JPWO2012161275A1 - 造粒体の製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法 - Google Patents

造粒体の製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法 Download PDF

Info

Publication number
JPWO2012161275A1
JPWO2012161275A1 JP2013516443A JP2013516443A JPWO2012161275A1 JP WO2012161275 A1 JPWO2012161275 A1 JP WO2012161275A1 JP 2013516443 A JP2013516443 A JP 2013516443A JP 2013516443 A JP2013516443 A JP 2013516443A JP WO2012161275 A1 JPWO2012161275 A1 JP WO2012161275A1
Authority
JP
Japan
Prior art keywords
glass
raw material
water
granulated body
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013516443A
Other languages
English (en)
Inventor
康弘 国狭
康弘 国狭
伸広 篠原
伸広 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2012161275A1 publication Critical patent/JPWO2012161275A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • C03B1/02Compacting the glass batches, e.g. pelletising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Abstract

強度に優れ、微粉が発生し難い造粒体の製造方法を提供する。
無アルカリガラスの製造に用いられる造粒体を製造する方法であって、ガラス原料混合物および水を含有する原料スラリーを調製する工程と、原料スラリーを噴霧乾燥して造粒体を製造する工程を有し、ガラス原料混合物が、少なくともケイ砂、ホウ酸、マグネシウム源およびアルカリ土類金属源を含み、マグネシウム源の少なくとも一部が水溶性のマグネシウム塩であり、前記アルカリ土類金属源の少なくとも一部が水溶性のアルカリ土類金属源であり、ガラス原料混合物中における、水溶性のマグネシウム源のMgO換算モル量と水溶性のアルカリ土類金属源の酸化物換算モル量を1とするとき、水溶性のマグネシウム源のMgO換算モル量の相対値が、0.05以上であり、ガラス原料混合物中における、ホウ酸のB換算モル量を1とするとき、水溶性のアルカリ土類金属源の酸化物換算モル量の相対値が、1.00以下である。

