JPWO2014024482A1 - エアロゲル成形体、エアロゲル含有粒子、及び、エアロゲル成形体の製造方法 - Google Patents

エアロゲル成形体、エアロゲル含有粒子、及び、エアロゲル成形体の製造方法 Download PDF

Info

Publication number
JPWO2014024482A1
JPWO2014024482A1 JP2014529314A JP2014529314A JPWO2014024482A1 JP WO2014024482 A1 JPWO2014024482 A1 JP WO2014024482A1 JP 2014529314 A JP2014529314 A JP 2014529314A JP 2014529314 A JP2014529314 A JP 2014529314A JP WO2014024482 A1 JPWO2014024482 A1 JP WO2014024482A1
Authority
JP
Japan
Prior art keywords
adhesive
airgel
particles
layered
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014529314A
Other languages
English (en)
Other versions
JP5906425B2 (ja
Inventor
健太 細井
健太 細井
柴田 哲司
哲司 柴田
康博 日高
康博 日高
善光 生駒
善光 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Application granted granted Critical
Publication of JP5906425B2 publication Critical patent/JP5906425B2/ja
Publication of JPWO2014024482A1 publication Critical patent/JPWO2014024482A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/12Multiple coating or impregnating
    • C04B20/126Multiple coatings, comprising a coating layer of the same material as a previous coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/14Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/30Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds
    • C04B26/32Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Abstract

複数のエアロゲル粒子1が接着剤2により結合したエアロゲル成形体Bである。接着剤2は、エアロゲル粒子1を層状に被覆した層状接着剤2aと、エアロゲル粒子1に点状に付着した点状接着剤2bとにより構成される。層状接着剤2aは好ましくは水溶性の接着剤2である。点状接着剤2bは好ましくは粉末の接着剤2である。強度が高く、断熱性に優れた断熱材を得ることができる。

Description

本発明は、断熱材などとして利用可能なエアロゲル成形体に関する。また、エアロゲル成形体の製造に有用なエアロゲル含有粒子に関する。また、エアロゲル成形体の製造方法に関する。
従来、断熱材として、ウレタンフォームやフェノールフォームなどのフォーム材(発泡性の断熱材)が知られている。フォーム材は、発泡により生じた気泡によって断熱性を発揮するものである。このようなウレタンフォームやフェノールフォームは、一般的に、熱伝導率が空気の熱伝導率よりも高い。したがって、断熱性をより高めるためには、熱伝導率を空気よりも低くすることが有利である。空気よりも低い熱伝導率を達成させる方法として、ウレタンフォームやフェノールフォームなどの発泡させた材料の空隙内にフロンガスなどの熱伝導率の低いガスを充填させる方法などが知られている。しかしながら、空隙内にガスを充填する方法では、経時的に空隙内からガスが漏れ出ていき、熱伝導率が上昇してしまう可能性がある。
近年、ケイ酸カルシウムの多孔体やガラス繊維を10Pa程度の真空状態にしたものなど、真空を利用して断熱性を高める手法が提案されている。しかし、真空による断熱は、真空状態を保つ必要があり、経時的な劣化や製造コストにおいて問題がある。さらに真空を利用して断熱材を形成するにしても、真空を維持するために形状の制約を受け、用途が著しく限定されてしまい、充分に実用化がなされていない。
ところで、常圧でも空気の熱伝導率よりも低い断熱材の材料として、微細多孔質シリカの集合体(いわゆるエアロゲル)が知られている。この材料は、例えば、米国特許第4402927号、米国特許第4432956号、米国特許第4610863号に開示されているような方法で得ることができる。これらの方法によれば、原料としてアルコキシシラン(別にシリコンアルコキシド又はアルキルシリケートとも称する)を用い、シリカエアロゲルを作製することができる。具体的には、シリカエアロゲルは、アルコキシシランを溶媒の存在下で加水分解させて縮重合して得られるシリカ骨格からなる湿潤状態のゲル状化合物を、溶媒の臨界点以上の超臨界条件で乾燥することによって得ることができる。溶媒としては、例えば、アルコールまたは液化二酸化炭素等が用いられる。そして、エアロゲルが粒子状になったエアロゲル粒子は、熱伝導率が空気よりも低く、断熱材の原料として有用である。
米国特許第4402927号 米国特許第4432956号 米国特許第4610863号
しかしながら、エアロゲル粒子は、非常に軽量であると共に、強度が小さく脆いため、取扱いが難しい。また、エアロゲル粒子を成形して断熱材を作製したとしても、粒子自体が脆いものであるため、成形物の強度は低くなり、割れたり壊れたりしやすいものとなってしまう。強度を高めるために、補強材などを混合したり接着材料を増加したりすることが考えられるが、その場合、補強材や接着材料によってかえって断熱性が低下するおそれがある。そのため、断熱性が低下することを抑制しつつ、エアロゲル粒子やその成形物の強度を高めて、強度と断熱性能とを両立させることが求められている。
本発明は上記の事情に鑑みてなされたものであり、強度が高く断熱性に優れたエアロゲル成形体を提供することを目的とするものである。また、強度が高く断熱性に優れたエアロゲル成形体の製造に有用なエアロゲル含有粒子を提供することを目的とするものである。また、強度が高く断熱性に優れたエアロゲル成形体の製造方法を提供することを目的とするものである。
本発明に係るエアロゲル成形体は、複数のエアロゲル粒子が接着剤により結合したエアロゲル成形体であって、前記接着剤は、前記エアロゲル粒子を層状に被覆した層状接着剤と、前記エアロゲル粒子に点状に付着した点状接着剤とにより構成されることを特徴とする。
上記のエアロゲル成形体では、前記層状接着剤は水溶性の接着剤であり、前記点状接着剤は粉末の接着剤であることが好ましい。
上記のエアロゲル成形体では、前記層状接着剤は水溶性フェノール樹脂接着剤であり、前記点状接着剤はフェノール樹脂接着剤であることが好ましい。
上記のエアロゲル成形体では、前記層状接着剤と前記点状接着剤との固形分における質量比(層状接着剤:点状接着剤)は、4:1〜3:2の範囲であることが好ましい。
上記のエアロゲル成形体では、前記層状接着剤の厚みは1〜10μmであり、前記点状接着剤の平均粒径は10〜500μmであることが好ましい。
本発明に係るエアロゲル含有粒子は、上記のエアロゲル成形体を形成するためのエアロゲル含有粒子であって、前記エアロゲル粒子と、前記エアロゲル粒子を層状に被覆する前記層状接着剤と、前記エアロゲル粒子に点状に付着する前記点状接着剤とを備えることを特徴とする。
本発明に係るエアロゲル成形体の製造方法は、上記のエアロゲル成形体を製造する方法であって、前記エアロゲル粒子に、前記層状接着剤をコーティングするとともに、前記点状接着剤を付着させてエアロゲル含有粒子を調製するエアロゲル含有粒子調製工程と、複数の前記エアロゲル含有粒子を前記点状接着剤が広がらない温度で加熱し、前記接着剤で前記エアロゲル粒子を結合するエアロゲル粒子接着工程とを含むことを特徴とする。
本発明のエアロゲル成形体によれば、層状接着剤と点状接着剤とを含む接着剤でエアロゲル粒子が結合しているため、強度が高く断熱性に優れた断熱材を得ることができる。
本発明のエアロゲル含有粒子によれば、エアロゲル粒子が層状接着剤により被覆されるとともにエアロゲル粒子に点状接着剤が付着しているので、強度が高く断熱性に優れた断熱材を得ることができる。
本発明のエアロゲル成形体の製造方法によれば、層状接着剤と点状接着剤とを有するエアロゲル含有粒子を結合させるため、強度が高く断熱性に優れた断熱材を得ることができる。
エアロゲル成形体の一例を示し、(a)は成形体を切断したときの断面の概略図、(b)は成形体を破断したときの断面の概略図である。 エアロゲル含有粒子の一例を示す概略図である。 (a)はエアロゲル含有粒子の製造の一例を示す概略図であり、(b)及び(c)は製造されたエアロゲル含有粒子の一例を示す概略図である。 エアロゲル含有粒子の製造の一例を示す概略図である。 (a)はエアロゲル含有粒子の製造の一例を示す概略図であり、(b)及び(c)は製造されたエアロゲル含有粒子の一例を示す概略図である。 (a)〜(d)は、エアロゲル成形体の製造の一例を示す概略図である。 (a)〜(c)は、エアロゲル粒子の一例の模式図である。 エアロゲル粒子の電子顕微鏡写真である。 エアロゲル成形体における粉体と液体との接着剤比率による物性の変化を示すグラフである。 (a)〜(f)は光学顕微鏡写真であり、(a)はエアロゲル成形体、(b)は液体接着剤のみで形成したエアロゲル成形体、(c)は粉体接着剤のみで形成したエアロゲル成形体、(d)はエアロゲル粒子、(e)は成形前の粉末接着剤、(f)は成形後の粉末接着剤を示す。
本発明のエアロゲル成形体は、複数のエアロゲル粒子1が接着剤2により結合したエアロゲル成形体Bである。接着剤2は、エアロゲル粒子1を層状に被覆した層状接着剤2aと、エアロゲル粒子1に点状に付着した点状接着剤2bとにより構成されている。図1に、エアロゲル成形体Bの一例の概略図が示されている。図1(a)は、エアロゲル成形体Bをカッティングすることより切断した断面を示し、図1(b)は、エアロゲル成形体Bを割ることにより破断した断面を示している。図1(a)では、粒子が切断されて、粒子の内部構造が図示されている。図1(b)では粒子は切断されずに、粒子の表面が図示されている。
エアロゲル(aerogel)は、ゲル中に含まれる溶媒を乾燥により気体に置換した多孔性の物質(多孔質体)である。粒子状のエアロゲルをエアロゲル粒子という。エアロゲルとしては、シリカエアロゲル、カーボンエアロゲル、アルミナエアロゲルなどが知られているが、このうちシリカエアロゲルを好ましく用いることができる。シリカエアロゲルは、断熱性に優れ、製造が容易であり、コストも安く、他のエアロゲルよりも容易に得ることができる。なお、ゲル中の溶媒が蒸発などにより失われて、空隙を持つ網目構造となったものをキセロゲル(xerogel)ということもあるが、本明細書におけるエアロゲルは、キセロゲルを含むものであってよい。
図7に、エアロゲル粒子の一例の模式図を示す。図7(a)及び(b)に示すように、このエアロゲル粒子1はシリカエアロゲル粒子であり、数10ナノオーダー(例えば20〜40nm)の気孔を有するシリカ(SiO)構造体である。このようなエアロゲル粒子1は超臨界乾燥などによって得ることができる。エアロゲル粒子1は、エアロゲル粒子1を構成する微粒子P(シリカ微粒子)が三次元の網目状に連結することにより形成されている。シリカ微粒子1個の大きさは例えば1〜2nm程度である。図7(c)に示すように、エアロゲル粒子1の数10ナノオーダーの気孔には気体Gが入り込むことができる。そして、この気孔が空気の成分である窒素や酸素の移動を阻害することにより、熱伝導率を空気よりも低いレベルに低下させることができる。例えば、従来の断熱材における空気が熱伝導率WLFλ 35〜45mW/m・Kであったところ、エアロゲル粒子により熱伝導率WLF λ 9〜12mW/m・Kのレベルまで熱伝導率を低下させることができる。なお、エアロゲル粒子1は、一般的に、疎水性の性質を有する。例えば、図7(b)に示すシリカエアロゲル粒子では、アルキル基(メチル基:CH)がケイ素(Si)に結合しており、ケイ素に結合した水酸基(OH)は少ない。したがって、シリカエアロゲル粒子の表面の極性は低い。
図8は、シリカエアロゲル粒子の電子顕微鏡写真である。このシリカエアロゲル粒子は超臨界乾燥法によって得たものである。シリカエアロゲル粒子が三次元の立体網目構造をとることはこの写真からも理解される。なお、エアロゲル粒子1は、一般的に10nm未満の大きさのシリカ微粒子が線状に連結して網目構造が形成されるものであるが、微粒子の境目が曖昧になったり、シリカ構造(−O−Si−O−)が線状に延びたりして網目構造が形成されていてもよい。
エアロゲル粒子としては、特に限定されるものではなく、一般的な製造方法によって得られたものを用いることができる。代表的なものとして、超臨界乾燥法によって得られるエアロゲル粒子と、水ガラスを利用して得られるエアロゲル粒子とがある。
超臨界乾燥法によって得られるシリカエアロゲル粒子は、液相反応であるゾル−ゲル法によって重合させてシリカ粒子を作製し、溶媒を超臨界乾燥によって除去することにより得ることができる。原料としては、例えば、アルコキシシラン(シリコンアルコキシド又はアルキルシリケートともいう)を用いる。そして、このアルコキシシランを溶媒の存在下で加水分解させて縮重合して得られるシリカ骨格からなる湿潤状態のゲル状化合物を、溶媒の臨界点以上の超臨界条件で乾燥する。溶媒としては、例えば、アルコールまたは液化二酸化炭素などを用いることができる。このように超臨界条件によって乾燥されることにより、ゲルの網目構造を保持したまま溶媒が除去されて、エアロゲルを得ることができる。エアロゲルが粒子状となったエアロゲル粒子は、溶媒を含むゲルを粉砕して粒子化し、この溶媒を含んだ粒子状のゲルを超臨界乾燥することにより得ることができる。あるいは、エアロゲル粒子は、超臨界乾燥によって得られたエアロゲルのバルク体を粉砕することにより得ることができる。
エアロゲル粒子の原料となるアルコキシシランとしては、特に限定されるものではないが、2官能、3官能又は4官能のアルコキシシランを単独で又は複数種を混合して用いることができる。2官能アルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジエトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジエトキシシラン、メチルフェニルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン等が挙げられる。3官能アルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等が挙げられる。4官能アルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。また、アルコシシシランとして、ビストリメチルシリルメタン、ビストリメチルシリルエタン、ビストリメチルシリルヘキサン、ビニルトリメトキシシランなどを用いることもできる。また、アルコキシシランの部分加水分解物を原料に用いてもよい。
アルコキシシランの加水分解と縮重合は、水の存在下で行うことが好ましく、さらに水との相溶性を有し、且つアルコキシシランを溶解する有機溶媒と、水との混合液を用いて行うことが好ましい。このような混合液を溶媒として用いた場合、加水分解工程と縮重合工程を連続して行うことができ、効率よくゲルを得ることができる。その際、生成するポリマーは、上記溶媒を分散媒とするゲル化物(湿潤ゲル)として得られる。水との相溶性を有し、且つアルコキシシランを溶解する溶媒としては、特に限定はされないが、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコールや、アセトン、N,N−ジメチルホルムアミド等が挙げられる。これらは一種のみを用いても良いし、二種以上を併用してもよい。
また、アルコキシシランの加水分解と縮重合は、アルコキシシランのアルコキシ基を脱離させて縮合反応を起こさせることが可能な触媒の存在下で行うことが好ましい。このような触媒としては、酸性触媒、塩基性触媒等が挙げられる。具体的には、酸性触媒としては、例えば、塩酸、クエン酸、硝酸、硫酸、フッ化アンモニウム等が挙げられる。また、塩基性触媒としては、例えば、アンモニア、ピペリジン等が挙げられる。
また、アルコキシシランの反応液中には、適宜の成分を添加してもよい。例えば、界面活性剤、官能基導入剤、などが挙げられる。このような添加成分により、エアロゲル粒子に適宜の機能性を付与することができる。
そして、得られた湿潤ゲルを超臨界乾燥することにより、エアロゲルを得ることができる。その際、湿潤ゲルを切断や粉砕などによってあらかじめ粒子化して、溶媒を含んだ粒子状のゲルを作製し、この粒子状のゲルを超臨界乾燥することが好ましい。それにより、エアロゲル構造を破壊することなく粒子化及び乾燥を行うことができ、エアロゲル粒子を容易に得ることができる。この場合、粒子状のゲルの大きさを揃えておくことにより、エアロゲル粒子の大きさを整えることができる。また、エアロゲルをバルクで得た後に、エアロゲルのバルク体を粉砕機により粉砕することにより、エアロゲル粒子を得るようにしてもよい。なお、得られたエアロゲル粒子はふるいや分級などによって、粒子の大きさをさらに揃えることができる。エアロゲル粒子の大きさが整うと、取扱い性を高めることができるとともに、安定な成形物を得やすくすることができる。
水ガラスを利用して得られるエアロゲル粒子は、例えば、シリカゾルの作製、シリカゾルのゲル化、熟成、ゲルの粉砕、溶媒置換、疎水化処理、乾燥という工程を順番に行う常圧乾燥法により製造することができる。水ガラスは、一般的にケイ酸ナトリウムなどのケイ酸金属塩の高濃度の水溶液である。例えば、ケイ酸金属塩を水に溶かして加熱することで得られる。
シリカゾル作製の原料としては、ケイ酸アルコキシド、ケイ酸アルカリ金属塩等を使用することができる。ケイ酸アルコキシドとしては、例えば、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。また、ケイ酸アルコキシドとして、上記超臨界乾燥法で説明した各種のアルコキシシランを用いてもよい。また、ケイ酸アルカリ金属塩としては、ケイ酸カリウム、ケイ酸ナトリウム等が挙げられる。このうち、安価な点でケイ酸アルカリ金属塩を好適に用いることができ、更には入手が容易であるケイ酸ナトリウムをより好適に用いることができる。
ケイ酸アルカリ金属塩を用いる場合には、塩酸、硫酸等の無機酸により中和する方法か、あるいは対イオンがHとされている陽イオン交換樹脂を用いる方法により、シリカゾルを作製することができる。これらの方法のうちでも、陽イオン交換樹脂を用いることが好ましい。
酸型の陽イオン交換樹脂を用いてシリカゾルを作製するには、陽イオン交換樹脂を充填した充填層に適切な濃度のケイ酸アルカリ金属塩の溶液を通過させることにより行うことができる。あるいは、シリカゾルの作製は、ケイ酸アルカリ金属塩の溶液に、陽イオン交換樹脂を添加、混合し、アルカリ金属を除去した後に濾別するなどして陽イオン交換樹脂を分離することにより行うことができる。その際、陽イオン交換樹脂の量は、溶液に含まれるアルカリ金属を交換可能な量以上であることが好ましい。陽イオン交換樹脂により溶液の脱アルカリ(脱金属)が行われる。
酸型の陽イオン交換樹脂としては、例えば、スチレン系、アクリル系、メタクリル系等で、イオン交換性基としてスルフォン酸基やカルボキシル基が置換されたものを用いることができる。このうち、スルフォン酸基を有する、いわゆる強酸型の陽イオン交換樹脂を好適に用いることができる。なお、陽イオン交換樹脂は、アルカリ金属の交換に使用した後に、硫酸や塩酸を通過させることで、再生処理を行うことができる。
シリカゾルの作製後、シリカゾルをゲル化させ、次いでその熟成を行う。ゲル化及び熟成においては、pHを調整することが好ましい。すなわち、通常、陽イオン交換樹脂によりイオン交換されたシリカゾルのpHは低く、例えば3以下である。このようなシリカゾルを中和して弱酸性から中性のpH領域とすることによりシリカゾルがゲル化する。例えば、シリカゾルのpHを5.0〜5.8、好ましくは5.3〜5.7とすることによってゲル化させることができる。pHの調整は塩基及び酸の添加により行うことができる。塩基としては、アンモニア水、水酸化ナトリウム、水酸化カリウム、ケイ酸アルカリ金属塩などを用いることができる。酸としては、塩酸、クエン酸、硝酸、硫酸などを用いることができる。pH調整後、ゲルを静置して熟成を行う。熟成は、例えば、40〜80℃の温度条件で、4〜24時間程度であってもよい。
熟成工程に引き続き、ゲルを粉砕することが好ましい。このゲルの粉砕により、目的とするエアロゲル粒子を容易に得ることが可能になる。ゲルの粉砕は、例えばヘンシャル型のミキサーにゲルを入れるか、あるいはミキサー内でゲル化させ、ミキサーを適度な回転数と時間で運転することにより行うことができる。
粉砕工程に引き続き、好ましくは、溶媒置換が行われる。この溶媒置換はゲルを乾燥するに際し、乾燥収縮を起こさないよう、ゲルの作製に用いた水などの溶媒を、表面張力の小さな溶媒に置き換えるものである。直接水を表面張力の小さな溶媒に置き換えることは困難なため、通常はこの溶媒置換は、複数の段階、好ましくは2段階で行なわれる。1段目に用いる溶媒の選定基準としては、水、及び2段目の溶媒置換に用いられる溶媒に対して馴染みが良いことが挙げられる。1段目は、メタノール、エタノール、イソプロピルアルコール、アセトン等を用いることができ、好適には、エタノールを用いることができる。また2段目に用いる溶媒の選定基準としては、引き続き行われる疎水化処理に用いられる処理剤と反応しないこと、乾燥収縮を起こさないために表面張力が小さいことが挙げられる。2段目に用いる溶媒としては、ヘキサン、ジクロロメタン、メチルエチルケトン等を用いることができ、好適にはヘキサンを用いることができる。もちろん、必要に応じて、上記1段目の溶媒置換と2段目の溶媒置換との間に、更なる溶媒置換を行っても構わない。
溶媒置換の後に、疎水化処理を行うことが好ましい。疎水化処理に用いる処理剤としては、アルキルアルコキシシランやハロゲン化アルキルシランなどを用いることができる。例えば、ジアルキルジクロロシラン、モノアルキルトリクロロシランを好ましく用いることができ、原料コストや反応性を考慮するとジメチルジクロロシランを特に好適に用いることができる。なお、疎水化処理は、溶媒置換の前に行ってもよい。
そして、疎水化処理の後に、濾別して溶媒とゲルとを分離する。次いで、未反応の処理剤を取り除くためにゲルを溶媒で洗浄する。その後、ゲルを乾燥する。乾燥は常圧であってよい。また、加温したり温風を吹き込んだりしてもよい。乾燥は、不活性ガス(例えば窒素)の雰囲気下で行うことが好ましい。これにより、ゲル中の溶媒がゲルからとり除かれ、エアロゲル粒子を得ることできる。
臨界乾燥法によって得たエアロゲル粒子と、水ガラスを利用して得たエアロゲル粒子とは、基本的に同じ構造を有するものである。すなわち、シリカ微粒子が連結し、三次元の網目状となった粒子構造となる。
エアロゲル粒子の形状は、特に限定されるものではなく、種々の形状であってよい。上記で説明した方法でエアロゲル粒子を得た場合、粒子化するために粉砕等を行っているため、通常、エアロゲル粒子の形状は不定形の形状となる。いわば表面がごつごつした岩状の粒子となる。もちろん、球状やラグビーボール状などの粒子でもよい。また、パネル状、フレーク状、繊維状であってもよい。また、エアロゲル粒子は、成形に用いる原料としては、粒子の大きさが種々のものが混合したものであってよい。成形物においては、エアロゲル微粒子が接着して一体化されるため、粒子の大きさが揃っていなくてもよい。エアロゲル粒子の大きさは、例えば、粒子の最長の長さが50nm以上10mm以下の範囲であってよい。ただし、取扱い性や成形容易性の観点からは、大きすぎる粒子や小さすぎる粒子が混在していない方が好ましい。そのため、エアロゲル粒子は、適度の大きさにそろえることができる。例えば、エアロゲル粒子の最長の長さが1μm以上1mm未満の範囲のミクロンオーダーの粒子であってもよい。あるいは、エアロゲル粒子の最長の長さが100μm以上5mm未満の範囲の1ミリ前後のサイズの粒子であってもよい。あるいは、エアロゲル粒子の最長の長さが1mm以上10mm未満の範囲のミリオーダーの粒子であってもよい。
エアロゲル粒子の平均粒径は、好ましくは50μm以上10mm以下である。エアロゲ粒子の平均粒径がこの範囲になることにより、接着性と断熱性とをより高めることができる。エアロゲル粒子の平均粒径は、より好ましくは、100μm以上5mm以下である。エアロゲル粒子の平均粒径は、さらに好ましくは、300μm以上3mm以下である。エアロゲル粒子のさらに好ましい平均粒径の範囲としては、500μm〜1.5mmが例示される。
本発明のエアロゲル成形体は、以上で説明したようなエアロゲル粒子が接着剤で結合されている。
図6(d)に、エアロゲル成形体Bの実施形態の一例が示されている。エアロゲル成形体Bは、エアロゲル粒子1の成型物(エアロゲル層3)と表面シート4とにより構成されている。この形態では、エアロゲル成形体Bは板状の断熱材(断熱ボード)として形成されている。もちろん、適宜の成形型を用いるなどして成形することにより、ボード以外の形状の成形も可能である。このエアロゲル成形体Bはエアロゲル粒子1が接着して形成されたエアロゲル層3の両面に表面シート4が積層された構成を有している。エアロゲル層3を表面シート4で覆うことにより、エアロゲル成形体Bの強度を高めることができる。なお、表面シート4はエアロゲル層3の一方の面のみに積層されていてもよいが、強度を高めるためには両面に積層されていることが好ましい。また、表面シート4は必要に応じて用いることができ、なくてもよい。エアロゲル成形体Bの形状は、建材として使用しやすい板状に形成されるのが好ましいが、これに限らず、使用目的に応じた任意の形状に形成することができる。また、エアロゲル成形体Bの厚み(エアロゲル層3と表面シート4の積層方向の寸法)は、所望の断熱性能や使用目的に応じて適宜設定可能であるが、例えば、0.1〜100mmとすることができる。なお、図6(d)では、接着剤2を省略して図示している。
エアロゲル層3は、多数個のエアロゲル粒子1を接着剤2で接着して結合することにより形成されている。接着剤2としては、熱伝導を少なくするという観点から、熱伝導率がより小さいものを用いるのが好ましい。また、接着剤2は補強効果を高くするという観点から、接着強度がより大きいものを用いるのが好ましい。
接着剤2は、エアロゲル粒子1の細孔の中に侵入していないことが好ましい。接着剤2がエアロゲル粒子1の細孔に侵入すると熱伝導率が大きくなって断熱性が低下するおそれがある。また、接着剤2はエアロゲル粒子1の細孔をできるだけ塞がないようにコア粒子を被覆していてもよい。エアロゲル粒子1の細孔を塞がないようにすると、気体をエアロゲル構造の中に取り込みやすくなるため、断熱性を向上することができる。例えば、液状の接着剤2を用いる場合には、エアロゲル粒子1と接着剤2とを混合した後、すぐに乾燥させるようにすれば、細孔に侵入させないとともに細孔を塞がないようにして被覆することが容易になる。また、固体状の接着剤2を用いる場合には、細孔のサイズよりも大きい固体粒子を用いれば、大きい粒子は細孔に入ることができないため、細孔に侵入しないとともに細孔を塞がないようにして接着剤2を付着させることが容易になる。
図1に示すように、隣接するエアロゲル粒子1は、接着剤2を介して結合されている。エアロゲル粒子1は、層状接着剤2aで被覆されるとともに、点状接着剤2bが付着している。層状接着剤2a及び点状接着剤2bが接着性を発現する。すなわち、層状接着剤2a同士の接触点、層状接着剤2aと点状接着剤2bとの接触点で接着が行われ得る。もちろん、点状接着剤2b同士の接触点、層状接着剤2aとエアロゲル粒子1との接触点、及び、点状接着剤2bとエアロゲル粒子1との接触点において接着していてもよい。
図1では、エアロゲル粒子1を不定形の粒子として記載しているが、これは単に模式的に示しているだけであり、実際のエアロゲル成形体Bにおいては、エアロゲル粒子1は種々の形状の粒子であってよい。このとき、点状接着剤2bは、連結して複数のエアロゲル粒子1の間に沿って線状に配置するようなことがなく、点状接着剤2bが分断されて点状になっていればよい。点状接着剤2bは、例えば、ドット状に配置されていてもよい。点状接着剤2bは、例えば、島状に配置されていてもよい。
図1(b)においては、エアロゲル粒子1の表面に形成された溝6が図示されている。エアロゲル粒子1は、不定形の粒体である場合には、溝6が形成されることがある。溝6は表面の一部が分断して形成されるものであってもよい。溝6は、表面の一部が凹んで設けられるものであってもよい。溝6は、粒子表面の窪みであってもよい。エアロゲル粒子1を観察することにより、溝6を確認することができる。
点状接着剤2bは、エアロゲル成形体B内において、点在していてよい。点状接着剤2bは、隣り合うエアロゲル粒子1の間に配置される。エアロゲル成形体Bは、複数のエアロゲル粒子1が密集されて形成され得るが、その際、複数のエアロゲル粒子1の間に隙間が形成される。点状接着剤2bは、複数のエアロゲル粒子1の間の隙間に配置されていてもよい。
層状接着剤2aは、エアロゲル粒子1の表面を被覆していてよい。層状接着剤2aの被覆は、エアロゲル粒子1全体を被覆するものであってよい。あるいは、層状接着剤2aの被覆は、エアロゲル粒子1を部分的に被覆するものであってもよい。部分的に被覆する場合は、例えば、被覆面積は、30%以上又は50%以上などにすることができるが、これに限定されるものではない。被覆面積は、60%以上であることがより好ましい。被覆面積の上限は100%であってよい。
層状接着剤2aは水溶性の接着剤であることが好ましい。水溶性の接着剤を用いることにより、エアロゲル粒子1の表面に簡単に層状に接着剤層を形成することができる。なお、層状接着剤2aにおける水溶性とは、エアロゲル粒子を成形する前に水溶性を有することを意味する。成形後においては、層状接着剤2aは水に溶解しないことが好ましい。それにより、エアロゲル成形体Bの耐水性を高めることができる。成形により、層状接着剤2aは硬化することが好ましい。
層状接着剤2aの材料としては、接着性を有する適宜の成分を用いることができる。いわゆる接着剤(バインダー)の成分を使用することができる。層状接着剤2aとしては熱硬化性樹脂と熱可塑性樹脂のいずれかを含有するものを用いることができる。層状接着剤2aは、熱硬化性樹脂のみからなるものであってもよい。あるいは、層状接着剤2aは、熱可塑性樹脂のみからなるものであってもよい。もちろん、層状接着剤2aには、熱硬化性樹脂と熱可塑性樹脂とのいずれかの他に、適宜の添加物が含まれていてもよい。
層状接着剤2aは、熱硬化性樹脂であることが好ましい。それにより、エアロゲル成形体Bの強度を高めることができる。層状接着剤2aとしては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、メラミン樹脂、シリコン樹脂、ポリエチレン、ポリプロピレン、及びこれらが変性した樹脂などを挙げることができる。これらは水溶性であることが好ましい。
層状接着剤2aは水溶性フェノール樹脂接着剤であることが好ましい。水溶性フェノール樹脂接着剤を用いることにより、層状にエアロゲル粒子1を被覆しやすくすることができ、エアロゲル成形体Bの強度を高めることができる。
層状接着剤2aは、分子量が100〜500であることが好ましい。それにより、層状に接着層をより容易に形成することができる。また、水溶性を得やすくすることができる。この場合の分子量は、層状接着剤2aが硬化する前の単量体の分子量であってよい。層状接着剤2aの分子量は、分子量分析により測定することができる。その際、成形体からであっても単量体を特定してその分子量を測定することが可能である。層状接着剤2aは、分子量が150〜200であることがより好ましい。
点状接着剤2bは粉末の接着剤であることが好ましい。粉末の接着剤を用いることにより、エアロゲル粒子1の表面に簡単に点状に接着剤2を付着させることができる。なお、点状接着剤2bにおける粉末とは、エアロゲル粒子1を成形する前に粉末であることを意味する。成形後においては、点状接着剤2bは、粉体でなくてよく、隣接するエアロゲル粒子1を接着させていることが好ましい。それにより、エアロゲル成形体Bの強度を高めることができる。
点状接着剤2bの材料としては、接着性を有する適宜の成分を用いることができる。いわゆる接着剤(バインダー)の成分を使用することができる。点状接着剤2bとしては熱硬化性樹脂と熱可塑性樹脂のいずれかを含有するものを用いることができる。点状接着剤2bは、熱硬化性樹脂のみからなるものであってもよい。あるいは、点状接着剤2bは、熱可塑性樹脂のみからなるものであってもよい。もちろん、点状接着剤2bには、熱硬化性樹脂と熱可塑性樹脂とのいずれかの他に、適宜の添加物が含まれていてもよい。
点状接着剤2bは、熱硬化性樹脂であることが好ましい。それにより、エアロゲル成形体Bの強度を高めることができる。点状接着剤2bとしては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、メラミン樹脂、シリコン樹脂、ポリエチレン、ポリプロピレン、及びこれらが変性した樹脂などを挙げることができる。これらは粉末であってよい。
点状接着剤2bはフェノール樹脂接着剤であることが好ましい。フェノール樹脂接着剤を用いることにより、エアロゲル粒子1を点状の接触点で強固に結合することができるため、断熱性を高めるとともに、強度を高めることができる。
点状接着剤2bは水溶性を有さない樹脂接着剤で構成されていてもよい。それにより、エアロゲル粒子1の表面において、点状を維持しやすくすることができる。点状接着剤2は、非水溶性であってよい。点状接着剤2bは、疏水性であってもよい。例えば、点状接着剤2bは非水溶性のフェノール樹脂接着剤により構成されていてもよい。なお、層状接着剤2aが水溶性であり、点状接着剤2bが非水溶性又は疎水性である場合、層状接着剤2aに付着した点状接着剤2bは、成形による溶融時に層状接着剤2aに弾かれるため、点状を維持しやすくなると考えられる。
点状接着剤2bの分子量は、層状接着剤2aの分子量よりも大きいことが好ましい。それにより、層状接着剤2aを層状に被覆しやすくするとともに、点状接着剤2bを点状に付着しやすくすることができる。点状接着剤2bの分子量は、層状接着剤2aの2倍以上であってもよい。点状接着剤2bの分子量は、層状接着剤2aの10倍以下であってもよい。
点状接着剤2bは、分子量が400〜1000であることが好ましい。それにより、点状の接着層をより容易に形成することができる。また、接着性を高めやすくすることができる。この場合の分子量は、点状接着剤2bが硬化する前の単量体の分子量であってよい。点状接着剤2bの分子量は、分子量分析により測定することができる。その際、硬化後の成形体からであっても単量体を特定してその分子量を測定することが可能である。点状接着剤2bは、分子量が500〜600であることがより好ましい。
層状接着剤2aと点状接着剤2bとの固形分における質量比(層状接着剤:点状接着剤)は、4:1〜3:2の範囲であることが好ましい。層状接着剤2aと点状接着剤2bとの比率がこの範囲に入ることにより、断熱性と強度とをより両立して向上することができる。
層状接着剤2aと点状接着剤2bとが硬化反応してもよい。その場合、層状接着剤2aと点状接着剤2bとの接着点が強固となり、強度をより向上することができる。例えば、層状接着剤2aと点状接着剤2bの両方を同種の樹脂で構成することにより、相互の硬化反応が生じ得る。同種の樹脂としては、例えば、フェノール樹脂が例示される。
エアロゲル成形体Bにおいては、光学顕微鏡観察により、層状接着剤2aと点状接着剤2bとを区別して観測することが可能である。層状接着剤2aと点状接着剤2bとは、色味の違いにより判断することができる。例えば、点状接着剤2bは、周囲よりも明るい色で観察される。例えば、層状接着剤2aは、溝6の部分で周囲よりも暗い色を呈して観察される。具体的には、黄色いランプを使用した場合には、点状接着剤2bは光って見え、溝6は茶色がかって見える。
層状接着剤2aの厚みは1〜10μmであることが好ましい。それにより、エアロゲル粒子1の周囲を被覆しやすくなるため、エアロゲル成形体Bの強度を高めることができる。なお、層状接着剤2aの厚みとは層の厚みである。
点状接着剤2bの平均粒径は10〜500μmであることが好ましい。それにより、エアロゲル粒子1を点状に接着しやすくすることができるため、エアロゲル成形体Bの強度を高めるとともに、断熱性を向上することができる。点状接着剤2bの平均粒径は50〜400μmであることがより好ましい。点状接着剤2bの平均粒径は100〜300μmであることがさらに好ましい。
点状接着剤2bの平均粒径と、エアロゲル粒子1の平均粒径の比率(点状接着剤/エアロゲル粒子)は、1/200〜1/10であることが好ましい。それにより、断熱性と強度とをともに高めやすくすることができる。
エアロゲル粒子1の平均粒径、点状接着剤2bの平均粒径、及び、層状接着剤2aの被覆厚みは、例えば、エアロゲル成形体BのX線CTにより測定することができる。この場合の平均粒径は、断面積から真円換算した径で定義される。例えば、100個の粒子(エアロゲル粒子1又は点状接着剤2b)を観測した平均値で平均粒径を求めることができる。また、成形体を形成する前の原料の段階においては、レーザー回折粒度分布測定装置などの粒度分布計を用いて、エアロゲル粒子1の平均粒径、点状接着剤2bを構成する粉末の接着剤の平均粒径を求めてもよい。
上記のエアロゲル成形体Bは、エアロゲル成形体Bを形成するためのエアロゲル含有粒子Aを用いて形成することができる。エアロゲル含有粒子Aは、エアロゲル粒子1と、エアロゲル粒子1を層状に被覆する層状接着剤2aと、エアロゲル粒子1に点状に付着する点状接着剤2bとを備えている。接着剤2として層状接着剤2aと点状接着剤2bとを有するエアロゲル含有粒子Aを用いることにより、エアロゲル粒子1を点状に強固に結合することができるとともに、エアロゲル粒子1の間の間隙に接着剤2が満たされることを抑制できる。そのため、エアロゲル粒子1の接着強度を高めることができるとともに、接着剤2により熱橋が形成されることを抑制して断熱性を高めることができる。
図2は、エアロゲル含有粒子Aの一例を示している。エアロゲル含有粒子Aは、エアロゲル粒子1をコア粒子として用いる。明細書においてコア粒子とはエアロゲル含有粒子Aの核となる粒子である。なお、エアロゲル含有粒子Aは、エアロゲル粒子1を主体とする粒子であるため、エアロゲル粒子1と同様に取り扱うことが可能である。そのため、エアロゲル含有粒子Aをエアロゲル粒子とみなしてもよい。
図2のエアロゲル含有粒子Aでは、エアロゲル粒子1が層状接着剤2aに被覆され、エアロゲル粒子1に点状接着剤2bが付着している。層状接着剤2a及び点状接着剤2bは、コーティング剤といってもよい。ただし、層状接着剤2aはエアロゲル粒子1を層状にコーティングし、点状接着剤2bはエアロゲル粒子1を点状にコーティングする。
層状接着剤2aは、エアロゲル粒子1の強度を高める機能を有することができる。点状接着剤2bは、エアロゲル粒子1の接着性を高める機能を有することができる。それにより、強度と接着性の優れたエアロゲル含有粒子Aを得ることができる。
従来、エアロゲル粒子を用いた成形では、単にプレス成形前に接着剤とエアロゲル粒子(ナノ多孔質粒子)とを混ぜた後、熱プレスにより成形していた。この場合、エアロゲル粒子を接着剤で接着させるためには、比較的多量の接着剤を混入する必要があり、接着剤の増加によって断熱性が低下するおそれがあった。また、接着剤を少なくとすると、接着不良が発生したり、強度が弱くなったりするおそれがあった、しかしながら、エアロゲル含有粒子においては、接着剤が付着したエアロゲル粒子(コア粒子)を用いるようにしているので、成形の際に接着剤を混入させなくても、エアロゲル粒子の表面の接着剤を利用してエアロゲル粒子を接着させることができる。そのため、比較的少量の接着成分によって接着させることができ、断熱性の低下を抑制することができる。また、接着成分が粒子を被覆しているので、粒子の強度を高めることができるため、エアロゲル粒子の取扱い性を高めることができるとともに、強度の高い成形物を得ることができる。
また、従来、エアロゲル粒子は脆いため、取り扱っている間や、熱硬化して成形する際、さらには成形した後においても、わずかな力で破壊されてしまいやすかった。そのため、粒子の取り扱い性が良くなく、成形物の強度も弱かった。しかしながら、エアロゲル含有粒子では、接着性を付与する点状のコーティングの下層として、主に粒子を補強し形状を保つための層状の接着層を予め施し、その後、点状の接着層を形成するようにしている。これにより、強度と接着性を効率よく高めることができる。したがって、エアロゲル含有粒子は、成形性に優れ、成形物の強度を高めることができる。エアロゲル粒子は、いわば複層のコーティングが施されている。
複層のコーティングは複数の段階で行うことができ、図2の形態では、例えば、二段階コーティングで行うことができる。コーティングは、例えば、主に補強用の層状コーティングを攪拌式により行い、乾燥した後、さらにスプレー式により、主に接着用の点状コーティングを行うようにすることができる。これにより、付き方の異なる接着剤2(コーティング剤)が混在することになり、層状と点状との複層コーティングが可能になる。エアロゲル含有粒子Aを用いた成形物においては、付き方の異なる接着剤2が混在した状態が確認される。層状接着剤2aによるコーティングは、層状コーティングと定義される。点状接着剤2bによる付着は、点状コーティングと定義される。
層状接着剤2a及び点状接着剤2bは、それぞれ、コア粒子となるエアロゲル粒子1を部分的に被覆していてもよく、あるいは全体を被覆していてもよく、その被覆の態様は、特に限定されるものではない。図2では、層状接着剤2aがエアロゲル粒子1の全体を被覆し、この層状接着剤2aに点状接着剤2bが付着したエアロゲル含有粒子Aが、図示されている。また、層状接着剤2aが部分的に設けられ、この層状接着剤2aが設けられていない部分において、エアロゲル粒子1に、直接、点状接着剤2bが付着したエアロゲル含有粒子Aも、図示されている。また、層状接着剤2aが部分的に設けられ、この部分被覆した層状接着剤2aに点状接着剤2bが付着したエアロゲル含有粒子Aも、図示されている。また、図2では、一つのエアロゲル粒子1に対して一つの点状接着剤2bが付着したものを示しているが、もちろん、一つのエアロゲル粒子1に対して複数の点状接着剤2bが付着していてもよい。その際、エアロゲル粒子1及び層状接着剤2aの両方に付着したもの、すなわち、エアロゲル粒子1の表面に付着した点状接着剤2bと層状接着剤2aの表面に付着した点状接着剤2bとを有するエアロゲル含有粒子Aが形成されてもよい。あるいは、エアロゲル粒子1及び層状接着剤2aの一方に、複数の点状接着剤2bが付着したエアロゲル含有粒子Aが形成されてもよい。また、複数の点状接着剤2bがエアロゲル粒子1を取り囲むようにして被覆していてもよい。
エアロゲル含有粒子Aにおいては、点状接着剤2bが層状接着剤2aの表面に付着していることが、好ましい一形態である。その場合、成形の際に、複数のエアロゲル粒子1を、層状接着剤2aと点状接着剤2bとの二種の接着剤2を介して接着するため、接着性と強度をより高めることができる。
エアロゲル含有粒子Aの調製について説明する。
図3(a)は、エアロゲル粒子1のコーティングの一例である。この例では、エアロゲル粒子1を撹拌し、この撹拌した状態のエアロゲル粒子1に、接着剤2の溶液を徐々に添加し、エアロゲル粒子1に接着剤2を付着させて被覆することにより、接着剤2によりコーティングされたエアロゲル粒子1を調製することができる。この方法では、層状接着剤2aにより被覆されたエアロゲル粒子1を容易に調製することができる。もちろん、点状に付着させることができる条件にすれば、点状接着剤2bが付着したエアロゲル粒子1も調製することができる。
図3(a)に示すように、この例では、液体添加式の粉体撹拌機10を用いる。この粉体撹拌機10は、撹拌槽11内に、水平方向に回転する水平撹拌翼12(ブレード)と、垂直方向に回転する垂直撹拌翼13とを備えて構成されている。粉体撹拌機10としてはバーチカルグラニュレータと呼ばれるものを用いることができる。水平撹拌翼11と垂直撹拌翼12とが同時に回転することにより、ブレード回転とクロススクリュー回転とを発生させることができる。そのため、効率よく撹拌することができ、安定したコーティングを行うことができる。
コーティングにあたっては、まず、エアロゲル粒子1を粉体撹拌機10の撹拌槽11内に投入する。そして、水平撹拌翼12及び垂直撹拌翼13を回転させてエアロゲル粒子1を撹拌する。そして、エアロゲル粒子1が撹拌された状態で、接着剤2の溶液を、上部の液体投入口14から撹拌槽11に投入して徐々に添加する。これにより、エアロゲル粒子1が撹拌されながら、接着剤2がエアロゲル粒子1の表面に付着される。さらに、接着剤2とエアロゲル粒子1とがほぼ均一に混ざるまで撹拌を続ける。その後、流動層に移し変え、乾燥することにより、層状接着剤2aによって被覆されたエアロゲル粒子1を得ることができる。なお、乾燥を行う流動層としては、図5(a)で示すような、流動式の粉体撹拌機20を用いてもよい。
ここで、接着剤2の溶液の濃度が高い場合には、図3(b)に示すように、1個のエアロゲル粒子1が層状接着剤2aに被覆されたエアロゲル粒子1を容易に得ることができる。なお、接着剤2の溶液の濃度が低い場合には、図3(c)に示すように、複数個のエアロゲル粒子1が層状接着剤2aに被覆されたエアロゲル粒子1、すなわちエアロゲル粒子1の造粒体が得られる。このエアロゲル造粒体を成形に用いることもできるが、断熱性を高める観点からは、図3(b)のように、複数のエアロゲル粒子1が接着剤2によってまとまって被覆されておらず、エアロゲル粒子1が個別に層状接着剤2aで被覆されていることが好ましい。もちろん、図3(b)のエアロゲル粒子1の中に、図3(c)のようなエアロゲル粒子1の造粒体が一部混在していてもよい。
図3の形態の粉体撹拌機10においては、ブレード回転数、クロススクリュー回転数、コーティング溶液濃度などを主要パラメータとして変化させることにより、コーティングを制御することができる。
図4は、エアロゲル粒子1のコーティングの一例である。この例では、エアロゲル粒子1と、粉末状の接着剤2とを粉体混合することにより、接着剤2が付着したエアロゲル粒子1を調製することができる。粉末状の接着剤2は固体状であってよい。この方法では、点状に接着剤2をコーティングすることができ、点状接着剤2bが付着したエアロゲル粒子1を容易に調製することができる。もちろん、層状に被覆させることができる条件にすれば、層状接着剤2aにより被覆されたエアロゲル粒子1も調製することができる。
まず、容器5に、エアロゲル粒子1と、粉末の接着剤2とを入れる。好ましくは、層状接着剤2aにより被覆されたエアロゲル粒子1を用いる。図4では、層状接着剤2aを図示していないが、もちろん、エアロゲル粒子1は層状接着剤2aに被覆されていてもよい。接着剤2の粒径(大きさ)の平均値は、エアロゲル粒子1の粒径(大きさ)の平均値よりも小さい方が好ましい。それにより、点状に付着しやすくすることができる。そして、蓋を閉めるなどして容器5を密封し、容器5を振る。これにより、エアロゲル粒子1と粉末の接着剤2とが粉体混合されて、点状接着剤2bが付着したエアロゲル粒子1を得ることができる。粉体混合では、粉状の接着剤2をエアロゲル粒子1に付着させることができるので、点状に付着させることがより可能になる。また、固体状の接着剤2を用いた場合、エアロゲル粒子1に付着した際に点状接着剤2bの粒子間に隙間ができやすいので、エアロゲル構造の細孔を塞ぐことを抑制してコーティングすることが容易になる。なお、生産レベルにおいては、ミルやミキサーなどの適宜の粉体混合機を使用して粉体混合を行うことができる。ただし、強力な撹拌力が働くと粒子が壊れるおそれがあるので、粒子が破壊されない程度の撹拌力で混合することが好ましい。
図3のコーティングと図4のコーティングとを組み合わせることにより、エアロゲル粒子1が層状接着剤2aに被覆されるとともに、エアロゲル粒子1に点状接着剤2bが付着したエアロゲル含有粒子Aを得ることができる。
層状接着剤2aでの被覆と、点状接着剤2bの付着とは、どちらを先に行ってもよい。例えば、層状接着剤2aの被覆を行った後、点状接着剤2bの付着を行うことができる。あるいは、点状接着剤2bの付着を行った後、層状接着剤2aの被覆を行うことができる。ただし、エアロゲル粒子1を点状に結合するためには、層状接着剤2aでの被覆を行った後、点状接着剤2bの付着を行うことが好ましい。
図5(a)は、エアロゲル粒子1のコーティングの他の一例である。この例では、エアロゲル粒子1を撹拌し、この撹拌した状態のエアロゲル粒子1に、接着剤2の溶液を徐々に添加し、エアロゲル粒子1に接着剤2を付着させて被覆することにより、エアロゲル粒子1を調製する。スプレーで液体を噴霧して添加しながら同時に乾燥を行うところが、図3(a)の形態とは異なる。この方法では、条件を調整することにより、層状のコーティングもできるし、点状のコーティングもできる。
図5(a)に示すように、この例では、風圧流動式の粉体撹拌機20を用いる。この粉体撹拌機20は、略筒状の流動容器21内に、下方に向かって開口するノズル22が設けられて構成されている。ノズル22は流動容器21の側部から流動容器21に侵入して延伸し、流動容器21の略中央で略垂直に下方に折れ曲がることにより、ノズル先端22aを下方に向けている。ノズル22はポンプなどで構成されるエア送出機構と接続されており、エアをノズル先端22aから流出できるようになっている。また、ノズル22のエア送出機構側にはエアと接着剤2の溶液とを混合する気液混合機構が設けられており、接着剤2の溶液が霧状(ミスト状)となったエアをノズル先端22aからスプレー状に流出できるようになっている。接着剤2の溶液を含んだ湿潤したエアと、接着剤2の溶液を含んでいない乾燥したエアとは、送出が切り替え可能になっている。送り出されるエアは熱風であることが好ましい。また、流動容器21の上部には、フィルタ23が設けられており、流動容器21内の圧力が適宜の圧力となるように、フィルタ23を通して流動容器21内部の気体を排出できるようになっている。この粉体撹拌機20では、スプレー式で接着剤2の溶液を添加しながら同時に乾燥を行うことができるため、接着剤2を狭い面積でコア粒子1の表面に付着させることが可能になる。そのため、点状に接着剤2を付着させることが容易になる。また、この粉体撹拌機20では、スプレー式で接着剤2の溶液を添加しながら同時に乾燥を行うことができるため、層状に接着剤2を付着させることも容易である。このように、上記の粉体攪拌機20は、層状接着剤2aでの被覆と、点状接着剤2bの付着とを行うことができる。そのため、エアロゲル含有粒子Aを容易に調製することができる。
コーティングにあたっては、まず、エアロゲル粒子1を粉体撹拌機20の流動容器21内に投入する。そして、ノズル22の先端からエアを下方に向かって流出させ、エアロゲル粒子1を吹き上げて撹拌する。このとき、エアとして熱風を送り出すことが好ましい。そして、エアロゲル粒子1が撹拌された状態で、接着剤2の溶液を含んだミスト状のエアをノズル22から流出する。これにより、徐々に接着剤2が添加されながら、同時に乾燥されて、接着剤2がエアロゲル粒子1の表面に付着して被覆される。そして、所望のコーティング量になるようにスプレーを続けることにより、接着剤2によって層状又は点状にコーティングされたエアロゲル粒子1を得ることができる。
点状にコーティングする場合、すなわち、点状接着剤2bを付着させる場合は、粉末の接着剤2の分散液を用いてもよい。このとき、粉末の接着剤2は溶剤に溶解していないことが好ましい。粉末の接着剤2の分散液を用いることにより、点状に接着剤2を付着させやすくすることができる。
ここで、点状に接着剤2を付着させる場合、接着剤2の溶液の濃度が高い場合には、図5(b)に示すように、エアロゲル粒子1の表面に比較的大粒の接着剤2が点状に付着したエアロゲル粒子1を容易に得ることができる。また、接着剤2の溶液の濃度が低い場合には、図5(c)に示すように、エアロゲル粒子1の表面に比較的小粒の接着剤2が点状に付着したエアロゲル粒子1を容易に得ることができる。なお、図5(b)及び(c)では、層状接着剤2aを図示していないが、もちろん、エアロゲル粒子1は層状接着剤2aにより被覆されていてよい。
図5の形態の粉体撹拌機20においては、給気温度、風量、スプレー速度、ミスト液濃度(コーティング溶液濃度)などを主要パラメータとして変化させることにより、コーティングを制御することができる。コーティングが制御されることにより、接着剤2が層状に形成されたり、点状に形成されたりする。好ましくは、エアロゲル粒子1に、接着剤2を層状に形成した後、点状に接着剤2を付着させる。
エアロゲル含有粒子Aは、上記で説明したコーティング方法を1種で、又は、複数種を組み合わせて行うことができる。例えば、複層コーティングは、バーチカルグラニュレータによりコーティングした後、スプレー式でコーティングすることにより行うことができる。
次に、エアロゲル成形体Bの製造方法について説明する。
エアロゲル成形体Bの製造方法は、エアロゲル含有粒子調製工程と、エアロゲル粒子接着工程とを含む。エアロゲル含有粒子調製工程は、エアロゲル粒子1に、層状接着剤2aをコーティングするとともに、点状接着剤2bを付着させてエアロゲル含有粒子Aを調製する工程である。エアロゲル粒子接着工程は、複数のエアロゲル含有粒子Aを点状接着剤2bが広がらない温度で加熱し、接着剤2でエアロゲル粒子1を結合する工程である。このように製造することにより、強度が高く断熱性に優れたエアロゲル成形体Bを容易に得ることができる。
エアロゲル含有粒子調製工程は、上記で説明したエアロゲル含有粒子Aの調製により行うことができる。エアロゲル粒子接着工程は、エアロゲル含有粒子Aの成形により行うことができる。
図6は、エアロゲル含有粒子Aの成形の一例である。この成形により、エアロゲル粒子1が接着剤2により結合して成形されたエアロゲル成形体Bを得ることができる。エアロゲル成形体Bは断熱材として有用である。なお、この図では、接着剤2を省略して記載しているが、エアロゲル含有粒子Aは上記で説明した接着剤2がエアロゲル粒子1の表面に設けられたものを用いる。成形にあたっては、プレス機30を用いる。このプレス機30はプレス下型31とプレス上型32とを備えて構成されている。
まず、図6(a)に示すように、プレス下型31に側壁型31bを取り付けて凹部31aを形成した後、この凹部31aの底面に離型シート34を敷き、その上に表面シート4を重ねる。次に、容器5からエアロゲル粒子1をプレス下型31上の凹部31aに投入する。このとき、プレス下型31は加熱により接着剤2の硬化温度以下まで予熱されていることが好ましい。次いで、図6(b)に示すように、薬さじ、ヘラなどの平滑具33により表面を平らにならす。次に、表面が平坦になったエアロゲル含有粒子Aの上に表面シート4を重ね、さらにその上に、離型シート34を重ねる。そして、図6(c)で示すように、プレス上型32を凹部31aに上方から押し込んで挿入し、加熱加圧して押圧(プレス)する。このとき、エアロゲル粒子1が押し潰されて壊れない程度のプレス圧力で押圧することが好ましい。このプレスにより接着剤2が接着性を発揮して、エアロゲル粒子1が接着されて一体化する。また、表面シート4とエアロゲル粒子1とが接着剤2の接着作用により接着されて表面シート4がエアロゲル粒子1の成形物と一体化する。そして、プレス終了後に成形物を取り出し、乾燥機で乾燥する。これにより、図6(d)に示すように、エアロゲル粒子1の成型物(エアロゲル層3)と表面シート4とにより構成されるエアロゲル成形体B(断熱材)が形成される。なお、表面シート4とエアロゲル層3との密着性を高めるために、硬化前のエアロゲル層3と表面シート4との界面に接着剤を挿入してもよい。
ここで、加熱加圧成形にあたっては、点状接着剤2bが、成形時に広がらずに点状を維持するようにして、成形するようにする。点状接着剤2bが広がると、点状接着剤2bが線状に結合して熱橋が形成されるおそれがある。点状接着剤2bは、点状を維持する程度に広がらなければよく、膨張等を生じていてもよい。
点状接着剤2bが熱硬化性樹脂を含む粉末である場合、粉末の接着剤2の溶融状態において、粉末の接着剤2がエアロゲル粒子1の表面で弾かれる性質を有することが好ましい。それにより、点状接着剤2bの広がりを抑制することができる。そして、加熱により粉末の点状接着剤2bをエアロゲル粒子1の表面で溶融させた後に硬化させる。このとき、同時に、層状接着剤2aも硬化する。これにより、複数のエアロゲル粒子1を硬化した点状の接着剤2bで結合することができる。
点状接着剤2bが熱可塑性樹脂を含む粉末である場合、粉末の接着剤2を複数のエアロゲル粒子1の表面に付着し、熱可塑性樹脂の軟化点よりも高くて融点よりも低い温度で粉末の接着剤2を加熱することが好ましい。これにより、粉末の接着剤2をエアロゲル粒子1の表面で軟化させることができ、点状接着剤2bの広がりを抑制することができる。この後、熱可塑性樹脂の軟化点よりも低い温度まで冷却する。これにより、複数のエアロゲル粒子1を固化した点状の接着剤2で結合することができる。なお、層状接着剤2aが熱硬化性樹脂である場合には、熱可塑性樹脂の軟化点よりも高くて融点よりも低い温度は、層状接着剤2aを構成する熱硬化性樹脂の硬化温度であることが好ましい。
本形態では、エアロゲル成形体Bは板状の断熱材(断熱ボード)として形成されている。もちろん、適宜の成形型を用いてプレスすることにより、ボード以外の形状の成形も可能である。このエアロゲル成形体Bはエアロゲル粒子1が接着して結合したエアロゲル層3の両面に表面シート4が積層された構成を有している。エアロゲルを表面シート4で覆うことにより、エアロゲル成形体Bの強度を高めることができる。表面シート4としては、樹脂シート、繊維シート、樹脂含浸繊維シートなどを用いることができる。表面シート4が樹脂を含む場合、表面シート4の樹脂でエアロゲル層3を接着一体化させることができれば、エアロゲル層3と表面シート4との密着性をさらに高めることができる。なお、表面シート4はエアロゲル層3の一方の面のみに積層されていてもよい。また、両面に表面シート4が設けられていないエアロゲル層3によりエアロゲル成形体Bを構成してもよい。ただし、強度を高めるためには両面に表面シート4が積層されていることが好ましい。
このように形成されたエアロゲル成形体Bは、断熱材として利用することができ、断熱性と強度に優れ、建築材料などとして有用なものである。
(エアロゲル含有粒子の調製)
攪拌容器の中でシリカエアロゲル粒子(平均粒径D50:694μm)を混ぜているところに、液体の接着剤としてエアロゲル粒子体積の約5%の水溶性フェノール樹脂接着剤(分子量180程度)の水溶液を加え、5分間攪拌し乾燥した。これにより、層状接着剤で被覆されたシリカエアロゲル粒子を得た。さらに、このシリカエアロゲル粒子と、粉体の接着剤として粉末状のフェノール樹脂接着剤(分子量550程度)とを粉体混合し、点状接着剤をエアロゲル粒子に付着させた。これにより、シリカエアロゲル粒子が層状接着剤により被覆されるとともに、シリカエアロゲル粒子に点状接着剤が付着したシリカエアロゲル含有粒子を得た。
ここで、実施例及び比較例として、水溶性フェノール樹脂接着剤を液体接着剤とし、粉末状のフェノール樹脂接着剤を粉体接着剤として、固形分の質量比率が次のようになるエアロゲル含有粒子を調製した。液体接着剤は層状接着剤となり、粉体接着剤は点状接着剤となる。
実施例1:液体接着剤75質量%、粉体接着剤25質量%
実施例2:液体接着剤50質量%、粉体接着剤50質量%
実施例3:液体接着剤25質量%、粉体接着剤75質量%
比較例1:液体接着剤100質量%、粉体接着剤0質量%
比較例2:液体接着剤0質量%、粉体接着剤100質量%
なお、実施例1〜3及び比較例1、2では、接着剤の合計量を同一とした。
(エアロゲル成形体の製造)
上記によって得たシリカエアロゲル含有粒子をプレス成形した。プレス条件は、温度180℃、圧力0.98MPa(10kgf/cm)、時間20分とした。そして、エアロゲル粒子を板状に成形してボード化した。これにより、エアロゲル成形体をボードとして得た。エアロゲル成形体の寸法は、縦120mm、横120mm、厚み10mmであった。
(評価)
エアロゲル成形体について、3点曲げ強度及び熱伝導率の測定を行った。
3点曲げ強度は、ボードの両端を台の上に載置し、ボードの中央部分は浮いた状態で、クロスヘッドによりボードの中央部分を上方から下方に押圧し、この押圧をボードが破断するまで行うことにより測定した。その際、強度、歪み、弾性率について測定した。
図9に、結果を示す。なお、図9の「%」は「質量%」を意味する。熱伝導率が低いほど断熱性は高くなる。
図9から、熱伝導率は、粉体接着剤の比率が高くなるほど低くなっていることが分かる。これは、粉体接着剤が増加することによりエアロゲル粒子1を点状に結合する割合が増え、熱橋の形成が抑制されるからであると推測される。一方、3点曲げ強度については、粉体接着剤のみや液体接着剤のみの場合よりも、粉体接着剤と液体接着剤とを混合した方が強度が高まった。特に、粉体接着剤が25質量%で、液体接着剤が75質量%のときに、強度は極大値を示しており、粉体接着剤と液体接着剤との混合比に好適な範囲があることが確認された。
層状接着剤の厚みとエアロゲル成形体の熱伝導率との関係、及び、点状接着剤の平均粒径とエアロゲル成形体の熱伝導率との関係は、シミュレーションによって解析することができる。解析モデルとしては、次のようにした。エアロゲル含有粒子を1辺1mmの立方体形状とした。層状接着剤ではこの立方体の表面層として接着剤が等厚に分布していると仮定した。また、点状接着剤では立方体のエアロゲル含有粒子の8箇所の角部に立方体の接着剤が、エアロゲル含有粒子に埋め込まれて点在していると仮定した。そして、成形体では、エアロゲル含有粒子が密に充填されているとし、エアロゲル含有粒子間に空隙が存在しないとして、立方体を3次元に配置した。その際、多数積みの場合は上段重なり方を変えて、上段の立方体の下面の中央が下段の立方体の角部に配置されるようにした。物性値として次の値を使用した。
エアロゲル成形体の熱伝導率:0.016W/mK
エアロゲル成形体の密度:0.155g/cm
エアロゲル成形体の体積:1089cm
エアロゲル粒子の熱伝導率:0.012W/mK
エアロゲル粒子の体積:1070.8cm
接着剤の熱伝導率:0.13W/mK
接着剤の密度:1.39g/cm
接着剤の体積:18.2cm
なお、エアロゲル粒子と接着剤の体積比は0.9833:0.0167とした。
上記の解析から、1mm角のエアロゲル粒子における層状接着剤の厚みは2.8μmであり、この場合、エアロゲル成形体の熱伝導率は16.30W/mKであるという結果が得られた。よって、実際のエアロゲル成形体においても、この程度の厚みで層状接着剤が被覆されているものと考えられる。また、上記の解析から、1mm角のエアロゲル粒子における点状接着剤の平均粒径(立方体の1辺)は127.8μmであり、この場合、エアロゲル成形体の熱伝導率は15.33W/mKであるという結果が得られた。よって、実際のエアロゲル成形体においても、この程度の平均粒径の点状接着剤が付着しているものと考えられる。なお、接着剤はエアロゲル粒子に対して十分に小さいため、エアロゲル含有粒子の大きさはエアロゲル粒子の大きさとして近似した。
上記で作製したエアロゲル成形体について、割れた判断面をデジタルマイクロスコープ(光学顕微鏡、倍率×100)を用いて観察をした。
図10は、光学顕微鏡による観察結果を示す写真である。図10(a)は実施例1(液体接着剤75質量%、粉体接着剤25質量%)、図10(b)は比較例1(液体接着剤100質量%)、図10(c)は比較例2(粉体接着剤100質量%)を示している。図10(d)は、対照として、成形前のエアロゲル粒子の写真を示している。図10(e)及び(f)は、エアロゲル粒子表面の粉体接着剤の写真であり、図10(e)は成形前、図10(f)は成形後の様子を示している。
図10(d)に示すように、エアロゲル粒子1は不定形の形状となっている。図10(b)に示すように、液体接着剤(層状接着剤2a)を用いたエアロゲル成形体Bでは、エアロゲル粒子1の表面に層状に接着剤2が形成され、エアロゲル粒子1の溝6に液体接着剤が多く付着していることが観察される。図10(c)に示すように、粉体接着剤を用いたエアロゲル成形体Bでは、点状に接着剤2(点状接着剤2b)がエアロゲル粒子1の表面に付着していることが観察される。図10(e)及び(f)で示すように、点状接着剤2bは、成形前には粉末で表面に凹凸を有していたものが、成形後には一度溶融して硬化するため、表面が滑らかになっている。そして、図10(a)で示すように、液体接着剤(層状接着剤2a)と粉体接着剤(点状接着剤2b)とを併用したエアロゲル成形体では、両者の特徴を有した成形体が形成されていることが確認される。これにより、強度と断熱性に優れたエアロゲル成形体B(断熱材)を得ることができる。
A エアロゲル含有粒子
B エアロゲル成形体
1 エアロゲル粒子
2 接着剤
2a 層状接着剤
2b 点状接着剤
3 エアロゲル層
4 表面シート
5 容器
6 溝

Claims (7)

  1. 複数のエアロゲル粒子が接着剤により結合したエアロゲル成形体であって、
    前記接着剤は、前記エアロゲル粒子を層状に被覆した層状接着剤と、前記エアロゲル粒子に点状に付着した点状接着剤とにより構成されることを特徴とするエアロゲル成形体。
  2. 前記層状接着剤は水溶性の接着剤であり、前記点状接着剤は粉末の接着剤であることを特徴とする請求項1に記載のエアロゲル成形体。
  3. 前記層状接着剤は水溶性フェノール樹脂接着剤であり、前記点状接着剤はフェノール樹脂接着剤であることを特徴とする請求項1又は2に記載のエアロゲル成形体。
  4. 前記層状接着剤と前記点状接着剤との固形分における質量比(層状接着剤:点状接着剤)は、4:1〜3:2の範囲であることを特徴とする請求項1〜3のいずれか1項に記載のエアロゲル成形体。
  5. 前記層状接着剤の厚みは1〜10μmであり、前記点状接着剤の平均粒径は10〜500μmであることを特徴とする請求項1〜4のいずれか1項に記載のエアロゲル成形体。
  6. 請求項1〜5のいずれか1項に記載のエアロゲル成形体を形成するためのエアロゲル含有粒子であって、
    前記エアロゲル粒子と、前記エアロゲル粒子を層状に被覆する前記層状接着剤と、前記エアロゲル粒子に点状に付着する前記点状接着剤とを備えることを特徴とするエアロゲル含有粒子。
  7. 請求項1〜5のいずれか1項に記載のエアロゲル成形体を製造する方法であって、
    前記エアロゲル粒子に、前記層状接着剤をコーティングするとともに、前記点状接着剤を付着させてエアロゲル含有粒子を調製するエアロゲル含有粒子調製工程と、
    複数の前記エアロゲル含有粒子を前記点状接着剤が広がらない温度で加熱し、前記接着剤で前記エアロゲル粒子を結合するエアロゲル粒子接着工程とを含むことを特徴とするエアロゲル成形体の製造方法。
JP2014529314A 2012-08-09 2013-08-07 エアロゲル成形体、エアロゲル含有粒子、及び、エアロゲル成形体の製造方法 Active JP5906425B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012177520 2012-08-09
JP2012177520 2012-08-09
PCT/JP2013/004762 WO2014024482A1 (ja) 2012-08-09 2013-08-07 エアロゲル成形体、エアロゲル含有粒子、及び、エアロゲル成形体の製造方法

Publications (2)

Publication Number Publication Date
JP5906425B2 JP5906425B2 (ja) 2016-04-20
JPWO2014024482A1 true JPWO2014024482A1 (ja) 2016-07-25

Family

ID=50067735

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013040051A Pending JP2014051643A (ja) 2012-08-09 2013-02-28 2剤式エアロゲル成形体材料、及び、それを用いた断熱材、並びに、断熱材の製造方法
JP2014529314A Active JP5906425B2 (ja) 2012-08-09 2013-08-07 エアロゲル成形体、エアロゲル含有粒子、及び、エアロゲル成形体の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013040051A Pending JP2014051643A (ja) 2012-08-09 2013-02-28 2剤式エアロゲル成形体材料、及び、それを用いた断熱材、並びに、断熱材の製造方法

Country Status (5)

Country Link
US (1) US20150225630A1 (ja)
EP (1) EP2884149A4 (ja)
JP (2) JP2014051643A (ja)
CN (1) CN104520630B (ja)
WO (1) WO2014024482A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160010786A1 (en) * 2013-03-01 2016-01-14 Panasonic Intellectual Property Management Co., Ltd. Heat-insulating molding compound, heat-insulating molded article, and production method for same
US20160003402A1 (en) * 2013-03-01 2016-01-07 Panasonic Intellectual Property Management Co., Ltd. Heat-insulating molded article and production method for same
WO2015094575A1 (en) * 2013-12-19 2015-06-25 Cabot Corporation Self supporting aerogel insulation
KR101789371B1 (ko) 2015-02-13 2017-10-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
KR101868682B1 (ko) * 2015-06-01 2018-06-19 주식회사 엘지화학 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
EP3305725B1 (en) 2015-06-01 2020-01-08 LG Chem, Ltd. Method for preparing metal oxide-silica composite aerogel
US10752509B2 (en) 2015-06-01 2020-08-25 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by using the same
WO2016195381A1 (ko) * 2015-06-01 2016-12-08 주식회사 엘지화학 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
WO2016195380A1 (ko) * 2015-06-01 2016-12-08 주식회사 엘지화학 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
KR101938654B1 (ko) * 2015-10-22 2019-01-16 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2017069516A1 (ko) * 2015-10-22 2017-04-27 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR101931569B1 (ko) 2015-11-03 2018-12-21 주식회사 엘지화학 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
KR101941648B1 (ko) 2015-11-03 2019-01-24 주식회사 엘지화학 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
KR101938369B1 (ko) 2015-12-09 2019-01-14 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
JP6817506B2 (ja) * 2015-12-11 2021-01-20 パナソニックIpマネジメント株式会社 断熱材の製造方法
KR102002050B1 (ko) 2015-12-15 2019-10-21 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR20170110993A (ko) 2016-03-24 2017-10-12 주식회사 엘지화학 실리카 에어로겔 제조시스템
KR20220162818A (ko) * 2016-03-29 2022-12-08 쇼와덴코머티리얼즈가부시끼가이샤 에어로겔 복합체 파우더의 제조 방법
KR102092770B1 (ko) 2016-09-12 2020-03-24 주식회사 엘지화학 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2018048289A1 (ko) 2016-09-12 2018-03-15 주식회사 엘지화학 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
KR102092769B1 (ko) 2016-09-12 2020-03-24 주식회사 엘지화학 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
US10450935B2 (en) * 2016-11-09 2019-10-22 Hyundai Motor Company Exhaust manifold and method of coating the same
JP6941808B2 (ja) * 2017-02-03 2021-09-29 パナソニックIpマネジメント株式会社 全固体電池
EP3615873B1 (en) * 2017-05-12 2021-11-10 Samsung Electronics Co., Ltd. Refrigerator
CN108516818B (zh) * 2018-05-25 2021-03-26 江苏师范大学 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN109301383B (zh) * 2018-09-21 2020-12-29 浙江清优材料科技有限公司 集成有隔热层和导热层的液冷板的集成工艺
JP6677849B1 (ja) * 2019-04-11 2020-04-08 ティエムファクトリ株式会社 エアロゲルおよびエアロゲルの製造方法
JP2020193708A (ja) * 2019-05-24 2020-12-03 パナソニックIpマネジメント株式会社 気体吸脱着デバイス、対象物固定装置、ドローン、圧力制御方法及び物体把持方法
KR102137634B1 (ko) * 2019-07-02 2020-07-24 (주)대협테크 에어로겔 함유 분무용 단열 조성물과 그 제조방법
KR102123393B1 (ko) * 2019-11-07 2020-06-16 하상선 에어로겔 과립을 포함하는 단열재 및 이의 제조방법
CN112724451A (zh) * 2021-03-18 2021-04-30 先端微纳(北京)科技有限公司 通过榫卯组装技术制备的气凝胶隔热薄膜及其方法
WO2022221687A1 (en) * 2021-04-15 2022-10-20 Patel Dishank Systems and methods for manufacturing an aerogel
CN115093241B (zh) * 2022-06-07 2023-10-13 航天特种材料及工艺技术研究所 一种疏水型耐高温气凝胶材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042387A (ja) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd 断熱材とその固形化方法およびそれを用いた機器
JP2004010423A (ja) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd 固形断熱材およびその製造方法
WO2008051029A1 (en) * 2006-10-25 2008-05-02 Korea Institute Of Industrial Technology Aerogel sheet and method for preparing thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929695A (en) * 1973-01-29 1975-12-30 Sumitomo Durez Co Phenolic resin adhesives containing resorcinol, formaldehyde and an alkali metal carbonate
US4402927A (en) 1980-04-22 1983-09-06 Dardel Guy Von Silica aerogel
FR2507171A1 (fr) * 1981-06-04 1982-12-10 Zarzycki Jerzy Aerogels de silice monolithiques, leur preparation et leur utilisation pour la preparation d'articles en verre de silice et de materiaux thermiquement isolants
US4610863A (en) 1985-09-04 1986-09-09 The United States Of America As Represented By The United States Department Of Energy Process for forming transparent aerogel insulating arrays
CA2205845A1 (en) * 1994-11-23 1996-05-30 Hoechst Aktiengesellschaft A composite material comprising an aerogel, a process for its preparation, and its use
WO2003064025A1 (en) * 2002-01-29 2003-08-07 Cabot Corporation Heat resistant aerogel insulation composite and method for its preparation; aerogel binder composition and method for its preparation
US7118801B2 (en) * 2003-11-10 2006-10-10 Gore Enterprise Holdings, Inc. Aerogel/PTFE composite insulating material
KR101423342B1 (ko) * 2005-10-21 2014-07-30 캐보트 코포레이션 에어로겔 기재 복합체
US8235577B2 (en) * 2006-11-14 2012-08-07 Rensselaer Polytechnic Institute Methods and apparatus for coating particulate material
KR101376426B1 (ko) * 2007-09-20 2014-03-20 삼성전자주식회사 고분자 코팅된 에어로겔의 제조방법, 그에 의해 제조되는에어로겔 및 그를 포함하는 단열재

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042387A (ja) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd 断熱材とその固形化方法およびそれを用いた機器
JP2004010423A (ja) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd 固形断熱材およびその製造方法
WO2008051029A1 (en) * 2006-10-25 2008-05-02 Korea Institute Of Industrial Technology Aerogel sheet and method for preparing thereof

Also Published As

Publication number Publication date
US20150225630A1 (en) 2015-08-13
EP2884149A1 (en) 2015-06-17
WO2014024482A1 (ja) 2014-02-13
CN104520630B (zh) 2016-06-29
CN104520630A (zh) 2015-04-15
JP5906425B2 (ja) 2016-04-20
EP2884149A4 (en) 2015-12-02
JP2014051643A (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
JP5906425B2 (ja) エアロゲル成形体、エアロゲル含有粒子、及び、エアロゲル成形体の製造方法
WO2014132656A1 (ja) 断熱成形体及びその製造方法
JP6145948B2 (ja) エアロゲルを用いた断熱構造体
JP2014035042A (ja) 断熱材
JPWO2014024413A1 (ja) 断熱材及びその製造方法
JP7055753B2 (ja) コーテッドサンド及びその製造方法並びにこれを用いた鋳型の製造方法
CN108368275B (zh) 聚芳撑硫醚树脂粉粒体及其制造方法
WO2014132605A1 (ja) 断熱材及びその製造方法
JP2014035044A (ja) 断熱材及びその製造方法
JP2014035041A (ja) エアロゲル粒子を用いた断熱材
JP2014167078A (ja) 断熱材成形用組成物、成形体及び成形体の製造方法
KR20080072856A (ko) 에어로겔 기재 복합체
WO2014132655A1 (ja) 断熱成形材料、断熱成形体及びその製造方法
CN111511483B (zh) 覆膜砂和其制造方法以及铸型的制造方法
CN108602211A (zh) 模具、其制造方法和用途
JP2014035043A (ja) 断熱材
JP2015510847A5 (ja)
CN103261293A (zh) 包含纳米多孔颗粒的复合材料
JP2014035045A (ja) 断熱材
JP2018100679A (ja) 断熱材
JP2014040750A (ja) エアロゲルを用いた断熱材
JP2014173626A (ja) 断熱材の製造方法及び断熱材
JP2009149713A (ja) 樹脂成形体
JP2006035678A (ja) 無機質硬化体の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160106

R151 Written notification of patent or utility model registration

Ref document number: 5906425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151