JPWO2014010355A1 - 内燃機関の制御装置及び制御方法 - Google Patents

内燃機関の制御装置及び制御方法 Download PDF

Info

Publication number
JPWO2014010355A1
JPWO2014010355A1 JP2014524695A JP2014524695A JPWO2014010355A1 JP WO2014010355 A1 JPWO2014010355 A1 JP WO2014010355A1 JP 2014524695 A JP2014524695 A JP 2014524695A JP 2014524695 A JP2014524695 A JP 2014524695A JP WO2014010355 A1 JPWO2014010355 A1 JP WO2014010355A1
Authority
JP
Japan
Prior art keywords
exhaust
valve
intake
fuel injection
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014524695A
Other languages
English (en)
Other versions
JP5843012B2 (ja
Inventor
露木 毅
毅 露木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014524695A priority Critical patent/JP5843012B2/ja
Application granted granted Critical
Publication of JP5843012B2 publication Critical patent/JP5843012B2/ja
Publication of JPWO2014010355A1 publication Critical patent/JPWO2014010355A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

ターボ過給機を備える筒内直接噴射式内燃機関において、吸気弁と排気弁の双方が開弁するバルブオーバーラップ期間を調整可能な可変バルブタイミング機構を備える。バルブオーバーラップ期間に吸気通路から排気通路へ吹き抜ける掃気の掃気率を推定し(S15)、この掃気率が所定値SS#を超えており(S16)、かつ、排気温度が所定値YY#を超えている場合に(S17)、排気タービンよりも上流側の排気通路内で燃焼が行われるように、シリンダ内に供給する燃料噴射量をリッチ化する(S18)。

Description

本発明は、ターボ過給機を備えた筒内直接噴射式の内燃機関に関し、特に、掃気を利用してトルク向上を図る技術に関する。
ターボ過給機を備えた筒内直接噴射式の内燃機関では、バルブオーバーラップ期間中に吸気通路から排気通路へ吹き抜ける掃気の効果を利用して、排気タービンの回転速度を高め、シリンダ内への充填効率を高めることでトルク向上を図る技術が知られている。
関連する技術として、特許文献1には、エンジントルクの比較的低い領域では、ターボ過給機を駆動して希薄燃焼運転を行うことにより燃費向上を図りつつ、エンジントルクの比較的高い領域では、ターボ過給機を駆動して理論空燃比近傍で均質燃焼運転を行うことにより、スモーク及びノッキングの発生を抑制する技術が記載されている。また、特許文献2では、4サイクル運転から2サイクル運転への切換時に、掃気量を増加させて筒内温度を低下させることにより早期着火やノッキングの発生を抑制する技術が記載されている。更に、特許文献3には、掃気状態での定常走行時には燃料噴射量を減少させることが記載されている。
特開2007−146854号公報 特開2004−204745号公報 特開2007−247434号公報
このようなターボ過給機を備えた筒内直接噴射式の内燃機関において、掃気時に燃料噴射量を理論空燃比よりも増量、すなわちリッチ化し、排気タービンよりも上流側の排気通路内で燃焼を行わせることにより、排気タービンの仕事量を増大し、シリンダ内への充填効率を高めることでトルク向上を図ることを本出願人は検討している。
しかしながら、単に掃気時に燃料噴射量をリッチ化した場合、排気温度が低いなどの理由により、排気タービンの上流側の排気通路内で燃焼が良好に行われないおそれがある。この場合、所望のトルク向上効果が得られないばかりか、燃費の低下や排気性能の悪化を招くこととなり、更に、万が一排気タービンよりも下流側に設けられた触媒の近傍で燃焼が生じると、触媒を含めた排気系部品の過度な温度上昇を招くおそれがある。
本発明は、このような事情に鑑みてなされたものである。すなわち、本発明に係る内燃機関は、筒内に燃料を直接的に噴射する燃料噴射弁と、排気通路に設けられた排気タービンにより吸気通路に設けられた吸気コンプレッサを駆動して吸気を過給するターボ過給機と、吸気弁と排気弁の双方が開弁するバルブオーバーラップ期間を調整可能な可変動弁機構等のバルブオーバーラップ期間可変手段と、を備えている。
そして、上記バルブオーバーラップ期間に吸気通路から排気通路へ吹き抜ける掃気の掃気率を推定するとともに、上記排気タービンよりも上流側の排気通路内を流れる排気の排気温度を検出もしくは推定し、これらの掃気率と排気温度が所定の条件を満たす場合に、排気タービンよりも上流側の排気通路内で燃焼が行われるように、シリンダ内に供給する燃料噴射量を設定する。
より具体的には、掃気率が第1の所定値以上であり、かつ、排気温度が第2の所定値以上である場合に、排気タービンよりも上流側の排気通路内で確実に燃焼させ得る条件が成立していると判断して、シリンダ内に供給する燃料噴射量をリッチ化する。これによって、排気タービンよりも上流側の排気通路内で燃焼を行わせて、排気タービンの仕事量を増大し、シリンダ内への充填効率を高めることでエンジントルクを向上することができる。
逆に言えば、上記の条件が成立しない限り、排気通路内で燃焼を行わせるための燃料噴射量のリッチ化を行わず、例えば理論空燃比もしくはリーン側の空燃比となるように燃料噴射量を制御することによって、未燃燃料が排気側へ流れ出ることを抑制して、排気タービンよりも下流側で燃焼が生じる事態を未然に回避し、触媒等の排気部品の過剰な昇温を防止することができる。
本発明によれば、掃気率と排気温度のそれぞれが所定の条件を満たす場合に限り、シリンダ内に供給する燃料噴射量を適宜に設定することで、排気タービンよりも上流側の排気通路内で燃焼を行わせて、排気タービンの仕事量を増大し、シリンダ内への充填効率を高めることで、エンジントルクを増加させることができる。
また、排気タービンよりも上流側の排気通路内で燃焼を行わせる条件を掃気率と排気温度により限定することで、排気タービンよりも下流側の排気通路内で不用意に燃焼が生じる事態を未然に回避し、触媒等の排気部品の過剰な昇温を防止することができる。
本発明に係る内燃機関の制御装置の一例を示すシステム構成図。 機関回転数及び機関負荷に対する掃気率及びバルブオーバーラップ量(O/L量)の関係を示す説明図。 本発明の一実施例に係る制御の流れを示すフローチャート。 バルブオーバーラップ(O/L)量の演算処理の一例を示す機能ブロック図。
以下、図示実施例により本発明を説明する。図1は本発明に係る内燃機関のシステム構成の一例を示している。内燃機関1は、筒内直接噴射式の直列4気筒ガソリン内燃機関である。4つの気筒の各シリンダ1Aには、吸気通路2を介して吸入空気が供給され、燃焼後の排気ガスが排気通路3を介して排出される。吸気通路2の吸気コレクタ2Aよりも下流側には、各シリンダ1Aの吸気ポートへ接続する複数の吸気ブランチを備えた枝管形状の吸気マニホールド4が設けられ、同じく排気通路3には、各シリンダ1Aの排気ポートに接続する複数の排気ブランチを備えた枝管形状の排気マニホールド8が設けられている。
吸気コレクタ2Aよりも上流側の吸気通路2には、上流側より順に、吸入空気内の粉塵等の異物を捕集するエアクリーナ7と、吸気通路2内を通過する吸入新気量を計量するエアフローメータ6と、ターボ過給機10の吸気コンプレッサ11と、内燃機関1のシリンダ1A内へ流入する吸入空気量を調整するための電子制御式のスロットルバルブ5と、吸入空気を冷却するインタークーラ13と、が設けられている。
ターボ過給機10は、排気エネルギーを利用して吸入空気を過給するものであり、吸気コンプレッサ11と排気タービン12とがシャフトを介して同軸上に接続されており、排気タービン12が内燃機関1の排気エネルギーにより回転すると、吸気コンプレッサ11が回転駆動されて、吸入空気を下流側に圧送する。
リサキュレーション通路14は、吸気通路2における吸気コンプレッサ11の上流部分と下流部分とを接続する通路であり、途中に設けたリサキュレーションバルブ15により開閉される。このリサキュレーションバルブ15は、一般に知られているものと同様に、過給圧と吸気マニホールド4内の圧力(以下、吸気管圧という)との差圧が所定値以上になったときに開弁する。例えば、内部に備える弁体に対して、内蔵するスプリングの反力が閉弁方向に付勢されており、さらに、弁体の開弁方向に過給圧が作用し、閉弁方向には吸気管圧が作用しており、過給圧と吸気管圧との差圧がスプリングの反力を超えた場合に開弁する。これにより、過給状態で走行中にスロットルバルブ5が全閉となった場合に、過給圧の過上昇を防止することができる。なお、リサキュレーションバルブ15が開弁するときの過給圧と吸気管圧との差圧は、スプリングのバネ定数により任意の値に設定することができる。
排気通路3には、排気タービン12よりも下流側に、排気浄化用の排気触媒9が配置される。この排気触媒9としては、三元触媒等が用いられる。排気バイパス通路16は、排気通路3における排気タービン12の上流部分と下流部分とを接続する通路であり、途中に設けたウエストゲートバルブ17により開度が調整される。ウエストゲートバルブ17の動作は後述するコントロールユニット25により制御され、過給圧が所定の設定値に達したらウエストゲートバルブ17を開くことにより、余剰の排気ガスが排気バイパス通路16を通して直接排出される。
EGR通路20は、排気触媒9よりも下流側の排気通路3と、エアフロメータ6よりも下流側かつ吸気コンプレッサ11よりも上流側の吸気通路2とを接続する通路である。このEGR通路20には、吸気通路2へ還流する排気ガスの量であるEGR量を調整するEGR制御バルブ21が設けられるとともに、このEGR通路20を通流する排気を冷却するためのEGRクーラ22が設けられている。
内燃機関1の各シリンダ1Aには、燃料をシリンダ1A内に直接噴射する燃料噴射弁40が配置されている。また、排気弁と吸気弁のいずれもが開弁したバルブオーバーラップ期間を調整可能な手段として、この実施例では、吸気弁のバルブタイミングを変更可能な吸気バルブタイミング変更機構(吸気VTC)41と、排気弁のバルブタイミングを変更可能な排気バルブタイミング変更機構(排気VTC)42と、が設けられている。これらのバルブタイミング変更機構41,42は、公知のように、クランクシャフトに対するカムシャフトの回転位相を変化させることにより、吸気弁もしくは排気弁の開時期と閉時期とを同時かつ連続的に変更可能なものである。なお、バルブオーバーラップ期間を調整可能な機構としてはこれに限らず、吸気弁開時期(IVO)と排気弁閉時期(EVC)の少なくとも一方を変化させ得るものであればよく、例えば吸気弁や排気弁のリフト量及び作動角を変化させるリフト作動角変更機構のように、一般的に知られている他の形式の可変動弁機構を用いるようにしても良い。
制御部としてのコントロールユニット25は、各種センサから検出される機関運転状態に基づいて、各種の機関制御処理を記憶及び実行する機能を有している。上記の各種センサとして、吸気通路2の吸気コレクタ2Aには、過給圧としての吸気コレクタ2A内の圧力を検出する過給圧検出用の圧力センサ27と、吸気温度としての吸気コレクタ2A内の温度を検出する吸気温検出用の吸気温センサ30と、が設けられるとともに、排気通路3には、排気タービン12よりも上流側の排気温度を検出する排温センサ28が設けられており、かつ、機関回転速度を検出するためのクランク角センサ26や、運転者により操作されるアクセルペダルの開度を検出するアクセル開度センサ29等が設けられている。
コントロールユニット25は、上記の各種機関制御として、燃料噴射弁40による燃料噴射量及び燃料噴射時期を制御するとともに、バルブタイミング変更機構41,42による吸気弁や排気弁のバルブタイミング(VTC変換角)を制御し、また燃焼室内に設けられた点火プラグ(図示省略)による点火時期制御等を行う。
そしてコントロールユニット25は、バルブオーバーラップ期間等に基づいて、吸気通路2から排気通路3へ吹き抜ける掃気の掃気率を推定する。ここで、「掃気率」とは、シリンダ1A内に吸入される吸入空気量に対して、バルブオーバーラップ期間中に吸気通路2から排気通路3へ吹き抜ける掃気量の比率に相当する。また、「筒内新気量」とは、シリンダ1A内に充填されて燃焼に用いられる新気の量に相当する。なお、この明細書においては、シリンダ1Aへ供給される吸入ガスに対し、排気ガスであるEGRガス等を含まないものを「吸入新気」もしくは単に「新気」と呼び、EGRガス等を含むものを「吸入空気」もしくは単に「空気」と呼ぶ。
コントロールユニット25は、吸気マニホールド4内の圧力が排気マニホールド8内の圧力より高い場合には、吸気弁及び排気弁が開弁しているバルブオーバーラップ期間が生じるバルブタイミングとなるようにバルブタイミング変更機構41,42を作動させる。これは、バルブオーバーラップ期間中に、吸気マニホールド4から流入した新気が掃気ガスとしてそのまま排気マニホールド8へ吹き抜ける、いわゆる掃気効果を利用して、排気タービン12の回転速度を高め、シリンダ1A内への充填効率を高めるためである。
具体的には図2に示すように、バルブオーバーラップ期間としてのバルブオーバーラップ量(「O/L量」あるいは「バルブO/L量」とも呼ぶ)は、低回転高負荷側で大きくなり、高回転低負荷側で小さくなるように設定される。このO/L量に比例するように、掃気率もまた、低回転高負荷側で大きくなり、高回転低負荷側で小さくなる。
また、EGRガスが掃気されることのないように、EGR制御バルブ21を開いてEGRを付与するEGR領域Regrは、バルブオーバーラップ量が付与されずに掃気率が0となる高回転側の非掃気領域RsNo内に設定されている。
図3は、本発明の一実施例に係る制御の流れを示すフローチャートである。ステップS11では、要求トルクが、スロットル全開(WOT)時の出力に相当する所定値DD#以上であるかを判定する。ステップS12では、バルブオーバーラップ期間が付与される領域、つまり掃気が発生し得る低回転高負荷側の所定の掃気領域Rs(図2参照)であるか否かを判定する。
ステップS13では、バルブオーバーラップ期間、つまりバルブオーバーラップ量(バルブO/F量)が所定値XX#を超えているかを判定する。この理由は、掃気領域Rsであっても、バルブO/L量によって掃気率が異なることから、予め掃気率が小さくなるような状態、つまりバルブO/L量が所定値XX#以下の状態を、後述するトルク向上のためにリッチ化を行う領域から除外するためである。
図4は、コントロールユニット25により記憶及び実行されるバルブO/L量の演算処理の一例を示している。符号B13は、排気バルブオーバーラップ変更機構(排気VTC)42により遅角もしくは進角される排気弁閉時期の排気上死点に対する遅角量を表す制御マップであり、排気弁閉時期が排気上死点よりも遅角している場合に正の値となるようにマッピングされている。符号B14は、吸気バルブオーバーラップ変更機構(吸気VTC)41により遅角もしくは進角される吸気弁開時期の排気上死点に対する進角量を表す制御マップであり、吸気弁開時期が排気上死点よりも進角している場合に正の値となるようにマッピングされている。
目標負荷(B11)とエンジン回転数(B12)に基づいて、排気VTC用の制御マップB13を参照することにより、排気上死点に対する排気弁閉時期の遅角量を演算するとともに、吸気VTC用の制御マップB14を参照することにより、排気上死点に対する吸気弁開時期の進角量を演算し、加算部B15において両者を加算することによって、バルブO/L量(B16)を求めることができる。
なお、この例では排気VTCや吸気VTCの目標変換角(進角量・遅角量)に基づいてバルブO/L量を求めているが、これに限らず、例えばカムシャフトの回転角を検出するセンサ等の出力を利用して、実際のバルブO/L量を検出するように構成しても良い。
再び図3を参照して、ステップS14では、過給圧が所定値ZZ#を超えているかを判定する。過給圧は、圧力センサ27により検出され、あるいは機関回転数や負荷等の機関運転状態に応じて推定される。
上記ステップS11〜S14の条件が全て満たされていれば、ステップS15へ進み、掃気率を推定する。この掃気率の推定は、バルブO/L量に加え、機関回転数や吸気温度等を勘案して行われる。なお、簡素化のために、ステップS13やステップS14の判定処理を省略するようにしても良い。
ステップS16では、推定した掃気率が、排気タービン12の上流側の排気通路3内での燃焼が可能な所定値SS#(例えば約25%)を超えているか否かを判定する。ステップS17では、排気タービン12よりも上流側の排気通路3内の排気温度が、排気タービン12の上流側の排気通路3内での燃焼が可能な所定値YY#(例えば約700度)を超えているか否かを判定する。この排気温度は、上記の排温センサ28により直接的に検出される。但し、排温センサ28を省略し、過給圧(吸気量)、機関回転速度、点火時期、燃料噴射量及び燃料噴射時期等に基づいて排気温度を推定するようにしても良い。
ステップS16及びステップS17の双方の条件が成立する場合に限り、ステップS18へ進み、排気タービン12よりも上流側の排気通路3内で燃焼が行われるように、燃料噴射量の増量による筒内リッチ化を許可する。例えば、掃気率が25%の場合、排気中の酸素濃度が5%を超えると燃焼限界を上回り、燃焼が可能となる。従って、この状態での排気温度が、COの燃焼温度である700度を超えると、排気タービン12前での燃焼の成立性が十分に高くなり、高確率で排気タービン12前での燃焼が可能となるために、上記の筒内リッチ化が許可される。この筒内リッチ化の際の燃料噴射量の増量分は、掃気率に応じて設定され、具体的には掃気率が高いほど燃料増量分が多くなるように設定される。
このように、排気タービン12の上流側で、掃気による新気と、燃料増量による未燃ガスとが燃焼することにより、過給圧を高めて、充填効率を向上し、エンジントルクを向上することができる。
また、このようにトルク向上のためのリッチ化を行う場合、スロットルバルブ5は全開とされており、機関要求負荷の増加に応じて、バルブオーバーラップ量を増大させるとともに、燃料噴射量を増量させていくことで、機関要求負荷の増加に応じて機関負荷を増加させていくことができる。排気タービン12での燃焼は排気タービン12の仕事量に直結しているために、ターボ過給機10の応答速度が速まり、トルク応答性に優れている。
一方、ステップS11〜S14,S16,S17の条件のうち、いずれかの条件が満たされていなければ、ステップS18のトルク向上のためのリッチ化は行われず、空燃比が理論空燃比のストイキもしくはリーン側となるように燃料噴射量が設定される。このように、排気タービン12よりも上流側の排気通路3内での燃焼が確実に行われる状況でなければ、排気タービン前での燃焼のための燃料増量が行われることがないので、排気タービンよりも下流側の排気通路3内で不用意に燃焼が生じることを確実に防止し、排気触媒9を含めた排気部品の過剰な昇温を確実に抑制することができる。
以上のように本発明を図示実施例に基づいて説明してきたが、本発明は上述した実施例に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。

Claims (4)

  1. 筒内に燃料を直接的に噴射する燃料噴射弁と、
    排気通路に設けられた排気タービンにより吸気通路に設けられた吸気コンプレッサを駆動して吸気を過給するターボ過給機と、を備えた内燃機関の制御装置において、
    吸気弁と排気弁の双方が開弁するバルブオーバーラップ期間を調整可能なバルブオーバーラップ期間可変手段と、
    上記バルブオーバーラップ期間に吸気通路から排気通路へ吹き抜ける掃気の掃気率を推定する掃気率推定手段と、
    上記排気タービンよりも上流側の排気通路内を流れる排気の排気温度を検出もしくは推定する排気温度取得手段と、
    上記掃気率と上記排気温度がそれぞれ所定の条件を満たす場合に、上記排気タービンよりも上流側の排気通路内で燃焼が行われるように、シリンダ内に供給する燃料噴射量を設定する燃料噴射量設定手段と、
    を有する内燃機関の制御装置。
  2. 上記燃料噴射量設定手段は、上記掃気率が第1の所定値を超えており、かつ、上記排気温度が第2の所定値を超えている場合に、シリンダ内に供給する燃料噴射量をリッチ化する請求項1に記載の内燃機関の制御装置。
  3. 吸気通路に設けられ、吸入空気量を調整するスロットルバルブを備え、
    上記掃気率が第1の所定値を超えているとともに、上記排気温度が第2の所定値を超えている場合、上記スロットルバルブを全開にするとともに、機関要求負荷の増加に応じて、上記バルブオーバーラップ期間を増大させつつ、上記燃料噴射量設定手段により燃料噴射量を増量させる請求項2に記載の内燃機関の制御装置。
  4. 筒内に燃料を直接的に噴射する燃料噴射弁と、
    排気通路に設けられた排気タービンにより吸気通路に設けられた吸気コンプレッサを駆動して吸気を過給するターボ過給機と、
    吸気弁と排気弁の双方が開弁するバルブオーバーラップ期間を調整可能なバルブオーバーラップ期間可変手段と、を備えた内燃機関の制御方法において、
    上記バルブオーバーラップ期間に吸気通路から排気通路へ吹き抜ける掃気の掃気率を推定し、
    上記排気タービンよりも上流側の排気通路内を流れる排気の排気温度を検出もしくは推定し、
    上記掃気率と排気温度が所定の条件を満たす場合に、上記排気タービンよりも上流側の排気通路内で燃焼が行われるように、シリンダ内に供給する燃料噴射量を設定する、
    内燃機関の制御方法。
JP2014524695A 2012-07-09 2013-06-10 内燃機関の制御装置及び制御方法 Expired - Fee Related JP5843012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524695A JP5843012B2 (ja) 2012-07-09 2013-06-10 内燃機関の制御装置及び制御方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012153163 2012-07-09
JP2012153163 2012-07-09
JP2014524695A JP5843012B2 (ja) 2012-07-09 2013-06-10 内燃機関の制御装置及び制御方法
PCT/JP2013/065990 WO2014010355A1 (ja) 2012-07-09 2013-06-10 内燃機関の制御装置及び制御方法

Publications (2)

Publication Number Publication Date
JP5843012B2 JP5843012B2 (ja) 2016-01-13
JPWO2014010355A1 true JPWO2014010355A1 (ja) 2016-06-20

Family

ID=49915823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014524695A Expired - Fee Related JP5843012B2 (ja) 2012-07-09 2013-06-10 内燃機関の制御装置及び制御方法

Country Status (2)

Country Link
JP (1) JP5843012B2 (ja)
WO (1) WO2014010355A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158435A1 (en) * 2014-04-17 2015-10-22 Frank Hoos Combustion cycle process
JP2016050502A (ja) * 2014-08-29 2016-04-11 スズキ株式会社 内燃機関の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183235A (ja) * 1987-01-27 1988-07-28 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH05280390A (ja) * 1992-03-31 1993-10-26 Mazda Motor Corp 2サイクルエンジンの制御装置
JP3280758B2 (ja) * 1993-07-06 2002-05-13 マツダ株式会社 機械式過給機付エンジンの吸気装置
JP2006299992A (ja) * 2005-04-22 2006-11-02 Toyota Motor Corp 内燃機関の制御システム
JP2008101502A (ja) * 2006-10-18 2008-05-01 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP5050917B2 (ja) * 2008-02-25 2012-10-17 マツダ株式会社 過給機付エンジンシステム
JP2009235920A (ja) * 2008-03-26 2009-10-15 Denso Corp 過給機付き筒内噴射式内燃機関の燃料噴射制御装置

Also Published As

Publication number Publication date
WO2014010355A1 (ja) 2014-01-16
JP5843012B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
US9297320B2 (en) Systems and methods for exhaust catalyst temperature control
US10041448B2 (en) Systems and methods for boost control
JP4609541B2 (ja) 過給機付き内燃機関の制御装置
EP2325463B1 (en) Internal combustion engine and internal combustion engine control method
US9945332B2 (en) Controlling exhaust gas flow to the EGR system through a scavenger valve
US9534530B2 (en) Dedicated-EGR cylinder with variable charge motion
JP6028925B2 (ja) 内燃機関の制御装置
US9255534B2 (en) Control device for internal combustion engine with turbo-supercharger
JP5545654B2 (ja) ターボチャージャ付き内燃機関
US20140331651A1 (en) Control apparatus for internal combustion engine
JP5610873B2 (ja) 内燃機関
JP5169439B2 (ja) 内燃機関制御装置及び内燃機関制御システム
JP5092962B2 (ja) 過給機付き内燃機関の制御装置
JP2011196196A (ja) 内燃機関の制御装置
JP5843012B2 (ja) 内燃機関の制御装置及び制御方法
JP2013130121A (ja) 火花点火式内燃機関の排気還流装置
RU2537660C1 (ru) Способ регулирования двигателя внутреннего сгорания
JP6127906B2 (ja) 内燃機関の制御装置
JP5850155B2 (ja) 内燃機関の制御装置
JP2019120204A (ja) エンジン制御装置
JP2017145715A (ja) ターボ過給エンジン
JP2012122430A (ja) 内燃機関の制御装置
WO2014002567A1 (ja) 内燃機関の制御装置及び制御方法
JP2014240630A (ja) 内燃機関のegr制御装置
JP2009250209A (ja) 内燃機関の排気再循環装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R151 Written notification of patent or utility model registration

Ref document number: 5843012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees