JPWO2012111575A1 - n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法 - Google Patents

n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法 Download PDF

Info

Publication number
JPWO2012111575A1
JPWO2012111575A1 JP2012557935A JP2012557935A JPWO2012111575A1 JP WO2012111575 A1 JPWO2012111575 A1 JP WO2012111575A1 JP 2012557935 A JP2012557935 A JP 2012557935A JP 2012557935 A JP2012557935 A JP 2012557935A JP WO2012111575 A1 JPWO2012111575 A1 JP WO2012111575A1
Authority
JP
Japan
Prior art keywords
type diffusion
diffusion layer
forming composition
ether
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012557935A
Other languages
English (en)
Other versions
JP5673694B2 (ja
Inventor
洋一 町井
洋一 町井
吉田 誠人
誠人 吉田
野尻 剛
剛 野尻
香 岡庭
香 岡庭
岩室 光則
光則 岩室
修一郎 足立
修一郎 足立
鉄也 佐藤
鉄也 佐藤
木沢 桂子
桂子 木沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Priority to JP2012557935A priority Critical patent/JP5673694B2/ja
Publication of JPWO2012111575A1 publication Critical patent/JPWO2012111575A1/ja
Application granted granted Critical
Publication of JP5673694B2 publication Critical patent/JP5673694B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Glass Compositions (AREA)

Abstract

分散媒と、ZrO2、Al2O3、TiO2、ZnO、MgO、CaO、SrO、及びBaOから選択される少なくとも1種並びにP2O5を含むガラス粉末と、を含有する、n型拡散層形成組成物である。

Description

本発明は、n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法に関するものであり、更に詳しくは、半導体基板であるシリコン基板の特定の部分にn型拡散層を形成することを可能とする技術に関するものである。
従来のシリコン太陽電池セルの製造工程について説明する。
まず、光閉じ込め効果を促して高効率化を図るよう、テクスチャー構造を形成したp型シリコン基板を準備し、続いてオキシ塩化リン(POCl)、窒素、及び酸素の混合ガス雰囲気において800℃〜900℃で数十分の処理を行って一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、表面のみならず、側面、裏面にもn型拡散層が形成される。そのため、側面のn型拡散層を除去するためのサイドエッチング工程が必要であった。また、裏面のn型拡散層はp型拡散層へ変換する必要がある。そのため裏面のn型拡散層の上に第13族元素であるアルミニウムを含むアルミニウムペーストを付与した後、熱処理して、アルミニウムの拡散によってn型拡散層からp型拡散層に変換するのと同時に、オーミックコンタクトを得ていた。
一方で、半導体の製造分野では、五酸化リン(P)あるいはリン酸二水素アンモニウム(NHPO)等のリン酸塩を含有する溶液の塗布によってn型拡散層を形成する方法が提案されている(例えば、特開2002−75894号公報参照)。しかしながら、この方法では溶液を用いるために、上記混合ガスを用いる気相反応法と同様、リンの拡散が側面及び裏面にもおよび、表面のみならず、側面、裏面にもn型拡散層が形成される。
上述のように、n型拡散層形成の際、オキシ塩化リンを用いた気相反応では、本来n型拡散層が必要となる片面(通常受光面、表面)のみならず、もう一方の面(非受光面、裏面)や側面にもn型拡散層が形成されてしまう。また、リン酸塩を含有する溶液を塗布して熱拡散させる方法でも、気相反応法と同様、表面以外にもn型拡散層が形成されてしまう。そのため、素子としてpn接合構造を有するためには、側面においてはエッチングを行い、裏面においてはn型拡散層をp型拡散層へ変換しなければならない。一般には、裏面に第13族元素であるアルミニウムのペーストを塗布、焼成し、n型拡散層をp型拡散層へ変換している。
本発明は、以上の従来の問題点に鑑みなされたものであり、結晶シリコン基板を用いた太陽電池セルの製造工程において、不要なn型拡散層を形成させることなく特定の部分にn型拡散層を形成することが可能なn型拡散層形成組成物、n型拡散層形成組成物の製造方法、n型拡散層の製造方法、及び太陽電池セルの製造方法の提供を課題とする。
前記課題を解決する手段は以下の通りである。
<1> 分散媒と、ZrO、Al、TiO、ZnO、MgO、CaO、SrO、及びBaOから選択される少なくとも1種並びにPを含むガラス粉末と、を含有する、n型拡散層形成組成物。
<2> 前記ガラス粉末が、Pを30質量%〜90質量%含有する、前記<1>に記載のn型拡散層形成組成物。
<3> 前記ガラス粉末の体積平均粒径が100μm以下である、前記<1>又は<2>に記載のn型拡散層形成組成物。
<4> 前記<1>〜<3>のいずれか1項に記載のn型拡散層形成組成物を塗布する工程と、熱拡散処理を施す工程と、を有するn型拡散層の製造方法。
<5> 半導体基板上に、前記<1>〜<3>のいずれか1項に記載のn型拡散層形成組成物を塗布する工程と、熱拡散処理を施して、n型拡散層を形成する工程と、を有する太陽電池セルの製造方法。
本発明によれば、結晶シリコン基板を用いた太陽電池セルの製造工程において、不要なn型拡散層を形成させることなく特定の部分にn型拡散層を形成することが可能なn型拡散層形成組成物を提供することができる。また該n型拡散層形成組成物を用いるn型拡散層の製造方法、及び太陽電池セルの製造方法を提供することができる。
本発明の太陽電池セルの製造工程の一例を概念的に示す断面図である。 太陽電池セルを表面から見た平面図である。 図2Aの一部を拡大して示す斜視図である。
まず、本発明のn型拡散層形成組成物について説明し、次にn型拡散層形成組成物を用いるn型拡散層及び太陽電池セルの製造方法について説明する。
尚、本明細書において「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
また本明細書において「〜」を用いて示された数値範囲は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。
さらに組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
[n型拡散層形成組成物]
本発明のn型拡散層形成組成物は、ガラス粉末と、分散媒と、を含有し、更に塗布性などを考慮してその他の添加剤を必要に応じて含有してもよい。また前記ガラス粉末は、ドナー元素含有物質としてリン成分であるPを含み、かつ、ガラス成分物質としてZrO、Al、TiO、ZnO、MgO、CaO、及びBaOから選択される少なくとも1種を含むものである。
ここで、n型拡散層形成組成物とは、ドナー元素を含有し、シリコン基板に塗布した後にこのドナー元素を熱拡散することでn型拡散層を形成することが可能な材料をいい、本発明ではドナー元素としてP(リン)を用いている。そして本発明のn型拡散層形成組成物を用いることで、所望の部位にのみn型拡散層が形成され、裏面や側面には不要なn型拡散層が形成されない。
したがって、本発明のn型拡散層形成組成物を適用すれば、従来広く採用されている気相反応法では必須のサイドエッチング工程が不要となり、工程が簡易化される。また、裏面においてn型拡散層をp型拡散層へ変換する工程も不要となる。そのため、裏面のp型拡散層の形成方法や、裏面電極の材質、形状及び厚さが制限されず、適用する製造方法や材質、形状の選択肢が広がる。また詳細は後述するが、裏面電極の厚さに起因したシリコン基板内の内部応力の発生が抑えられ、シリコン基板の反りも抑えられる。
なお、本発明のn型拡散層形成組成物に含有されるガラス粉末は焼成により溶融し、n型拡散層の上にガラス層を形成する。しかし従来の気相反応法やリン酸塩含有の溶液を塗布する方法においてもn型拡散層の上にガラス層が形成されており、よって本発明において生成したガラス層は、従来の方法と同様に、エッチングにより除去することができる。
したがって本発明のn型拡散層形成組成物は、従来の方法と比べても不要な生成物を発生させず、工程を増やすこともない。
また、ガラス粉末は、リン酸塩含有の溶液とは異なり、焼成中でもドナー元素の揮散が抑制されるため、ドナー元素を含む揮散ガスの発生によって表面のみでなく裏面や側面にまでn型拡散層が形成されるということが防止される。この理由として、ドナー成分がガラス粉末中の元素と結合しているか、又はガラス中に取り込まれているため、揮散しにくくなっているものと考えられる。
さらに、本発明のn型拡散層形成組成物においては、上記の通り、ドナー元素含有物質としてPを用い、かつ、ガラス成分物質としてZrO、Al、TiO、ZnO、MgO、CaO、SrO、及びBaOから選択される少なくとも1種が用いられている。それにより、上記ガラス成分物質を用いない場合に比べて、n型拡散層形成における位置選択性が向上する。
具体的には、酸化リンは水に対する溶解度が大きいため、n型拡散層形成組成物に含まれるガラス粉末が吸湿すると、酸化リンが水と反応してリン酸が生成することが考えられる。そして、リン酸を含むn型拡散層形成組成物を用いてn型拡散層の形成を行うと、加熱によってリン酸が蒸発してしまい、蒸発したリン酸が、基板の裏面などのn型拡散層形成組成物を塗布していない箇所に付着し、不要なn型拡散層が形成されてしまう場合がある。
ガラス成分物質としてZrO、Al、TiO、ZnO、MgO、CaO、SrO、及びBaOから選択される少なくとも1種を用いることで、n型拡散層形成組成物の耐水性が向上するため、ガラス粉末の吸湿に起因する不要なn型拡散層の形成が抑制されると考えられる。
すなわち、上記本発明のn型拡散層形成組成物が上記構成であるため、例えば高温高湿環境下において保存した後にn型拡散層の形成を行っても、耐水性が高いため、特定の部分により選択的にn型拡散層の形成が行われる。
以下、ZrO、Al、TiO、ZnO、MgO、CaO、SrO、及びBaOを総称して「耐水性向上ガラス成分物質」と称する場合がある。
<ガラス粉末>
本発明に係るガラス粉末について、詳細に説明する。
上記の通り、本発明に係るガラス粉末は、ドナー元素含有物質としてリン成分であるPを含み、かつ、ガラス成分物質として上記耐水性向上ガラス成分物質の少なくとも1種を含む。
ドナー元素含有物質であるPに含まれるP(リン)は、シリコン基板中にドーピングさせることによってn型拡散層を形成することが可能な元素(ドナー元素)の一種であり、ドナー元素の中でも、安全性、ガラス化の容易さ等の観点から好適な元素である。
ガラス成分物質としては、上記耐水性向上ガラス成分物質の少なくとも1種を用いる。耐水性向上ガラス成分物質を2種以上用いてもよい。
また、耐水性向上ガラス成分物質のほかに、耐水性向上ガラス成分物質以外のガラス成分物質(以下、「その他のガラス成分物質」と称する場合がある)を併用してもよい。耐水性向上ガラス成分物質とその他のガラス成分物質とを併用することによって、耐水性、溶融温度、軟化点、ガラス転移点、化学的耐久性等を制御することが可能である。
その他のガラス成分物質としては、例えば、SiO、KO、NaO、LiO、BeO、PbO、CdO、SnO、MoO、La、Nb、Ta、Y、GeO、TeO及びLu等が挙げられる。
上記その他のガラス成分物質のうち、耐水性の観点から、SiO、Y、Nb、及びLaがより好ましい。
一方、上記その他のガラス成分物質のうち、耐水性低下を引き起こす可能性のあるNaO、KO、及びLiOについては、耐水性の観点から、ガラス粉末全体の5質量%以下であることが好ましく、含まない方がより好ましい。
前記ガラス粉末中、Pの含有比率は30質量%〜90質量%であることが好ましく、35質量%〜85質量%であることがより好ましい。
ガラス粉末の具体例としては、例えば、P−ZrO系、P−Al系、P−TiO系、P−ZnO系、P−MgO系、P−CaO系、P−BaO、P−SrO系ガラスが挙げられる。
上記では2成分を含む複合ガラスを例示したが、P−Al−ZnO、P−CaO−SiO等必要に応じて3種類以上の複合ガラスでもよい。
ガラス粉末中のガラス成分物質(すなわち、耐水性向上ガラス成分物質及びその他のガラス成分物質)の含有比率は、耐水性、溶融温度、軟化点、ガラス転移点、化学的耐久性を考慮して適宜設定することが望ましく、一般には、0.1質量%以上95質量%以下であることが好ましく、0.5質量%以上90質量%以下であることがより好ましい。
また、ガラス粉末中における耐水性向上ガラス成分物質の含有比率は、耐水性の観点から、1質量%以上50質量%以下が好ましく、5質量%以上40質量%以下がより好ましく、5質量%以上30質量以下が更に好ましい。
さらに、耐水性向上ガラス成分物質の含有量は、耐水性の観点から、ドナー元素含有物質の含有量の0.05倍以上2倍以下が好ましく、0.1倍以上1倍以下がより好ましい。
具体的には、例えばP−CaO系ガラスの場合には、CaOの含有比率は、1質量%以上50質量%以下であることが好ましく、5質量%以上30質量%以下であることがより好ましい。
ガラス粉末の軟化点は、拡散処理時の拡散性、液だれの観点から、200℃〜1000℃であることが好ましく、300℃〜900℃であることがより好ましい。
ガラス粉末の体積平均粒径は、100μm以下であることが望ましい。100μm以下の粒径を有するガラス粉末を用いた場合には、平滑な塗膜が得られやすい。更に、ガラス粉末の粒径は50μm以下であることがより望ましい。10μm以下がより好ましい。ガラス粉末の体積平均粒径の下限値に特に限定は無いが、塗布の分散性や、ガラス粉末の製造コストを鑑みると、0.01μm以上が好ましく、0.1μm以上がより好ましく、0.5μm以上が更に好ましい。
ここで、前記ガラス粉末の頻度分布は、例えば、測定装置として粒度分布測定装置(ベックマンコールター株式会社製、型番:LS13320)を用い、ガラス粉末を溶媒(例えば水)に分散させた分散液を測定して得られる。
ガラス粉末の形状としては、略球状、扁平状、ブロック状、板状及び鱗片状等が挙げられ、n型拡散層形成組成物とした場合の基板への塗布性や均一拡散性の点から、略球状、扁平状又は板状であることが望ましい。
ガラス粉末は、以下の手順で作製される。
最初に原料、例えば、前記ドナー元素含有物質とガラス成分物質を秤量し、るつぼに充填する。るつぼの材質としては白金、白金―ロジウム、イリジウム、アルミナ、石英、炭素等が挙げられるが、溶融温度、雰囲気、溶融物質との反応性等を考慮して適宜選ばれる。
次に、電気炉でガラス組成に応じた温度で加熱して融液とする。このとき融液が均一となるよう攪拌することが望ましい。
続いて均一になった融液をジルコニア基板やカーボン基板等の上に流し出して融液をガラス化する。
最後にガラスを粉砕し粉末状とする。粉砕にはジェットミル、ビーズミル、ボールミル等公知の方法が適用できる。
n型拡散層形成組成物中におけるガラス粉末の含有比率は、塗布性、ドナー元素の拡散性等を考慮し決定される。一般には、n型拡散層形成組成物中のガラス粉末の含有比率は、0.1質量%以上95質量%以下であることが好ましく、1質量%以上90質量%以下であることがより好ましく、5質量%以上80質量%以下であることがさらに好ましい。
<分散媒>
次に、分散媒について説明する。
分散媒とは、組成物中において上記ガラス粉末を分散させる媒体である。具体的に分散媒としては、バインダーや溶剤などが採用される。
バインダーとしては、例えば、ジメチルアミノエチル(メタ)アクリレートポリマー、ポリビニルアルコール、ポリアクリルアミド類、ポリビニルアミド類、ポリビニルピロリドン、ポリ(メタ)アクリル酸類、ポリエチレンオキサイド類、ポリスルホン酸、アクリルアミドアルキルスルホン酸、セルロースエーテル類、セルロース誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ゼラチン、澱粉及び澱粉誘導体、アルギン酸ナトリウム類、キサンタン、グア及びグア誘導体、スクレログルカン及びスクレログルカン誘導体、トラガカント及びトラガカント誘導体、デキストリン及びデキストリン誘導体、アクリル酸樹脂、アクリル酸エステル樹脂、ブタジエン樹脂、スチレン樹脂及びこれらの共重合体、並びに二酸化珪素などを適宜選択しうる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
バインダーの分子量は特に制限されず、組成物としての所望の粘度を鑑みて適宜調整することが望ましい。
溶剤としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−iso−プロピルケトン、メチル−n−ブチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン等のケトン系溶剤;ジエチルエーテル、メチルエチルエーテル、メチル−n−プロピルエーテル、ジ−iso−プロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル−n−プロピルエーテル、ジエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチル−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラジエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチル−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラジプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ−ブチロラクトン、γ−バレロラクトン等のエステル系溶剤;アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤;α−テルピネン、α−テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α−ピネン、β−ピネン、ターピネオール、カルボン、オシメン、フェランドレン等のテルペン系溶剤;水が挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
n型拡散層形成組成物中の分散媒の含有比率は、塗布性、ドナー濃度(P(リン)濃度)を考慮し決定される。
n型拡散層形成組成物の粘度は、塗布性を考慮して、10mPa・S以上1000000mPa・S以下であることが好ましく、50mPa・S以上500000mPa・S以下であることがより好ましい。
[n型拡散層及び太陽電池セルの製造方法]
次に、本発明のn型拡散層及び太陽電池セルの製造方法について、図1を参照しながら説明する。図1は、本発明にかかる太陽電池セルの製造工程の一例を概念的に表す模式断面図である。以降の図面においては、共通する構成要素に同じ符号を付す。
図1(1)では、p型半導体基板10である結晶シリコンにアルカリ溶液を付与してダメージ層を除去し、テクスチャー構造をエッチングにて得る。
詳細には、インゴットからスライスした際に発生するシリコン表面のダメージ層を20質量%苛性ソーダで除去する。次いで1質量%苛性ソーダと10質量%イソプロピルアルコールの混合液によりエッチングを行い、テクスチャー構造を形成する(図中ではテクスチャー構造の記載を省略する)。太陽電池セルは、受光面(表面)側にテクスチャー構造を形成することにより、光閉じ込め効果が促され、高効率化が図られる。
図1(2)では、p型半導体基板10の表面すなわち受光面となる面に、上記n型拡散層形成組成物を塗布して、n型拡散層形成組成物層11を形成する。本発明では、塗布方法には制限がないが、例えば、印刷法、スピン法、刷毛塗り、スプレー法、ドクターブレード法、ロールコーター法、インクジェット法などがある。
上記n型拡散層形成組成物の塗布量としては特に制限はないが、例えば、10g/m〜250g/mとすることができ、20g/m〜150g/mであることが好ましい。
なお、n型拡散層形成組成物の組成によっては、塗布後に、組成物中に含まれる溶剤を揮発させるための乾燥工程が必要な場合がある。この場合には、80〜300℃程度の温度で、ホットプレートを使用する場合は1〜10分、乾燥機などを用いる場合は10〜30分程度で乾燥させる。この乾燥条件は、n型拡散層形成組成物の溶剤組成に依存しており、本発明では特に上記条件に限定されない。
また、本発明の製造方法を用いる場合には、裏面のp型拡散層(高濃度電界層)14の製造方法はアルミニウムによるn型拡散層からp型拡散層への変換による方法に限定されることなく、従来公知のいずれの方法も採用でき、製造方法の選択肢が広がる。したがって、例えば、B(ボロン)などの第13族の元素を含む組成物13を付与し、高濃度電界層14を形成することができる。
次いで、上記n型拡散層形成組成物層11を形成した半導体基板10を、600〜1200℃で熱拡散処理する。この熱拡散処理により、図1(3)に示すように半導体基板中へドナー元素が拡散し、n型拡散層12が形成される。熱拡散処理には公知の連続炉、バッチ炉等が適用できる。また、熱拡散処理時の炉内雰囲気は、空気、酸素、窒素等に適宜調整することもできる。
熱拡散処理時間は、n型拡散層形成組成物に含まれるドナー元素の含有率などに応じて適宜選択することができる。例えば、1〜60分間とすることができ、2〜30分間であることがより好ましい。
形成されたn型拡散層12の表面には、リン酸ガラスなどのガラス層(不図示)が形成されているため、このリン酸ガラスをエッチングにより除去する。エッチングとしては、ふっ酸等の酸に浸漬する方法、苛性ソーダ等のアルカリに浸漬する方法など公知の方法が適用できる。
図1(2)及び(3)に示される、本発明のn型拡散層形成組成物11を用いてn型拡散層12を形成する本発明のn型拡散層の形成方法では、所望の部位にのみn型拡散層12が形成され、裏面や側面には不要なn型拡散層が形成されない。
したがって、従来広く採用されている気相反応法によりn型拡散層を形成する方法では、側面に形成された不要なn型拡散層を除去するためのサイドエッチング工程が必須であったが、本発明の製造方法によれば、サイドエッチング工程が不要となり、工程が簡易化される。
また、従来の製造方法では、裏面に形成された不要なn型拡散層をp型拡散層へ変換する必要があり、この変換方法としては、裏面のn型拡散層に、第13族元素であるアルミニウムのペーストを塗布、焼成し、n型拡散層にアルミニウムを拡散させてp型拡散層へ変換する方法が採用されている。この方法においてp型拡散層への変換を充分なものとし、更にp層の高濃度電界層を形成するためには、ある程度以上のアルミニウム量が必要であることから、アルミニウム層を厚く形成する必要があった。しかしながら、アルミニウムの熱膨張率は、基板として用いるシリコンの熱膨張率と大きく異なることから、焼成及び冷却の過程でシリコン基板中に大きな内部応力を発生させ、シリコン基板の反りの原因となっていた。
この内部応力は、結晶の結晶粒界に損傷を与え、電力損失が大きくなるという課題があった。また、反りは、モジュール工程における太陽電池セルの搬送や、タブ線と呼ばれる導線との接続において、セルを破損させ易くしていた。近年では、スライス加工技術の向上から、結晶シリコン基板の厚みが薄型化されつつあり、更にセルが割れ易い傾向にある。
しかし本発明の製造方法によれば、裏面に不要なn型拡散層が形成されないことから、n型拡散層からp型拡散層への変換を行う必要がなくなり、アルミニウム層を厚くする必然性がなくなる。その結果、シリコン基板内の内部応力の発生や反りを抑えることができる。結果として、電力損失の増大や、セルの破損を抑えることが可能となる。
また、本発明の製造方法を用いる場合には、裏面のp型拡散層(高濃度電界層)14の製造方法はアルミニウムによるn型拡散層からp型拡散層への変換による方法に限定されることなく、従来公知のいずれの方法も採用でき、製造方法の選択肢が広がる。
また後述するように、裏面の表面電極20に用いる材料は第13族のアルミニウムに限定されず、例えばAg(銀)やCu(銅)などを適用することができ、裏面の表面電極20の厚さも従来のものよりも薄く形成することが可能となる。
図1(4)では、n型拡散層12の上に反射防止膜16を形成する。反射防止膜16は公知の技術を適用して形成される。例えば、反射防止膜16がシリコン窒化膜の場合には、SiHとNHの混合ガスを原料とするプラズマCVD法により形成する。このとき、水素が結晶中に拡散し、シリコン原子の結合に寄与しない軌道、即ちダングリングボンドと水素が結合し、欠陥を不活性化(水素パッシベーション)する。
より具体的には、上記混合ガス流量比NH/SiHが0.05〜1.0、反応室の圧力が0.1〜2Torr(13.3〜266.6Pa)、成膜時の温度が300〜550℃、プラズマの放電のための周波数が100kHz以上の条件下で形成される。
図1(5)では、表面(受光面)の反射防止膜16上に、表面電極用金属ペーストをスクリーン印刷法で印刷塗布乾燥させ、表面電極18を形成する。表面電極用金属ペーストは、(1)金属粒子と(2)ガラス粒子とを必須成分とし、必要に応じて(3)樹脂バインダー、(4)その他の添加剤などを含む。
次いで、上記裏面の高濃度電界層14上にも裏面電極20を形成する。前述のように、本発明では裏面電極20の材質や形成方法は特に限定されない。例えば、アルミニウム、銀、又は銅などの金属を含む裏面電極用ペーストを塗布し、乾燥させて、裏面電極20を形成してもよい。このとき、裏面にも、モジュール工程におけるセル間の接続のために、一部に銀電極形成用銀ペーストを設けてもよい。
図1(6)では、電極を焼成して、太陽電池セルを完成させる。600〜900℃の範囲で数秒〜数分間焼成すると、表面側では電極用金属ペーストに含まれるガラス粒子によって絶縁膜である反射防止膜16が溶融し、更にシリコン10表面も一部溶融して、ペースト中の金属粒子(例えば銀粒子)がシリコン基板10と接触部を形成し凝固する。これにより、形成した表面電極18とシリコン基板10とが導通される。これはファイアースルーと称されている。
表面電極18の形状について説明する。表面電極18は、バスバー電極30、及び該バスバー電極30と交差しているフィンガー電極32で構成される。図2(A)は、表面電極18を、バスバー電極30、及び該バスバー電極30と交差しているフィンガー電極32からなる構成とした太陽電池セルを表面から見た平面図であり、図2(B)は、図2(A)の一部を拡大して示す斜視図である。
このような表面電極18は、例えば、上述の金属ペーストのスクリーン印刷、又は電極材料のメッキ、高真空中における電子ビーム加熱による電極材料の蒸着などの手段により形成することができる。バスバー電極30とフィンガー電極32とからなる表面電極18は受光面側の電極として一般的に用いられていて周知であり、受光面側のバスバー電極及びフィンガー電極の公知の形成手段を適用することができる。
上記では、表面にn型拡散層、裏面にp型拡散層を形成し、更にそれぞれの層の上に表面電極及び裏面電極を設けた太陽電池セルについて説明したが、本発明のn型拡散層形成組成物を用いればバックコンタクト型の太陽電池セルを作製することも可能である。
バックコンタクト型の太陽電池セルは、電極を全て裏面に設けて受光面の面積を大きくするものである。つまりバックコンタクト型の太陽電池セルでは、裏面にn型拡散部位及びp型拡散部位の両方を形成しpn接合構造とする必要がある。本発明のn型拡散層形成組成物は、特定の部位にのみn型拡散部位を形成することが可能であり、よってバックコンタクト型の太陽電池セルの製造に好適に適用することができる。また、本発明のn型拡散層形成組成物は、例えば電極直下のみに高濃度n型拡散層(n++層)を形成する、選択エミッターにも適用できる。
なお、日本出願2011−032430の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に制限するものではない。なお、特に記述が無い限り、薬品は全て試薬を使用した。また「%」は断りがない限り「質量%」を意味する。
[実施例1]
−CaO系ガラス(P:80%、CaO:20%)粉末(体積平均粒径3μm)を、開封された容器に入れ、温度50℃、湿度70%の環境下において、24時間放置した。
次に、このガラス粉末10gと、エチルセルロース5gと、酢酸2−(2−ブトキシエトキシ)エチル85gと、を混合してペースト化し、n型拡散層形成組成物を調製した。
n型拡散層形成組成物を、スクリーン印刷によって塗布量が15〜20g/mとなるようにp型シリコン基板表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板をフッ酸に5分間浸漬し、流水洗浄を行った。その後、乾燥を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は15Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は測定上限(1000000Ω/□)以上で測定不能であり、n型拡散層は形成されていなかった。
なお、上記表面のシート抵抗の値は、156cm×156cmの領域を等間隔に5点×5点測定を行い、その平均を示したもの(以下の実施例及び比較例においても同様)である。
[実施例2]
ガラス粉末として、P−ZnO系ガラス(P:70%、ZnO:30%)粉末(体積平均粒径3μm)を用いた以外は、実施例1と同様にして、n型拡散層形成を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は20Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。
裏面のシート抵抗は測定上限(1000000Ω/□)以上で測定不能であり、n型拡散層は形成されていなかった。
[実施例3]
ガラス粉末として、P−SiO−CaO系ガラス(P:50%、SiO:40%、CaO:10%)粉末(体積平均粒径1μm)を用いた以外は、実施例1と同様にして、n型拡散層形成を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は17Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。
裏面のシート抵抗は測定上限(1000000Ω/□)以上で測定不能であり、n型拡散層は形成されていなかった。
[実施例4]
ガラス粉末として、P−Al−ZnO系ガラス(P:65%、Al:5%、ZnO:30%)粉末(体積平均粒径5μm)を用いた以外は、実施例1と同様にして、n型拡散層形成を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は17Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。
裏面のシート抵抗は測定上限(1000000Ω/□)以上で測定不能であり、n型拡散層は形成されていなかった。
[実施例5]
ガラス粉末として、P−ZnO−TiO系ガラス(P:60%、ZnO:35%、TiO:5%)粉末(体積平均粒径3μm)を用いた以外は、実施例1と同様にして、n型拡散層形成を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は21Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。
裏面のシート抵抗は測定上限(1000000Ω/□)以上で測定不能であり、n型拡散層は形成されていなかった。
[実施例6]
ガラス粉末として、P−ZnO−ZrO系ガラス(P:63%、ZnO:35%、ZrO:2%)粉末(体積平均粒径2μm)を用いた以外は、実施例1と同様にして、n型拡散層形成を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は21Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。
裏面のシート抵抗は測定上限(1000000Ω/□)以上で測定不能であり、n型拡散層は形成されていなかった。
[実施例7]
ガラス粉末として、P−ZnO−MgO系ガラス(P:60%、ZnO:30%、MgO:10%)粉末(体積平均粒径4μm)を用いた以外は、実施例1と同様にして、n型拡散層形成を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は25Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。
裏面のシート抵抗は測定上限(1000000Ω/□)以上で測定不能であり、n型拡散層は形成されていなかった。
[実施例8]
ガラス粉末として、P−BaO−CaO系ガラス(P:60%、BaO:20%、CaO:20%)粉末(体積平均粒径3μm)を用いた以外は、実施例1と同様にして、n型拡散層形成を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は17Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。
裏面のシート抵抗は測定上限(1000000Ω/□)以上で測定不能であり、n型拡散層は形成されていなかった。
[実施例9]
ガラス粉末として、P−SiO−SrO系ガラス(P:45%、SiO:35%、SrO:20%)粉末(体積平均粒径1μm)を用いた以外は、実施例1と同様にして、n型拡散層形成を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は21Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。
裏面のシート抵抗は測定上限(1000000Ω/□)以上で測定不能であり、n型拡散層は形成されていなかった。
[比較例1]
リン酸二水素アンモニウム(NHPO)粉末20gとエチルセルロース3g、酢酸2−(2−ブトキシエトキシ)エチル7gを混合してペースト化し、n型拡散層組成物を調製した。
次に、調製したペーストをスクリーン印刷によってp型シリコン基板表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板をふっ酸に5分間浸漬し、流水洗浄、乾燥を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は14Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。しかしながら、裏面のシート抵抗は50Ω/□であり、裏面にもn型拡散層が形成されていた。
[比較例2]
リン酸二水素アンモニウム(NHPO)粉末1gと純水7g、ポリビニルアルコール0.7g、イソプロピルアルコール1.5gを混合して溶液を調製し、n型拡散層組成物を調製した。
次に、調製した溶液をスピンコータ(2000rpm、30sec)によってp型シリコン基板表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板をふっ酸に5分間浸漬し、流水洗浄、乾燥を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は10Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。しかしながら、裏面のシート抵抗は100Ω/□であり、裏面にもn型拡散層が形成されていた。
[比較例3]
ガラス粉末として、P−SiO系ガラス(P:40%、SiO:60%)粉末(体積平均粒径1μm)を用いた以外は、実施例1と同様にして、n型拡散層形成を行った。
n型拡散層形成組成物を塗布した側の表面のシート抵抗は27Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。
裏面のシート抵抗は750Ω/□であり、裏面にもn型拡散層は形成されていた。
以上の結果から、実施例で調整されたn型拡散層形成組成物を用いれば、裏面にn型拡散層を形成させることなく表面にのみn型拡散層を形成することが可能であり、比較例に比べてn型拡散層形成の位置選択性が高いことがわかる。

Claims (5)

  1. 分散媒と、
    ZrO、Al、TiO、ZnO、MgO、CaO、SrO、及びBaOから選択される少なくとも1種並びにPを含むガラス粉末と、
    を含有する、n型拡散層形成組成物。
  2. 前記ガラス粉末が、Pを30質量%〜90質量%含有する、請求項1に記載のn型拡散層形成組成物。
  3. 前記ガラス粉末の体積平均粒径が100μm以下である、請求項1又は請求項2に記載のn型拡散層形成組成物。
  4. 請求項1〜請求項3のいずれか1項に記載のn型拡散層形成組成物を塗布する工程と、
    熱拡散処理を施す工程と、
    を有するn型拡散層の製造方法。
  5. 半導体基板上に、請求項1〜請求項3のいずれか1項に記載のn型拡散層形成組成物を塗布する工程と、
    熱拡散処理を施して、n型拡散層を形成する工程と、
    を有する太陽電池セルの製造方法。
JP2012557935A 2011-02-17 2012-02-10 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法 Expired - Fee Related JP5673694B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012557935A JP5673694B2 (ja) 2011-02-17 2012-02-10 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011032430 2011-02-17
JP2011032430 2011-02-17
JP2012557935A JP5673694B2 (ja) 2011-02-17 2012-02-10 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
PCT/JP2012/053182 WO2012111575A1 (ja) 2011-02-17 2012-02-10 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014220674A Division JP2015053505A (ja) 2011-02-17 2014-10-29 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法

Publications (2)

Publication Number Publication Date
JPWO2012111575A1 true JPWO2012111575A1 (ja) 2014-07-07
JP5673694B2 JP5673694B2 (ja) 2015-02-18

Family

ID=46672499

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012557935A Expired - Fee Related JP5673694B2 (ja) 2011-02-17 2012-02-10 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP2014220674A Pending JP2015053505A (ja) 2011-02-17 2014-10-29 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014220674A Pending JP2015053505A (ja) 2011-02-17 2014-10-29 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法

Country Status (5)

Country Link
JP (2) JP5673694B2 (ja)
KR (1) KR20140041423A (ja)
CN (1) CN103348449A (ja)
TW (2) TW201530791A (ja)
WO (1) WO2012111575A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582747B2 (ja) * 2015-08-28 2019-10-02 日立化成株式会社 n型拡散層形成用組成物、n型拡散層を有する半導体基板の製造方法、及び太陽電池セルの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE548647A (ja) * 1955-06-28
US4800175A (en) * 1987-05-29 1989-01-24 Owens-Illinois Television Products Inc. Phosphorous planar dopant source for low temperature applications
US4891331A (en) * 1988-01-21 1990-01-02 Oi-Neg Tv Products, Inc. Method for doping silicon wafers using Al2 O3 /P2 O5 composition
JPH08167658A (ja) * 1994-12-15 1996-06-25 Hitachi Ltd 半導体装置およびその製造方法
DE19910816A1 (de) * 1999-03-11 2000-10-05 Merck Patent Gmbh Dotierpasten zur Erzeugung von p,p+ und n,n+ Bereichen in Halbleitern
WO2008085806A1 (en) * 2007-01-03 2008-07-17 Nanogram Corporation Nanoparticle inks based on silicon/germanium, doped particles, printing and processes for semiconductor applications
CN101139169A (zh) * 2007-08-09 2008-03-12 东华大学 作为磷扩散源的微晶玻璃及其制备方法
US20090092745A1 (en) * 2007-10-05 2009-04-09 Luca Pavani Dopant material for manufacturing solar cells
WO2009060761A1 (ja) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. ドーパントホストおよびその製造方法
JP5522900B2 (ja) * 2008-02-22 2014-06-18 東京応化工業株式会社 電極形成用導電性組成物及び太陽電池の形成方法
CN101814535A (zh) * 2009-02-19 2010-08-25 上海交大泰阳绿色能源有限公司 一种选择性发射极晶体硅太阳能电池用浆料及其制备方法
WO2010147160A1 (ja) * 2009-06-17 2010-12-23 旭硝子株式会社 電極形成用ガラスフリット、およびこれを用いた電極形成用導電ペースト、太陽電池

Also Published As

Publication number Publication date
KR20140041423A (ko) 2014-04-04
JP2015053505A (ja) 2015-03-19
TW201530791A (zh) 2015-08-01
WO2012111575A1 (ja) 2012-08-23
CN103348449A (zh) 2013-10-09
TW201251036A (en) 2012-12-16
JP5673694B2 (ja) 2015-02-18

Similar Documents

Publication Publication Date Title
JP4868079B1 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5447397B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP5573945B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP5958485B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
WO2011162394A1 (ja) 不純物拡散層形成組成物、n型拡散層形成組成物、n型拡散層の製造方法、p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP5176158B1 (ja) n型拡散層形成組成物、n型拡散層の製造方法及び太陽電池素子の製造方法
JP2013026344A (ja) n型拡散層の製造方法、太陽電池素子の製造方法、および太陽電池素子
JP5541358B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP5625537B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5673694B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5842431B2 (ja) n型拡散層の製造方法、及び太陽電池素子の製造方法
JP5703674B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP5703673B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5728868B2 (ja) n型拡散層形成組成物、n型拡散層形成組成物の製造方法、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5333564B2 (ja) 太陽電池セルの製造方法
JP5626340B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2013026471A (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2016006893A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP2013026472A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP2016036034A (ja) n型拡散層の製造方法、及び太陽電池素子の製造方法
JP2012231013A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP2012019052A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees