側から見た保管容器210断面を示している。
保冷室214の上方の天板部内壁には保冷室214を冷却する冷却器218が設けられている。冷却器218は保管容器210に設けられた冷却機構の一部をなしており、不図示の圧縮機、凝縮器、膨張弁をこの順に流通してきた液体の冷媒を気化して周囲に冷熱を放出する。また、ファン等は設けられておらず保冷室214内は自然対流により冷却される。本実施例の保管容器210は直冷式(冷気自然対流方式)の冷蔵庫である。
蓄熱部材200は、冷却器218から延出した一対の支持部材217で支持される保持部材216の上面に載置されている。保持部材216は、冷却器218から延びた一対の支持部材217により冷却器218の下方に吊るされている。保持部材216は、蓄熱部材200の下面200b全面と接触可能な面積を持つ上平面を有している。保持部材216と支持部材217は一体的に作製されていてもよいし、別部品として作製して組み合わせて使うようにしてもよい。保持部材216と支持部材217は例えばアルミニウムや銅等の金属製の高熱伝導性材料で形成されている。このため、冷却器218からの冷熱を効率よく蓄熱部材200の下面200b全面に伝達することができる。蓄熱部材200は上面200aを上方に向け、下面200bを下方に向けて、上面200a、下面200bが水平面にほぼ平行になる状態で、保持部材216上に載置される。保持部材216には蓄熱部材200を載置した際の穴部205に対応する位置に穴部215が開口されている。図中の矢印で示すように、蓄熱部材200の複数の穴部205と保持部材216の穴部215を介して上部空間214aと下部空間214bとの間で空気の流通を十分に行うことができるようになっている。
次に、本実施例の蓄熱部材200を備えた保管容器210による冷却動作について説明する。保管容器210に電力が供給されて冷却機構が作動して冷却器218から所定温度(例えば、−2℃)の冷気が放出される。一定時間が経過すると、保冷室214内は所望の保冷温度(例えば、2℃)に維持されて貯蔵物が定温保管される。保冷室214内の蓄熱部材200は冷却器218からの冷気を上面200aで直接受けるとともに、図23(b)の矢印に示すように、冷却器218から延出した一対の支持部材217を介して保持部材216に伝達された冷却器218の冷熱を下面200bで直接受けることができる。このため、保管容器210の通常運転時に冷却器218からの冷気を蓄熱部材200が効率的に受けることができるので、蓄熱部材200を完全に凍結させることができる。これにより、保管容器210の運転停止時に蓄熱部材200で保冷室214の庫内温度を所定温度に維持した十分な保冷ができる。
停電等により保管容器210への電力供給が断たれて冷却器218による保冷室214の冷却が行われなくなると、保冷室214内の温度上昇に伴って蓄熱部材200に蓄熱された冷熱の放出により保冷室214内の温度が一定時間に亘って所望の温度範囲内に維持される。
本実施例によれば、蓄熱部材200の上面200a側には熱伝導量調整部としての空気による空気層204が形成されており、空気層204が断熱材として機能する。このため、停電等により保管容器210の運転が停止して、上面200a側の庫内温度が下面200b側の庫内温度より高くなっても、上面200aでの熱伝導量を下面200bでの熱伝導量に近づけて、上面200aと下面200bでの単位時間当りの熱伝導量の差を小さくさせることができる。これにより、庫内温度差により発生する蓄熱部材200の表裏面の融解速度の差異を抑えることで蓄熱材203が完全に融解するまでの時間を長くし、結果として庫内温度の保冷時間の長時間化を図ることができる。
また、保冷室214内の蓄熱部材200は冷却器218からの冷気を上面200aで直接受けるとともに、図23(b)の矢印に示すように、冷却器218から延出した一対の支持部材217を介して保持部材216に伝達された冷却器218の冷熱を下面200bで直接受けることができる。このため、保管容器210の通常運転時に冷却器218からの冷気を蓄熱部材200が効率的に受けることができるので、蓄熱部材200は完全に凍結することができる。
また、本実施例では蓄熱部材200の包装材202は、上面200aから下面200bを貫通する複数の穴部205が複数形成されており、蓄熱部材200を保持する保持部材216にも蓄熱部材200に配置された穴部205に対応する位置に穴部215が形成されているので、複数の穴部205、215を介して上部空間214aと下部空間214bとの間で空気の流通を十分に行うことができる。従って、冷却器218からの冷気の流通を蓄熱部材200で阻害してしまうことを抑制でき、保冷室214内の温度が高くなってしまう箇所が発生するのを防止できる。蓄熱部材200に複数の穴部205を設けるとともに保持部材216の対応位置に穴部215を設けることによって、冷却器218からの冷気を効率良く庫内全体に行き届かせ、庫内温度分布の均一化を図ることができる。
[第4の実施の形態]
本発明の第4の実施の形態による蓄熱部材について、図24〜図26を用いて説明する。
(実施例4−1)
図24は本実施形態の実施例4−1による蓄熱部材およびそれを用いた保管容器の概略構成を示している。図24に示す保管容器110は、図2に示す保管容器110と同一なのでその説明は省略する。図24に示す蓄熱部材301は、図2に示す蓄熱部材101の包装材102の表面に所定温度で変色する示温インキを塗り、蓄熱材103の凍結状態を目視で確認できるようにした点に特徴を有している。包装材102に示温インキを塗布した点以外は図2に示す蓄熱部材101と同一構成である。示温インキとしては、例えば、久保井インキ株式会社製の示温インキ材料(商品名:STカラー“15”)を用いることができる。示温インキは例えば、11℃以下で青色に発色し、19℃以上で消色する。包装材102の表面にはスクリーン印刷で示温インキをパターニングして形成してもよい。
図24(a)〜(c)は、保管容器110の保冷室114内の一対の保持部材116a、116b上に蓄熱部材301が載置されている状態を示している。図24(a)は保管容器110が電源投入直後で保冷室114内の温度が19℃以上の高温になっており、蓄熱部材301の包装材102表面の示温インキが無色になっている状態を示している。図24(b)は保管容器110が電源投入後であって所定温度での安定した定常運転に至る途中であり、保冷室114内の温度が11℃〜19℃であり、蓄熱部材301の包装材102表面の示温インキが薄い青色になっている状態を示している。図24(c)は保管容器110が定常運転中であり、保冷室114内の温度が11℃以下であり、蓄熱部材301の包装材102表面の示温インキが濃い青色になっている状態を示している。
このように本実施例によれば、温度に応じて色が変化する示温インキを包装材102表面に形成しているので、保管容器110の利用者は蓄熱部材301表面の色を観察することにより、蓄熱部材301の相変化状態を把握することができる。
変形例として例えば、示温インキを混入した成型材料で包装材102を成型してもよい。また、示温インキを塗布あるいは混入した示温シールを包装材102表面に貼付してもよい。示温インキの色変化の温度範囲は任意に選択することができる。
(実施例4−2)
図25は本実施形態の実施例4−2による蓄熱部材およびそれを用いた保管容器の概略構成を示している。図25に示す保管容器110は、図2に示す保管容器110と同一なのでその説明は省略する。図25に示す蓄熱部材302は、図2に示す蓄熱部材101の包装材102をナイロンで形成されたフレキシブル性フィルム包装材としている点と、蓄熱材(無色透明の水)103中に示温インキを溶解し分散させて、蓄熱材103の凍結状態を目視で確認できるようにした点に特徴を有している。示温インキとしては、実施例4−1で用いたものと同一のものを用いることができる。
図25(a)〜(c)は、保管容器110の保冷室114内の一対の保持部材116a、116b上に蓄熱部材302が載置されている状態を示している。図25(a)は保管容器110が電源投入直後で保冷室114内の温度が19℃以上の高温になっており、蓄熱部材302の蓄熱材103が無色になっている状態を示している。図25(b)は保管容器110が電源投入後であって所定温度での安定した定常運転に至る途中であり、保冷室114内の温度が11℃〜19℃であり、蓄熱部材302の蓄熱材103が薄い青色になっている状態を示している。図25(c)は保管容器110が定常運転中であり、保冷室114内の温度が11℃以下であり、蓄熱部材301の蓄熱材103が濃い青色になっている状態を示している。
このように本実施例によれば、温度に応じて色が変化する示温インキを蓄熱材103に混入しているので、保管容器110の利用者は蓄熱部材301の色を観察することにより、蓄熱部材301の相変化状態を把握することができる。
(実施例4−3)
図26は、本実施形態の実施例4−3による蓄熱部材101の概略構成を示している。図26に示す蓄熱部材101は、図2に示す蓄熱部材101の包装材102の一端に板状部105が形成されており、包装材102の厚さが一端から他端に向かって薄くなるように形成されている。板状部105は長方形の板形状に形成されている。板状部105内には蓄熱材103は封止されていない。図16に示す保管容器160内で板状部105が開閉扉側に位置するようにして、本実施例の蓄熱部材101を一対の保持部材165に保持させると、保管容器160の開閉扉の開閉時に外部から庫内に流入する空気を板状部105で阻止して、蓄熱材103が封止された包装材102に直接当たらないようにすることができる。
本発明は、上記実施の形態に限らず種々の変形が可能である。
上記実施の形態では、蓄熱材として水を用いているが本発明はこれに限られない。例えば、蓄熱材が水和塩系蓄熱材料で構成されていてもよい。あるいは、蓄熱材として包接水和生成物質を含む水溶液を主剤とし、主剤の過冷却を抑制する過冷却防止剤として負の水和物イオンが添加されていてもよい。負の水和物イオンは、CL、Br、NO 、K、Cs、アルキル硫酸イオン、アルキルベンゼンスルホン酸イオン、エチレングリコール、ポリエチレングリコールのいずれかを含む水溶性有機物、カラギーナンなどの天然系多糖類、アクリル系ゲルから構成されていてもよい。
また、包接水和生成物質は、テトラ−n−ブチルアンモニウム塩、テトラ−iso−ブチルアンモニウム塩、テトラ−iso−アミルアンモニウム塩、テトラ−n−フォスフォニウム塩、及びトリiso−アミルサルフォニウム塩、トリ−n−ブチル−n−ペンチルアンモニウム塩、トリ−n−ブチル−n−プロピルアンモニウム塩の群から選択される1種または2種以上から構成されていてもよい。またこれらの蓄熱材は、ゲル化剤を含んでいてもよい。
なお、上述の各実施例に記載されている技術的特徴(構成要件)は相互に組合せ可能であり、組み合わせることにより、新しい技術的特徴を形成することができる。
上記実施の形態による蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫は、例えば以下のように表現される。
(付記1)
対向する上面1aと下面1bとを備えた内部が中空の包装材2と、
前記包装材2の内部に充填された蓄熱材3と、
前記上面1a側の温度と前記下面1b側の温度に差が生じる場合に、前記上面側と前記下面側で温度が高い方の面側に、前記上面1aと前記下面1bでの単位時間当りの熱伝導量の差を小さくさせる熱伝導量調整部4と
を有することを特徴とする蓄熱部材1。
上記蓄熱部材1によれば、停電等により保管容器10の運転が停止して、上面1a側の温度が下面1b側の温度より高くなっても、上面1aでの熱伝導量を下面1bでの熱伝導量に近づけて、上面1aと下面1bでの単位時間当りの熱伝導量の差を小さくさせることができる。これにより、庫内温度差により発生する蓄熱部材1の表裏面の融解速度の差異を抑えることで蓄熱材3が完全に融解するまでの時間を長くし、結果として庫内温度の保冷時間の長時間化を図ることができる。
(付記2)
付記1に記載の蓄熱部材20であって、
前記熱伝導量調整部は、
前記温度が高い方の面側が、温度が低い方の面側よりも熱伝導率の低い低熱伝導性部材26で構成されていることを特徴とする蓄熱部材20。
上記蓄熱部材20によれば、下面20b側の熱伝導率より低い熱伝導率を有する低熱伝導性部材26が上面20a側に貼付されているので、上面20a側の温度が下面20b側の温度より高くなっても、上面20aでの熱伝導量を下面20bでの熱伝導量に近づけて、上面20aと下面20bでの単位時間当りの熱伝導量の差を小さくさせることができる。
(付記3)
付記2に記載の蓄熱部材1であって、
前記低熱伝導性部材は、
前記包装材内に空隙層として存在することを特徴とする蓄熱部材1。
上記蓄熱部材1によれば、空隙層4が断熱層として機能するので、上面1a側の温度が下面1b側の温度より高くなっても、上面1aでの熱伝導量を下面1bでの熱伝導量に近づけて、上面1aと下面1bでの単位時間当りの熱伝導量の差を小さくさせることができる。
(付記4)
付記1に記載の蓄熱部材20であって、
前記熱伝導量調整部は、
前記上面側と前記下面側で、温度の高い方の面側の厚みが温度の低い方の面側よりも厚い層を有することを特徴とする蓄熱部材。
上記蓄熱部材20によれば、上面20a側の温度が下面20b側の温度より高くなっても、上面20aでの熱伝導量を下面20bでの熱伝導量に近づけて、上面20aと下面20bでの単位時間当りの熱伝導量の差を小さくさせることができる。
(付記5)
付記1から4までのいずれか一項に記載の蓄熱部材1、20であって、
前記包装材は、ポリエチレンまたはポリプロピレンまたはポリカーボネートまたはアクリル等の樹脂類で成型された樹脂成型容器であること
を特徴とする蓄熱部材1、20。
上記蓄熱部材1、20によれば、樹脂成型による包装材2は、所定の押圧力に対しても定型性を維持可能なので蓄熱材3が液相時においても蓄熱部材1全体として定型性を維持できる。
(付記6)
付記1から5までのいずれか一項に記載の蓄熱部材であって、
前記包装材は、樹脂類または金属類で形成されたフレキシブル性フィルム包装材であることを特徴とする蓄熱部材。
蓄熱材3がゲル化されているような場合には包装材2自体に定型性を持たせる必要はないので、包装材2は、ナイロンまたはアルミニウムで形成されたフレキシブル性フィルム包装材であってもよい。フィルム包装材を用いる場合には低コストで量産することができる。
(付記7)
付記1から6までのいずれか一項に記載の蓄熱部材であって、
前記包装材の厚さが、一端から他端に向かって薄くなるように形成されていること
を特徴とする蓄熱部材。
上記蓄熱部材によれば、保管容器160の開閉扉の開閉時に外部から庫内に流入する空気を板状部105で阻止して、蓄熱材103が封止された包装材102に直接当たらないようにすることができる。
(付記8)
付記1から7までのいずれか一項に記載の蓄熱部材であって、
前記蓄熱材103または前記包装材102の少なくとも一方に、任意の一定温度で変色する示温インキ材料が含まれていること
を特徴とする蓄熱部材。
上記蓄熱部材によれば、保管容器110の利用者は蓄熱部材301表面の色を観察することにより、蓄熱部材301の相変化状態を把握することができる。
(付記9)
付記1から8までのいずれか一項に記載の蓄熱部材であって、
前記包装材に、任意の一定温度で変色する示温シールが貼付されていること
を特徴とする蓄熱部材。
上記蓄熱部材によれば、保管容器110の利用者は蓄熱部材301表面の色を観察することにより、蓄熱部材301の相変化状態を把握することができる。
(付記10)
容器本体12と、
前記容器本体12内の空間を開閉自在とする開閉扉と、
前記空間に設けられ、通常運転時に外気温より低い温度で貯蔵物を保冷する保冷室14と、
前記保冷室14内上方から前記保冷室14内を冷却する冷却器18と、
前記保冷室14内で前記冷却器18の下方に配置され、前記冷却器18の冷気で潜熱を蓄える上記蓄熱部材1と、
前記保冷室14内で前記蓄熱部材1を保持する保持部材16a9、16bと
を有することを特徴とする保管容器。
上記保管容器によれば、停電等により保管容器10の運転が停止して、上面1a側の温度が下面1b側の温度より高くなっても、上面1aでの熱伝導量を下面1bでの熱伝導量に近づけて、上面1aと下面1bでの単位時間当りの熱伝導量の差を小さくさせることができる。これにより、庫内温度差により発生する蓄熱部材1の表裏面の融解速度の差異を抑えることで蓄熱材3が完全に融解するまでの時間を長くし、結果として庫内温度の保冷時間の長時間化を図ることができる。
(付記11)
付記10に記載の保管容器であって、
前記包装材82は、
前記下面82b側の表面積より前記上面82a側の表面積の方が広いこと
を特徴とする保管容器。
上記保管容器によれば、保管容器180の通常運転時に冷却器188からの冷気を蓄熱部材80が効率的に受けることができるため、蓄熱部材80は完全に凍結することができる。これにより、保管容器180の運転停止時に蓄熱部材80で保冷室184の庫内温度を所定温度に維持した十分な保冷ができる。
(付記12)
付記11に記載の保管容器であって、
前記包装材82は、
前記上面80a側が凹凸形状に形成されていること
を特徴とする保管容器。
上記保管容器によれば、蓄熱部材80の少なくとも冷気を受ける面側に凹凸形状を形成し表面積を拡大することによって、蓄熱部材80の蓄熱効率の向上を図ることができる。
(付記13)
付記10から12までのいずれか一項に記載の保管容器であって、
前記保持部材156は、
前記冷却器158から延びて下方に吊るされていること
を特徴とする保管容器。
上記保管容器によれば、冷却器158から延出した一対の支持部材157を介して保持部材156に伝達された冷却器158の冷熱を下面50bで直接受けることができる。このため、保管容器150の通常運転時に冷却器158からの冷気を蓄熱部材50が効率的に受けることができるため、蓄熱部材50は完全に凍結することができる。これにより、保管容器150の運転停止時に蓄熱部材50で保冷室154の庫内温度を所定温度に維持した十分な保冷ができる。
(付記14)
付記13に記載の保管容器であって、
前記保持部材156は、金属製の高熱伝導性材料で形成されていること
を特徴とする保管容器。
上記保管容器によれば、冷却器158からの冷熱を効率よく蓄熱部材50の下面50b全面に伝達することができる。
(付記15)
付記10から14までのいずれか一項に記載の保管容器であって、
前記蓄熱部材101は水平面に平行な断面の面積が前記冷却器166より小さいことを特徴とする保管容器。
上記保管容器によれば、水平面内において冷蔵室164の大きさより蓄熱部材101の大きさを小さくして冷却器166からの冷気を流通させる隙間を大きくすることができる。従って、冷却器166からの冷気の流通を蓄熱部材101で阻害してしまうことを抑制できる。
(付記16)
付記10から15までのいずれか一項に記載の保管容器であって、
前記包装材92は、周囲を封止した穴部94が設けられていること
を特徴とする保管容器。
上記保管容器によれば、複数の穴部94を介して上部空間194aと下部空間194bとの間で空気の流通を十分に行うことができる。従って、冷却器198からの冷気の流通を蓄熱部材90で阻害してしまうことを抑制でき、保冷室194内の温度が高くなってしまう箇所が発生するのを防止できる。蓄熱部材90に複数の穴部94を設けることによって、冷却器198からの冷気を効率良く庫内全体に行き届かせ、庫内温度分布の均一化を図ることができる。
(付記17)
付記10から16までのいずれか一項に記載の保管容器であって、
前記保持部材16a、16bは、
前記蓄熱部材1を着脱可能な着脱機構17a、17bを有していること
を特徴とする保管容器。
上記保管容器によれば、着脱機構17a、17bの溝に被案内部を嵌め込むことにより、保持部材16a、16b上に蓄熱部材1を安定して載置することができる。また、蓄熱部材1を奥壁側から開閉扉側に引っ張ることにより、蓄熱部材1を保持部材16a、16b上面で摺動させて引き出して取り出すことができる。また、蓄熱部材1を開閉扉側から奥壁側に押し込むことにより、蓄熱部材1を保持部材16a、16b上面で摺動させて設置することができる。
(付記18)
付記17に記載の保管容器であって、
前記着脱機構17a、17bは、
前記蓄熱部材1を摺動させて着脱させること
を特徴とする保管容器。
上記保管容器によれば、蓄熱部材1を奥壁側から開閉扉側に引っ張ることにより、蓄熱部材1を保持部材16a、16b上面で摺動させて引き出して取り出すことができる。また、蓄熱部材1を開閉扉側から奥壁側に押し込むことにより、蓄熱部材1を保持部材16a、16b上面で摺動させて設置することができる。
(付記19)
付記10から18までのいずれか一項に記載の保管容器10を備えていることを特徴とする冷蔵庫。
上記冷蔵庫によれば、停電等により保管容器10の運転が停止して、上面1a側の温度が下面1b側の温度より高くなっても、上面1aでの熱伝導量を下面1bでの熱伝導量に近づけて、上面1aと下面1bでの単位時間当りの熱伝導量の差を小さくさせることができる。これにより、庫内温度差により発生する蓄熱部材1の表裏面の融解速度の差異を抑えることで蓄熱材3が完全に融解するまでの時間を長くし、結果として庫内温度の保冷時間の長時間化を図ることができる。
本発明は、蓄熱部材を備えた冷蔵庫等において広く利用可能である。
1、20、30、40、50、70、80、90、101、200、301、302 蓄熱部材
1a、20a、30a、40a、50a、70a、80a、90a、101a、200a 上面
1b、20b、30b、40b、50b、70b、80b、90b、101b、200b 下面
2、22、32、42、52、72、82、92、102、202 包装材
3、23、33、43、53、73、83、93、103、2032 蓄熱材
4、34、44、204 空気層
10、110、120、150、160、170、180、190、210 保管容器(冷蔵庫)
12、112、121、152、161、172、182、192、212 容器本体
14、114、124、154、174、184、194、214 保冷室
16a、116a、176a、186a、196a 保持部材
16b、116b、176b、186b、196b 保持部材
18、118、126、158、166、178、188、198、218 冷却器
26 低熱伝導性部材
36 球状物
45 低熱伝導性部材
94、205 穴部
105 板状部
123、163 保冷室
130a〜130d、131a〜131e、146a〜146f 温度センサ
140 発泡断熱箱
156、216 保持部材
157、217 支持部材
164 冷蔵室
177a、177b 開口部

Claims (5)

  1. 対向する上面と下面とを備えた内部が中空の包装材と、
    前記包装材の内部に充填された蓄熱材と、
    前記上面側の温度と前記下面側の温度に差が生じる場合に、前記上面側と前記下面側で温度が高い方の面側に、前記上面と前記下面での単位時間当りの熱伝導量の差を小さくさせる熱伝導量調整部と
    を有することを特徴とする蓄熱部材。
  2. 容器本体と、
    前記容器本体内の空間を開閉自在とする開閉扉と、
    前記空間に設けられ、通常運転時に外気温より低い温度で貯蔵物を保冷する保冷室と、 前記保冷室内上方から前記保冷室内を冷却する冷却器と、
    前記保冷室内で前記冷却器の下方に配置され、前記冷却器の冷気で潜熱を蓄える請求項1に記載の蓄熱部材と、
    前記保冷室内で前記蓄熱部材を保持する保持部材と
    を有することを特徴とする保管容器。
  3. 請求項2に記載の保管容器であって、
    前記包装材は、
    前記下面側の表面積より前記上面側の表面積の方が広いこと
    を特徴とする保管容器。
  4. 請求項2または3に記載の保管容器であって、
    前記蓄熱部材は水平面に平行な断面の面積が前記冷却器より小さいこと
    を特徴とする保管容器。
  5. 請求項2から4までのいずれか一項に記載の保管容器であって、
    前記包装材は、周囲を封止した穴部が設けられていること
    を特徴とする保管容器。
JP2015523920A 2013-06-28 2014-05-21 蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫 Expired - Fee Related JP6293143B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013137441 2013-06-28
JP2013137441 2013-06-28
PCT/JP2014/063477 WO2014208222A1 (ja) 2013-06-28 2014-05-21 蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫

Publications (2)

Publication Number Publication Date
JPWO2014208222A1 true JPWO2014208222A1 (ja) 2017-02-23
JP6293143B2 JP6293143B2 (ja) 2018-03-14

Family

ID=52141574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015523920A Expired - Fee Related JP6293143B2 (ja) 2013-06-28 2014-05-21 蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫

Country Status (3)

Country Link
US (1) US10823477B2 (ja)
JP (1) JP6293143B2 (ja)
WO (1) WO2014208222A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132729A (ja) * 2015-01-20 2016-07-25 トッパン・フォームズ株式会社 保冷具

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688119B (zh) * 2011-07-12 2016-01-20 夏普株式会社 保冷库和温度控制系统、空调系统、供热水系统
JP6601145B2 (ja) * 2014-11-14 2019-11-06 株式会社デンソー 過冷却解除物質およびその製造方法
JP6604721B2 (ja) * 2014-12-26 2019-11-13 永大産業株式会社 耐熱性に優れた、潜熱蓄熱材含浸蓄熱体
JP5892530B1 (ja) * 2015-10-15 2016-03-23 株式会社日本理水研 熱媒および熱媒を用いた給湯装置あるいは熱交換装置
US11130896B2 (en) * 2015-12-25 2021-09-28 Sharp Kabushiki Kaisha Heat-storage material and refrigerator and cooling container that include the heat-storage material
WO2017135231A2 (ja) * 2016-02-05 2017-08-10 シャープ株式会社 蓄熱材、これを用いた蓄熱パック、恒温容器および輸送用容器
WO2018003768A2 (ja) * 2016-06-28 2018-01-04 シャープ株式会社 保冷容器、保冷皿および赤ワイン用サーバー
JP6279784B1 (ja) 2017-03-13 2018-02-14 東邦瓦斯株式会社 潜熱蓄熱材組成物、及び潜熱蓄熱槽
JP6959808B2 (ja) * 2017-09-11 2021-11-05 パナソニック株式会社 冷蔵庫
US20220065519A1 (en) * 2020-08-31 2022-03-03 Keter Plastic Ltd. Cooler container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4213242Y1 (ja) * 1965-03-02 1967-07-27
JPS56102674A (en) * 1980-01-21 1981-08-17 Tokyo Shibaura Electric Co Refrigerator
JPH0527581U (ja) * 1991-09-13 1993-04-09 サンデン株式会社 蓄冷装置
JPH06137740A (ja) * 1992-10-28 1994-05-20 Sanyo Electric Co Ltd 低温庫
JPH09318242A (ja) * 1996-05-31 1997-12-12 Matsushita Refrig Co Ltd 冷蔵庫
JP2002181423A (ja) * 2000-12-12 2002-06-26 Tnk Kk 蓄冷剤収容用の容器構造
JP2012032087A (ja) * 2010-07-30 2012-02-16 Toyo Kanetsu Solutions Kk 保冷箱

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1369367A (en) * 1920-01-05 1921-02-22 Henry M Whitney Cooling-container
JPH02143074A (ja) 1988-11-25 1990-06-01 Matsushita Refrig Co Ltd 蓄冷型保冷庫
JPH02171574A (ja) 1988-12-23 1990-07-03 Matsushita Refrig Co Ltd 蓄冷型保冷庫
DE9410392U1 (de) * 1994-06-28 1994-08-25 Beck Karl Lebensmittelbehälter zur Aufnahme von Lebensmitteln
US6427463B1 (en) * 1999-02-17 2002-08-06 Tes Technology, Inc. Methods for increasing efficiency in multiple-temperature forced-air refrigeration systems
JP2001066036A (ja) 1999-08-25 2001-03-16 Mitsubishi Cable Ind Ltd 蓄冷材用の容器、これを用いた蓄冷体および蓄冷式熱交換体
CA2348697A1 (en) * 2001-05-23 2002-11-23 Godwill M. Igwe Method for cooling energy reserve and conservation in thermoelectric or/and compressor cooler/freezer
JP2002357380A (ja) 2001-05-31 2002-12-13 Daikin Ind Ltd 保冷庫
DE102004035017A1 (de) * 2004-07-20 2006-02-16 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit Kältespeicher
JP5525726B2 (ja) 2008-12-26 2014-06-18 株式会社ケーヒン・サーマル・テクノロジー 蓄冷機能付きエバポレータ
WO2012125069A1 (ru) * 2011-03-16 2012-09-20 ГРАМШ, Владимир Анатольевич Испаритель
DE102011006960A1 (de) * 2011-04-07 2012-10-11 BSH Bosch und Siemens Hausgeräte GmbH Kältegeräteanordnung mit Kältespeicherkörper
EP2858924A1 (en) * 2012-06-11 2015-04-15 Carrier Corporation Refrigerated cargo container, method for cooling a cargo, method for heating a cargo

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4213242Y1 (ja) * 1965-03-02 1967-07-27
JPS56102674A (en) * 1980-01-21 1981-08-17 Tokyo Shibaura Electric Co Refrigerator
JPH0527581U (ja) * 1991-09-13 1993-04-09 サンデン株式会社 蓄冷装置
JPH06137740A (ja) * 1992-10-28 1994-05-20 Sanyo Electric Co Ltd 低温庫
JPH09318242A (ja) * 1996-05-31 1997-12-12 Matsushita Refrig Co Ltd 冷蔵庫
JP2002181423A (ja) * 2000-12-12 2002-06-26 Tnk Kk 蓄冷剤収容用の容器構造
JP2012032087A (ja) * 2010-07-30 2012-02-16 Toyo Kanetsu Solutions Kk 保冷箱

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132729A (ja) * 2015-01-20 2016-07-25 トッパン・フォームズ株式会社 保冷具

Also Published As

Publication number Publication date
US10823477B2 (en) 2020-11-03
US20160370084A1 (en) 2016-12-22
JP6293143B2 (ja) 2018-03-14
WO2014208222A1 (ja) 2014-12-31

Similar Documents

Publication Publication Date Title
JP6293143B2 (ja) 蓄熱部材およびそれを用いた保管容器、およびそれを用いた冷蔵庫
US20200248057A1 (en) Latent heat storage material, cold storage pack, cooling container, logistic packaging container, and cooling unit
US10179686B2 (en) Storage container with heat storage material that provides heat to shelf included in storage container
JP5852567B2 (ja) 冷却装置
JP5558415B2 (ja) 冷蔵庫
JP6226488B2 (ja) 蓄熱材、及びそれを用いた蓄熱部材、保管容器、輸送・保管容器、建材、建築物
JP5800575B2 (ja) 冷蔵庫
WO2012176708A1 (ja) 蓄熱部材および蓄熱容器
WO2015093311A1 (ja) 保冷部材およびそれを備えた保冷容器
JP6594870B2 (ja) 保冷部材
US20150130335A1 (en) Shelf including a cold storage material therein, and refrigerator having the same
CN110595129B (zh) 制冷装置及方法
JP6284627B2 (ja) 蓄熱材
KR20020004960A (ko) 축냉제, 축냉팩 및 보냉박스
JP6663508B2 (ja) 蓄熱材、保冷具、物流梱包容器および保冷ユニット
WO2015072327A1 (ja) 蓄熱材容器およびそれを用いた保冷庫
WO2019235279A1 (ja) 保冷具および梱包容器、ならびに保冷対象物の輸送方法
JP2007163045A (ja) 保冷材を備えた生鮮魚介類用保冷容器及び保冷材の繰返し使用可能な回数の増加方法
JP5800576B2 (ja) 冷蔵庫
WO2013054785A1 (ja) 保冷庫
JP2015209998A (ja) 保冷庫
JPWO2019013161A1 (ja) 蓄熱材、保冷容器および冷蔵庫
JP2012057876A (ja) 冷蔵庫
WO2012147676A1 (ja) 蓄熱部材及びそれを用いた保管容器並びに保管容器の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180213

R150 Certificate of patent or registration of utility model

Ref document number: 6293143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees