JPWO2013161032A1 - 内燃機関の排気浄化装置の異常判定システム - Google Patents

内燃機関の排気浄化装置の異常判定システム Download PDF

Info

Publication number
JPWO2013161032A1
JPWO2013161032A1 JP2014512233A JP2014512233A JPWO2013161032A1 JP WO2013161032 A1 JPWO2013161032 A1 JP WO2013161032A1 JP 2014512233 A JP2014512233 A JP 2014512233A JP 2014512233 A JP2014512233 A JP 2014512233A JP WO2013161032 A1 JPWO2013161032 A1 JP WO2013161032A1
Authority
JP
Japan
Prior art keywords
sensor
nox
oxidation catalyst
ammonia oxidation
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014512233A
Other languages
English (en)
Other versions
JP5839118B2 (ja
Inventor
有里子 萩本
有里子 萩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2013161032A1 publication Critical patent/JPWO2013161032A1/ja
Application granted granted Critical
Publication of JP5839118B2 publication Critical patent/JP5839118B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1616NH3-slip from catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

NH3センサの異常を高精度に判定する。このため、内燃機関の排気通路に設けられてNH3を還元剤としてNOxを還元する選択還元型NOx触媒と、該NOx触媒よりも上流側から還元剤を供給する供給装置と、該NOx触媒よりも下流側でNOx及びNH3を検出するNOxセンサと、該NOx触媒よりも下流側でNH3を検出するNH3センサと、を備えた内燃機関の排気浄化装置の異常判定システムにおいて、前記選択還元型NOx触媒からNH3が流出しているときに、NOxセンサの検出値とNOx濃度の推定値との差である推定NH3濃度と、NH3センサにより検出されるNH3濃度と、の差の絶対値が閾値以上の場合に、NH3センサに異常があると判定する。

Description

本発明は、内燃機関の排気浄化装置の異常判定システムに関する。
内燃機関の排気通路に選択還元型NOx触媒(以下、SCR触媒ともいう。)を配置する技術が知られている。このSCR触媒は、NHを吸着し、該NHによりNOxを還元することができる。
ここで、内燃機関の排気通路に、上流側から順に、尿素添加弁、SCR触媒、アンモニア酸化触媒、NOxセンサを備え、SCR触媒、アンモニア酸化触媒、尿素添加弁、NOxセンサの夫々について異常があるか否か判定する技術が知られている(例えば、特許文献1参照。)。
また、NHセンサを用いてSCR触媒の劣化判定を実施する技術が知られている(例えば、特許文献2参照。)。
ところで、大気中へのNHの排出量をより低減することが望まれている。これに対して、NHセンサの検出値に基づいて還元剤の供給量を制御することが考えられる。しかし、NHセンサに異常が発生することもあり得る。このため、NHセンサが異常であるか否か判定する必要もある。このNHセンサの異常判定については、今までにあまり検討されていないので、検討の余地がある。
特開2012−031826号公報 特開2011−122492号公報
本発明は、上記したような問題点に鑑みてなされたものであり、その目的は、NHセンサの異常を高精度に判定することにある。
上記課題を達成するために本発明による内燃機関の排気浄化装置の異常判定システムは、
内燃機関の排気通路に設けられてNHを還元剤としてNOxを還元する選択還元型NOx触媒と、
前記選択還元型NOx触媒よりも上流側から前記選択還元型NOx触媒に還元剤を供給する供給装置と、
前記選択還元型NOx触媒よりも下流側の排気通路に設けられ、排気中のNOx及びNHを検出するNOxセンサと、
前記選択還元型NOx触媒よりも下流側の排気通路に設けられ、排気中のNHを検出するNHセンサと、
を備えた内燃機関の排気浄化装置の異常判定システムにおいて、
前記NOxセンサの検出値を用いずに前記NOxセンサを通過する排気中のNOx濃度を推定する推定部と、
前記選択還元型NOx触媒からNHが流出しているときにおいて、前記NOxセンサの検出値と、前記推定部により推定されるNOx濃度と、の差である推定NH濃度と、前記NHセンサにより検出されるNH濃度と、の差の絶対値が閾値以上の場合に、前記NHセンサに異常があると判定する判定部と、
を備える。
NOxセンサは、NOxの他にNHも検出する。このため、NOxセンサの検出値だけでは、NOxとNHとを区別することができない。しかし、NOxセンサを通過する排気中のNOx濃度は、ある程度の精度で推定することができる。したがって、NOxセンサの検出値から、推定されるNOx濃度を減算することにより、NHの濃度を推定することができる。一方、NHセンサは、NHのみを検出する。そして、NHセンサが正常であれば、NOxセンサの検出値から推定されるNH濃度と、NHセンサの検出値と、の差は小さいはずである。したがって、この差が大きなときには、NHセンサに異常があると判定することができる。すなわち、推定NH濃度と、NHセンサの検出値と、の差の絶対値が閾値以上の場合に、NHセンサに異常があると判定することができる。この閾値は、NHセンサに異常があるときの推定NH濃度と、NHセンサの検出値と、の差の絶対値の下限値である。
なお、NOxセンサが正常であるか否かを、周知の技術により判定しておいてもよい。また、供給装置は、還元剤としてNHを供給してもよいが、これに代えて、NHに変化する物質(例えば、尿素)を供給してもよい。供給装置から供給される物質が、最終的にNHになればよい。また、推定部は、例えば内燃機関の運転状態及びSCR触媒の状態に基づいて、NOx濃度を推定してもよい。また、NOx濃度をNOx量とし、NH濃度をNH量として考えてもよい。
また、本発明においては、前記選択還元型NOx触媒よりも下流側で且つ前記NOxセンサ及びNHセンサよりも上流側の排気通路に設けられ、NHを酸化するアンモニア酸化触媒と、
前記アンモニア酸化触媒の温度を取得する温度取得部と、
前記アンモニア酸化触媒へ流入する排気の量を取得する排気流量取得部と、
を備え、
前記判定部は、前記温度取得部により取得される温度及び前記排気流量取得部により取得される排気の量に基づいて決定される前記アンモニア酸化触媒においてNOxが発生しない条件下で前記NHセンサに異常があるか否か判定することができる。
ここで、アンモニア酸化触媒では、NHがNOxに変化することがある。NHがNOxに変化すると、NOxセンサの検出値は変化しないものの、NHセンサの検出値は減少する。このため、NHセンサの異常を判定する精度が低下し得る。
そして、アンモニア酸化触媒において、NHがNOxに変化するか否かは、アンモニア酸化触媒の温度及びアンモニア酸化触媒へ流入する排気の量と関係している。すなわち、アンモニア酸化触媒の温度及びアンモニア酸化触媒へ流入する排気の量に基づいて、アンモニア酸化触媒においてNOxが発生しない条件が決まる。この条件下でNHセンサの異常を判定することにより、判定精度をより高めることができる。
また、本発明においては、前記判定部は、前記温度取得部により取得される温度及び前記排気流量取得部により取得される排気の量に基づいて決定される前記アンモニア酸化触媒からNHが流出する条件下で前記NHセンサに異常があるか否か判定することができる。
すなわち、アンモニア酸化触媒においてNOxが発生せず、且つ、アンモニア酸化触媒からNHが流出する条件下で判定を行う。ここで、NHがアンモニア酸化触媒を通過するときに酸化されると、NOxセンサ及びNHセンサにNHが到達しなくなり得る。NOxセンサ及びNHセンサにNHが到達しなければ、NHセンサの異常を判定することができない。そこで、NHセンサにNHが到達するときにNHセンサの異常を判定する。
アンモニア酸化触媒からNHが流出するか否かは、アンモニア酸化触媒の温度及びアンモニア酸化触媒へ流入する排気の量と関係している。すなわち、アンモニア酸化触媒の温度及びアンモニア酸化触媒へ流入する排気の量に基づいて、アンモニア酸化触媒からNHが流出する条件が決まる。この条件下でNHセンサの異常を判定することにより、判定精度をより高めることができる。
また、本発明においては、前記判定部は、前記アンモニア酸化触媒においてNOxが発生せず、且つ、前記アンモニア酸化触媒からNHが流出しないときには、前記供給装置から供給する還元剤量を前記アンモニア酸化触媒からNHが流出するまで増量させた後に、前記NHセンサに異常があるか否か判定することができる。
すなわち、現時点でアンモニア酸化触媒からNHが流出していなければ、NHセンサの異常を判定することができない。これに対し、アンモニア酸化触媒からNHが流出していないときに、供給装置から供給する還元剤量を増量させて、アンモニア酸化触媒からNHを流出させれば、NHセンサの異常を判定することができる。このようにして、NHセンサの異常を判定可能な領域を広げることができる。
また、本発明においては、前記判定部は、前記アンモニア酸化触媒においてNOxが発生するか否かの境にあるときの前記アンモニア酸化触媒の温度及び前記アンモニア酸化触媒へ流入する排気の量よりも、前記温度取得部により取得される温度が低く且つ前記排気流量取得部により取得される排気の量が多いときに、前記NHセンサに異常があるか否か判定することができる。
アンモニア酸化触媒の温度が低いほど、また、アンモニア酸化触媒へ流入する排気の量が多いほど、アンモニア酸化触媒においてNOxが発生し難くなる。そして、アンモニア酸化触媒においてNOxが発生するか否かは、アンモニア酸化触媒の温度、及び、アンモニア酸化触媒へ流入する排気の量によって決まる。このため、アンモニア酸化触媒においてNOxが発生するか否かの境となる、アンモニア酸化触媒の温度と、アンモニア酸化触媒へ流入する排気の量と、の関係が求まる。そして、アンモニア酸化触媒においてNOxが発生するか否かの境のアンモニア酸化触媒の温度、及び、アンモニア酸化触媒へ流入する排気の量よりも、温度取得部により取得される温度が低く且つ排気流量取得部により取得される排気の量が多いときには、アンモニア酸化触媒においてNOxが発生しない。このときにNHセンサの異常を判定することにより、判定精度をより高めることができる。
なお、温度取得部により取得される温度、及び、排気流量取得部により取得される排気の量に代えて、これらと相関関係にある他の物理量を用いてもよい。
また、本発明においては、前記判定部は、
前記アンモニア酸化触媒においてNOxが発生するか否かの境にあるときの前記アンモニア酸化触媒の温度及び前記アンモニア酸化触媒へ流入する排気の量よりも、前記温度取得部により取得される温度が低く且つ前記排気流量取得部により取得される排気の量が多いときで、
且つ、
前記アンモニア酸化触媒からNHが流出するか否かの境にあるときの前記アンモニア酸化触媒の温度及び前記アンモニア酸化触媒へ流入する排気の量よりも、前記温度取得部により取得される温度が低く且つ前記排気流量取得部により取得される排気の量が多いときに、
前記NHセンサに異常があるか否か判定することができる。
アンモニア酸化触媒の温度が低いほど、また、アンモニア酸化触媒へ流入する排気の量が多いほど、アンモニア酸化触媒からNHが流出し易くなる。そして、アンモニア酸化触媒からNHが流出するか否かは、アンモニア酸化触媒の温度、及び、アンモニア酸化触媒へ流入する排気の量によって決まる。このため、アンモニア酸化触媒からNHが流出するか否かの境となる、アンモニア酸化触媒の温度と、アンモニア酸化触媒へ流入する排気の量と、の関係が求まる。そして、アンモニア酸化触媒からNHが流出するか否かの境のアンモニア酸化触媒の温度、及び、アンモニア酸化触媒へ流入する排気の量よりも、温度取得部により取得される温度が低く且つ排気流量取得部により取得される排気の量が多いときには、アンモニア酸化触媒からNHが流出する。
一方、アンモニア酸化触媒においてNOxが発生するか否かの境にあるときのアンモニア酸化触媒の温度、及び、アンモニア酸化触媒へ流入する排気の量よりも、温度取得部により取得される温度が低く且つ排気流量取得部により取得される排気の量が多いときには、アンモニア酸化触媒においてNOxが発生しない。そして、アンモニア酸化触媒においてNOxが発生しない条件と、アンモニア酸化触媒からNHが流出する条件と、を共に満たしたときにNHセンサの異常を判定することにより、判定精度をより高めることができる。
本発明によれば、NHセンサの異常を高精度に判定することができる。
実施例に係る内燃機関の排気浄化装置の異常判定システムの概略構成を示す図である。 NOxセンサとNHセンサとの検出値の関係を示した図である。 実施例1に係るNHセンサの異常を判定するフローを示したフローチャートである。 アンモニア酸化触媒の温度と、内燃機関の吸入空気量との関係を示した図である。 内燃機関の吸入空気量が比較的多いときのアンモニア酸化触媒の温度と、アンモニア酸化触媒に流入するNH量、アンモニア酸化触媒で浄化可能なNH量、及びアンモニア酸化触媒で発生するNOx量と、の関係を示した図である。 内燃機関の吸入空気量が中程度のときのアンモニア酸化触媒の温度と、アンモニア酸化触媒に流入するNH量、アンモニア酸化触媒で浄化可能なNH量、及びアンモニア酸化触媒で発生するNOx量と、の関係を示した図である。 内燃機関の吸入空気量が比較的少ないときのアンモニア酸化触媒の温度と、アンモニア酸化触媒に流入するNH量、アンモニア酸化触媒で浄化可能なNH量、及びアンモニア酸化触媒で発生するNOx量と、の関係を示した図である。 実施例2に係るNHセンサの異常を判定するフローを示したフローチャートである。
以下、本発明に係る内燃機関の排気浄化装置の異常判定システムの具体的な実施態様について図面に基づいて説明する。
<実施例1>
図1は、本実施例に係る内燃機関の排気浄化装置の異常判定システムの概略構成を示す図である。図1に示す内燃機関1は、ディーゼル機関であっても、また、ガソリン機関であってもよい。
内燃機関1には、吸気通路2及び排気通路3が接続されている。吸気通路2には、該吸気通路2を流通する吸気の量を検出するエアフローメータ11が設けられている。一方、排気通路3には、排気の流れ方向の上流側から順に、噴射弁4、選択還元型NOx触媒5(以下、SCR触媒5という。)、アンモニア酸化触媒6が設けられている。
噴射弁4は、還元剤を噴射するときに開き、還元剤の噴射を停止するときに閉じる。還元剤には、アンモニア(NH)が用いられる。なお、噴射弁4は、アンモニアを噴射してもよく、尿素水を噴射してもよい。噴射弁4から噴射された尿素水は、SCR触媒5において加水分解されてアンモニアとなり、SCR触媒5に吸着する。このアンモニアは、SCR触媒5において還元剤として利用される。すなわち、噴射弁4からは、NHに変化する物質、または、NHを供給する。なお、本実施例においては噴射弁4が、本発明における供給装置に相当する。
SCR触媒5は、還元剤が存在するときに、排気中のNOxを還元する。したがって、SCR触媒5に還元剤としてNHを予め吸着させておけば、SCR触媒5において、NOxをNHにより還元させることができる。
アンモニア酸化触媒6は、酸化能を有する触媒であればよく、たとえば酸化触媒または三元触媒であってもよい。アンモニア酸化触媒6は、SCR触媒5から流出するNHを酸化させる。なお、本実施例では、アンモニア酸化触媒6を設けなくてもよい。
SCR触媒5よりも上流側の排気通路3には、排気の温度を検出する排気温度センサ12が設けられている。排気温度センサ12は、SCR触媒5に流入する排気の温度を検出する。そして、この排気の温度に基づいて、SCR触媒5またはアンモニア酸化触媒6の温度を推定することができる。なお、SCR触媒5またはアンモニア酸化触媒6よりも下流側に温度センサを取り付けて、該温度センサによりSCR触媒5及びアンモニア酸化触媒6の温度を検出してもよい。また、内燃機関1の運転状態に基づいて、SCR触媒5及びアンモニア酸化触媒6の温度を推定することもできる。例えば、機関回転数、燃料噴射量、及び吸入空気量と、SCR触媒5及びアンモニア酸化触媒6の温度と、には相関関係があるため、これらの関係を予め実験等により求めてマップ化しておいてもよい。
また、アンモニア酸化触媒6よりも下流の排気通路3には、排気中のNOx濃度を検出するNOxセンサ13、及び、排気中のNH濃度を検出するNHセンサ14が設けられている。NOxセンサ13は、NOxの他、NHも同様に検出する。すなわち、NOxセンサ13の検出値は、NOx濃度とNH濃度とを合わせた値となる。また、NHセンサ14は、NHのみを検出する。
なお、噴射弁4よりも上流側の排気通路3に、酸化触媒やパティキュレートフィルタを備えていてもよい。
以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1を制御する。
ECU10には、上記センサの他、アクセルペダルの踏込量に応じた電気信号を出力し機関負荷を検出可能なアクセル開度センサ15、及び、機関回転数を検出するクランクポジションセンサ16が電気配線を介して接続され、これらセンサの出力信号がECU10に入力される。一方、ECU10には、噴射弁4が電気配線を介して接続されており、該ECU10により噴射弁4が制御される。
そして、ECU10は、NOxセンサ13の検出値を利用して、NHセンサ14の異常を判定する。そして、NHセンサ14の異常を判定するときには、NOxセンサ13及びNHセンサ14においてNHが検出されるように、SCR触媒5において最大限吸着可能なNH量よりも多いNHを供給する。すなわち、SCR触媒5からNHを流出させる。ここで、図2は、NOxセンサ13とNHセンサ14との検出値の関係を示した図である。T0で示される時点に噴射弁4からのNHの供給が開始される。このときには、SCR触媒5に最大限吸着可能なNH量よりも多いNHを供給している。
NOxセンサ13の検出値は、NOx濃度とNH濃度との合計値となる。そして、SCR触媒5に最大限吸着可能なNH量よりも多いNHを供給していると、NH濃度が徐々に高くなるので、その分、NOxセンサ13の検出値が高くなる。ここで、NHを供給しても、排気中のNOx濃度は変わらない。一方、NHセンサ13では、NHのみが検出されるので、NH濃度の上昇とともに、検出値も高くなる。
そして、アンモニア酸化触媒6よりも下流側のNOx濃度は、推定することができる。なお、アンモニア酸化触媒6よりも下流側のNOx濃度を推定した値を以下、「推定NOx濃度」という。この推定NOx濃度は、図4の「NOxセンサ検出値」において一点鎖線で示している。そして、NOxセンサ13の検出値から、推定NOx濃度を減算することにより、NH濃度を推定することができる。すなわち、NOxセンサ13の検出値は、NH濃度とNOx濃度との合計値であるため、NOxセンサ13の検出値及び推定NOx濃度が分かれば、NH濃度を推定することができる。このようにして、推定されるNH濃度を以下、「推定NH濃度」という。なお、本実施例においては推定NOx濃度を算出するECU10が、本発明における推定部に相当する。
そして、ECU10は、推定NH濃度と、NHセンサ14の検出値と、を比較することにより、該NHセンサ14に異常があるか否か判定する。
推定NH濃度は、推定NOx濃度に基づいて算出されるため、ある程度の誤差が含まれる。しかし、その誤差よりも、推定NH濃度と、NHセンサ14の検出値と、の差の絶対値が大きければ、NHセンサ14に異常があると考えられる。このようにして、ECU10は、NHセンサ14に異常があるか否か判定する。
図3は、本実施例に係るNHセンサ14の異常を判定するフローを示したフローチャートである。本ルーチンは、ECU10により所定時間毎に実行される。
ステップS101では、NOxセンサ13が正常であるか否か判定される。NHセンサ14の異常を判定するときにNOxセンサ13の検出値を利用するため、NOxセンサ13が正常でなければ正確な判定ができない。このため、NOxセンサ13が正常であることが必要となる。本ステップでは、周知の技術を利用して、NOxセンサ13が正常であるか否か判定することができる。また、NHセンサ14以外の他の装置に異常がないことを予め周知の技術を利用して確認しておいてもよい。ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合には本ルーチンを終了させる。
ステップS102では、NHセンサ14の異常を判定する要求があるか否か判定される。NHセンサ14の異常を判定する要求は、NHセンサ14の異常を判定する必要が生じたときになされる。例えば、所定時間毎にNHセンサ14の異常を判定する要求があるとしてもよい。また、内燃機関1が始動される毎に、NHセンサ14の異常を判定する要求があるとしてもよい。ステップS102で肯定判定がなされた場合にはステップS103へ進み、一方、否定判定がなされた場合には本ルーチンを終了させる。
ステップS103では、SCR触媒5の温度が、閾値以上であるか否か判定される。本ステップでは、SCR触媒5の温度が、活性温度となっているか否か判定される。すなわち、閾値は、SCR触媒5の活性温度の下限値である。この閾値は、予め実験等により求めることができる。ここで、SCR触媒5の温度が活性温度となっていれば、該SCR触媒5において浄化されるNOx量を推定し易い。すなわち、SCR触媒5におけるNOx濃度の減少量を推定し易い。このため、SCR触媒5から流出する排気中のNOx濃度を容易に推定することができる。したがって、推定NOx濃度を高精度に求めることができる。なお、SCR触媒5から流出する排気中のNOx量またはNOx濃度を推定することができるのであれば、本ステップを省略してもよい。また、SCR触媒5の温度が閾値以上になっていない場合に、該SCR触媒5の温度を閾値まで上昇させてもよい。例えば、排気の温度を上昇さることによりSCR触媒5の温度を上昇させてもよく、SCR触媒5をヒータ等で加熱してもよい。
なお、SCR触媒5の温度は、排気温度センサ12の検出値に基づいて求めることができる。また、SCR触媒5にセンサを直接取り付けて該SCR触媒5の温度を検出してもよい。また、内燃機関1の運転状態に応じてSCR触媒5の温度が変化するので、内燃機関1の運転状態に基づいてSCR触媒5の温度を推定してもよい。例えば、機関回転数、内燃機関1への燃料供給量、及び吸入空気量と、SCR触媒5の温度と、の関係を実験等により求めてマップ化しておき、ECU10に記憶させておいてもよい。そして、ステップS103で肯定判定がなされた場合にはステップS104へ進み、一方、否定判定がなされた場合には本ルーチンを終了させる。
ステップS104では、噴射弁4からNHが供給される。このときには、SCR触媒5からNHが流出するようにNHを供給する。このため、NOxを還元するために必要となるNH量よりも多くのNHを供給する。
ここで、NOxを還元するのであれば、NOxの還元のために消費されるNHを補充するように、噴射弁4からNHを供給すればよい。すなわち、通常は、SCR触媒5からNHが流出しないように、噴射弁4からNHが供給されている。一方、NHセンサ14の異常を判定するときには、SCR触媒5におけるNHの消費量よりも多くのNHを供給する。例えば、NOxの還元のために必要となるNH量よりも規定量だけ多いNHを供給してもよい。
なお、SCR触媒5におけるNHの消費量は、内燃機関1から排出されるNOx量と相関関係にあるため、内燃機関1の運転状態に基づいて算出することができる。この内燃機関1から排出されるNOx量は、例えば内燃機関1の吸入空気量、及び内燃機関1に供給される燃料量と相関関係にある。この関係を予め実験等により求めてマップ化しておけば、内燃機関1から排出されるNOx量を、内燃機関1の吸入空気量と、内燃機関1に供給される燃料量と、から算出することができる。なお、内燃機関1の吸入空気量は、エアフローメータ11の検出値である。また、内燃機関1に供給される燃料量を算出するのはECU10であるので、ECU10に記憶されている燃料量を用いることができる。そして、ステップS104の処理が完了したら、ステップS105へ進む。
ステップS105では、推定NH濃度が算出される。現時点でのNOxセンサ13の検出値から、推定NOx濃度を減算することで、推定NH濃度が算出される。
ここで、推定NOx濃度は、内燃機関1から排出されるガス中のNOx濃度から、SCR触媒5にて浄化されるNOx濃度の減少分を減算することにより得る。内燃機関1から排出されるガス中のNOx濃度は、内燃機関1の吸入空気量、及び内燃機関1に供給される燃料量と相関関係にある。この関係を予め実験等により求めてマップ化しておけば、内燃機関1から排出されるガス中のNOx濃度を、内燃機関1の吸入空気量と、内燃機関1に供給される燃料量と、から算出することができる。
また、SCR触媒5にて浄化されることにより低下するNOx濃度は、SCR触媒5の温度及び内燃機関1の吸入空気量と相関関係にある。したがって、この関係を予め実験等により求めてマップ化しておけば、SCR触媒5にて浄化されることにより低下するNOx濃度を、SCR触媒5の温度と、内燃機関1の吸入空気量と、から算出することができる。そして、ステップS105の処理が完了したら、ステップS106へ進む。
ステップS106では、推定NOx濃度と、NHセンサ14の検出値と、の差の絶対値が、閾値未満であるか否か判定する。この閾値は、NHセンサ14に異常があるときの、推定NOx濃度と、NHセンサ14の検出値と、の差の絶対値の下限値である。この閾値は、予め実験等により求めておく。
ステップS106で肯定判定がなされた場合にはステップS107へ進んで、NHセンサ14が正常であると判定される。一方、ステップS106で否定判定がなされた場合にはステップS108へ進んで、NHセンサ14が異常であると判定される。
なお、NHセンサ14が正常であると判定された後に、該NHセンサ14の検出値を利用して、アンモニア酸化触媒6の劣化判定を実施してもよい。そして、本実施例においてはステップS106,S107,S108を処理するECU10が、本発明における判定部に相当する。
以上説明したように本実施例によれば、NOxセンサ13の検出値及び推定NOx濃度を利用して、NHセンサ14が異常であるか否か判定することができる。
<実施例2>
本実施例では、NHセンサ14の異常を判定するときの条件が、実施例1と異なる。その他の装置等は実施例1と同じため、説明を省略する。
噴射弁4からNHを供給してSCR触媒5からNHを流出させたとしても、アンモニア酸化触媒6が設けられている場合には、該アンモニア酸化触媒6にてNHが酸化され得る。すなわち、NOxセンサ13及びNHセンサ14にNHが到達しないこともあるので、NHセンサ14の異常を判定することができなくなる虞がある。そこで、本実施例では、アンモニア酸化触媒6からNHが流出する条件下で、NHセンサ14の異常を判定する。
ここで、内燃機関1の吸入空気量が多くなるほど、単位時間当たりにアンモニア酸化触媒6を通過する排気の量が多くなるために、アンモニア酸化触媒6にてNHが反応し難くなるので、アンモニア酸化触媒6をNHが通り抜け易くなる。また、アンモニア酸化触媒6の温度が低くなると、アンモニア酸化触媒6においてNHが反応し難くなるので、アンモニア酸化触媒6をNHが通り抜け易くなる。なお、現時点では、アンモニア酸化触媒6からNHが流出していない場合であっても、噴射弁4からのNHの供給量を増加させることにより、アンモニア酸化触媒6からNHを流出させることができる。
また、アンモニア酸化触媒6の温度が高くなると、アンモニア酸化触媒6においてNHがNOxへと変化する。また、内燃機関1の吸入空気量が多くなるほど、単位時間当たりにアンモニア酸化触媒6に流入する排気の量が多くなるため、アンモニア酸化触媒6にてNHが反応し難くなる。このため、内燃機関1の吸入空気量が多くなるほど、NHがNOxへと変化し難くなる。
NHがNOxへと変化してもNOxセンサ13の検出値は変化しないが、NHセンサ14の検出値は減少する。このNHセンサ14の検出値の減少により、異常判定の精度が低下する。そこで、本実施例では、アンモニア酸化触媒6において、NHがNOxへと変化しない条件下で、NHセンサ14の異常を判定する。なお、内燃機関1の吸入空気量と、アンモニア酸化触媒6に流入する排気の量と、には相関関係があるため、内燃機関1の吸入空気量に基づいて、アンモニア酸化触媒6に流入する排気の量を算出ことができる。そして、本実施例においては内燃機関1の吸入空気量に基づいてアンモニア酸化触媒6に流入する排気の量を算出するECU10が、本発明における排気流量取得部に相当する。なお、アンモニア酸化触媒6に流入する排気の量を求めずに、内燃機関1の吸入空気量に基づいてNHセンサ14の異常を判定する条件を決定することもできる。したがって、以下では、アンモニア酸化触媒6に流入する排気の量を求めずに、内燃機関1の吸入空気量に基づいてNHセンサ14の異常を判定する条件を決定する。なお、内燃機関1の吸入空気量を、アンモニア酸化触媒6に流入する排気の量に置き換えることもできる。
ここで、図4は、アンモニア酸化触媒6の温度と、内燃機関1の吸入空気量との関係を示した図である。図4において、実線は、アンモニア酸化触媒6をNHが通り抜けるか否かの境を示している。実線よりも吸入空気量が多いか、又は、アンモニア酸化触媒6の温度が低いときに、アンモニア酸化触媒6をNHが通り抜ける。すなわち、図4において、AおよびDで示した領域であれば、アンモニア酸化触媒6をNHが通り抜ける。
また、図4において、一点鎖線は、アンモニア酸化触媒6においてNHがNOxに変化するか否かの境を示している。一点鎖線よりも吸入空気量が多いか、又は、アンモニア酸化触媒6の温度が低いときには、NHがNOxに変化しない。すなわち、図4において、AおよびBで示した領域であれば、NHがNOxに変化しない。
次に、図5,6,7は、アンモニア酸化触媒6の温度と、アンモニア酸化触媒6に流入するNH量、アンモニア酸化触媒6で浄化されるNH量、及びアンモニア酸化触媒6で発生するNOx量と、の関係を示した図である。アンモニア酸化触媒6で浄化されるNH量とは、アンモニア酸化触媒6において、NHがNまで変化するNH量である。
図5は、内燃機関1の吸入空気量が比較的多いときであり、図6は、内燃機関1の吸入空気量が中程度のときであり、図7は、内燃機関1の吸入空気量が比較的少ないときである。図5,6,7において、二点鎖線は、アンモニア酸化触媒6に流入するNH量を示し、一点鎖線は、アンモニア酸化触媒6で浄化されるNH量を示し、実線は、アンモニア酸化触媒6で発生するNOx量を示している。また、図5,6,7において、A,B,C,Dは、図4におけるA,B,C,Dの領域に対応している。
図5に示されるように、内燃機関1の吸入空気量が比較的多いときには、アンモニア酸化触媒6に流入するNH量が多くなる。このため、アンモニア酸化触媒6の温度の全域において、アンモニア酸化触媒6に流入するNH量が、アンモニア酸化触媒6で浄化されるNH量よりも多くなる。したがって、アンモニア酸化触媒6ではNHを浄化しきれないので、下流にNHが流出する。また、Dで示される領域では、アンモニア酸化触媒6におけるNHの酸化能力が低下し、NHがNに変化する前の状態であるNOxが排出される。
また、図6に示されるように、内燃機関1の吸入空気量が中程度のときには、内燃機関1の吸入空気量が比較的多いときよりも、アンモニア酸化触媒6に流入するNH量が少なくなる。このため、Bで示される領域においては、アンモニア酸化触媒6に流入するNH量と、アンモニア酸化触媒6で浄化されるNH量と、がほぼ同じなるので、アンモニア酸化触媒6からNHが流出しなくなる。また、Cで示される領域においては、アンモニア酸化触媒6からNHが流出しないものの、NOxの発生量が多くなる。
また、図7に示されるように、内燃機関1の吸入空気量が比較的少ないときには、内燃機関1の吸入空気量が中程度のときよりも、アンモニア酸化触媒6に流入するNH量が少なくなる。このため、Bで示される領域では、アンモニア酸化触媒6に流入するNH量よりも、アンモニア酸化触媒6で浄化可能なNH量が多くなるので、アンモニア酸化触媒6からNHが流出しない。また、Cで示される領域がアンモニア酸化触媒6の温度がより低い側に拡大する。すなわち、NOxが発生する温度領域が広くなる。
そして、図4においてAで示した領域であれば、アンモニア酸化触媒6をNHが通り抜け、且つ、NHがNOxに変化しない。したがって、図4のAの領域でNHセンサ14の異常を判定すればよい。また、図4のBの領域であっても、NHの供給量を増量することにより、アンモニア酸化触媒6をNHが通り抜けるので、NHセンサ14の異常を判定することができる。つまり、NHの供給量を増量することにより、NHセンサ14の異常を判定することができる領域を広げることができる。なお、通常、内燃機関1が始動されてから停止されるまでの間に、図4のAまたはBの領域に少なくとも1回は入るので、NHセンサ14の異常を判定する機会は確保される。
図8は、本実施例に係るNHセンサ14の異常を判定するフローを示したフローチャートである。本ルーチンは、ECU10により所定時間毎に実行される。なお、図3に示したフローチャートと比較して、ステップS201のみが異なるため、ステップS201のみを説明する。
ステップS103で肯定判定がなされた場合に、ステップS201へ進む。ステップS201では、内燃機関1の吸入空気量及びアンモニア酸化触媒6の温度が、図4におけるAまたはBで示される領域であるか否か判定される。すなわち、少なくともアンモニア酸化触媒6にてNOxが発生しない領域であるか否か判定される。なお、本ステップでは、内燃機関1の吸入空気量及びアンモニア酸化触媒6の温度が、図4におけるAで示される領域であるか否か判定してもよい。つまり、アンモニア酸化触媒6にてNOxが発生しなく且つアンモニア酸化触媒6からNHが流出する領域であるか否か判定してもよい。アンモニア酸化触媒6の温度は、排気温度センサ12に基づいて得てもよく、内燃機関1の運転状態に基づいて推定してもよい。そして、本実施例においては排気温度センサ12、又は、内燃機関1の運転状態に基づいてアンモニア酸化触媒6の温度を推定するECU10が、本発明における温度取得部に相当する。
なお、図4におけるAで示される領域であれば、アンモニア酸化触媒6から既にNHが流出しているので、還元剤の供給量が最小限で済む。しかし、図4におけるAで示される領域に入る頻度が少ないと、NHセンサ14の異常判定の頻度が減少する場合もある。このような場合に、Bで示される領域にまで広げてNHセンサ14の異常判定を実施してもよい。したがって、NHセンサ14の異常判定の頻度によっては、Aで示される領域のみでNHセンサ14の異常を判定してもよい。
ステップS201で肯定判定がなされた場合にはステップS104へ進み、一方、否定判定がなされた場合には本ルーチンを終了させる。
なお、NHセンサ14が正常であると判定された後に、該NHセンサ14の検出値を利用して、アンモニア酸化触媒6の劣化判定を実施してもよい。ここで、アンモニア酸化触媒6が設けられている場合には、該アンモニア酸化触媒6の劣化の度合いに応じて、NOxセンサ13及びNHセンサ14に到達するNH量やNOx量が変化する。このため、アンモニア酸化触媒6の劣化の度合いによって、NHセンサ14の異常を判定する精度が変化し得る。しかし、本実施例では、アンモニア酸化触媒6からNHが流出し、且つ、アンモニア酸化触媒6においてNOxが発生しない条件下でNHセンサ14の異常を判定しているので、アンモニア酸化触媒6の劣化の影響を受け難い。すなわち、アンモニア酸化触媒6の劣化の度合いによらず、NHセンサ14の異常を高精度に判定することができる。そして、NHセンサ14が正常であると判定された後であれば、該NHセンサ14の検出値を利用して、アンモニア酸化触媒6の劣化判定を実施することができる。
以上説明したように、本実施例によれば、内燃機関1の吸入空気量、すなわちアンモニア酸化触媒6に流入する排気の量、及びアンモニア酸化触媒6の温度を考慮して、NHセンサ14が異常であるか否か判定しているので、判定精度を高めることができる。
1 内燃機関
2 吸気通路
3 排気通路
4 噴射弁
5 選択還元型NOx触媒(SCR触媒)
6 アンモニア酸化触媒
10 ECU
11 エアフローメータ
12 排気温度センサ
13 NOxセンサセンサ
14 NHセンサ
15 アクセル開度センサ
16 クランクポジションセンサ

Claims (6)

  1. 内燃機関の排気通路に設けられてNHを還元剤としてNOxを還元する選択還元型NOx触媒と、
    前記選択還元型NOx触媒よりも上流側から前記選択還元型NOx触媒に還元剤を供給する供給装置と、
    前記選択還元型NOx触媒よりも下流側の排気通路に設けられ、排気中のNOx及びNHを検出するNOxセンサと、
    前記選択還元型NOx触媒よりも下流側の排気通路に設けられ、排気中のNHを検出するNHセンサと、
    を備えた内燃機関の排気浄化装置の異常判定システムにおいて、
    前記NOxセンサの検出値を用いずに前記NOxセンサを通過する排気中のNOx濃度を推定する推定部と、
    前記選択還元型NOx触媒からNHが流出しているときにおいて、前記NOxセンサの検出値と、前記推定部により推定されるNOx濃度と、の差である推定NH濃度と、前記NHセンサにより検出されるNH濃度と、の差の絶対値が閾値以上の場合に、前記NHセンサに異常があると判定する判定部と、
    を備える内燃機関の排気浄化装置の異常判定システム。
  2. 前記選択還元型NOx触媒よりも下流側で且つ前記NOxセンサ及びNHセンサよりも上流側の排気通路に設けられ、NHを酸化するアンモニア酸化触媒と、
    前記アンモニア酸化触媒の温度を取得する温度取得部と、
    前記アンモニア酸化触媒へ流入する排気の量を取得する排気流量取得部と、
    を備え、
    前記判定部は、前記温度取得部により取得される温度及び前記排気流量取得部により取得される排気の量に基づいて決定される前記アンモニア酸化触媒においてNOxが発生しない条件下で前記NHセンサに異常があるか否か判定する請求項1に記載の内燃機関の排気浄化装置の異常判定システム。
  3. 前記判定部は、前記温度取得部により取得される温度及び前記排気流量取得部により取得される排気の量に基づいて決定される前記アンモニア酸化触媒からNHが流出する条件下で前記NHセンサに異常があるか否か判定する請求項2に記載の内燃機関の排気浄化装置の異常判定システム。
  4. 前記判定部は、前記アンモニア酸化触媒においてNOxが発生せず、且つ、前記アンモニア酸化触媒からNHが流出しないときには、前記供給装置から供給する還元剤量を前記アンモニア酸化触媒からNHが流出するまで増量させた後に、前記NHセンサに異常があるか否か判定する請求項3に記載の内燃機関の排気浄化装置の異常判定システム。
  5. 前記判定部は、前記アンモニア酸化触媒においてNOxが発生するか否かの境にあるときの前記アンモニア酸化触媒の温度及び前記アンモニア酸化触媒へ流入する排気の量よりも、前記温度取得部により取得される温度が低く且つ前記排気流量取得部により取得される排気の量が多いときに、前記NHセンサに異常があるか否か判定する請求項2に記載の内燃機関の排気浄化装置の異常判定システム。
  6. 前記判定部は、
    前記アンモニア酸化触媒においてNOxが発生するか否かの境にあるときの前記アンモニア酸化触媒の温度及び前記アンモニア酸化触媒へ流入する排気の量よりも、前記温度取得部により取得される温度が低く且つ前記排気流量取得部により取得される排気の量が多いときで、
    且つ、
    前記アンモニア酸化触媒からNHが流出するか否かの境にあるときの前記アンモニア酸化触媒の温度及び前記アンモニア酸化触媒へ流入する排気の量よりも、前記温度取得部により取得される温度が低く且つ前記排気流量取得部により取得される排気の量が多いときに、
    前記NHセンサに異常があるか否か判定する請求項3に記載の内燃機関の排気浄化装置の異常判定システム。
JP2014512233A 2012-04-26 2012-04-26 内燃機関の排気浄化装置の異常判定システム Active JP5839118B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061210 WO2013161032A1 (ja) 2012-04-26 2012-04-26 内燃機関の排気浄化装置の異常判定システム

Publications (2)

Publication Number Publication Date
JPWO2013161032A1 true JPWO2013161032A1 (ja) 2015-12-21
JP5839118B2 JP5839118B2 (ja) 2016-01-06

Family

ID=49482401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014512233A Active JP5839118B2 (ja) 2012-04-26 2012-04-26 内燃機関の排気浄化装置の異常判定システム

Country Status (4)

Country Link
US (1) US9188046B2 (ja)
EP (1) EP2843205B1 (ja)
JP (1) JP5839118B2 (ja)
WO (1) WO2013161032A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6238564B2 (ja) * 2013-05-16 2017-11-29 ボッシュ株式会社 診断装置、排気浄化装置、および診断方法
JP6032183B2 (ja) * 2013-11-19 2016-11-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102016204323B4 (de) 2016-03-16 2018-03-08 Continental Automotive Gmbh Verfahren zum Ermitteln eines korrigierten Stickoxidwerts und Ammoniakwerts in einer Brennkraftmaschine
JP6572932B2 (ja) * 2017-04-04 2019-09-11 トヨタ自動車株式会社 アンモニア検出装置の異常診断装置
DE102018222624A1 (de) * 2018-12-20 2020-06-25 Robert Bosch Gmbh Verfahren zum Betreiben eines Sensorsystems zum Nachweis mindestens eines Anteils einer Messgaskomponente mit gebundenem Sauerstoff in einem Messgas
DE102019210362A1 (de) * 2019-07-12 2021-01-14 Robert Bosch Gmbh Verfahren zum Überwachen mindestens einer Ammoniakmesszelle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125323A (ja) * 2004-10-29 2006-05-18 Nissan Diesel Motor Co Ltd 排気浄化装置
JP2011122492A (ja) * 2009-12-09 2011-06-23 Honda Motor Co Ltd 排気浄化システムの触媒劣化判定装置
JP2011220126A (ja) * 2010-04-05 2011-11-04 Bosch Corp 排気浄化システムの異常診断装置及び異常診断方法並びに排気浄化システム
JP2012031826A (ja) * 2010-08-02 2012-02-16 Toyota Motor Corp 排気浄化装置の異常検出システム
JP2012036799A (ja) * 2010-08-05 2012-02-23 Honda Motor Co Ltd 内燃機関の排気浄化システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648334A (en) * 1987-06-30 1989-01-12 Mazda Motor Air-fuel ratio controller of engine
JPH03134240A (ja) * 1989-10-18 1991-06-07 Japan Electron Control Syst Co Ltd 内燃機関の空燃比フィードバック制御装置
AU671834B2 (en) * 1992-06-26 1996-09-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method of detecting faults for fuel evaporative emission treatment system
JP3052642B2 (ja) * 1993-02-03 2000-06-19 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JPH07167747A (ja) * 1993-12-14 1995-07-04 Hitachi Ltd 内燃機関の二次空気供給システムの故障診断装置
DE102006026739B4 (de) * 2006-06-08 2008-11-27 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US7610750B2 (en) * 2006-07-25 2009-11-03 Gm Global Technology Operations, Inc. Method and apparatus for monitoring a urea injection system in an exhaust aftertreatment system
US8281572B2 (en) * 2008-04-30 2012-10-09 Cummins Ip, Inc. Apparatus, system, and method for reducing NOx emissions from an engine system
US20100101214A1 (en) * 2008-10-24 2010-04-29 Herman Andrew D Diagnostic methods for selective catalytic reduction (scr) exhaust treatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125323A (ja) * 2004-10-29 2006-05-18 Nissan Diesel Motor Co Ltd 排気浄化装置
JP2011122492A (ja) * 2009-12-09 2011-06-23 Honda Motor Co Ltd 排気浄化システムの触媒劣化判定装置
JP2011220126A (ja) * 2010-04-05 2011-11-04 Bosch Corp 排気浄化システムの異常診断装置及び異常診断方法並びに排気浄化システム
JP2012031826A (ja) * 2010-08-02 2012-02-16 Toyota Motor Corp 排気浄化装置の異常検出システム
JP2012036799A (ja) * 2010-08-05 2012-02-23 Honda Motor Co Ltd 内燃機関の排気浄化システム

Also Published As

Publication number Publication date
EP2843205A1 (en) 2015-03-04
US20150093292A1 (en) 2015-04-02
WO2013161032A1 (ja) 2013-10-31
US9188046B2 (en) 2015-11-17
EP2843205B1 (en) 2016-11-09
EP2843205A4 (en) 2015-06-03
JP5839118B2 (ja) 2016-01-06

Similar Documents

Publication Publication Date Title
JP4985849B2 (ja) 触媒劣化判定装置及び触媒劣化判定方法
EP3106640B1 (en) Malfunction diagnosis apparatus and malfunction diagnosis method
JP6593374B2 (ja) NOxセンサの診断装置及び診断方法
JP5120464B2 (ja) 排気浄化装置の異常検出装置及び排気浄化装置の異常検出方法
JP5839118B2 (ja) 内燃機関の排気浄化装置の異常判定システム
WO2018097246A1 (ja) 排気浄化装置の異常診断システム
JP5382129B2 (ja) 内燃機関の排気浄化装置及び排気浄化方法
JP2011226293A (ja) 排気浄化装置の故障検出装置
JP5240065B2 (ja) 排気浄化装置の故障検出装置
JP5182200B2 (ja) 触媒劣化判定装置及び触媒劣化判定方法
US10648391B2 (en) Abnormality diagnosis system for an exhaust gas purification apparatus
CN109958513B (zh) 废气净化装置的异常诊断系统
JP2016079852A (ja) 内燃機関の排気浄化装置の異常判定システム
JP2008144711A (ja) NOx触媒の異常診断装置及び異常診断方法
US9884292B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP6631479B2 (ja) 内燃機関の排気浄化装置の異常診断装置
JP6972878B2 (ja) 内燃機関の排気浄化装置の異常診断装置
JP2010133375A (ja) センサの出力補正装置及びセンサの出力補正方法
JP2016079903A (ja) 内燃機関の排気浄化装置の故障判定装置
JP2012233463A (ja) 排気浄化システムの故障検出装置
JP2012112318A (ja) 内燃機関の触媒劣化検出装置
JP2008291711A (ja) 内燃機関の排気浄化装置
JP2018031356A (ja) 内燃機関の排気浄化装置
JP2015004347A (ja) 内燃機関の排気浄化システム
JP2014084731A (ja) センサの学習装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R151 Written notification of patent or utility model registration

Ref document number: 5839118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151