JPWO2014038211A1 - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
JPWO2014038211A1
JPWO2014038211A1 JP2014534204A JP2014534204A JPWO2014038211A1 JP WO2014038211 A1 JPWO2014038211 A1 JP WO2014038211A1 JP 2014534204 A JP2014534204 A JP 2014534204A JP 2014534204 A JP2014534204 A JP 2014534204A JP WO2014038211 A1 JPWO2014038211 A1 JP WO2014038211A1
Authority
JP
Japan
Prior art keywords
quantum dot
semiconductor device
substrate
quantum dots
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014534204A
Other languages
English (en)
Inventor
喜多 隆
隆 喜多
原田 幸弘
幸弘 原田
侑亮 別所
侑亮 別所
英洋 保田
英洋 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Publication of JPWO2014038211A1 publication Critical patent/JPWO2014038211A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/02MBE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

基板(10)の主面上に形成され、各々が量子ドット(31a)を有する複数の量子ドット層(31)を備える半導体装置(1)であって、複数の量子ドット層(31)の各々の量子ドット(31a)は、積層されており、量子ドット(31a)の積層方向は、基板(10)の主面の垂直方向に対して傾斜している。

Description

本発明は、半導体装置、半導体装置の製造方法、及び量子ドットの制御方法に関し、特に、量子ドットを用いた半導体装置及びその製造方法、並びに量子ドットの積層方向を制御する制御方法に関する。
量子ドットとは、一般的に半導体や金属等からなる数nm〜数十nm程度のナノ結晶構造のことである。量子ドットの周囲は、高いポテンシャル障壁によって3次元的に取り囲まれているので、量子ドット中の電子や正孔は狭い空間に閉じ込められる。この閉じ込め効果により、量子ドット内では電子やホールの運動が量子化され、離散的なエネルギー準位が形成される。したがって、量子ドットを用いることにより、エネルギー変換効率及び温度安定性に優れた半導体デバイスを実現することができる。
量子ドットは、半導体基板上にエピタキシャル成長させることで形成することができる。例えば、格子不整合系材料の結晶成長を利用したSK(Stranski−Krastanow)成長モードによる自己組織化によって量子ドット(自己形成量子ドット)を形成することができる。
量子ドットは、光吸収や光放出などの光応答特性が優れているので、中間バンド型太陽電池(超高性能太陽電池)における光から電気への変換や、半導体光増幅器、半導体レーザ等の電気から光への変換など、高性能発光デバイス、又は、光中継器や超高感度な光検出器等の光半導体デバイスへの応用が期待されている。
特に、太陽電池については、これまで30%程度が限界とされていたエネルギー変換効率を、自己形成量子ドットを用いることで60%以上まで引き上げることが可能とされている。このため、近年、自己形成量子ドット及びこれを用いた半導体デバイスの研究が盛んに行われている。例えば、特許文献1には、自己形成量子ドットを利用した太陽電池及びその製造方法が開示されている。
特開2002−141531号公報
量子ドットを用いた半導体デバイスとしては、例えば、GaAs基板上にInAs自己形成量子ドットが形成されたものがある。このような量子ドット半導体デバイスでは、光応答特性をさらに向上させるための構造が考えられている。
例えば、面内の量子ドットの数を増加し量子ドットの面内密度を大きくすることで、光応答特性を向上させることが考えられる。しかしながら、面内の量子ドットを増加させることには限界がある。
一方、複数の量子ドットを含む量子ドット層と中間層とを交互に繰り返して複数積層することで縦方向における量子ドットの数を増加させ、これによりエネルギー変換効率を向上させることが考えられる。しかしながら、量子ドット層を積層しすぎると、厚膜化して結晶欠陥が発生してキャリアが流れにくくなり、かえって光応答特性が悪くなる場合がある。
また、量子ドットを用いた太陽電池や一般に光検出器では、光を量子ドットに効率良く吸収させるために光吸収係数を向上させることが課題であり、素子の単位体積当たりの優れた光応答特性が要求されている。
本発明は、上記問題を解決するためになされたものであり、優れた光応答特性を有する半導体装置、半導体装置の製造方法、及び量子ドットの制御方法を提供することを目的とする。
上記目的を達成するために、本発明に係る半導体装置の一態様は、基板の主面上に形成され、各々が量子ドットを有する複数の量子ドット層を備える半導体装置であって、前記複数の量子ドット層の各々の前記量子ドットは、積層されており、前記量子ドットの積層方向は、前記基板の主面の垂直方向に対して傾斜していることを特徴とする。
本態様によれば、量子ドットの積層方向が基板の主面の垂直方向に対して傾斜しているので、量子ドットの密度及び量子ドット半導体層の膜厚を維持したままで、面内における光応答特性を向上させることができる。これにより、エネルギー変換効率に優れた半導体デバイスを実現することができる。
また、本発明に係る半導体装置の一態様において、前記量子ドット層は、平面状の半導体膜である、としてもよい。
これにより、量子ドット層を連続体として構成することができる。
また、本発明に係る半導体装置の一態様において、前記量子ドットは、自己組織化により形成される、としてもよい。
これにより、基板結晶と薄膜結晶(量子ドット層)との格子定数の差(格子不整合量)による格子歪を利用して、島状の量子ドットを自己形成することができる。
また、本発明に係る半導体装置の一態様において、積層された複数の前記量子ドットからなる量子ドット積層体において、前記積層方向における前記量子ドット積層体の高さは、前記積層方向に垂直な方向における前記量子ドット積層体の長さよりも大きい、としてもよい。
これにより、光エネルギーに対する光吸収を大きくすることができるので、光応答特性を向上させることができる。
また、本発明に係る半導体装置の一態様において、積層された複数の前記量子ドットからなる量子ドット積層体において、最下層の前記量子ドットの下面の輪郭形状は、長方形又は楕円であり、前記量子ドット積層体の前記積層方向の高さは、前記長方形又は楕円の長手方向の長さよりも大きく、前記量子ドット積層体は、前記長方形又は楕円の短手方向に傾斜している、としてもよい。
これにより、長手方向に傾斜させる場合と比べて、光エネルギーに対する光吸収を大きくすることができ、光応答特性を向上させることができる。
また、本発明に係る半導体装置の一態様において、さらに、前記複数の量子ドット層の間に形成された中間層を備える、としてもよい。
これにより、積層型の量子ドットを容易に形成することができる。
また、本発明に係る半導体装置の一態様において、前記量子ドットは、InAsからなる、としてもよい。
また、本発明に係る半導体装置の一態様において、前記基板は、前記主面が(001)面であるGaAs基板である、としてもよい。
また、本発明に係る半導体装置の一態様において、(−110)断面において、前記積層方向は、[001]方向に対して傾斜し、前記積層方向は、前記基板に対してInを蒸着する方向である、としてもよい。
また、本発明に係る半導体装置の一態様において、前記量子ドット層を活性層とする、としてもよい。
また、本発明に係る半導体装置の一態様において、当該半導体装置は、太陽電池である、としてもよい。
また、本発明に係る半導体装置の製造方法の一態様は、指向性を持たせて半導体材料を基板に蒸着させることにより複数の量子ドットを基板上に積層する半導体装置の製造方法であって、前記複数の量子ドットを積層する積層方向を取得する積層方向取得工程と、取得した前記積層方向に応じて前記半導体材料の蒸着方向を決定し、決定した前記蒸着方向にて前記半導体材料を前記基板に蒸着させる蒸着工程とを含むことを特徴とする。
これにより、量子ドットの積層方向を所望の積層方向とすることができるので、半導体デバイスに応じた最適な量子ドットの配列制御を行うことができる。したがって、光応答特性に優れた半導体デバイスを容易に実現することができる。
また、本発明に係る半導体装置の製造方法の一態様において、前記蒸着工程では、前記蒸着方向と前記積層方向とを一致させて、前記半導体材料を前記基板に蒸着させる、としてもよい。
また、本発明に係る半導体装置の製造方法の一態様において、前記量子ドットの前記積層方向は、前記基板の主面の垂直方向に対して傾斜している、としてもよい。
また、本発明に係る半導体装置の製造方法の一態様において、前記量子ドットは、自己組織化により形成される、としてもよい。
また、本発明に係る半導体装置の製造方法の一態様において、前記半導体材料を前記基板に蒸着する方法は、分子線エピタキシー法であり、前記蒸着工程では、前記半導体材料のビームフラックスの方向を前記積層方向として、前記ビームフラックスを前記基板に照射する、としてもよい。
また、本発明に係る半導体装置の製造方法の一態様において、前記量子ドットは、InAsからなり、前記半導体材料の少なくとも一つは、Inである、としてもよい。
また、本発明は、量子ドットの制御方法としても実現することができる。
例えば、本発明に係る量子ドットの制御方法の一態様は、指向性を持たせて半導体材料を基板に蒸着させることにより前記基板上に積層される複数の量子ドットの積層方向を制御する制御方法であって、前記量子ドットの積層方向を取得し、当該積層方向に応じて、前記半導体材料を前記基板に蒸着させる蒸着方向を制御するものである。この場合、蒸着方向を、取得した積層方向に一致させる、としてもよい。
これにより、量子ドットの積層方向を所望の積層方向とすることができるので、半導体デバイスに応じた最適な量子ドットの配列制御を行うことができる。したがって、光応答特性に優れた半導体デバイスを容易に実現することができる。
本発明に係る半導体装置によれば、量子ドットの積層方向が基板の主面の垂直方向に対して傾斜しているので、面内での光応答特性を向上させることができる。これにより、光応答特性に優れた高性能な半導体デバイスを実現することができる。
また、本発明に係る半導体装置の製造方法及び量子ドットの制御方法によれば、予め取得した量子ドットの最適な積層方向に応じて半導体材料の蒸着方向を制御するので、量子ドットの積層方向を所望の積層方向とすることができる。これにより、量子ドットを最適な方向に積層させることができるので、光応答特性に優れた半導体デバイスを実現することができる。
図1Aは、本発明の実施の形態に係る半導体装置の(−110)断面における断面図である。 図1Bは、本発明の実施の形態に係る半導体装置の(110)断面における断面図である。 図2は、本発明の実施の形態に係る半導体装置の量子ドット層の構成を示す斜視図である。 図3は、本発明の実施の形態に係る半導体装置における量子ドット積層体の構成を模式的に示す図である。 図4Aは、本発明の実施の形態に係る半導体装置における量子ドット積層体の他の構成を示す模式図である。 図4Bは、本発明の実施の形態に係る半導体装置における量子ドット積層体の他の構成を示す模式図である。 図5は、本発明の実施の形態の量子ドット積層体におけるバンド間遷移確率を説明するための計算モデルを示す図である。 図6は、本発明の実施の形態の量子ドット積層体が柱状である場合における量子ドット積層体の傾斜角とバンド間遷移確率との関係を示す図である。 図7は、本発明の実施の形態の量子ドット積層体が扁平状である場合における量子ドット積層体の傾斜角とバンド間遷移確率との関係を示す図である。 図8は、本発明の実施の形態に係る太陽電池の構成を示す断面図である。 図9は、本発明の実施の形態に係る半導体装置の製造方法で用いられるMBE装置の構成を示す図である。 図10は、本発明の実施の形態に係る半導体装置の製造方法におけるフラックス方向(蒸着方向)と量子ドットの積層方向との関係を示す図である。 図11Aは、本発明の実施例に係る半導体装置の(−110)断面における断面図である。 図11Bは、本発明の実施例に係る半導体装置の(110)断面における断面図である。 図12Aは、本発明の実施例に係る半導体装置の(−110)断面における断面TEM像である。 図12Bは、本発明の実施例に係る半導体装置の(110)断面における断面TEM像である。 図13は、本発明の他の実施例に係る半導体装置のPLスペクトルを示す図である。 図14は、本発明の他の実施例に係る半導体装置についての無偏光時のPLピーク波長におけるPL強度の偏光角度依存性を示す図である。
(本発明に至った経緯)
本発明の実施の形態の説明に先立ち、まず、本発明に至った経緯について説明する。
上述のとおり、自己形成量子ドットを用いた半導体デバイスについては、光応答特性を向上させるために、複数の量子ドットからなる量子ドット層と中間層とを交互に繰り返して複数積層することが好ましい。このような構造では、中間層の厚みと積層数に応じて電子的な結合状態が変化し、光学遷移の選択則、波動関数の拡がりと自由励起子の並進運動で決まる振動子強度を大きく制御することができる。
しかしながら、量子ドット層を積層しすぎると、厚膜化によって結晶欠陥が発生してキャリアが流れにくくなり、かえってエネルギー変換効率が悪くなる場合がある。
そこで、各量子ドット層において、複数の量子ドットの幾何学的(3次元的)な配置の制御を行うことができれば、光学遷移の選択則を制御する自由度を1つ増やすことができると考えられる。
本願発明者らは、このような点に着目して実験を重ねて鋭意検討した結果、従来には無い画期的な知見を得ることができた。
すなわち、量子ドット層を基板の上に積層する際、量子ドットの積層方向を傾斜させることによって、面内における量子ドットの光応答特性を向上させることができるという知見を得ることができた。
さらに、量子ドット層を構成する半導体材料の基板への供給方向(蒸着方向)を変化させることで、量子ドットの積層方向の制御を行うことができるという知見を得ることができた。
本願発明者らは、特に、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)によって形成されるInAs系の量子ドットについては、Inフラックスの照射角(入射角)が量子ドットの積層方向に依存することを見出し、Inフラックスの照射角によって量子ドットの積層方向を制御できるという着想を得た。具体的には、Inフラックスを基板の主面に対して斜め方向から供給した場合に、量子ドットが基板の主面に対して傾いた方向に積層成長することを見出すとともに、積層された量子ドットの傾斜方向(積層方向)がInフラックスの照射角とほぼ一致することを突きとめた。
本発明は、このような新規な知見に基づいてなされたものであり、半導体装置、半導体装置の製造方法、及び量子ドットの制御方法を提供する。
(実施の形態)
以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程(ステップ)及び工程の順序などは、一例であり、本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。
<半導体装置>
まず、本発明の実施の形態に係る半導体装置1の構成について、図1A及び図1Bを用いて説明する。図1Aは、本発明の実施の形態に係る半導体装置の(−110)断面における断面図である。図1Bは、本発明の実施の形態に係る半導体装置の(110)断面における断面図である。
図1A及び図1Bに示すように、本実施の形態に係る半導体装置1は、基板10と、基板10上に形成されたバッファ層20と、バッファ層20の上に形成された量子ドット半導体層30とを備える。なお、量子ドット半導体層30の表面を平坦化すること等を目的として、量子ドット半導体層30の上にGaAs層等からなるキャップ層を形成してもよい。また、半導体装置1における各層は、MBE装置を用いて形成することができる。
半導体装置1は、III−V族化合物半導体を用いた電子デバイスであり、本実施の形態では、GaAs系化合物半導体を用いて構成されている。以下、各構成について詳述する。
基板10は、半導体基板であり、本実施の形態では、主面が(001)面であるGaAs基板を用いている。また、バッファ層20として、基板10上にGaAs層を形成した。
量子ドット半導体層30は、複数の量子ドット層31と、量子ドット層31の間に形成された中間層(スペーサー層)32とを含む。量子ドット層31と中間層32とは1層ずつ交互に繰り返して積層されている。
複数の量子ドット層31の各々は、複数の量子ドット31aを含むように構成された連続体をなしており、マトリックス層である。つまり、量子ドット層31は、下地層の上面全面に形成された一枚の平面状の半導体膜として形成される。
ここで、量子ドット層31の単層構造について、図2を用いて説明する。図2は、量子ドット層31の3次元構造を模式的に示した図である。
図2に示すように、量子ドット層31には、複数の量子ドット31aがランダムに形成されている。量子ドット31aは、ナノオーダの半導体からなる結晶構造体であり、1つの量子ドット31aは、例えば、幅が20nmで高さが5nm程度の略円盤形状である。なお、量子ドット31aの密度は、例えば、3〜4×1010cm−2である。
本実施の形態において、量子ドット31aは、自己組織化によって形成された自己形成量子ドットである。つまり、量子ドット31aは、SKモードによる自然形成現象(結晶の歪エネルギーを利用した結晶成長中の自己組織化現象)によって形成される。自己形成量子ドットは、下地結晶と半導体結晶(量子ドット層)との間における格子定数の差(格子不整合量)を利用して形成されたものである。この場合、半導体の結晶成長に伴う格子歪による系のエネルギー増大を抑制するように2次元から3次元へと成長構造が遷移し、これにより、ナノオーダサイズの島状の量子ドットが無数に形成される。
量子ドット層31は、例えばInAsを用いて形成することができる。この場合、量子ドット31aは、InAsからなる量子ドットとなる。また、中間層32は、例えばGaAsを用いて形成することができる。GaAsとInAsとの間には格子歪が7%程度存在する。これにより、InAsの結晶成長が進んでInAsの体積量が増えると、これに伴って蓄積される歪エネルギーを解放するようにして両面積が増し、複数の量子ドット31aが島状に点在するように形成される。このような成長を繰り返すことでInAsとGaAsとを積層成長させることができる。これにより、InAs/GaAs系材料からなる量子ドット半導体層30を形成することができる。
本実施の形態では、Inフラックスの照射角を所望の角度に制御して、量子ドット半導体層30を形成している。このようにして形成された量子ドット半導体層30では、図1A及び図1Bに示すように、複数の量子ドット31aが基板10の上方に向かって一定の方向に積層される。
具体的には、図1Aに示すように、(−110)断面における複数の量子ドット31aの積層方向は、基板10の主面(表面)の垂直方向(法線)である[001]方向に対して、所定の角度θで傾斜している。つまり、基板10の主面の垂直方向と複数の量子ドット31aの積層方向とのなす角θが0°より大きくなっている。
また、角度θの方向に一列配列された複数の量子ドット31aは、量子ドット積層体31Aを構成している。したがって、(−110)断面において、量子ドット積層体31Aは、基板10の主面の垂直方向に対して角度θで傾斜している。
後述するように、この(−110)断面における量子ドット31aの積層方向は、基板10に対してIn(インジウム)を蒸着する方向(Inビームフラックス方向)となっている。つまり、(−110)断面における量子ドット積層体31Aの傾斜角(角度θ)は、基板10に対するInフラックスの入射角に依存し、このInフラックスの入射角とほぼ一致している。
一方、図1Bに示すように、(110)断面における量子ドット31aの積層方向は、基板10の主面の垂直方向と同じになっている。つまり、(110)断面における量子ドット31aの積層方向は、[001]方向に対して傾斜しておらず、基板10の主面の垂直方向と複数の量子ドット31aの積層方向とのなす角θはほぼ0°である。
なお、InAsからなる量子ドット31aは、[−110]方向に結晶成長する。つまり、量子ドット31aは、[−110]方向に拡散して延びるように形成される。
ここで、量子ドット積層体31Aについて、図3を用いて説明する。図3は、本発明の実施の形態に係る半導体装置1における量子ドット積層体31Aの構成を模式的に示す図である。
図3に示すように、量子ドット積層体31Aは、基板10の上方に向かって一定の方向に配列された一列分の複数の量子ドット31aによって構成されており、基板10の主面の垂直方向に対して角度θで傾斜している。つまり、量子ドット積層体31Aは、所定の傾斜角θで傾斜している。本実施の形態において、量子ドット積層体31Aは、量子ドット層31(量子ドット31a)を薄い中間層で近接させて積層されたものであり、量子ドット31aの積層方向に長く延びる円柱として考えることができる。なお、量子ドット積層体31A内の各々の量子ドット31aは、円盤状(扁平状)であり、下面の輪郭形状は、便宜上、半径rの円となっている。
また、量子ドット積層体31Aにおける量子ドット31aの構成としては、図3に示す構造のものに限らず、量子ドットの形状としては多様である。例えば、図4Aに示すように、量子ドット31aとして、下面の輪郭形状が楕円(長軸がaで短軸がb)の円盤状のものを用いてもよい。この場合、量子ドット積層体31Aは、楕円柱として考えることができる。あるいは、図4Bに示すように、量子ドット31aとして、下面の輪郭形状が長方形(長辺がlで短辺がm)の直方体のものを用いてもよい。この場合、量子ドット積層体31Aは、四角柱として考えることができる。このように、量子ドット31aとしては、一方向に長尺で他方向に短尺である扁平状の量子ダッシュ構造のものを用いても構わない。
なお、量子ドット積層体31Aにおける各量子ドット31aの大きさは、同じであってもよいが、同じでなくてもよい。また、量子ドット積層体31Aにおける各量子ドット31aの形状も同じでなくてもよい。例えば、量子ドット積層体31Aにおける最下層の量子ドット31aの下面の輪郭形状が四角形であって、最上層の量子ドット31aの下面の輪郭形状が円形又は楕円であってもよく、あるいは、その逆であってもよい。この場合、最下層と最上層との間の複数の量子ドット31aは、四角形から円形又は楕円形へと、あるいはその逆へと遷移する形状とすればよい。
また、図3、図4A及び図4Bに示すように、量子ドット積層体31Aが柱状体である場合には、当該量子ドット積層体31Aは傾斜させることが好ましい。さらに、量子ドット積層体31Aの断面が楕円や長方形である場合、量子ドット積層体31Aは楕円や長方形の短手方向に傾斜させることが好ましい。
以下、この点について、図5〜図7を用いて詳細に説明する。図5は、本実施の形態の量子ドット積層体におけるバンド間遷移確率を説明するための計算モデルを示す図である。図6は、本実施の形態の量子ドット積層体が柱状である場合における量子ドット積層体の傾斜角とバンド間遷移確率との関係を示す図である。また、図7は、本実施の形態の量子ドット積層体が扁平状である場合における量子ドット積層体の傾斜角とバンド間遷移確率との関係を示す図である。
図5(a)に示すように、量子ドット積層体31A(複数の量子ドット31aで埋まった構造)の計算モデルとして、無限大ポテンシャルに囲まれた直方体を考える。
また、図5(a)に示す構成の量子ドット積層体31Aにおいて、[−110]方向の長さL[−110]を30nmとし、[110]方向の長さL[110]を25nmとして固定した場合、[001]方向、[−110]方向及び[110]方向に平行な光の偏光方向におけるバンド間遷移確率の各々の相対強度は、量子ドット積層体31Aにおける[001]方向の長さL[001]に応じて、図5(b)に示されるように設定されている。
また、L[001]=10nm、20nm、30nm、40nm、50nm、60nmの場合について、相対エネルギーによる量子ドットのバンド間遷移確率は、図5(c)に示されるように設定されている。
なお、計算手法は、有効質量近似による1電子ハミルトニアン(伝導帯)、4バンドLuttinger−Kohnハミルトニアン(価電子帯)及び直交関数展開法を用いている。また、半値幅20meVのGauss関数でブロードニングし、Boltzmann因子(T=300K)を考慮している。
まず、図5(a)に示す構成の量子ドット積層体31AについてL[001]=50nmとした場合において、z’軸と[001]方向とのなす角θに対するバンド間遷移確率について、図6を用いて説明する。なお、図6(a)に示す量子ドット積層体31Aは、直方体の高さが下面の長方形の長辺及び短辺のいずれよりも長い構成の場合である。また、θ=0°の場合、x’軸は[−100]と平行であり、y’軸は[110]と平行であり、z’軸は[001]と平行である。
図6(a)に示す量子ドット積層体31Aの構造において、x’軸と[001]方向とが直交する場合(x’//[−110])、量子ドット積層体31Aにおけるバンド間遷移確率は、図6(b)に示す結果となる。
具体的に、図6(b)に示すように、量子ドット積層体31Aが受ける光の偏光方向Eの方向が[001]方向に垂直な場合(E⊥[001])、バンド間遷移確率は、z’軸と[001]方向とのなす角θ(つまり、量子ドット積層体31Aの傾斜角)が大きくなるに従って大きくなっている。すなわち、量子ドット積層体31Aが傾いて倒れる程、バンド間遷移確率は大きくなる。そして、バンド間遷移確率が大きいほど量子ドットによる光吸収も大きくなることから、量子ドット積層体31Aの傾斜角θが大きくなるに従って光吸収も大きくなる。
一方、同図に示すように、量子ドット積層体31Aが受ける光の偏光方向Eの方向が[001]方向に平行な場合(E//[001])、バンド間遷移確率は、z’軸と[001]方向とのなす角θが大きくなるに従って小さくなっている。すなわち、量子ドット積層体31Aの傾斜角θが大きくなるに従って、バンド間遷移確率が小さくなって光吸収も小さくなる。
また、図6(a)に示す量子ドット積層体31Aの構造において、y’軸と[001]方向とが直交する場合(y’//[110])、量子ドット積層体31Aにおけるバンド間遷移確率は、図6(c)に示す結果となる。
具体的に、図6(c)に示すように、量子ドット積層体31Aが受ける光の偏光方向Eの方向が[001]方向に垂直な場合(E⊥[001])、バンド間遷移確率は、図6(b)と比べて上昇率は小さいものの、z’軸と[001]方向とのなす角θが大きくなるに従って大きくなっている。すなわち、量子ドット積層体31Aの傾斜角が大きくなるに従って、バンド間遷移確率が大きくなって光吸収も大きくなる。
一方、同図に示すように、量子ドット積層体31Aが受ける光の偏光方向Eの方向が[001]方向に平行な場合(E//[001])、バンド間遷移確率は、図6(b)と比べて下降率は小さいものの、z’軸と[001]方向とのなす角θが大きくなるに従って小さくなっている。すなわち、量子ドット積層体31Aの傾斜角が大きくなるに従って、バンド間遷移確率が小さくなって光吸収も小さくなる。
次に、図5(a)に示す構成の量子ドット積層体31AについてL[001]=20nmとした場合において、z’軸と[001]方向とのなす角θに対するバンド間遷移確率について、図7を用いて説明する。なお、図7(a)に示す量子ドット積層体31Aは、直方体の高さが下面の長方形の長辺及び短辺のいずれよりも短い構成の場合である。また、θ=0°の場合、x’軸は[−100]と平行であり、y’軸は[110]と平行であり、z’軸は[001]と平行である。
図7(a)に示す量子ドット積層体31Aの構造において、x’軸と[001]方向とが直交する場合(x’//[−110])、量子ドット積層体31Aにおけるバンド間遷移確率は、図7(b)に示す結果となる。
具体的に、図7(b)に示すように、量子ドット積層体31Aが受ける光の偏光方向Eの方向が[001]方向に垂直な場合(E⊥[001])、バンド間遷移確率は、z’軸と[001]方向とのなす角θが大きくなるに従って小さくなっている。すなわち、量子ドット積層体31Aの傾斜角θが大きくなるに従って光吸収は小さくなる。
一方、同図に示すように、量子ドット積層体31Aが受ける光の偏光方向Eの方向が[001]方向に平行な場合(E//[001])、バンド間遷移確率は、z’軸と[001]方向とのなす角θが大きくなるに従って大きくなっている。すなわち、量子ドット積層体31Aの傾斜角θが大きくなるに従って、バンド間遷移確率が大きくなって光吸収も大きくなる。但し、E//[001]の場合のバンド間遷移確率の方が、E⊥[001]の場合のバンド間遷移確率よりも小さい。
また、図7(a)に示す量子ドット積層体31Aの構造において、y’軸と[001]方向とが直交する場合(y’//[110])、量子ドット積層体31Aにおけるバンド間遷移確率は、図7(c)に示す結果となる。
具体的に、図7(c)に示すように、量子ドット積層体31Aが受ける光の偏光方向Eの方向が[001]方向に垂直な場合(E⊥[001])、バンド間遷移確率は、z’軸と[001]方向とのなす角θが大きくなるに従って小さくなっている。すなわち、量子ドット積層体31Aの傾斜角θが大きくなるに従って、バンド間遷移確率が小さくなって光吸収も小さくなる。
一方、同図に示すように、量子ドット積層体31Aが受ける光の偏光方向Eの方向が[001]方向に平行な場合(E//[001])、バンド間遷移確率は、z’軸と[001]方向とのなす角θが大きくなるに従って大きくなっている。すなわち、量子ドット積層体31Aの傾斜角θが大きくなるに従って、バンド間遷移確率が大きくなって光吸収も大きくなる。但し、E//[001]の場合のバンド間遷移確率の方が、E⊥[001]の場合のバンド間遷移確率よりも小さい。
以上、図6及び図7に示す結果によれば、図6に示す構成のように量子ドット積層体31Aが柱状体である場合には、量子ドット積層体31Aを傾斜させることが好ましい。すなわち、複数の量子ドット31aの積層方向における量子ドット積層体31Aの高さが、当該積層方向に垂直な方向における量子ドット積層体31Aの長さよりも大きい場合には、量子ドット積層体31Aを傾斜させることが好ましい。
これにより、バンド間遷移確率が大きくなり、光エネルギーに対する光吸収を大きくすることができるので、光応答特性を向上させることができる。なお、積層方向に垂直な方向における量子ドット積層体31Aの長さとは、量子ドット積層体31Aが円柱の場合は直径であり、楕円柱の場合は長軸及び短軸の長さであり、四角柱の場合は縦及び横の長さである。
また、図6に示す結果によれば、量子ドット積層体31Aの円柱断面が楕円や長方形のように非円形である場合、量子ドット積層体31Aは短手方向に傾斜させることが好ましい。すなわち、量子ドット積層体31Aにおける最下層の量子ドット31aの下面の輪郭形状が長方形又は楕円であって、量子ドット積層体31Aの積層方向の高さが長方形の長手方向の長さ(長辺の長さ)又は楕円の長手方向の長さ(長軸の長さ)よりも大きい場合、量子ドット積層体31Aは、長方形の短手方向(短辺に平行な方向)又は楕円の短手方向(短軸に平行な方向)に傾斜させることが好ましい。このように、量子ドット積層体31Aは、柱状体の幅の短い方向([−110]方向に垂直な方向)に倒すようにして傾斜させることが好ましい。
なお、本実施の形態における量子ドット31aは、InAsであるので[−110]方向に結晶成長する。したがって、量子ドット積層体31Aは、量子ドット31aが結晶成長する方向(拡散方向)に対して垂直な方向に傾斜させることが好ましい。
このように、量子ドット積層体31Aを柱状体の幅の短い方向(面積の大きい側面側)に傾斜させることによって、幅の長い方向(面積の小さい側面側)に傾斜する場合と比べて、光エネルギーに対する光吸収を大きくすることができ、光応答特性を向上させることができる。
以上、本実施の形態に係る半導体装置1によれば、量子ドット層31が積層された構造の量子ドット半導体層30を有する半導体装置において、量子ドット31aの積層方向が基板10の主面に対して傾斜している。これにより、一つ一つの量子ドット31aが扁平状であっても、複数の量子ドット31aの積層方向(量子ドット積層体31A)を基板10の主面に対して傾斜させることで、量子ドット31aの積層方向が傾斜していない場合と比べて、面内での光に対する感度を実質的に向上させることができる。
すなわち、量子ドット31aの積層方向が傾斜している場合(量子ドット積層体31Aが傾斜している場合)と量子ドット31aの積層方向が傾斜していない場合(量子ドット積層体31Aが傾斜していない場合)とにおいて、量子ドット半導体層30における量子ドット31aの密度及び量子ドット半導体層30の膜厚(高さ)が同じであったとしても、本実施の形態のように、量子ドット31aの積層方向を基板10の主面に対して傾斜させることで、光に対する感度を向上させることができる。したがって、高い光応答特性を有する半導体デバイスを実現することができる。
例えば、量子ドット31aの積層方向が基板10の主面に対して傾斜することで、基板10の主面の垂直方向に進行する光(外部から量子ドット半導体層30の主面に向かってくる光)に対して、吸収しやすい偏光方向の光を増加させることができる。これにより、量子ドット31aによる光吸収係数を向上させることができるので、光の取り込み効率を向上させることができる。したがって、高効率の太陽電池及び超高感度の光検出器を実現することができる。あるいは、高効率に光を放射することが可能になるので、高効率な半導体レーザ、増幅率の大きな光アンプなどを実現することができる。
次に、本実施の形態に係る半導体装置の具体例について説明する。まず、本実施の形態に係る太陽電池2について、図8を用いて具体的に説明する。図8は、本発明の実施の形態に係る太陽電池の構成を示す断面図である。
図8に示すように、太陽電池2は、図1A及び図1Bに示す半導体装置1を用いたものであり、基板10と、基板10上に順次形成された、バッファ層20、ベース層41、量子ドット半導体層30、エミッタ層42、コンタクト層43及び反射防止膜44と、第1電極45と、第2電極46とを備える。
基板10は、例えばn−GaAs基板である。基板10の上には、バッファ層20として、例えばGaAs層が形成される。
ベース層41は、第1のブラッグ反射ミラー層(n型半導体層)であり、バッファ層20上に形成される。ベース層41としては、例えばn−GaAs層を用いることができる。
量子ドット半導体層30は、活性層であり、ベース層41とエミッタ層42との間に形成される。量子ドット半導体層30は、例えば、InAsからなる量子ドット31aを有する量子ドット層(InAs層)31とGaAs層である中間層32とが交互に積層された構成である。また、量子ドット半導体層30において、量子ドット31aの積層方向は、基板10の主面に対して傾斜している。
エミッタ層42は、第2のブラッグ反射ミラー層(p型半導体層)であり、量子ドット半導体層30上に形成される。エミッタ層42としては、例えばp−GaAs層を用いることができる。
コンタクト層43は、エミッタ層42上に形成されており、例えばp−GaAs層を用いることができる。反射防止膜44は、コンタクト層43上に形成されており、例えばAlN膜を用いることができる。
第1電極45は、例えばAu/Znからなるp側電極である。第1電極45は、グリッド電極であり、コンタクト層43上に形成される。また、第2電極46は、例えばAu/Geからなるn側電極であり、基板10の裏面に形成される。
本実施の形態における太陽電池2は、PIN接合のI層として量子ドット半導体層30が挿入された構成となっている。また、太陽電池2における各層は、MBE装置を用いて形成することができる。このように構成された太陽電池2は、第1電極(グリッド電極)45側から入射する光(太陽光等)のエネルギーを変換して、電気エネルギーとして取り出す。
そして、本実施の形態に係る太陽電池2によれば、活性層である量子ドット半導体層30において、複数の量子ドット31aの積層方向が基板10の主面の垂直方向に対して傾斜している。これにより、複数の量子ドット31aの積層方向が基板10の主面の垂直方向に対して傾斜していない場合(つまり、複数の量子ドット31aの積層方向が基板10の主面の垂直方向と同じである場合)と比べて、光応答特性を向上させることができる。この結果、光吸収係数を大きくすることができるので、太陽光を効率良く量子ドット31aに吸収させることができる。したがって、エネルギー変換効率に優れた超高性能太陽電池を実現することができる。
例えば、本実施の形態における太陽電池2は、中間バンド型太陽電池として用いることができる。中間バンド型太陽電池は、多接合タンデム型太陽電池とは異なる構造であり、伝導帯と価電子帯間に人工的に中間バンドを形成する構造を有する。そして価電子帯から中間バンド、中間バンドから伝導帯への2段階の遷移を利用することにより、単接合太陽電池では透過損失となるバンドギャップ以下のエネルギーのフォトンを吸収して出力電流を増加させることができるので、エネルギー変換の高効率化を図ることができる。
また、本実施の形態における太陽電池2は、太陽光に含まれる波長のうちシリコン半導体の太陽電池では吸収することが難しい波長(1100nm付近にピーク波長を有する赤外光)までも吸収することができる。つまり、本実施の形態における太陽電池2では、量子ドット半導体層の材料又は量子ドットの積層方向(傾斜方向)を制御することによって可視光域から可視光域外の幅広い波長帯域の光を吸収することができる。したがって、本実施の形態における太陽電池2によれば、エネルギー変換効率が極めて高い太陽電池を実現することが可能となる。
また、図示しないが、図1A及び図1Bに示す半導体装置1は、半導体レーザ等の半導体発光装置として構成することもできる。この場合、量子ドット半導体層30を半導体レーザ等の活性層として用いればよい。例えば、半導体基板上に、n型クラッド層、量子ドット半導体層(活性層)30及びp型クラッド層を形成するとともに、n側電極及びp側電極を形成することで半導体レーザを構成することができる。
このように構成された半導体発光装置によれば、活性層である量子ドット半導体層30において、複数の量子ドット31aの積層方向(量子ドット積層体31A)が傾斜しているので、良好な偏光制御を行うことができる。これにより、高性能の半導体レーザ及び光増幅器等を実現することができる。
また、図1A及び図1Bに示す半導体装置1は、光検出器にも適用することができる。この場合、例えば、ベースに量子ドットを用いることで、1個の電荷蓄積に対しても大きな障壁低下効果が得られるので、エミッタ−コレクタ間電流を大きくすることができる。本実施の形態では、複数の量子ドット31aの積層方向(量子ドット積層体31A)が傾斜しているので、光応答特性を向上させることができる。これにより、超高感度の光検出器を実現することができる。
<半導体装置の製造方法、量子ドットの制御方法>
次に、本実施の形態に係る半導体装置の製造方法及び量子ドットの制御方法について説明する。本実施の形態では、指向性を持たせて原料(半導体材料)を基板に蒸着させることができる蒸着方法を用いて、半導体装置における各層を形成したり、量子ドットの積層方向を制御したりしている。このような蒸着方法として、例えば分子線エピタキシー(MBE)を用いることができる。
分子線エピタキシーによる半導体層の形成は、MBE装置を用いて行うことができる。具体的には、10−8Pa(10−10Torr)程度の超高真空中において、基板を所定の成長温度に加熱し、エピタキシャル成長すべき元素の原料物質(材料原子)が入ったセルを加熱することによって原料物質を蒸発させて分子線として基板に供給して半導体層をエピタキシャル成長させるものである。超高真空下では、平均自由行程が長くなることから、原料が蒸着源(ソース)から基板に到達するまでの間に他の不純物に衝突しない。したがって、分子線エピタキシーを用いることによって、高品質の半導体層を結晶成長させることができる。
まず、半導体装置1の製造方法で用いられるMBE装置の構成について、図9を用いて説明する。図9は、本発明の実施の形態に係る半導体装置1の製造方法で用いられるMBE装置100の構成を示す図である。図9(a)は、MBE装置100の正面図であり、図9(b)は、MBE装置100の底面図であり、図9(c)は、図9(b)のA−A’線における断面図である。
図9に示すように、MBE装置100は、容器と蓋とからなるチャンバ(成長室)110と、第1〜第8セル121〜128と、基板ホルダ130とを備える。チャンバ110内は、真空ポンプによって所定の真空度に調整される。基板ホルダ130は、原料物質(半導体材料)を蒸着させる基板を保持する固定台であり、基板水平面において回転可能に構成されている。
第1〜第8セル121〜128の各セルは、量子ドット等の原料物質が入った蒸着源収容部であり、原料物質(蒸着源)を加熱蒸発させてビームフラックスとして出射させるように構成されている。
第1〜第8セル121〜128は、基板ホルダ130に固定された基板10(不図示)に向かって、当該基板10の主面に対して斜め方向に配置されている。つまり、第1〜第8セル121〜128の各セルは、基板ホルダ130に固定された基板10に対するビームフラックスの照射方向(蒸着方向)が当該基板10の主面の法線に対して所定の角度で傾斜するように構成されている。
図9(b)に示すように、本実施の形態では、MBE装置100を底面側から見たときに、8個の第1〜第8セル121〜128は周方向に均等に配置されている。また、図9(c)に示すように、第1〜第8セル121〜128の各セルにおいて、基板10に対するビームフラックスの照射方向と当該基板10の主面の法線とのなす角度(照射角)θは、各セル個別で調整できるように構成されている。つまり、各セルは、各々の照射角θを調整できるように可動可能に構成されており、基板に対して任意の照射角θで蒸着源を蒸着できるように構成されている。
本実施の形態において、InAsからなる量子ドットを形成する場合、Inは第1セル121に収納し、Asは第8セル128に収納し、図9(c)における照射角θは35°に設定した。この場合、GaAs基板(100)の主面にInフラックスを照射する第1セル121の照射角θ(Inフラックスの照射方向と[001]方向とのなす角)は、GaAs/InAsの(−110)断面では10°となり、GaAs/InAsの(110)断面では34°となる。
次に、MBE装置100を用いた半導体装置1の製造方法及び量子ドットの制御方法について、図1A、図1B及び図9を参照しながら説明する。
まず、基板10を準備する。本実施の形態では、基板10としては、GaAs(001)基板を用いた。
次に、図9に示すMBE装置100内に基板10を設置する。具体的には、基板10を基板ホルダ130に固定して、チャンバ110内の所定の位置に基板10を配置する。
次に、第1〜第8セル121〜128のうちの所定のセルに、基板10に蒸着させる原料を蒸着源として収容し、当該原料(蒸着源)を加熱蒸発させてビームフラックスとして基板10に照射する。これにより、基板10の主面上に、所定の半導体層を形成することができる。
本実施の形態では、まず、原料としてGaとAsとを用いて、GaAs基板からなる基板10の(001)面上にGaとAsとを蒸着させて、GaAs層からなるバッファ層20を形成する。
その後、バッファ層20上に量子ドット半導体層30を形成する。この場合、量子ドット半導体層30における複数の量子ドット31aを積層させる積層方向を予め取得しておき(積層方向取得工程)、取得した積層方向に応じて原料(半導体材料)の蒸着方向を決定し、決定した蒸着方向にて原料(半導体材料)を基板10に蒸着させる(蒸着工程)。
具体的に、積層方向取得工程では、作製する半導体装置1について、量子ドット半導体層30における複数の量子ドット31aの最適な積層方向(傾斜角θ)を予め算出等することにより準備しておく。最適な積層方向は、要求されるデバイス特性(仕様)に応じて、半導体装置1の種類(太陽電池や半導体レーザ等)、あるいは、半導体層における半導体材料の種類や層寸法(膜厚等)等から算出することができる。
そして、蒸着工程では、取得した量子ドット31aの積層方向に応じて原料(半導体材料)を基板10に蒸着させる蒸着方向を制御して、基板10に対して原料の蒸着を行う。本実施の形態では、InAsによって量子ドット31aを形成するので、取得した量子ドット31aの積層方向と、量子ドット31aを構成するInの蒸着方向とを一致させて、In及びAsを基板10に蒸着させる。つまり、図10に示すように、取得した量子ドット31aの積層方向(量子ドット積層体31Aの傾斜角θ)に一致させるように、第1セル121によるInフラックス(ビームフラックス)の基板10への照射方向(照射角θ)を制御する。Inフラックスの照射方向は、Inを収納する第1セル121を可動させることで制御することができる。
Inフラックスの照射方向を所望に設定した後、InとAsとを蒸着させることによって、複数の量子ドット31aを含む量子ドット層31を形成する。その後、引き続き、量子ドット層31の上に、GaとAsとを蒸着させることによって、GaAsからなる中間層32を形成する。以降同様にして、InAsからなる量子ドット層31とGaAsからなる中間層32とを交互に繰り返して連続的に形成する。これにより、量子ドット31aは自己組織化により形成され、自己形成量子ドットであるInAs量子ドットを有する量子ドット半導体層30を形成することができる。
また、本実施の形態では、予め取得した量子ドット31aの積層方向にInビームフラックスの照射方向を一致させるようにして、つまり、形成する予定の量子ドット積層体31Aの傾斜角にInのビームフラックスの照射角を一致させるようにして、Inのビームフラックスの照射方向を制御している。
これは、本願発明者らが、複数の量子ドット31aの積層方向がInのビームフラックスの照射方向(Inの蒸着方向)に依存すること、具体的には、複数の量子ドット31aの積層方向とInのビームフラックスの照射方向とが一致することを見出したことに基づくものである。
したがって、量子ドット半導体層30において、蒸着により実際に形成した複数の量子ドット31aの積層方向と、算出して予め取得した量子ドット31aの積層方向とは概ね一致することになる。なお、As(ヒ素)のビームフラックスの照射方向と量子ドット31aの積層方向との間には依存性がない。
このようにして、本実施の形態に係る半導体装置1を製造することができる。
以上、本実施の形態に係る半導体装置の製造方法及び量子ドットの制御方法によれば、量子ドット半導体層30における量子ドット31aを積層させる方向を予め取得しておき、この積層方向に応じて半導体材料を基板10に蒸着させる方向(蒸着方向)を制御している。本実施の形態では、Inの蒸着方向(Inのビームフラックスの照射方向)を、予め取得した量子ドット31aの積層方向に一致させるようにしている。
量子ドット31aの積層方向はInのビームフラックスの照射方向と概ね一致することから、上記方法によって形成される量子ドット31aの積層方向は、事前に取得した量子ドット31aの積層方向と一致することになる。
このように、本実施の形態によれば、予め取得した量子ドット31aの最適な積層方向に応じて半導体材料の蒸着方向を制御するので、量子ドット31aの積層方向を所望の積層方向とすることができる。つまり、量子ドット半導体層30における量子ドット31aの配列方向の制御を行うことができる。これにより、振動子強度を所望に制御することができるので、人工的に(工業的に)量子ドットの3次元構造を制御することができる。したがって、半導体デバイスに応じた量子ドットの最適な配列制御を行うことができるので、光応答特性に優れた半導体デバイスを容易に実現することができる。
(実施例)
次に、本発明の実施例に係る半導体装置3について、図11A及び図11Bを用いて説明する。図11Aは、本発明の実施例に係る半導体装置の(−110)断面における断面図である。図11Bは、本発明の実施例に係る半導体装置の(110)断面における断面図である。なお、本実施例における半導体装置は、図10に示すMBE装置100を用い、固体原料の分子線エピタキシーによって作製した。
図11A及び図11Bに示すように、まず、基板温度を例えば550℃としてGaAs(001)基板からなる基板10上に、GaAsからなるバッファ層20を結晶成長させた。
次に、バッファ層20の上に、例えば成長温度(基板温度)を480℃として、膜厚2MLのInAsからなる量子ドット層31と膜厚22MLのGaAsからなる中間層32とを交互に9層結晶成長させることで量子ドット半導体層(第1の量子ドット半導体層)30を形成した。なお、InAsの成膜レートは0.040(ML/s)とし、GaAsの成膜レートは0.80(ML/s)とした。また、各中間層32の結晶成長後には、10秒の結晶中断を行った。
なお、InAsの量子ドット層31を形成する際、第1セル121によって、(−110)断面におけるInビームフラックスの照射角θが10°となるように、また、(110)断面におけるInビームフラックスの照射角θが34°となるように、Inビームフラックスの向きを調整した。
その後、量子ドット半導体層30の上に、膜厚200nmのGaAs層50を結晶成長させた後に、MBE装置100の基板ホルダ130を回転させることで結晶軸の面内方向を180°回転させた。これにより、量子ドット半導体層30と量子ドット半導体層60とにおいて、基板10の主面に対する半導体材料のビームフラックスの入射角を実質的に180°ずらすことができる。なお、量子ドット半導体層30及び60を形成している間、基板10は回転させていない。
次に、GaAs層50の上に、量子ドット半導体層30と同じ条件で、膜厚2MLのInAsからなる量子ドット層61と膜厚22MLのGaAsからなる中間層62とを交互に9層結晶成長させることで。量子ドット半導体層(第2の量子ドット半導体層)60を形成した。
なお、本実施例では、InAsの量子ドット層61を形成する際、第1セル121は可動させておらず、量子ドット層61を形成するときのInビームフラックスの照射角θは、量子ドット層31を形成したときのInビームフラックスの照射角θと同じにしている。
最後に、量子ドット半導体層60の上に、GaAsからなるキャップ層70を結晶成長させた。
図11Aに示すように、(−110)断面において、複数の量子ドット31a及び61aの積層方向(量子ドット積層体31A及び61A)は、基板10の主面の垂直方向である[001]方向に対して、所定の角度で傾斜している。
一方、図11Bに示すように、(110)断面において、複数の量子ドット31a及び61aの積層方向(量子ドット積層体31A及び61A)は、基板10の主面の垂直方向である[001]方向と同じである。
次に、上記のようにして実際に作製した半導体装置3について、図12A及び図12Bを用いて説明する。図12Aは、本実施例に係る半導体装置の(−110)断面における断面TEM像である。図12Bは、本実施例に係る半導体装置の(110)断面における断面TEM像である。
図12Aに示すように、(−110)断面では、量子ドット半導体層30における量子ドット31aの積層方向と、量子ドット半導体層60における量子ドット61aの積層方向とが反対となり、鏡面対称となっている。これは、量子ドット半導体層30と量子ドット半導体層60とで、面内の結晶成長方向を180°回転させたことによる。
具体的には、図12Aに示すように、(−110)断面における量子ドット31a及び61aの積層方向は、それぞれ、[001]方向に対して15°傾いていることが分かる。この積層方向の傾斜角は、10°としたInフラックスの照射角(入射角)と良い一致性を示していることが分かる。なお、本実施例では、積層方向の傾斜角とInフラックスの照射角とが5°程度ずれているが、TEMによる観測ずれが比較的に大きいことを考えると、この程度のずれの影響は小さいと考えられる。
一方、図12Bに示すように、(110)断面では、(−110)断面の場合と異なり、量子ドット31a及び61aの積層方向は傾斜しておらず(傾斜角0°)、当該積層方向の傾斜角とInフラックスの照射角(34°)とは一致しないことが分かる。
なお、この図12A及び図12Bに示す結果は、[110]方向に沿ったInの拡散長が[−110]方向に沿ったInの拡散長よりも短いことを示唆している。
このように、本実施例によれば、量子ドット31a及び61aの積層方向が、Inの蒸着方向と概ね一致することが確認できた。つまり、量子ドット積層体31Aの傾斜角がInフラックスの照射角と概ね一致することが分かる。
次に、量子ドット積層体を有する他の実施例における半導体装置の光学特性について、図13及び図14を用いて説明する。図13は、本発明の他の実施例に係る半導体装置のPLスペクトルを示す図であり、図14は、同半導体装置についての無偏光時のPLピーク波長におけるPL強度の偏光角度依存性を示す図である。
図13及び図14の実施例では、上記の半導体装置3において、量子ドット半導体層30までを作製したものを用いた。つまり、GaAs層50及び量子ドット半導体層60は成膜せずに、基板10上に量子ドット半導体層30(9層積層構造の量子ドット積層体)のみを有する半導体装置を用いた。また、基板10を回転させる場合、1層分の成膜中に基板10を1回転させた。
まず、直線偏光PL(Photo Luminescence)スペクトルについて図13を用いて説明する。本実施例では、図13に示すように、9層積層構造の量子ドット積層体を有する半導体装置に対して励起光を照射することで、劈開端面における直線偏光PLを測定した。
図13の(a)及び(b)は、量子ドット積層体の成膜時に基板10を回転させなかった場合のPLスペクトルであり、それぞれ(−100)端面及び(110)端面のPLスペクトルを示している。また、図13の(c)及び(d)は、量子ドット積層体の成膜時に基板10を回転させた場合のPLスペクトルであり、それぞれ(−100)端面及び(110)端面のPLスペクトルを示している。なお、図13の(a)及び(b)において、実線、破線及び一点鎖線は、それぞれ[001]偏光、[-110]偏光及び[110]偏光の結果を示している。
図13の(a)〜(d)に示すように、偏光PLは、観察方向に依存した異方的な振る舞いを示すことが分かる。また、基板の回転有無にかかわらず、(−100)及び(110)の両端面から観察されるPLについては面内偏光成分(E⊥[001])が支配的であることが分かる。なお、(−110)面においては異方性が小さくなっている。
単層のInAs/GaAs(001)量子ドット半導体層は、量子ドット半導体の扁平な形状と2軸性圧縮歪とに起因する偏光異方性を有する。そのため、重い正孔(Heavy Hole)に由来するTE(Transverse Electric)モードの遷移確率が支配的となる。一方、本実施例のような柱状の量子ドット積層体又は中間層(スペーサー)層を有する積層構造の量子ドット半導体層では、量子ドット半導体の積層数の増加に伴ってTM(Transverse Magnetic)モードの遷移確率が増加する。また、電子的な包絡関数が面直方向に重なるので垂直方向の電子的な閉じ込めが弱くなる。そして、相対的に強くなった[−110]方向及び[110]方向の閉じ込めによってVBM(Valence Band Mixing)が生じる。
また、図13の(a)〜(d)に示すように、本実施例における半導体装置は、1100nm付近にピークを有する波長(赤外光)を吸収することが可能であることも分かる。したがって、本実施例における半導体装置を用いた太陽電池では、シリコン半導体からなる太陽電池では吸収することが難しい太陽光の波長までも吸収することが可能となるので、エネルギー変換効率の高い太陽電池を実現できる。
また、本実施例における半導体装置は偏光方向に依存性を有するので、最適な光の入射が必要な光デバイス(赤外センサ等)を実現することができる。
次に、PL直線偏光角度依存性について図14を用いて説明する。図14の(a)及び(b)は、量子ドット積層体の成膜時に基板10を回転させなかった場合のPL強度を示しており、また、図14の(c)及び(d)は、量子ドット積層体の成膜時に基板10を回転させた場合のPL強度を示している。また、図14において、白抜きの丸(○)で示す曲線、黒塗りの丸(●)で示す曲線、白抜きの四角(◇)で示す曲線及び黒塗りの四角(◆)で示す曲線は、それぞれ、[−110]方向、[1−10]方向、[110]方向及び[−1−10]方向から観察された測定結果を示している。
また、積層方向が傾くと正孔スピンの量子化軸が回転する。そこで、本測定では、斜めに積層された量子ドット半導体層における量子化方向を評価するために詳細な偏光特性の測定を行った。具体的には、赤外偏光子の偏光角度を10°ずつ変化させて端面PL強度の極座標プロファイルを得た。
図14(a)に示すように、[−110]方向と[1−10]方向とに沿って観察されたPL強度は、偏光角度がそれぞれ+30°、−28°シフトした場合に最大となった。つまり、量子化軸の傾きの角度(偏光角度)が、図12Aに示した(−110)断面TEM像で見られた量子ドットの積層方向の角度(15°)よりも高角度になっている。
このように、量子ドットの積層方向が傾斜している半導体装置では、量子ドットの積層方向の傾斜角度と偏光角度とが異なることが分かった。つまり、Inフラックスの照射角(Inフラックスの基板入射角)と偏光角度とが異なることが分かった。しかも、偏光角度が量子ドットの積層方向の傾斜角度(Inフラックスの照射角)よりも増加することが判明した。本実施例によれば、偏光角度が量子ドットの積層方向の傾斜角度の2倍程度になることが分かった。偏光角度が大きくなると、光吸収や光放出などの光応答特性が向上する。したがって、偏光角度が量子ドットの積層方向の傾斜角度(Inフラックスの照射角)よりも大きくなることから、量子ドットの積層方向の傾斜角度を制御することで光応答特性に優れた光デバイスを容易に実現できる。
また、図14(b)に示すように、[110]方向と[−1−10]方向とに沿って観察されたPL強度は、偏光角度がそれぞれ[001]方向から−3.2°、2.0°シフトした場合に最大となった。これは、図12Bに示した(100)断面TEM像で見られた量子ドットの積層方向の角度(ほぼ[001]方向)とよい一致性を示していることが分かる。
また、図14の(c)及び(d)に示すように、基板10を回転させて量子ドット半導体層を成膜すると、基板10を回転させずに量子ドット半導体層を成膜した場合と比べて、偏光角度が減少した。特に、(−110)劈開面において偏光角度が劇的に減少していることが分かる。この結果は、InAs/GaAsの量子ドット半導体層の積層方向の傾斜角度がInフラックスの照射角に依存するという本発明の知見を裏付けるものである。
なお、基板10を回転させて傾斜のない量子ドット半導体層を積層させることによって、偏光無依存の光デバイス(光増幅器等)を実現することも可能である。
(変形例)
以上、本発明に係る半導体装置及びその製造方法、並びに量子ドットの制御方法について、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。
例えば、上記の実施の形態では、MBEを用いて量子ドットの積層方向を制御したが、指向性を持たせて半導体材料を基板に真空蒸着させる方法であれば、MBEに限らない。例えば、電子ビーム蒸着やイオンビームデポジション等のMBE以外の蒸着法を用いて、量子ドットの積層方向を制御することもできる。
また、上記の実施の形態では、中間層32としてGaAs系材料を用いたが、AlGaAs系材料を用いても構わない。つまり、AlGaAs系材料を中間層32としてInAsの量子ドット層31を積層することで、量子ドット半導体層30を形成しても構わない。
また、上記の実施の形態では、量子ドット31aの半導体材料として、InAsを用いたが、原子の大きさが異なる化合物の組み合わせであれば、InAsに限らない。例えば、量子ドット31aの半導体材料として、SiGe、CdS、ZnS、ZnTe、CdTe等の化合物半導体を用いたり、酸化物半導体等を用いたりすることもできる。
また、上記の実施の形態において、量子ドット31aは自己組織化によって形成した自己形成量子ドットを用いたが、これに限らない。例えば、パターニングによってSiO膜に複数の微小開口を形成し、この微小開口内に半導体を結晶成長させて量子ドット31aを形成させることもできる。このようにパターニング技術を利用することによって、量子ドット積層体31A(複数の量子ドット31a)の傾斜方向及び傾斜角を制御することもできる。
その他、本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、又は、実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
本発明は、量子ドットを用いた半導体装置、特に、太陽電池、光増幅器、半導体レーザ、光中継器、光受信器、光検出器(赤外線センサ等)又は光電変換素子等の光半導体デバイス等、その他種々の電子デバイスにおいて広く利用することができる。
1、3 半導体装置
2 太陽電池
10 基板
20 バッファ層
30、60 量子ドット半導体層
31、61 量子ドット層
31a、61a 量子ドット
31A、61A 量子ドット積層体
32、62 中間層
41 ベース層
42 エミッタ層
43 コンタクト層
44 反射防止膜
45 第1電極
46 第2電極
50 GaAs層
70 キャップ層
100 MBE装置
110 チャンバ
121、122、123、124、125、126、127、128 セル
130 基板ホルダ

Claims (17)

  1. 基板の主面上に形成され、各々が量子ドットを有する複数の量子ドット層を備える半導体装置であって、
    前記複数の量子ドット層の各々の前記量子ドットは、積層されており、
    前記量子ドットの積層方向は、前記基板の主面の垂直方向に対して傾斜している
    半導体装置。
  2. 前記量子ドット層は、平面状の半導体膜である
    請求項1に記載の半導体装置。
  3. 前記量子ドットは、自己組織化により形成される
    請求項1又は2に記載の半導体装置。
  4. 積層された複数の前記量子ドットからなる量子ドット積層体において、
    前記積層方向における前記量子ドット積層体の高さは、前記積層方向に垂直な方向における前記量子ドット積層体の長さよりも大きい
    請求項1〜3のいずれか1項に記載の半導体装置。
  5. 積層された複数の前記量子ドットからなる量子ドット積層体において、最下層の前記量子ドットの下面の輪郭形状は、長方形又は楕円であり、
    前記量子ドット積層体の前記積層方向の高さは、前記長方形又は楕円の長手方向の長さよりも大きく、
    前記量子ドット積層体は、前記長方形又は楕円の短手方向に傾斜している
    請求項1〜3のいずれか1項に記載の半導体装置。
  6. さらに、前記複数の量子ドット層の間に形成された中間層を備える
    請求項1〜5のいずれか1項に記載の半導体装置。
  7. 前記量子ドットは、InAsからなる
    請求項1〜6のいずれか1項に記載の半導体装置。
  8. 前記基板は、前記主面が(001)面であるGaAs基板である
    請求項7に記載の半導体装置。
  9. (−110)断面において、前記積層方向は、[001]方向に対して傾斜し、
    前記積層方向は、前記基板に対してInを蒸着する方向である
    請求項8に記載の半導体装置。
  10. 前記量子ドット層を活性層とする
    請求項1〜9のいずれか1項に記載の半導体装置。
  11. 当該半導体装置は、太陽電池である
    請求項10に記載の半導体装置。
  12. 指向性を持たせて半導体材料を基板に蒸着させることにより複数の量子ドットを基板上に積層する半導体装置の製造方法であって、
    前記複数の量子ドットを積層する積層方向を取得する積層方向取得工程と、
    取得した前記積層方向に応じて前記半導体材料の蒸着方向を決定し、決定した前記蒸着方向にて前記半導体材料を前記基板に蒸着させる蒸着工程とを含む
    半導体装置の製造方法。
  13. 前記蒸着工程では、前記蒸着方向と前記積層方向とを一致させて、前記半導体材料を前記基板に蒸着させる
    請求項12に記載の半導体装置の製造方法。
  14. 前記量子ドットの前記積層方向は、前記基板の主面の垂直方向に対して傾斜している
    請求項12又は13に記載の半導体装置の製造方法。
  15. 前記量子ドットは、自己組織化により形成される
    請求項12〜14のいずれか1項に記載の半導体装置の製造方法。
  16. 前記半導体材料を前記基板に蒸着する方法は、分子線エピタキシー法であり、
    前記蒸着工程では、前記半導体材料のビームフラックスの方向を前記積層方向として、前記ビームフラックスを前記基板に照射する
    請求項12〜15のいずれか1項に記載の半導体装置の製造方法。
  17. 前記量子ドットは、InAsからなり、
    前記半導体材料の少なくとも一つは、Inである
    請求項12〜16のいずれか1項に記載の半導体装置の製造方法。
JP2014534204A 2012-09-10 2013-09-09 半導体装置及び半導体装置の製造方法 Pending JPWO2014038211A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012198903 2012-09-10
JP2012198903 2012-09-10
PCT/JP2013/005332 WO2014038211A1 (ja) 2012-09-10 2013-09-09 半導体装置及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JPWO2014038211A1 true JPWO2014038211A1 (ja) 2016-08-08

Family

ID=50236840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014534204A Pending JPWO2014038211A1 (ja) 2012-09-10 2013-09-09 半導体装置及び半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JPWO2014038211A1 (ja)
WO (1) WO2014038211A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100576A (ja) * 2014-11-26 2016-05-30 京セラ株式会社 光電変換装置
EP3648265A1 (de) * 2018-11-01 2020-05-06 Technische Universität Berlin Optischer halbleiterverstärker

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130898A (ja) * 2006-11-22 2008-06-05 Toyota Motor Corp 量子ドットアレイおよびその製造方法
JP2009152246A (ja) * 2007-12-18 2009-07-09 Fujitsu Ltd 量子ドット型赤外線検知器
JP2010067801A (ja) * 2008-09-11 2010-03-25 Seiko Epson Corp 光電変換装置、電子機器、光電変換装置の製造方法および電子機器の製造方法
JP2010103202A (ja) * 2008-10-22 2010-05-06 Technical Research & Development Institute Ministry Of Defence 量子ドット型赤外線検知素子
JP2012019083A (ja) * 2010-07-08 2012-01-26 Technical Research & Development Institute Ministry Of Defence 量子ドット型赤外線検知素子及び量子ドット型赤外線撮像装置
JP2012023307A (ja) * 2010-07-16 2012-02-02 Fujitsu Ltd 量子ドット型赤外線検出器の製造方法
JP2012069802A (ja) * 2010-09-24 2012-04-05 Fujitsu Ltd 量子型光検知器
JP2012109462A (ja) * 2010-11-18 2012-06-07 Technical Research & Development Institute Ministry Of Defence 光検知素子及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130898A (ja) * 2006-11-22 2008-06-05 Toyota Motor Corp 量子ドットアレイおよびその製造方法
JP2009152246A (ja) * 2007-12-18 2009-07-09 Fujitsu Ltd 量子ドット型赤外線検知器
JP2010067801A (ja) * 2008-09-11 2010-03-25 Seiko Epson Corp 光電変換装置、電子機器、光電変換装置の製造方法および電子機器の製造方法
JP2010103202A (ja) * 2008-10-22 2010-05-06 Technical Research & Development Institute Ministry Of Defence 量子ドット型赤外線検知素子
JP2012019083A (ja) * 2010-07-08 2012-01-26 Technical Research & Development Institute Ministry Of Defence 量子ドット型赤外線検知素子及び量子ドット型赤外線撮像装置
JP2012023307A (ja) * 2010-07-16 2012-02-02 Fujitsu Ltd 量子ドット型赤外線検出器の製造方法
JP2012069802A (ja) * 2010-09-24 2012-04-05 Fujitsu Ltd 量子型光検知器
JP2012109462A (ja) * 2010-11-18 2012-06-07 Technical Research & Development Institute Ministry Of Defence 光検知素子及びその製造方法

Also Published As

Publication number Publication date
WO2014038211A1 (ja) 2014-03-13

Similar Documents

Publication Publication Date Title
CN110249491B (zh) 基于在石墨烯型基底上生长的纳米线的激光器或led
US20130270517A1 (en) Super lattice structure, semiconductor device and semiconductor light emitting device having super lattice structure, and method of making super lattice structure
JP5513891B2 (ja) エネルギー囲み障壁に埋設された量子ドットを有する中間バンド感光性デバイス
JP6986349B2 (ja) n型超格子及びp型超格子を備える電子デバイス
US7863516B2 (en) Solar cell with epitaxially grown quantum dot material
US20170200841A1 (en) Photoelectric conversion element having quantum structure using indirect transition conductor material
JP2004349542A (ja) 量子半導体装置およびその作製方法
JP2007258119A (ja) スピン偏極電子発生装置
WO2010089892A1 (ja) 太陽電池
WO2012173162A1 (ja) 量子ナノドット、二次元量子ナノドットアレイ及びこれを用いた半導体装置並びに製造方法
WO2014038211A1 (ja) 半導体装置及び半導体装置の製造方法
Tongbram et al. Enhancement of device performance by using quaternary capping over ternary capping in strain-coupled InAs/GaAs quantum dot infrared photodetectors
Lunin et al. Photoluminescence of i-Ga x In 1− x As/n-GaAs heterostructures containing a random InAs quantum dot array
JP6030971B2 (ja) 受光素子および受光素子を備えた太陽電池
JP2011040459A (ja) 多積層量子ドット構造体および製造方法、それを用いた太陽電池素子および発光素子
CN103151710B (zh) GaAs基含B高应变量子阱及其制备方法、半导体激光器
JP5976141B2 (ja) 赤外線検知器の製造方法
JP5382696B2 (ja) 半導体光素子と半導体太陽電池
JP5500540B2 (ja) 量子ドット太陽電池
US8143615B2 (en) Electron beam emitting device with a superlattice structure
Polojärvi et al. Optical properties and thermionic emission in solar cells with InAs quantum dots embedded within GaNAs and GaInNAs
JP2010108722A5 (ja)
JP6415197B2 (ja) 光電変換素子、太陽電池及び光センサー
JP2017147322A (ja) 赤外線検出素子およびその製造方法
JP2001024284A (ja) 半導体発光装置及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131