Description

本発明は無アルカリガラスの原料として用いられる造粒体の製造方法、該製造方法で得られる造粒体を用いて溶融ガラスを製造する方法、および該溶融ガラスの製造方法を用いてガラス物品を製造する方法に関する。
各種ディスプレイ用ガラス基板等には、実質的にアルカリ金属酸化物を含まない無アルカリガラスが用いられる。また、最近では無アルカリガラスに求められる特性が多様化したこと等のために、従来のものよりB含有量の少ないガラスなど、多様な組成の無アルカリガラスが用いられるようになっている。
このような無アルカリガラスは一般的なソーダライムガラスと比較して、高融点のシリカ原料を多量に用いること、シリカ原料の溶融を早める作用のあるアルカリ成分を用いないこと等のために、未溶融原料が残留しやすく、ガラス組成の均一性が低下しやすい傾向がある。
ガラス基板内部に未溶融原料を残さないためには、原料粉末を微粒化することが有効と考えられる。しかし、微粒の原料粉末を溶融窯に投入しようとすると、原料粉末が飛散することによって、ガラス組成が不安定になる、原料が無駄になる等の問題が生じる。
これらの問題を解消する方法として、特許文献1、2には、無アルカリガラスの製造において、原料粉末を造粒して用いる方法が記載されている。
特開昭51−75711号公報 特開2009−179508号公報
しかしながら、ガラス原料粉末の造粒体にあっては、造粒体の強度が不足すると使用時に壊れてしまい微粉が発生する。特に造粒体を搬送する際の微粉が問題となりやすい。微粉が発生すると、その一部が飛散する問題が生じる。すなわちガラス原料粉末の造粒体には、造粒体が搬送される際に加わる衝撃等に対する充分な強度が求められる。具体的な衝撃としては、造粒体が搬送の際に受ける造粒体どうしの衝突や摩擦の衝撃;造粒体が配管、貯槽等の壁面に衝突する際の衝撃;造粒体と配管やホッパー等の壁面との摩擦による衝撃等が例示できる。
特に、造粒体を気相雰囲気中で溶融させる気中溶融炉を用いてガラス物品を製造する際、気中溶融炉では空気等で造粒体をバーナーまで搬送し、火炎にて該造粒体を気中で溶融させガラス化させる。そのため、造粒体のサイズはあまり大きすぎるとガラス化率が低くなるため、ある程度小さい(例えば平均粒径(D50)が約50〜700μm)必要がある。このような粒径が小さい造粒体を得るための造粒法はスプレードライ法が適している。
しかし、得られた造粒体の強度が不十分であれば、搬送中に造粒体の一部が崩壊したり、造粒体表面の粒子が剥がれたりして微粉化する。その結果、それらの微粉が煤塵となり、気中溶融炉の排気ラインを詰まらせたり、バグフィルター等の頻繁な目詰まりを起こしたりして連続運転ができなくなるだけでなく、造粒体の組成が不均一となりガラスの組成がずれたりするという問題がある。
本発明は前記事情に鑑みてなされたもので、強度に優れ、微粉が発生し難い造粒体の製造方法、ならびに該製造方法で得られる造粒体を用いた溶融ガラスの製造方法およびガラス物品の製造方法を提供することを目的とする。
本発明の造粒体の製造方法は、無アルカリガラスの製造に用いられる、ガラス原料混合物の造粒体を製造する方法であって、
ガラス原料混合物および水を含有する原料スラリーを調製する工程と、
前記原料スラリーを噴霧乾燥して造粒体を製造する工程を有し、
前記ガラス原料混合物が、少なくともケイ砂、ホウ酸、マグネシウム源およびアルカリ土類金属源を含み、
前記マグネシウム源の少なくとも一部が水溶性のマグネシウム塩であり、前記アルカリ土類金属源の少なくとも一部が水溶性のアルカリ土類金属源であり、
前記ガラス原料混合物中における、水溶性のマグネシウム源のMgO換算モル量と水溶性のアルカリ土類金属源の酸化物換算モル量との合計を1とするとき、水溶性のマグネシウム源のMgO換算モル量の相対値が、0.05以上であり、
前記ガラス原料混合物中における、ホウ酸のB換算モル量を1とするとき、水溶性のアルカリ土類金属源の酸化物換算モル量の相対値が、1.00以下であることを特徴とする。
前記原料スラリーのpHは5.5以上であることが好ましい。
前記造粒体の粒度分布曲線における、体積累計メディアン径を表わすD50は、50〜700μmであることが好ましい。
前記水溶性マグネシウム塩は、硫酸マグネシウムおよび/または塩化マグネシウムであることが好ましい。
前記ガラス原料中における、硫酸マグネシウムのSO換算含有量と塩化マグネシウムのCl換算含有量の合計は0.05〜5質量%であることが好ましい。
前記無アルカリガラスは、酸化物換算で以下の組成を有するホウケイ酸ガラスであることが好ましい。
SiO:40〜85質量%、
Al:0〜22質量%、
:3〜20質量%、
MgO:0.04〜8質量%、
CaO:0〜14.5質量%、
SrO:0〜24質量%、
BaO:0〜30質量%、
O(Rはアルカリ金属を表す):0.1質量%以下、
ただし、CaOとSrOとBaOの合計量は5質量%以上。
前記原料スラリーはさらに分散剤を含むことが好ましい。
本発明は、また、前記造粒体を加熱して溶融ガラスとする、溶融ガラスの製造方法を提供する。
溶融ガラスの製造方法としては、気相雰囲気中で前記造粒体の少なくとも一部を溶融させて溶融ガラス粒子とし、前記溶融ガラス粒子を集積して溶融ガラスとする方法が好ましい。
本発明は、さらに、前記の溶融ガラスの製造方法で得られた溶融ガラスを成形して徐冷する、ガラス物品の製造方法を提供する。
本発明によれば強度に優れ、微粉が発生し難い造粒体が得られる。特に造粒体の搬送時に微粉の発生を抑制しやすい。
本発明の造粒体を用いることにより、溶融ガラスの製造またはガラス物品の製造における、原料粉末の飛散を防止できる。また、飛散しやすい微粉のガラス原料も使用できるため、ケイ砂のような比較的溶融し難い原料として微粉原料を用いて溶融速度を上げることにより、セグリゲーションを起こし難くできる。
さらに、造粒体の強度が良好であるため、微粉の発生が抑えられ、組成の均一性、均質性が良好な溶融ガラスまたはガラス物品が得られる。
実施例1に係る粒度分布の測定結果を示すグラフである。0psiは圧縮空気を吹き付けない場合の粒径分布であり、50psiは圧縮空気を吹き付けた場合の粒径分布である(以下、同様。) 実施例2に係る粒度分布の測定結果を示すグラフである。 実施例3に係る粒度分布の測定結果を示すグラフである。 実施例4に係る粒度分布の測定結果を示すグラフである。 実施例5に係る粒度分布の測定結果を示すグラフである。 実施例6に係る粒度分布の測定結果を示すグラフである。 実施例7に係る粒度分布の測定結果を示すグラフである。 実施例8に係る粒度分布の測定結果を示すグラフである。 比較例1に係る粒度分布の測定結果を示すグラフである。 比較例2に係る粒度分布の測定結果を示すグラフである。 比較例3に係る粒度分布の測定結果を示すグラフである。 比較例4に係る粒度分布の測定結果を示すグラフである。 比較例5に係る粒度分布の測定結果を示すグラフである。
本発明において、粒子の平均粒径を表す「D50」とは、レーザー回折散乱法を用いて測定された粒度分布曲線における、体積累計50%のメディアン径である。また「D90」とは該粒度分布曲線における、小粒径側から体積累計90%の粒径を表わす。
造粒体の粒度分布曲線は、乾式によるレーザー回折散乱法を用いて測定し、造粒体の製造に用いる原料粉体の粒度分布曲線は、湿式によるレーザー回折散乱法を用いて測定する。(JIS−Z8825−1(2001)及びJIS−Z8819−1(1999)参照)
本発明において、ガラス中の成分はB、SiO、Al、MgO、CaO、SrO、BaO、NaO等の酸化物で表し、各成分の含有量は酸化物換算の質量割合(質量%)で表す。
本発明において、アルカリ土類金属とは、カルシウム(Ca)、ストロンチウム(Sr)およびバリウム(Ba)の3種の元素をいう。
<無アルカリガラス>
本発明の造粒体(本明細書では単に「造粒体」ということもある。)は、無アルカリガラス(以下、単にガラスということもある。)の原料として用いられるものである。すなわち、本発明の造粒体を加熱溶融しガラス化反応させることにより、無アルカリガラスが得られる。本発明の造粒体は、基本的に、無アルカリガラスの原料の全てを含む造粒体であり、たとえば1個の造粒体からでも所定のガラス組成の無アルカリガラスが得られる。
本発明において無アルカリガラスとは、アルカリ金属酸化物を実質的に含有しないガラスである。具体的にはガラス組成中におけるアルカリ金属酸化物の割合は0.1質量%以下が好ましく、0.02質量%以下が特に好ましい。
本発明における無アルカリガラスは酸化物系ガラスであり、酸化ケイ素を主成分とし、かつホウ素成分を含有するホウケイ酸ガラスである。
本発明における無アルカリガラスの好ましい組成は、SiO:40〜85質量%、Al:0〜22質量%、B:3〜20質量%、MgO:0.04〜8質量%、CaO:0〜14.5質量%、SrO:0〜24質量%、BaO:0〜30質量%、RO(Rはアルカリ金属を表す。):0.1質量%以下であり、アルカリ土類金属酸化物量(CaOとSrOとBaOの合計量)が5質量%以上である。
該無アルカリガラスのより好ましい組成は、SiO:45〜65質量%、Al:0〜20質量%、B:7〜16質量%、MgO:1〜6質量%、CaO:0〜7質量%、SrO:0〜11質量%、BaO:0〜15質量%、RO(Rはアルカリ金属を表す。):0.1質量%以下であり、アルカリ土類金属酸化物量(CaOとSrOとBaOの合計量)が10質量%以上である。
また、その他の成分として、上記以外の金属酸化物(例えば、酸化錫など)、非金属酸化物(例えば、イオウ酸化物など)、ハロゲンなどを少量含有していてもよい。例えば着色成分としてFeを含有してもよい。
<ガラス原料混合物>
造粒体の製造に用いられるガラス原料混合物は、上記のような酸化物や、熱分解等により上記のような酸化物となりうる化合物(下記ケイ素源、アルミニウム源、ホウ素源、マグネシウム源、アルカリ土類金属源等)を含む。
ガラス原料混合物を構成する各化合物は、通常粉末状で用いられる。水溶性である化合物は、予め水に溶解した状態で用いてもよい。
[ケイ素源]
ケイ素源は、ガラスの製造工程中でSiO成分となり得る化合物である。本発明ではケイ素源として少なくともケイ砂を用いる。ケイ素源の全部がケイ砂であることが好ましい。
本発明の造粒体は強度が良好であるため、従来はガラス原料として使用が難しかった小径のケイ砂も使用することができる。造粒体中のケイ砂の粒径が小さい方が、溶融ガラスまたはガラス物品における組成の均一性が向上しやすい。ケイ砂は平均粒径が異なる2種以上を混合して用いてもよい。粒径の小さいケイ砂は、平均粒径の小さいケイ砂を購入してもよく、ミル等で粉砕することにより平均粒径が小さいものを得てもよい。
[アルミニウム源]
アルミニウム源は、ガラスの製造工程中でAl成分となり得る化合物である。酸化アルミニウム、水酸化アルミウム等が好適に用いられる。これらは1種でもよく2種以上を併用してもよい。酸化アルミニウムはケイ砂とともに、通常のガラス原料の中では融点が高いために比較的溶けにくい原料である。
[ホウ素源]
ホウ素源は、ガラスの製造工程中でB成分となり得る化合物である。本発明ではホウ素源として少なくともホウ酸を用いる。本発明の造粒体の製造方法において、ホウ酸はバインダー(結合剤)としての機能を有し、造粒体の強度向上に寄与する。スラリー中に溶解しているホウ酸は、スラリーの噴霧乾燥工程で水が除去されることによって、造粒体の内側から表面に送り出されて造粒体の表面に析出し、乾燥によって固化することでバインダーとして機能すると考えられる。
ホウ酸としては、オルトホウ酸(HBO)、メタホウ酸(HBO)、四ホウ酸(H)等が挙げられる。これらの中でも安価で、入手しやすい点から、オルトホウ酸が好ましい。これらは1種でもよく2種以上を併用してもよい。
また、ホウ酸と、ホウ酸以外のホウ素源を併用してもよい。ホウ酸以外のホウ素源としては、酸化ホウ酸(B)、コレマナイト等が挙げられる。
ガラス原料混合物中のホウ素源の合計量は、得ようとするガラス組成によって決まる。ホウ素源の合計を100質量%とするとき、ホウ酸が占める割合は60質量%以上が好ましく、80質量%以上がより好ましく、100質量%が最も好ましい。
[マグネシウム源]
マグネシウム源は、ガラスの製造工程中でMgO成分となり得る化合物である。本発明では、清澄剤として添加される化合物のうち、ガラスの製造工程中でMgO成分となり得るものは、マグネシウム源に含まれるものとする。マグネシウム源は1種でもよく2種以上を併用してもよい。
本発明では、マグネシウム源の少なくとも一部として水溶性マグネシウム塩を用いる。本発明における「水溶性」とは、常温で中性の水に、数mgというオーダーではなく、明らかに溶解することを意味する。具体的には20℃の水(pH7)100mLに10g以上溶解することを指す。
水溶性マグネシウム塩としては、塩化マグネシウム(MgCl)、硫酸マグネシウム(MgSO)、硝酸マグネシウム(Mg(NO)が挙げられる。これらは水和物であってもよい。本発明者等の知見によれば、塩化マグネシウム(MgCl)、硫酸マグネシウム(MgSO)、または硝酸マグネシウム(Mg(NO)は、いずれもホウ酸水溶液中で難水溶性の塩を形成しない。
これらのうち塩化マグネシウム、硫酸マグネシウムは清澄剤成分でもあるため、ガラス組成を変えずに、水溶性マグネシウム塩の含有量を増大できる点で好ましい。塩化マグネシウムおよび硫酸マグネシウムはいずれか一方を用いてもよく、両方を併用してもよい。硫酸マグネシウムは比較的低温で清澄作用を示し、塩化マグネシウムは比較的高温で清澄作用を示すと考えられる。このため両者を併用することが好ましい。
ガラス原料混合物中における、硫酸マグネシウムの含有量はSO換算で0.05〜5質量%が好ましく、0.2〜2質量%がより好ましい。上記範囲の下限値以上であると十分な清澄効果が得られやすい。
硫酸マグネシウムの含有量が上記範囲の上限値以下であると原料スラリーの好ましいpHが得られやすい。すなわち、硫酸マグネシウムが上記範囲の上限値以下であると原料スラリーのpHが5.5以上になりやすく、中性〜アルカリ性では該スラリー中でホウ酸とアルカリ土類炭酸塩とが反応して難水溶性の塩を形成し難く、バインダー機能を有するホウ酸が消費され難く、充分な造粒体強度が得られやすい。
ガラス原料混合物中における塩化マグネシウムの含有量はCl換算で0.05〜5質量%が好ましく、0.2〜3質量%がより好ましい。上記範囲の下限値以上であると、上記と同様に十分な清澄効果が得られやすく、上限値以下であると上記と同様に原料スラリーの好ましいpHが得られやすい。
水溶性マグネシウム塩として、塩化マグネシウムと硫酸マグネシウムを併用すると、造粒体の強度がより向上しやすい点で好ましい。
ガラス原料混合物中における水溶性マグネシウム塩の合計の含有量は、水溶性マグネシウム塩を用いることによる造粒体の強度向上効果が十分に得られやすい点で、酸化物(MgO)換算で、ガラス原料混合物全体に対して0.04質量%以上が好ましく、3質量%以上がより好ましい。上限は、目標とするガラス組成におけるMgOの含有量および清澄剤の添加量によって決まる。水溶性マグネシウム塩の合計の含有量の上限は5質量%であることが好ましい。
マグネシウム源として、水溶性マグネシウム塩と、水溶性でないマグネシウム源を併用してもよい。水溶性マグネシウム塩と水溶性でないマグネシウム源を組み合わせて用いることにより、原料スラリーのpHを好ましい範囲に調整しやすい。
水溶性でないマグネシウム源としては、水酸化マグネシウム(Mg(OH))、炭酸マグネシウム(MgCO)、酸化マグネシウム(MgO)、フッ化マグネシウム(MgF)が挙げられる。フッ化マグネシウムは清澄剤である。
また、ドロマイト(理想化学組成:CaMg(CO)も水溶性でないマグネシウム源として使用できる。ドロマイトはマグネシウム源でありアルカリ土類金属源でもある。
これらのうち、高純度の微粉原料の入手が容易である点で水酸化マグネシウムが好ましく用いられる。
また水酸化マグネシウムとドロマイトを併用することも、造粒体の強度がより向上しやすい点で好ましい。
[アルカリ土類金属源]
アルカリ土類金属源は、ガラスの製造工程中でCaO、SrOまたはBaOとなり得る化合物である。本発明では、清澄剤として添加される化合物のうち、ガラスの製造工程中でCaO、SrOまたはBaOとなり得るものは、アルカリ土類金属源に含まれるものとする。アルカリ土類金属源は1種でもよく2種以上を併用してもよい。
アルカリ土類金属源の具体例としては、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、炭酸バリウム(BaCO)、ドロマイト(理想化学組成:CaMg(CO)等の炭酸塩;酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)等の酸化物;水酸化カルシウム(Ca(OH))、水酸化ストロンチウム(Sr(OH))、水酸化バリウム(Ba(OH))等の水酸化物が挙げられる。
またアルカリ土類金属源であり、清澄剤成分でもある化合物の具体例として、アルカリ土類金属の硫酸塩、塩化物およびフッ化物が挙げられる。これらは水和物であってもよい。
これらのうち水溶性のアルカリ土類金属源であるものは、塩化物である。
該水溶性のアルカリ土類金属源はいずれも水中でホウ酸と反応して難水溶性の塩を生成する。
本発明では、スラリー中でホウ酸を消費してしまう水溶性のアルカリ土類金属源の使用量が少ないことが好ましい。そのため水溶性でない炭酸塩が好ましく用いられる。
[鉄源]
着色成分としてFeを含有させることができる。ガラスにおいてFeに換算した全鉄の含有量が0.001質量%以上であれば、透過光が十分なブルーまたはグリーンの色調を有するガラス板となる。Feに換算した全鉄の含有量が5質量%以下であれば、ガラスの可視光透過率が良好となる。Feに換算した全鉄の含有量は、0.005〜4質量%が好ましく、0.01〜3質量%がより好ましい。
本明細書においては、全鉄の含有量を標準分析法にしたがってFeの量として表しているが、ガラス中に存在する鉄がすべて3価の鉄として存在しているわけではなく、2価の鉄も存在する。
[その他の成分]
造粒体は、必要に応じて、副原料として清澄剤、着色剤、溶融助剤、乳白剤等を含むことができる。これらは公知の成分を適宜用いることができる。
[ガラス原料混合物の組成]
ガラス原料混合物の組成は、ホウ素源を除き、酸化物換算で目的とするガラスの組成割合とほぼ一致するように設計される。ホウ素源は、目的とするホウケイ酸ガラスの酸化ホウ素含有量よりも揮発分を考慮した量だけ多い量とする。
ガラス組成において、周期表第2族元素の酸化物であるMgOおよびアルカリ土類金属酸化物は、ガラスの粘性を下げる成分であり、これらが合計である程度以上含まれていることが必要である。本発明において、ガラス原料混合物中における、水溶性のマグネシウム源のMgO換算モル量と水溶性のアルカリ土類金属源の酸化物換算モル量の合計を1とするとき、水溶性のマグネシウム源のMgO換算モル量の相対値、すなわち水溶性成分における{MgO/(MgO+SrO+CaO+BaO)}のモル比は0.05以上であり、0.1以上が好ましく、0.3以上がより好ましく、0.8以上が特に好ましい。該モル比の上限値は得ようとするガラスの組成にもよるが、例えば1以下である。
また、ガラス原料混合物中における、ホウ酸のB換算モル量を1とするとき、水溶性のアルカリ土類金属源の酸化物換算モル量の相対値、すなわち水溶性成分における{(SrO+CaO+BaO)/B}のモル比は1.00以下であり、0.5以下が好ましく、0.2以下がより好ましい。該モル比の下限値は得ようとするガラスの組成にもよるが、例えば0(ゼロ)以上であり、0.005以上が好ましい。
該水溶性成分における{MgO/(MgO+SrO+CaO+BaO)}のモル比が上記範囲の下限値以上であり、かつ該水溶性成分における{(SrO+CaO+BaO)/B}のモル比が上記範囲の上限値以下であると、強度に優れた造粒体が得られる。
本発明者等の知見によれば、周期表第2族元素であるMg、Sr、Ca、Baの水溶性塩のうち、Sr、Ca、Baの水溶性塩はいずれも、スラリー中で水に溶解したホウ酸と反応して難水溶性の塩を形成するが、Mgの水溶性塩はスラリー中でホウ酸と難水溶性の塩を形成せず、マグネシウムイオンがスラリー中に存在する。そしてスラリー中に存在するマグネシウムの2価の正イオン(Mg2+)が、ガラス原料混合物の粉末粒子どうしを引き寄せ結び付ける無機バインダーとして機能することにより、造粒体の強度が向上すると考えられる。特に、スラリー中で水和しているケイ砂粒子はOHが付加して1価の負イオンに帯電しているため、2価のMg2+が2個のケイ砂粒子を引き寄せ結び付けることにより、ケイ砂粒子間に結合力が生じ、造粒体の強度が向上すると考えられる。
また前述したようにスラリー中に溶解した状態で存在するホウ酸は、バインダーとして機能し、造粒体の強度向上に寄与するため、これらの相乗効果により、造粒体の強度向上効果が良好に得られると考えられる。
したがって、本発明において、ガラス原料混合物中の水溶性成分における(MgO+SrO+CaO+BaO)の合計のうち、造粒体の強度向上に寄与するMgOの割合が多いほど、すなわち前記{MgO/(MgO+SrO+CaO+BaO)}のモル比の値が大きいほど、Mg2+のバインダー機能による造粒体の強度向上効果が得られやすい。
また、ホウ酸を消費してしまう、水溶性のアルカリ土類金属源がホウ酸に対して少ないほど、すなわち前記{(SrO+CaO+BaO)/B}のモル比の値が少ないほど、スラリー中に溶解した状態で存在するホウ酸が多くなるため、ホウ酸のバインダー機能による造粒体の強度向上効果が得られやすい。
<造粒体の製造方法>
本発明の造粒体の製造方法は噴霧乾燥法(スプレードライ法)である。
[原料スラリーの調製]
まず、ガラス原料混合物および水を含有する原料スラリーを調製する。
具体的には、粉末状のガラス原料と水を混合し、原料スラリーとする。または粉末状のガラス原料と、予め水に溶解または分散された状態のガラス原料と、必要であれば水を加えて混合し、原料スラリーを調製する。混合方法は公知の手法を用いることができる。例えば、ボールミル、ホモジナイザー、撹拌翼を用いる撹拌機、レッドデビルのようなシェイカー、遊星ボールミルのような装置を用いて行うことができる。
スラリーの調製に用いるガラス原料粉末の粒子が大きすぎると、造粒体を構成する各粒子の組成が不均一になるおそれがある。また、ガラス原料粉末の粒子が大きすぎると、造粒体のガラス化に多くの時間とエネルギーを要し、気相雰囲気中で溶融ガラス粒子とすることが困難となるおそれがある。原料スラリーの調製前、または調製時に、ボールミル等を用いてガラス原料粉末を微細化すると、これらの不都合を改善できる。
原料スラリーの固形分濃度は10〜70質量%が好ましく、20〜60質量%がより好ましい。上記範囲の下限値以上であると、乾燥時に水を飛ばす気化熱に対して、得られる造粒体が少なくならず、好適な製造効率を達成しやすい。また原料スラリーの固形分濃度を低くしすぎないことは、造粒体の径が著しく小さくて煤塵となる粒子の形成を抑制しやすいため好ましい。上記範囲の上限値以下であれば、原料スラリーの粘度が高くなりすぎることがなく、良好な分散性が得られやすい。また送液トラブルが発生しにくく好ましい。
原料スラリーのpHは5.5以上であることが好ましく、必要に応じて原料スラリーにpH調整剤を含有させてもよい。
ホウ酸の溶解度は、原料スラリーのpHに依存する。原料スラリーのpHを5.5以上とすることで十分に高い溶解度が得られやすい。該pHは7以上がより好ましい。ホウ酸の溶解度が高いほど、ホウ酸によるバインダー効果が得られやすい。したがって、上述したMg2+によるバインダー効果との相乗効果により、良好な造粒体の強度向上効果が得られやすい。
またガラス原料混合物にアルカリ土類金属の炭酸塩が含まれる場合、pHが5.5以上であると、該炭酸塩とホウ酸との難水溶性の塩が生成されにくい点でも好ましい。
原料スラリーのpHの上限は特に限定されないが、高くなるほど、使用できるpH調整剤が限られるなど困難を伴う。本発明における原料スラリーのpHは例えば11以下が好ましく、9以下がより好ましい。
pH調整剤は特に限定されないが、造粒体を用いて得られるガラスの種類などに応じて、決定することが好ましい。
無アルカリのホウケイ酸ガラスを製造する場合、pH調整剤としてアルカリ金属化合物を使用することは困難であるため、金属原子を含まない塩基性窒素化合物を使用することが好ましい。塩基性窒素化合物として揮発性が高い化合物を使用した場合、塩基性窒素化合物は造粒体に残存しない。また、塩基性窒素化合物として揮発性が低いものを用い、塩基性窒素化合物が造粒体に残存した場合、塩基性窒素化合物は造粒体の溶融の際に分解消失する。
pH調整剤として用いられる塩基性窒素化合物としては、アンモニアや水溶性のアミン化合物が好ましい。水溶性のアミン化合物としては、水溶性のアルカノールアミンやN−アルキルアルカノールアミンなどが好ましく、具体的には、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどが挙げられる。
また尿素は有機化合物であるが、133℃以上で分解が生じるため気中溶融炉中でほとんど消失し、またアンモニアほど匂いも顕著でないため、好適に使用することができる。
原料スラリー中には、必要に応じて、粉末状のガラス原料を安定して分散させるために、また原料スラリーの粘度を安定化させるために、分散剤を適量含有させてもよい。分散剤としては、例えば、ポリカルボン酸アンモニウム塩の40質量%水溶液である「セルナD305」(商品名:中京油脂株式会社製)、「A−6114」(商品名:東亜合成株式会社製)などを好ましく用いることができる。
そのほか、原料スラリー中には、粘度調整剤、界面活性剤等の添加剤を適宜含有させることができる。これら添加剤の添加量は、総量で、原料スラリーに対して3質量%以下であることが好ましく、2質量%以下であることがより好ましい。また、これら添加剤は造粒体の溶融の際までには、揮散または分解して揮散し、ガラス組成に影響を与えないものであることが好ましい。
[噴霧乾燥]
次に、原料スラリーを噴霧乾燥して、原料スラリーに含まれる水分等の揮発性成分を除去して造粒体を製造する。噴霧乾燥して得られた造粒体は、必要に応じて、篩分けしてもよい。
噴霧乾燥は、スプレードライ造粒法とも言い、原料スラリーを噴霧して粒子化し、原料スラリー粒子から水分等を蒸発(気化)させて除去し、原料スラリーの固形分からなる粒子を形成する方法である。スプレードライ造粒法としては周知ないし公知の方法を使用できる。
スプレードライ造粒法においては、熱風を供給する方法を用いることができ、スプレードライ装置の熱風入口温度や出口温度は別に制限されないが、熱風入口温度を200℃以上、出口温度を100℃以上で造粒すると、造粒体を十分乾燥できるため好ましい。装置の規模によっては熱風の温度は500℃に達する場合もある。
原料スラリーから造粒体を製造する方法としてスプレードライ造粒法は、量産性に優れ、造粒体の粒径を高精度で制御できる方法であるとともに、原料スラリーに含まれるガラス原料混合物の混合状態を比較的良好に保ち均質なガラス組成の造粒体を製造できる方法である。
またスプレードライ造粒法は、比較的粒径が小さい造粒体を製造するのに好適な方法である。
[造粒体の平均粒径]
本発明における造粒体の平均粒径は、50〜700μmの範囲が好ましく、100〜500μmの範囲がより好ましい。造粒体の平均粒径が50μm以上であると、造粒体としたことによる効果(原料粉末の飛散低減等)が十分に得られやすい。また単位質量あたりの表面積が小さくなるために、溶融時に起こる表面からのホウ酸の揮発を少なくすることができる。
一方、造粒体の平均粒径が700μmを超えると、原料スラリーの高濃度化やノズル圧の増大を行ったとしても、スプレードライ造粒法ではそのような大きな径の造粒体を形成することが事実上困難である。また造粒体の平均粒径が700μm以下であると、気中溶融法で溶融ガラスを製造したときに、ガラス化率をある程度以上高く確保できるため好ましい。
造粒体の平均粒径は、ガラス原料粉末の組成、スラリーのpH、スラリー調製時の混合方法や混合時間等の条件、スラリー固形分濃度、ノズル圧、噴霧乾燥時の条件などによって調整できる。
<溶融ガラスの製造方法>
本発明の溶融ガラスの製造方法は、本発明の造粒体を加熱して溶融ガラスとすることを特徴する。ガラス溶融は、シーメンス型のガラス溶融炉等を用いる普通溶融法で行ってもよく、気中溶融法で行ってもよい。いずれも公知の方法で実施できる。
本発明の造粒体の製造方法は、スプレードライ造粒法であり、気中溶融法で用いられるような、比較的粒径が小さい造粒体を製造するのに好適な方法である。
[気中溶融法]
気中溶融法は、気相雰囲気中で造粒体の少なくとも一部を溶融させて溶融ガラス粒子とし、該溶融ガラス粒子を集積して溶融ガラスとする。
具体的には、まず造粒体を気中加熱装置の高温の気相雰囲気中に導入する。気中加熱装置は公知のものを使用できる。本発明で製造される造粒体は強度に優れるため、搬送時または導入時に、粒子同士や粒子と搬送路内壁等との衝突が生じても微粉発生が抑えられる。
なお造粒体の少なくとも一部を溶融させるとは、個々の造粒体を対象として、その一個の造粒体の一部または全部を溶融させることをいう。造粒体の一部が溶融した状態とは、例えば(一個の)造粒体の表面が溶融し中心部が充分に溶融していない状態が挙げられる。この例の場合に(一個の)溶融ガラス粒子は、粒子の全体が溶融されておらず、中心に充分に溶融していない部分が存在している。しかし充分に溶融していない部分が存在した場合であっても、その粒子が集積してガラス融液となる過程で加熱されるので、成形工程に供する際には均質なガラス融液が得られる。
気中溶融法では、個々の造粒体をそれぞれ気相雰囲気中で溶融して溶融ガラス粒子とすることが好ましい。一部の造粒体は気相雰囲気中で充分に溶融しなかったとしても、大部分の造粒体を気相雰囲気中でそれぞれ溶融ガラス粒子とすることが好ましい。以下、気相雰囲気中で充分に溶融しなかった粒子を含め、気相雰囲気中で生成する粒子を溶融ガラス粒子という。
造粒体を気相雰囲気中で溶融して溶融ガラス粒子とし、次いで、生成した溶融ガラス粒子を集積してガラス融液を得、ここから取り出した溶融ガラスを、次の成形工程に供する。溶融ガラス粒子を集積する方法としては、例えば、気相雰囲気中を自重で落下する溶融ガラス粒子や、搬送空気の気流に乗った溶融ガラス粒子を、気相雰囲気下部に設けた耐熱容器に受けて集積する方法が挙げられる。
<ガラス物品の製造方法>
本発明のガラス物品の製造方法は、本発明の溶融ガラスの製造方法で得られた溶融ガラスを成形して徐冷する製造方法である。なおガラス物品とは、室温で固体状であり実質的に流動性を有していないガラスが、一部または全部に用いられた物品を言い、例えばガラス表面が加工されてなるもの等を含む。
具体的には、まず前記溶融ガラスの製造方法で得た溶融ガラスを、目的の形状に成形した後、徐冷することによりガラス物品を得る。その後、必要に応じて切断や研磨など、公知の方法で後加工を施すことによりガラス物品が得られる。
成形はフロート法、ダウンドロー法、フュージョン法な等の公知の方法で行うことができる。フロート法は、溶融スズ上で溶融ガラスを板状に成形する方法である。
徐冷も公知の方法で行うことができる。
溶融ガラスの製造またはガラス物品の製造において、本発明の造粒体を用いることにより、原料粉末の飛散を防止できるとともに、造粒体の強度が良好であるため、微粉の発生が抑えられ、組成の均一性が良好な溶融ガラスまたはガラス物品が得られる。
以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
以下の例において、以下の測定方法および評価方法を用いた。
[粒径分布、平均粒径(D50)およびD90]
造粒体の粒径分布および平均粒径(D50)、ならびにガラス原料粉末の平均粒径(D50)は、乾式のレーザー回折・散乱式粒径・粒度分布測定装置(マイクロトラックMT3200:商品名、日機装株式会社製)を用いて測定した粒径分布より求めた。
原料スラリー中の固形分の平均粒径(D50)およびD90は、湿式のレーザー回折・散乱式粒度分布測定装置 (マイクロトラックMT3300:商品名、日機装株式会社製)を用いて測定した粒径分布より求めた。
[相関係数]
また造粒体同士を衝突させたときの造粒体の破壊(崩壊)の程度を、衝突させる前後での、造粒体の粒径分布の変化を測定することにより評価した。より詳細には、まず、前記粒度分布測定装置(マイクロトラックMT3200)を用い、粒径分布測定装置の測定室に入る直前の造粒体に、圧縮空気を吹き付けない場合(圧縮空気圧0psi(0kPa))と、50psi(0.35MPa)の圧縮空気を吹き付けた場合に、それぞれ粒径分布を測定した。その後、圧縮空気圧0psi(0kPa)での粒径分布と、圧縮空気圧50psi(0.35MPa)での粒径分布について、粒径0.97〜996μmの範囲での両者の一致度合いを表す相関係数を算出した。具体的には、得られた2つの粒径分布に対する累積パーセントのデータに対して、マイクロソフト社製EXCEL2002SP3の組み込み関数であるCORREL関数を利用して、両者の相関係数を算出した。
造粒体に圧縮空気が吹き付けられると、強度の弱い造粒体は崩壊したり周囲の粒子が剥がれ落ちて微粉が増えるため、相関係数は小さくなる。なお圧縮空気を吹き付けない場合と吹き付けた場合とで粒径分布が全く変化しない場合の相関係数は1である。相関係数が1に近いほど造粒体の強度が高いことを表す。
[微粉率]
50psiの圧縮空気を吹き付けた場合の粒径分布において、50μm未満の体積割合を微粉率として算出した。該微粉率が高いほど、造粒体が崩壊し易い、または造粒体の周囲に付着している粒子や造粒体の外周を構成する粒子が剥がれ落ちやすいことを表す。
表1、2に、各例で用いたガラス原料粉末の平均粒径(D50)、各例におけるガラス原料混合物の組成(単位:質量%。四捨五入の有効数字の関係で合計が100にならない場合もある。)を示す。
表に示すガラス原料粉末のうち、水溶性のマグネシウム源はMgCl・6水和物、MgSO・7水和物であり、水溶性のアルカリ土類金属源はSrCl・6水和物である。
表には、ガラス原料粉末中における、水溶性のマグネシウム源のMgO換算モル量と水溶性のアルカリ土類金属源の酸化物換算モル量の合計を1とするとき、水溶性のマグネシウム源のMgO換算モル量の相対値(MgO/(MgO+SrO+CaO+BaO)[モル比]);ガラス原料粉末中における、ホウ酸のB換算モル量を1とするとき、水溶性のアルカリ土類金属源の酸化物換算モル量の相対値((SrO+CaO+BaO)/B[モル比]);ガラス原料粉末中における塩化マグネシウムの含有量(Cl換算)および硫酸マグネシウムの含有量(SO換算);原料スラリー中の分散剤の含有量、原料スラリーのpH;原料スラリーの固形分濃度、原料スラリーの固形分のD50およびD90を示す。なお、「‐」は測定していないことを示す。
表1、2に示すいずれの例も目標のガラス組成は、
SiO:59.7質量%、
Al:17.4質量%、
:8.0質量%、
MgO:3.2質量%、
CaO:4.0質量%、
SrO:7.6質量%、
およびFeに換算した全鉄:0.04質量%である。
[実施例1]
(原料スラリーの調製)
アルミナを主成分とした直径約20mmのボールが容積の約50%になるように収容された容量10Lのポリプロピレン(PP)製ボールミル容器を用いた。
ボールミル容器に、表1に示す組成のガラス原料粉末2.74kg、イオン交換水3.35kg、分散剤としてポリカルボン酸アンモニウム水溶液(中京油脂社製、製品名:D−305、固形分濃度40質量%)12.5gを投入し、6時間粉砕混合を行い、固形分濃度45質量%の原料スラリーを調製した。
(噴霧乾燥)
得られたスラリーを、アトマイザー方式のスプレードライヤーを用いて、入口の乾燥空気温度250℃、出口空気温度120〜150℃の条件にて、室温にてスラリーを極力泡立たないように撹拌しつつ、1時間におよそ7kgの造粒体が得られる速度にてスラリーを送液して噴霧乾燥を実施した。
得られた造粒体に対して1mmの篩を通して篩分けを行い、大径の粒子を除去した。
篩分け後の造粒体について平均粒径、相関係数、微粉率を測定した。結果を表に示す(以下、同様。)。図1は、粒度分布の測定結果を示すグラフである。圧縮空気を吹き付けない場合(0psi)の粒径分布と吹き付けた場合(50psi)の粒径分布を示している(以下、同様)。
[実施例2、比較例1]
実施例1において、ガラス原料粉末の配合を表1に示す通りに変更した。ガラス原料粉末2.5kg、イオン交換水3.75kg、実施例1と同じ分散剤(D−305)12.5gを投入し、6時間粉砕混合を行い、固形分濃度40質量%の原料スラリーを調製した。
実施例1と同様にして造粒体を製造し、各項目の測定を行った。図2に、実施例2の粒度分布の測定結果を示し、図9に比較例1の粒度分布の測定結果を示す。
Figure 2012161275
(結果)
比較例1はガラス原料粉末が水溶性マグネシウムを含まない例である。
すなわち、実施例1、2は硫酸マグネシウムを用いたのに対して、比較例1は硫酸マグネシウムは用いず、その代わりに水酸化マグネシウムを実施例1、2よりも多く配合した。
表1に示されるように、実施例1、2および比較例1は、平均粒径はほぼ同等であるが、実施例1、2は比較例1に比べて相関係数が高く、微粉率が低い。すなわち造粒体の強度が高い。
また実施例1と実施例2を比べると、水溶性マグネシウム塩(硫酸マグネシウム)の配合量が多い実施例2の方が、相関係数が高く、微粉率が低い。これはマグネシウムイオン(Mg2+)の添加量が増えたため、水和して1価の負イオンに帯電しているケイ砂粒子どうしが、2価の正イオンであるMg2+を介して互いに引き寄せられて結合力が生じている箇所が増え、その結果として造粒体強度が増大したためと考えられる。
また追加実験として、実施例2のスラリー調製時(ボールミル混合・粉砕前)にpH調整剤としてモノエタノールアミンを、スラリーのpHが9.6になるまで添加した実験を行った。ボールミル混合・粉砕時における発泡量は、実施例2と比較して少なかった。これはアルカリ性環境下においてホウ酸とCaCOやSrCOとが反応することによる難水溶性の塩の生成が少なかったためと考えられる。このスラリーを用いて実施例1と同様にして造粒体を製造した。得られた造粒体の平均粒径(D50)は81μm、相関係数は0.995であった。これはホウ酸の難水溶性の塩の形成が抑制され、ホウ酸のバインダーとしての効果が充分発揮されたために、造粒体の強度が向上したものと考えられる。
[実施例3、4]
(原料スラリーの調製)
ケイ石を主成分とした直径約60〜80mmの球石が容積の約50%になるように収容された容量20mのボールミル容器を用いた。
ボールミル容器に、表1に示す組成のガラス原料粉末5トン、水5トン、分散剤としてポリカルボン酸アンモニウム水溶液(東亜化成社製、製品名:A−6114、固形分濃度40質量%)25kgを投入し、12時間粉砕混合を行った後、さらに水を5トン追加して、固形分濃度33質量%の原料スラリーを調製した。
(噴霧乾燥)
得られたスラリーを、スラリータンクに移し、撹拌しつつポンプにてスプレードライヤーに送液し、ノズル方式のスプレードライヤーを用いて、入口の乾燥空気温度500℃、出口空気温度100〜200℃の条件にて、1時間におよそ800kgの造粒体が得られる速度にて噴霧乾燥を実施した。なお、スプレードライヤーの収率は約8割であった。残りの2割はドライヤー内壁への付着や、ボールミル中の炭酸ガス吹き出しに伴うスラリーの漏出、バグフィルターでの捕獲、送液配管やスラリータンクへのスラリー付着等である。
得られた造粒体に対して1mmの篩を通して篩分けを行い、大径の粒子を除去した。
篩分け後の造粒体について平均粒径、相関係数、微粉率を測定した。結果を表1に示す。また図3、4に粒度分布の測定結果のグラフを示す。
(結果)
実施例3は清澄成分として硫酸マグネシウムのほかに塩化ストロンチウムを用いた例であり、実施例4は硫酸マグネシウムのほかに塩化マグネシウムを用いた例である。
実施例3と実施例4を比べると、平均粒径および相関係数はほぼ同等であるが、実施例4は微粉率が顕著に低い。この点について、実施例3、4は、原料スラリーのpHが7.1と6.9でほぼ同等であるため、ホウ酸の溶解度にはあまり差がない。造粒体の平均粒径(D50)は実施例4の方が25μmほど大きいが、粒度分布の測定結果において、圧縮空気を吹き付けない場合(0psi)の粒径分布における50μm未満の累積は双方とも0%である。したがって、実施例4の方が微粉率が低いということは、50psiの圧縮空気を吹き付けたときに壊れた粒子が、実施例4の方が少なかったこと意味する。すなわち実施例4は実施例3よりも造粒体の強度が高いと言える。ちなみに原料スラリー中の固形分の平均粒径(ボールミル粉砕後)は実施例3が15μmであるのに対し、実施例4は17μmであり、概ね同等である。このことから構成原料同士の付着点数は概ね同程度であり、ファンデルワールス力はほぼ同等と考えられる。
したがって、実施例4は、実施例3に比べてマグネシウム源のうち水溶性のマグネシウム塩(硫酸マグネシウムおよび塩化マグネシウム)が占める割合が多く、バインダーとして機能するMgイオンの存在量が増えたため、造粒体強度が増大したためと考えられる。
[実施例5〜8、比較例2〜5]
本例では、平均粒径が異なるケイ砂を用いて造粒体を製造した。ケイ砂の粉砕を避けるためにホモジナイザーを用い、原料は単に水中に分散、混合させることとした。(原料スラリーの調製)
ホモジナイザーの混合容器に、表2に示す組成のガラス原料粉末2kg、イオン交換水3kg投入し、回転数毎分5800回転で2分間混合を行い、固形分濃度40質量%の原料スラリーを調製した。分散剤は使用しなかった。
(噴霧乾燥)
得られたスラリーを、アトマイザー方式のスプレードライヤーを用いて、入口の乾燥空気温度250℃、出口空気温度120〜150℃の条件にて、1時間におよそ6〜7kgの造粒体が得られる速度にて噴霧乾燥を実施した。得られた造粒体に対して1mmの篩を通して篩分けを行い、大径の粒子を除去した。
篩分け後の造粒体について平均粒径、相関係数、微粉率を測定した。結果を表2に示す。また図5〜8および図10〜13に粒度分布の測定結果のグラフを示す。
Figure 2012161275
(結果)
実施例5〜8は水溶性の硫酸マグネシウムを用いたのに対して、比較例2〜5は硫酸マグネシウムは用いず、その代わりに難水溶解性の硫酸カルシウム(二水石膏)を用いるとともに、水酸化マグネシウムを実施例5〜8よりも多く配合した。
いずれの例もケイ砂の平均粒径にかかわらず、造粒体の平均粒径は80μm前後でほぼ同等であった。
実施例5と比較例2、実施例6と比較例3、実施例7と比較例4、実施例8と比較例5をそれぞれ比べると、相関係数はほぼ同等または実施例の方が高く、微粉率は実施例の方が顕著に低い。これは水溶性マグネシウム塩(硫酸マグネシウム)の配合量が多い実施例の方が、スラリー中に存在するMg2+の量が増えたため、造粒体強度が増大したためと考えられる。また、ケイ砂の平均粒径0.5〜44.0μmの広い範囲で同様の効果が得られた。
本発明により得られる造粒体は、強度に優れ、微粉が発生し難い造粒体であり、特に造粒体の搬送時に微粉の発生を抑制しやすいことより、気中溶融法による溶融ガラスの製造に適している。
なお、2011年5月25日に出願された日本特許出願2011−117149号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1. 無アルカリガラスの製造に用いられる、ガラス原料混合物の造粒体を製造する方法であって、
    ガラス原料混合物および水を含有する原料スラリーを調製する工程と、
    前記原料スラリーを噴霧乾燥して造粒体を製造する工程を有し、
    前記ガラス原料混合物が、少なくともケイ砂、ホウ酸、マグネシウム源およびアルカリ土類金属源を含み、
    前記マグネシウム源の少なくとも一部が水溶性のマグネシウム塩であり、前記アルカリ土類金属源の少なくとも一部が水溶性のアルカリ土類金属源であり、
    前記ガラス原料混合物中における、水溶性のマグネシウム源のMgO換算モル量と水溶性のアルカリ土類金属源の酸化物換算モル量との合計を1とするとき、水溶性のマグネシウム源のMgO換算モル量の相対値が、0.05以上であり、
    前記ガラス原料混合物中における、ホウ酸のB換算モル量を1とするとき、水溶性のアルカリ土類金属源の酸化物換算モル量の相対値が、1.00以下である、造粒体の製造方法。
  2. 前記原料スラリーのpHが5.5以上である、請求項1に記載の造粒体の製造方法。
  3. 前記造粒体の粒度分布曲線における、体積累計メディアン径を表わすD50が50〜700μmである、請求項1または2に記載の造粒体の製造方法。
  4. 前記水溶性マグネシウム塩が、硫酸マグネシウムおよび/または塩化マグネシウムである、請求項1〜3のいずれか一項に記載の造粒体の製造方法。
  5. 前記ガラス原料中における、硫酸マグネシウムのSO換算含有量と塩化マグネシウムのCl換算含有量の合計が0.05〜5質量%である、請求項4に記載の造粒体の製造方法。
  6. 前記無アルカリガラスが、酸化物換算で以下の組成を有するホウケイ酸ガラスである、請求項1〜5のいずれか一項に記載の造粒体の製造方法。
    SiO:40〜85質量%、
    Al:0〜22質量%、
    :3〜20質量%、
    MgO:0.04〜8質量%、
    CaO:0〜14.5質量%、
    SrO:0〜24質量%、
    BaO:0〜30質量%、
    O(Rはアルカリ金属を表す):0.1質量%以下、
    ただし、CaOとSrOとBaOの合計量は5質量%以上。
  7. 前記原料スラリーがさらに分散剤を含む、請求項1〜6のいずれか一項に記載の造粒体の製造方法。
  8. 請求項1〜7のいずれか一項に記載の製造方法で得られる造粒体を加熱して溶融ガラスとする、溶融ガラスの製造方法。
  9. 気相雰囲気中で前記造粒体の少なくとも一部を溶融させて溶融ガラス粒子とし、前記溶融ガラス粒子を集積して溶融ガラスとする、請求項8に記載の溶融ガラスの製造方法。
  10. 請求項8または9に記載の溶融ガラスの製造方法で得られた溶融ガラスを成形して徐冷する、ガラス物品の製造方法。
JP2013516443A 2011-05-25 2012-05-24 造粒体の製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法 Withdrawn JPWO2012161275A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011117149 2011-05-25
JP2011117149 2011-05-25
PCT/JP2012/063367 WO2012161275A1 (ja) 2011-05-25 2012-05-24 造粒体の製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法

Publications (1)

Publication Number Publication Date
JPWO2012161275A1 true JPWO2012161275A1 (ja) 2014-07-31

Family

ID=47217347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013516443A Withdrawn JPWO2012161275A1 (ja) 2011-05-25 2012-05-24 造粒体の製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法

Country Status (5)

Country Link
JP (1) JPWO2012161275A1 (ja)
KR (1) KR20140025390A (ja)
CN (1) CN103562147A (ja)
TW (1) TW201302630A (ja)
WO (1) WO2012161275A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102560B2 (en) * 2013-01-17 2015-08-11 Sibelco Asia Pte. Ltd. Charging load for making TFT glass and method of making same
JP2016102030A (ja) * 2013-03-04 2016-06-02 旭硝子株式会社 ガラスの溶解方法、溶融ガラスの製造方法及び板ガラスの製造方法
JP6056716B2 (ja) * 2013-09-05 2017-01-11 旭硝子株式会社 造粒体、その製造方法およびガラス物品の製造方法
JP6520358B2 (ja) * 2015-04-30 2019-05-29 Agc株式会社 ガラス原料造粒体の製造方法、溶融ガラスの製造方法、およびガラス物品の製造方法
WO2017047552A1 (ja) * 2015-09-17 2017-03-23 旭硝子株式会社 ガラス原料造粒体の製造方法、溶融ガラスの製造方法、およびガラス物品の製造方法
JP6811936B2 (ja) * 2016-11-02 2021-01-13 日本電気硝子株式会社 アルミノシリケートガラスの製造方法
CN107056044A (zh) * 2017-05-23 2017-08-18 武汉理工大学 一种适用于液晶玻璃生产的复合消泡剂
FR3087768B1 (fr) 2018-10-29 2020-10-30 Arc France Preparation de fabrication de verre et installation de verrerie industrielle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347795A (ja) * 2005-06-15 2006-12-28 Hoya Corp 無アルカリガラス、その製造方法および液晶表示装置のtft形成用ガラス基板
JP2010132541A (ja) * 2008-11-10 2010-06-17 Asahi Glass Co Ltd 無アルカリガラスの製造方法
WO2011024913A1 (ja) * 2009-08-28 2011-03-03 旭硝子株式会社 造粒体の製造方法およびガラス製品の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175711A (ja) * 1974-12-27 1976-06-30 Nippon Steel Chemical Co Garasugenryozoryuho
DE10214449B4 (de) * 2002-03-30 2005-03-24 Schott Ag Verfahren zur Herstellung von alkalifreien Aluminosilicatgläsern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347795A (ja) * 2005-06-15 2006-12-28 Hoya Corp 無アルカリガラス、その製造方法および液晶表示装置のtft形成用ガラス基板
JP2010132541A (ja) * 2008-11-10 2010-06-17 Asahi Glass Co Ltd 無アルカリガラスの製造方法
WO2011024913A1 (ja) * 2009-08-28 2011-03-03 旭硝子株式会社 造粒体の製造方法およびガラス製品の製造方法

Also Published As

Publication number Publication date
CN103562147A (zh) 2014-02-05
WO2012161275A1 (ja) 2012-11-29
TW201302630A (zh) 2013-01-16
KR20140025390A (ko) 2014-03-04

Similar Documents

Publication Publication Date Title
WO2012161275A1 (ja) 造粒体の製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法
TWI482744B (zh) A method for producing a glass raw material granule and a method for producing the same
TWI477457B (zh) A method for producing granules and a method for producing a glass product
JP5920342B2 (ja) 造粒体およびその製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法
JP6142869B2 (ja) 造粒体およびその製造方法
TWI548601B (zh) Manufacturing method of molten glass and manufacturing method of glass product
US20170174545A1 (en) Method for producing glass raw material granules, method for producing molten glass, and method for producing glass article
US10035726B2 (en) Granules, method for their production, and method for producing glass product
JP6056716B2 (ja) 造粒体、その製造方法およびガラス物品の製造方法
KR102517491B1 (ko) 유리 원료 조립체의 제조 방법, 용융 유리의 제조 방법, 및 유리 물품의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160303