JPWO2012102390A1 - 光電変換素子、太陽電池及び太陽電池モジュール - Google Patents

光電変換素子、太陽電池及び太陽電池モジュール Download PDF

Info

Publication number
JPWO2012102390A1
JPWO2012102390A1 JP2012554870A JP2012554870A JPWO2012102390A1 JP WO2012102390 A1 JPWO2012102390 A1 JP WO2012102390A1 JP 2012554870 A JP2012554870 A JP 2012554870A JP 2012554870 A JP2012554870 A JP 2012554870A JP WO2012102390 A1 JPWO2012102390 A1 JP WO2012102390A1
Authority
JP
Japan
Prior art keywords
group
less
film
solar cell
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012554870A
Other languages
English (en)
Inventor
未紗子 岡部
未紗子 岡部
淳 遠田
淳 遠田
秋山 誠治
誠治 秋山
一司 太田
一司 太田
理恵子 藤田
理恵子 藤田
才華 大坪
才華 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2012102390A1 publication Critical patent/JPWO2012102390A1/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • C07F7/2208Compounds having tin linked only to carbon, hydrogen and/or halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5325Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5329Polyphosphine oxides or thioxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3247Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing combinations of different heteroatoms other than nitrogen and oxygen or nitrogen and sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

光電変換効率が向上した光電変換素子、太陽電池及び太陽電池モジュールを提供することを課題とする。一対の電極と、該電極間に配置された活性層と、少なくとも一方の前記電極と前記活性層との間に配置された電子取り出し層と、を備える光電変換素子であって、前記活性層に下記一般式(1)で表される繰り返し単位を有するコポリマーを含有し、かつ前記電子取り出し層に下記一般式(E1)で表される化合物を含有することを特徴とする、光電変換素子により課題を解決する。

Description

本発明は、特定骨格の繰り返し単位を有する新規のコポリマーを活性層に含み、かつ電子取り出し層に特定の化合物を含む光電変換素子、並びにこれを用いた太陽電池及び太陽電池モジュールに関する。
有機ELや有機薄膜トランジスタ、有機発光センサー等デバイスの半導体材料として、π共役高分子が応用されており、なかでも高分子有機太陽電池への応用が注目されている。特に有機太陽電池においては、太陽光の吸収効率を向上させることが望まれており、長波長(600nm以上)の光を吸収できるポリマーの開発が重要である。
吸収波長の長波長化を目的として、ドナー性モノマーとアクセプター性モノマーの共重合体(以後、コポリマーということがある)を光電変換素子に用いた例がいくつか報告されている。
例えば、非特許文献1には、イミドチオフェン骨格とベンゾジチオフェン骨格を主鎖に導入したコポリマーが700nm程度の波長の光を吸収すること、当該コポリマーを用いた光電変換素子の光電変換効率が6.8%程度であったことが記載されている。
非特許文献2には、イミドチオフェン骨格とジチエノシクロペンタジエン骨格を主鎖に導入したコポリマーが700nm程度の波長の光を吸収すること、当該コポリマーを用いた光電変換素子の光電変換効率が3.1%程度であったことが記載されている。
特許文献1には、ジチエノシロール骨格及びベンゾチアジアゾール骨格又はイミドベンゼン骨格等のモノマーを主鎖に導入したコポリマーを用いた光電変換素子の光電変換効率が0.7%程度であったことが記載されている。
特許文献2には、ジチエノシロール骨格及びベンゾチアジアゾール骨格等を主鎖に導入したコポリマーが750nm程度の波長の光を吸収すること、当該コポリマーを用いた光電変換素子の光電変換効率が3.5%程度であったことが記載されている。
特許文献3には、ビフェニル誘導体骨格と置換基を有するチオフェン骨格を含有するコポリマーを使用した光電変換素子が記載されている。
非特許文献3には、イミドチオフェン骨格とジチエノシクロペンタジエン骨格を主鎖に導入したコポリマー、イミドチオフェン骨格とジチエノシロール骨格を含有するコポリマー及びイミドチオフェン骨格とジチエノピロール骨格を主鎖に導入したコポリマーを使用した光電変換素子が記載されている。
特開2010−507233号公報 国際公開第2010/022058号 特開2006−63334号公報
J.Am.Chem.Soc. 2010, 132, 7595−7597 Xugang Guo、外5名、Thieno[3,4−c]pyrrole−4,6−dione−Based Donor−Acceptor Conjugated Polymers for Solar Cells、[on line]、Macromolecules、[平成23年1月21日検索]、インターネット<URL: http://pubs.acs.org/doi/pdfplus/10.1021/ma101878w> J.Mater.Chem. 2011,21,3895−3902
本願発明者らの検討によれば、前述の文献に記載された光電変換素子では、実用化に向けた光電変換効率の向上が必要であり、更なる改善が求められていた。
本発明者らは、上記課題を解決すべく鋭意検討した結果、イミドチオフェン骨格とジチエノシロール骨格からなる繰り返し単位を含有するコポリマーを有する活性層と、特定の化合物を有する電子取り出し層とを組み合わせることにより、光電変換効率が高い光電変換素子となることを見出し、本発明を達成するに至った。即ち、本発明は、以下を要旨とする。
[1]一対の電極と、該電極間に配置された活性層と、少なくとも一方の前記電極と前記活性層との間に配置された電子取り出し層と、を備える光電変換素子であって、前記活性層に下記一般式(1)で表される繰り返し単位を有するコポリマーを含有し、かつ前記電子取り出し層に下記一般式(E1)で表される化合物を含有することを特徴とする、光電変換素子。
(式(1)中、R1は置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアリール基を表し、R2〜R5は各々独立して、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアリール基を表す。)
(式(E1)中、EはPR22、S、S(=O)又はCを表す。pは1以上の整数を表し、R21及びR22は各々独立して任意の置換基を表し、R21及びR22は互いに結合し環を形成していてもよい。pが2以上の場合に、複数のR21及び複数のR22は各々独立して異なっていてもよく、複数のR21及び複数のR22のうちいずれか2つ以上は互いに結合して環を形成していてもよい。R23は置換基を有していてもよいp価の炭化水素基、置換基を有していてもよいp価の複素環基、又は置換基を有していてもよい炭化水素基及び置換基を有していてもよい複素環基の少なくとも一方が連結したp価の基を表す。Xは周期表第16族から選ばれる原子を表す。)
[2]前記一般式(E1)で表される化合物が、下記一般式(P1)で表される化合物であることを特徴とする、[1]に記載の光電変換素子。
(式(P1)中、pは1以上の整数を表し、R21及びR22は各々独立して任意の置換基を表し、R21及びR22は互いに結合し環を形成していてもよい。pが2以上の場合に、複数のR21及び複数のR22は各々独立して異なっていてもよく、複数のR21及び複数のR22のうちいずれか2つ以上は互いに結合して環を形成していてもよい。R23は置換基を有していてもよいp価の炭化水素基、置換基を有していてもよいp価の複素環基、又は置換基を有していてもよい炭化水素基及び置換基を有していてもよい複素環基の少なくとも一方が連結したp価の基を表す。Xは周期表第16族から選ばれる原子を表す。)
[3]R21及びR22が、各々独立して、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、又は置換基を有していてもよい複素環基であることを特徴とする、[1]又は[2]に記載の光電変換素子。
[4]前記活性層がさらに、フラーレン化合物、ボラン誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、ベンゾチアジアゾール誘導体、N−アルキル置換されたナフタレンテトラカルボン酸ジイミド、N−アルキル置換されたペリレンジイミド誘導体及びn型高分子半導体化合物よりなる群から選ばれる少なくとも1種のn型半導体化合物を含有する、[1]から[3]のいずれかに記載の光電変換素子。
[5]太陽電池である、[1]から[4]のいずれかに記載の光電変換素子。
[6][5]に記載の光電変換素子を含有することを特徴とする、太陽電池モジュール。
本発明によれば、光電変換効率が向上した光電変換素子、太陽電池及び太陽電池モジュールを提供することができる。
本発明の一実施形態としての光電変換素子の構成を模式的に示す断面図である。 本発明の一実施形態としての太陽電池の構成を模式的に示す断面図である。 本発明の一実施形態としての太陽電池モジュールの構成を模式的に示す断面図である。 コポリマーA1、コポリマーA2、コポリマーA3及びコポリマーBの吸収スペクトルを示す図である。 コポリマーA2及びコポリマーCの吸収スペクトルを示す図である。 コポリマーA2のX線回折スペクトルを示す図である。
以下に、本発明の実施の形態を詳細に説明する。
以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定はされない。
[1−1.一般式(1)で表される繰り返し単位を有するコポリマー]
本発明に係るコポリマーは、下記式(1)で表される繰り返し単位、すなわちイミドチオフェン骨格及びジチエノシロール骨格からなる繰り返し単位を有するものである。本発明に係るコポリマーは、このような骨格を有する繰り返し単位を有することで、光吸収波長領域が長波長化し、かつ光吸収性が高い点から好ましい。
式(1)中、R1は置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアリール基を表し、R2〜R5は各々独立して、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアリール基を表す。
式(1)におけるR1〜R5の定義中の基および原子について、具体例を以下に説明する。R1は置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアリール基である。
1の炭素数は、通常1以上、好ましくは3以上、より好ましくは4以上、一方、通常20以下、好ましくは16以下、より好ましくは12以下、更に好ましくは10以下である。
このようなアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、シクロプロピル基、nブチル基、iso−ブチル基、tert−ブチル基、3−メチルブチル基、シクロブチル基、ペンチル基、シクロペンチル基、ヘキシル基、2−エチルヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、シクロオクチル基、ノニル基、シクロノニル基、デシル基、シクロデシル基、ラウリル基又はシクロラウリル基等が挙げられる。その中でも、n−プロピル基、iso−プロピル基、シクロプロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基、3−メチルブチル基、シクロブチル基、ペンチル基、シクロペンチル基、ヘキシル基、2−エチルヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、シクロオクチル基、ノニル基、シクロノニル基、デシル基、シクロデシル基、ラウリル基又はシクロラウリル基が好ましく、ブチル基、ペンチル基、ヘキシル基、2−エチルヘキシル基、シクロオクチル基、ノニル基、シクロノニル基、デシル基又はシクロデシル基等がより好ましい。
アルケニル基としては、炭素数が、通常2以上、好ましくは3以上、より好ましくは4以上、一方、通常20以下、好ましくは16以下、より好ましくは12以下、更に好ましくは10以下である。このようなアルケニル基としては、例えば、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基又はゲラニル基などが挙げられる。好ましくは、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基又はドデセニル基であり、より好ましくは、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基又はデセニル基である。
アリール基としては、炭素数が、通常2以上、一方、通常60以下、好ましくは20以下、より好ましくは14以下である。このようなアリール基としては、例えば、フェニル基、ナフチル基、インダニル基、インデニル基、フルオレニル基、アントラセニル基又はアズレニル基等の芳香族炭化水素基;チエニル基、フリル基、ピリジル基、ピリミジル基、チアゾリル基、オキサゾリル基、トリアゾリル基、ベンゾチエニル基、ベンゾフリル基、ジベンゾチエニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基又はベンゾトリアゾリル基等の芳香族複素環基;が挙げられる。なかでも、フェニル基、ナフチル基、チエニル基、ピリジル基、ピリミジル基、チアゾリル基又はオキサゾリル基が好ましい。
アルキル基、アルケニル基又はアリール基が有していてもよい置換基としては、特に限定はないが、具体的にはハロゲン原子、水酸基、シアノ基、アミノ基、エステル基、アルキルカルボニル基、アセチル基、スルホニル基、シリル基、ボリル基、ニトリル基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、芳香族炭化水素基又は芳香族複素環基が挙げられる。これらは、隣接する置換基同士で連結して環を形成していても良い。特にアリール基が有していてもよい置換基は、炭素数1以上12以下のアルコキシ基又は炭素数1以上12以下のアルキル基が好ましい。また、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられる。これらの中で、フッ素原子が好ましい。
上記のとおり、式(1)において、R1は置換基を有していても良いアルキル基、置換基を有していても良いアルケニル基又は置換基を有していても良いアリール基である。R1をこれらの基とすることにより、コポリマーの有機溶媒への溶解性が優れたものとなりやすく、塗布成膜プロセスにおいて有利となり得るために好ましい。さらに好ましくは、R1は置換基を有していてもよいアルキル基又は置換基を有していても良いアリール基である。アルキル基としては、直鎖状、分岐状又は環状のアルキル基である。なかでも、直鎖状又は分岐状のアルキル基が好ましい。直鎖状のアルキルはポリマーの結晶性が向上しうるために移動度が大きくなりうる点で好ましく、分岐状のアルキル基はポリマーの溶解性が向上しうる点で好ましい。また、R1が置換基を有していても良いアリール基であることは、コポリマーがより長波長の光を吸収しうる点で好ましい。さらにR1が置換基を有していても良いアリール基であることは、ポリマーの結晶性が向上しうるために移動度が大きくなりうる点で好ましい。
2〜R5は各々独立して、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアリール基を表す。置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、及び置換基を有していてもよいアリール基としては、R1について上述したのと同様の基を用いることができる。また、アルキル基、アルケニル基、及びアリール基が有していてもよい置換基としては、R1について上述したのと同様の置換基を用いることができる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられる。これらの中で、フッ素原子が好ましい。また、R2〜R5は隣接するもの同士で結合して環を形成していても良い。
なかでも、R2及びR3の少なくともひとつがハロゲン原子であることが好ましい。このことは、コポリマーの耐熱性、耐候性、耐化学薬品性又は撥水・撥油性等が向上する点で好ましい。
また、R4及びR5の少なくともひとつが置換基を有していてもよいアルキル基又はアリール基であることが好ましく、R4とR5との双方が置換基を有していてもよいアルキル基又はアリール基であることがさらに好ましい。アルキル基が好ましい理由として、直鎖状のアルキル基では、ポリマーの結晶性が向上することにより移動度が大きくなりうる点で好ましく、分岐状のアルキル基では、ポリマーの溶解性が向上することにより塗布プロセスによる成膜が容易となる点で好ましい。R4及びR5の少なくともひとつがアルキル基であることは、コポリマーがより長波長の光を吸収しうるという観点からも好ましい。これらの観点からは、R4及びR5の少炭素数1以上20以下のアルキル基であることが好ましく、炭素数6以上20以下のアルキル基であることが特に好ましい。また、アリール基であることは、π電子間の相互作用により分子間の相互作用が向上するために移動度が大きくなる傾向がある点で好ましく、またジチエノシロール骨格の安定性が向上する傾向がある点で好ましい。
ケイ素原子周辺の立体障害を大きくすることによりコポリマーの耐久性を向上させるという観点からは、R4及びR5が、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、又は置換基を有していてもよいアリール基であることが好ましい。
コポリマーの溶解度を向上させるという観点からは、R1、並びにR4及び/又はR5が直鎖又は分岐のアルキル基であることが好ましく、R1、R4、及びR5が直鎖又は分岐のアルキル基であることがさらに好ましく、R1、R4、及びR5が分岐のアルキル基であることが特に好ましい。ここで、分岐のアルキル基は炭素数3以上20以下のアルキル基であることが好ましく、炭素数6以上20以下のアルキル基であることがさらに好ましい。
コポリマー分子間の相互作用を強くするという観点からは、R1、並びにR4及び/又はR5が直鎖のアルキル基又はアリール基であることが好ましく、R1、R4、及びR5が直鎖のアルキル基又はアリール基であることがさらに好ましい。R1、R4、及びR5がアリール基であることは移動度が向上する点で特に好ましく、R1、R4、及びR5が直鎖のアルキル基であることはコポリマーがより長波長の光を吸収しうる点で特に好ましい。ここで、直鎖のアルキル基は炭素数1以上20以下のアルキル基であることが好ましく、炭素数6以上20以下のアルキル基であることがさらに好ましい。
本発明に係るコポリマーは、式(1)で表される繰り返し単位1種のみを含有するものでもよく、2種以上含有するものであってもよい。その場合、繰り返し単位の種類に制限はないが、通常8以下、好ましくは5以下である。また、本発明の効果を損なわない範囲で、他の繰り返し単位を含有していてもよい。
本発明に係るコポリマーの好ましい具体例を示すが、以下の例示に限られるものではない。C817、C613およびC49は、所定の炭素数をもつ直鎖のアルキル基である。本発明に係るコポリマーが複数の繰り返し単位を含む場合は、含まれる複数の繰り返し単位間の比率は任意である。
以上説明した本発明に係るコポリマーは、長波長領域(600nm以上)に吸収を持ち、かつ高い開放電圧(Voc)を示すため、高い光電変換特性を示す利点があり、特にフラーレン化合物と組み合わせて太陽電池に適用すると高い太陽電池特性を示す。また、HOMOレベルが低く酸化されにくい利点もある。
また、本発明に係るコポリマーは高溶解性を示す利点がある。塗布成膜時の溶媒溶解性が高いこと及び/又は溶媒の選択の幅が広がることによる塗布成膜条件に最適な溶媒を用いることができることから、形成された有機半導体層の膜質を向上させることができる点で好ましい。このことも、本コポリマーを用いた太陽電池が高い太陽電池特性を示す一因であると考えられる。
本発明に係るコポリマーのポリスチレン換算の重量平均分子量(Mw)は、通常2×103以上、好ましくは5×103以上、より好ましくは1×104以上、さらに好ましくは2×104以上、よりさらに好ましくは3.0×104以上、特に好ましくは4.0×104以上である。一方、好ましくは1×107以下、より好ましくは1×106以下、さらにより好ましくは9×105以下、さらに好ましくは5×105以下、よりさらに好ましくは1×105以下、殊更に好ましくは8×104以下、特に好ましくは6×104以下である。光吸収波長の長波長化や高吸光度化の点でこの範囲が好ましい。
本発明に係るコポリマーのポリスチレン換算の重量平均分子量は、ゲル浸透クロマトグラフィ(GPC)により求めることができる。具体的には、カラムとして、Shim−pack(島津製作所製:GPC−803、GPC−804、内径8.0 mm、長さ30 cm)をそれぞれ1本ずつ直列に繋げて用い、ポンプとしてLC−10AT、オーブンとしてCTO−10A、検出器として示差屈折率検出器(島津製作所製:RID−10A)、及びUV−vis検出器(島津製作所製:SPD−10A)を用いることにより測定できる。測定対象のコポリマーをテトラヒドロフラン(THF)に溶解させ、得られた溶液5μLをカラムに注入する。移動相としてTHFを用い、1.0mL/minの流速で測定を行なう。解析にはLC−Solution(島津製作所製)を用いる。
本発明に係るコポリマーの数平均分子量(Mn)は、通常1.0×103以上、好ましくは3.0×103以上、より好ましくは5.0×103以上、さらに好ましくは1.0×104以上、よりさらに好ましくは1.5×104以上、殊更に好ましくは2.0×104以上、特に好ましくは2.5×104以上である。一方、好ましくは1×108以下、より好ましくは1×107以下、さらに好ましくは9×106以下である。光吸収波長を長波長化するという観点、及び高い吸光度を実現するという観点から、数平均分子量がこの範囲にあることが好ましい。本発明に係るコポリマーの数平均分子量は、上記重量平均分子量と同様の方法で測定することができる。
本発明に係るコポリマーの分子量分布(PDI、(重量平均分子量/数平均分子量(Mw/Mn)))は、通常1.0以上、好ましくは1.1以上、より好ましくは1.2以上、さらに好ましくは1.3以上である。一方、好ましくは20.0以下、より好ましくは15.0以下、さらに好ましくは10.0以下である。コポリマーの溶解度が塗布に適した範囲になりうるという点で、分子量分布がこの範囲にあることが好ましい。本発明に係るコポリマーの分子量分布は、上記重量平均分子量と同様の方法で測定することができる。
本発明に係るコポリマーは、好ましくは光吸収極大波長(λmax)が通常470nm以上、好ましくは480nm以上にあり、一方、通常1200nm以下、好ましくは1000nm以下、より好ましくは900nm以下にある。また、半値幅が通常10nm以上、好ましくは20nm以上であり、一方、通常300nm以下である。
また、本発明に係るコポリマーを太陽電池用途に用いる場合、コポリマーの吸収波長領域は太陽光の吸収波長領域に近いほど望ましい。
本発明に係るコポリマーの溶解度は、特に限定は無いが、好ましくは25℃におけるクロロベンゼンに対する溶解度が通常0.1重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上であり、一方、通常30重量%以下、好ましくは20重量%である。溶解性が高いほど、成膜できる厚さが増すため好ましい。
ここで、後述する成膜に際して用い得る溶媒としては、前記コポリマーを均一に溶解又は分散できるものであれば特に限定されないが、例えば、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン又はデカン等の脂肪族炭化水素類;トルエン、キシレン、クロロベンゼン又はオルトジクロロベンゼンなどの芳香族炭化水素類;メタノール、エタノール又はプロパノールなどの低級アルコール類;アセトン、メチルエチルケトン、シクロペンタノン又はシクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチル又は乳酸メチルなどのエステル類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン又はトリクロロエチレンなどのハロゲン炭化水素類;エチルエーテル、テトラヒドロフラン又はジオキサンなどのエーテル類;ジメチルホルムアミド又はジメチルアセトアミドなどのアミド類等が挙げられる。その中でも好ましくは、トルエン、キシレン、クロロベンゼン又はオルトジクロロベンゼンなどの芳香族炭化水素類やクロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン又はトリクロロエチレンなどのハロゲン炭化水素類である。
本発明に係るコポリマーは分子間で相互作用するものであることが好ましい。本明細書において、分子間で相互作用するということは、分子間でのπ−πスタッキングの相互作用等によってポリマー鎖間の距離が短くなることを意味する。相互作用が強いほど、高い移動度及び/又は結晶性を示す傾向がある。すなわち、分子間で相互作用するコポリマーにおいては分子間での電子移動が起こりやすいため、後述する光電変換素子において活性層103中にこのコポリマーを用いた場合に、活性層103内のp型半導体化合物とn型半導体化合物との混合物層の界面で生成した正孔(ホール)を効率よく電極(アノード)101へ輸送できると考えられる。
結晶性の測定方法としてはX線回折法(XRD)が挙げられる。本明細書において結晶性を有するとは、XRDにより得られたX線回折スペクトルが回折ピークを有することを意味する。2θ=4.8°近傍(4.8°±1.5°)に回折ピークを有するコポリマーが好ましい。
結晶性を有することは、分子同士が配列した積層構造を有することを意味すると考えられ、後述する活性層を厚膜化できる傾向がある点で好ましい。XRDは公知文献(X線結晶解析の手引き(応用物理学選書4))に記載の方法に基づいて行うことができる。
本発明に係るコポリマーの正孔移動度(ホール移動度と記す場合が有る)は、通常1.0×10-7cm2/Vs以上、好ましくは1.0×10-6cm2/Vs以上、より好ましくは1.0×10-5cm2/Vs以上、特に好ましくは1.0×10-4cm2/Vs以上である。一方、本発明に係るコポリマーの正孔移動度は通常1.0×104cm2/Vs以下、好ましくは1.0×103cm2/Vs以下であり、より好ましくは1.0×102cm2/Vs以下であり、特に好ましくは1.0×10cm2/Vs以下である。高い変換効率を得るためには、n型半導体化合物の移動度と、コポリマーの移動度とのバランスが重要である。p型半導体化合物として用いられる本発明に係るコポリマーの正孔移動度とn型半導体化合物の電子移動度とを近づける点で、本発明に係るコポリマーの正孔移動度がこの範囲にあることが好ましい。正孔移動度の測定方法としてはFET法が挙げられる。FET法は公知文献(特開2010−045186)に記載の方法により行うことができる。
本発明に係るコポリマー中の不純物は極力少ないほうが好ましい。特に、パラジウム、銅等の遷移金属触媒が残っていると、遷移金属の重原子効果による励起子トラップが生じるために電荷移動を阻害され、結果として光電変換素子に用いた際の光電変換効率を低下させるおそれがある。遷移金属触媒の濃度が、コポリマー1gあたり、通常1000ppm以下、好ましくは500pm以下、より好ましくは100ppm以下である。一方、通常0ppmより大きく、好ましくは1ppm以上、より好ましくは3ppm以上である。
コポリマー中の、末端残基(後述の式(2)及び式(3)でのX及びY)を構成する原子の残存量は、特段の制限は無いが、コポリマー1gあたり、通常6000ppm以下、好ましくは4000ppm以下、より好ましくは3000ppm以下、さらに好ましくは2000ppm以下、よりさらに好ましくは1000ppm以下、特に好ましくは500ppm以下、最も好ましくは200ppm以下である。一方、通常0ppmより大きく、好ましくは1ppm以上、より好ましくは3ppm以上である。
特に、コポリマー中のSn原子の残存量としては、コポリマー1gあたり、通常5000ppm以下、好ましくは4000ppm以下、より好ましくは2500ppm以下、さらに好ましくは1000ppm以下、よりさらに好ましくは750ppm以下、特に好ましくは500ppm以下、最も好ましくは100ppm以下である。一方、通常0ppmより大きく、好ましくは1ppm以上、より好ましくは3ppm以上である。Sn原子の残存量を5000ppm以下にすることにより、熱分解しやすいアルキルスタニル基中のSn原子の残存量が少なくなり、安定性の観点から高性能を得ることができるために、好ましい。
また、ハロゲン原子の残存量は、コポリマー1gあたり、通常5000ppm以下、好ましくは4000ppm以下、より好ましくは2500ppm以下、さらに好ましくは1000ppm以下、よりさらに好ましくは750ppm以下、特に好ましくは500ppm以下、最も好ましくは100ppm以下である。一方、通常0ppmより大きく、好ましくは1ppm以上、より好ましくは3ppm以上である。ハロゲン原子の残存量を5000ppm以下にすることにより、コポリマーの光電変換特性及び耐久性等の性能が向上する傾向にあり、好ましい。
コポリマー中の、末端残基(後述のX及びY)を構成する原子の残存量は、炭素、水素及び窒素以外の元素量を測定することにより決定できる。測定手法として、得られた高分子量体の元素分析は、Pd及びSnについてはICP質量分析法で実施することができ、臭素イオン(Br-)及びヨウ素イオン(I-)についても、ICP質量分析法で実施することができる。
ICP質量分析法は、公知文献(「プラズマイオン源質量分析」(学会出版センター))に記載されている方法により実施できる。具体的には、Pd及びSnについて、試料を湿式分解後、分解液中のPd,SnをICP質量分析装置(Agilent Technologies社製 ICP質量分析装置 7500ce型)を用いて検量線法により定量することができる。又、Br-及びI-について、試料を試料燃焼装置(三菱化学アナリテック社製 試料燃焼装置 QF−02型)にて燃焼し、燃焼ガスを還元剤入りのアルカリ吸収液に吸収し、吸収液中のBr-及びI-をICP質量分析装置(Agilent Technologies社製 ICP質量分析装置 7500ce型)を用いて検量線法により定量することができる。
[1−2.本発明に係るコポリマーの製造方法]
本発明に係るコポリマーの製造方法には特に限定はなく、例えばイミドチオフェン誘導体及びジチエノシロール誘導体を用いて公知の方法で製造することができる。好ましい方法としては、下記一般式(2)で表されるイミドチオフェン誘導体化合物と、下記一般式(3)で表されるジチエノシロール誘導体化合物とを、必要であれば適当な触媒の存在下で、重合する方法が挙げられる。
式(2)中、R1は前記と同義である。式(3)中、R2〜R5は前記と同義である。
X及びYは各々独立して、ハロゲン原子、アルキルスタニル基、アルキルスルホ基、アリールスルホ基、アリールアルキルスルホ基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸残基(−B(OH)2)、ホルミル基、アルケニル基又はアルキニル基を表す。前記式(2)又は(3)で表される化合物の合成上の観点及び反応のし易さの観点から、X及びYは各々独立に、ハロゲン原子、アルキルスタニル基、ホウ酸エステル残基、又はホウ酸残基(−B(OH)2)であることが好ましい。XおよびYにおいて、ハロゲン原子としては、臭素原子又はヨウ素原子が好ましい。
ホウ酸エステル残基としては、例えば、下記式で示される基が挙げられる。
(式中、Meはメチル基を示し、Etはエチル基を示す。)
アルキルスタニル基としては、例えば、下記式で示される基等が挙げられる。
アルケニル基としては、例えば炭素数2以上12以下のアルケニル基が挙げられる。
本発明に係るコポリマーの重合に用いる反応方法としては、Suzuki−Miyauraクロスカップリング反応方法、Stilleカップリング反応方法、Yamamotoカップリング反応方法、Grignard反応方法、ヘック反応方法、園頭反応方法、FeCl3などの酸化剤を用いる反応方法、電気化学的な酸化反応を用いる方法、適当な脱離基を有する中間体化合物の分解による反応方法などが挙げられる。これらの中でも、Suzuki−Miyauraカップリング反応方法、Stilleカップリング反応方法、Yamamotoカップリング反応方法、Grignard反応方法が、構造制御がしやすい点で好ましい。特に、Suzuki−Miyauraクロスカップリング反応方法、Stilleカップリング反応方法、Grignard反応方法が、材料の入手しやすさ、反応操作の簡便さの点からも好ましい。これらの反応は、「クロスカップリング−基礎と産業応用−(CMC出版)」、「有機合成のための遷移金属触媒反応(辻二郎著:有機合成化学協会編)」、「有機合成のための触媒反応103(檜山為次郎:東京化学同人)」などの公知文献の記載の方法に従って行うことができる。以下はStilleカップリング反応方法について述べる。
Stilleカップリング反応方法を用いる場合、上記一般式(2)、一般式(3)において例えば、Xはハロゲン原子、且つYはアルキルスタニル基であるか、Xはアルキルスタニル基、且つYはハロゲン原子であるかが好ましい。
重合反応の原料として用いられる式(2)のイミドチオフェン誘導体(イミドチオフェンモノマー)は、J.Am.Chem.Soc.,2010,132(22),7595−7597に記載の方法に準じて製造することができる。また、式(3)のジチエノシロール誘導体(ジチエノシロールモノマー)はJ.Mater.Chem.,2011,21,3895、及びJ.Am.Chem.Soc.2008,130,16144−16145に記載の方法に準じて製造することができる。
式(2)で表されるイミドチオフェン誘導体に対する、式(3)で表されるジチエノシロール誘導体の量比は、モル比換算にして、通常0.90以上、好ましくは0.95以上であり、一方、通常1.3以下、好ましくは1.2以下である。上記範囲内にあることにより、より高い収率で高分子量体を取得する点で好ましい。
本発明に係るコポリマーを有機光電変換素子用の材料として用いる場合、その純度が高いと素子特性に良好であるため、重合前のモノマー(一般式(2)で表されるイミドチオフェン誘導体化合物、及び一般式(3)で表されるジチエノシロール誘導体化合物)を蒸留、昇華精製、カラムクロマトグラフィー又は再結晶等の方法で精製した後にカップリング反応させることが好ましい。
本発明に係るコポリマーを有機光電変換素子用の材料として用いる場合、上記モノマーの純度が通常90%以上、好ましくは95%以上である。上記モノマーの純度が高いと、本発明に係るコポリマーを有する光電変換素子の素子特性が良好となるため好ましい。
前記重合においては、重合促進のために遷移金属触媒などを添加する。遷移金属触媒は、重合の種類に応じて選択すればよいが、重合反応に用いる溶媒に十分に溶解するものが好ましい。
遷移金属触媒としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh34)又はトリス(ジベンジリデンアセトン)ジパラジウム(Pd2(dba)3)等の0価のパラジウム触媒;ビス(トリフェニルホスフィン)塩化パラジウム(PdCl2((PPh3))2)又は酢酸パラジウム等の2価のパラジウム触媒などのパラジウム(Pd)触媒;Ni(dppp)Cl2又はNi(dppe)Cl2などのニッケル触媒;塩化鉄などの鉄触媒;ヨウ化銅などの銅触媒などが挙げられる。
0価のPd触媒としてPd錯体を用いる場合、具体的には、Pd(PPh34、Pd(P(o−tolyl)34、Pd(PCy32、Pd2(dba)3、PdCl2(PPh3))2等が挙げられる(式中、Phはフェニル基を表し、Cyはシクロヘキシル基を表し、o−toylは2−トリル基を表す)。PdCl2((PPh3))2又は酢酸パラジウムなどの2価のPd錯体をPd触媒として用いる場合には、PPh3やP(o−tolyl)3などの有機配位子と併せて使用することが好ましい。
遷移金属触媒の使用量は、式(2)で表されるイミドチオフェン誘導体と式(3)で表されるジチエノシロール誘導体との合計に対するパラジウム錯体の使用量として、通常1×10-4mol%以上、好ましくは1×10-3mol%以上、より好ましくは1×10-2mol%以上であり、一方、通常1×102mol%以下、より好ましくは5mol%以下である。触媒の使用量がこの範囲にあることは、より低コストかつ高い収率で、より高分子量のコポリマーが得られる傾向にある点で好ましい。
遷移金属触媒を使用する場合に、アルカリ、補触媒又は相間移動触媒を使用してもよい。
アルカリとしては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム等の無機塩基;トリエチルアミン等の有機塩基;が挙げられる。
補触媒としてはフッ化セシウム、酸化銅又はハロゲン化銅などの無機塩が挙げられる。補触媒の使用量は、式(2)で表されるイミドチオフェン誘導体に対して、通常1×10-4mol%以上、好ましくは1×10-3mol%以上、より好ましくは1×10-2mol%以上であり、一方、通常1×104mol%以下、好ましくは1×103mol%以下、より好ましくは1.5×102mol%以下である。補触媒の使用量がこの範囲にあることは、より低コストかつ高い収率でコポリマーが得られる傾向にある点で好ましい。
相間移動触媒としては、テトラエチルアンモニウムヒドロキシドやAliquat336(アルドリッチ社製)等が挙げられる。相間移動触媒の使用量は、式(2)で表されるイミドチオフェン誘導体に対して、通常1×10-4mol%以上、好ましくは1×10-3mol%以上、より好ましくは1×10-2mol%以上であり、一方、通常5mol%以下、より好ましくは3mol%以下である。相間移動触媒の使用量がこの範囲にあることは、より低コストかつ高い収率でコポリマーが得られる傾向にある点で好ましい。
前記重合反応に用いられる溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン又はシクロヘキサン等の飽和炭化水素;ベンゼン、トルエン、エチルベンゼン又はキシレン等の芳香族炭化水素;クロロベンゼン、ジクロロベンゼン又はトリクロロベンゼン等のハロゲン化芳香族炭化水素;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール又はt−ブチルアルコール等のアルコール類;水;ジメチルエーテル、ジエチルエーテル、メチル−t−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン又はジオキサン等のエーテル類;DMFなどの非プロトン性有機溶媒等が挙げられる。これらの溶媒は、一種単独で用いても二種以上を併用していてもよい。
溶媒の使用量は、式(2)で表されるイミドチオフェン誘導体と式(3)で表されるジチエノシロール誘導体との合計1gに対して、通常、1×10-2mL以上、好ましくは1×10-1mL以上、より好ましくは1mL以上であり、一方、通常1×105mL以下、好ましくは1×103mL以下、より好ましくは2×102mL以下である。
反応温度は、通常0℃以上、好ましくは20℃以上、より好ましくは40℃以上、さらに好ましくは60℃以上である。一方、通常300℃以下、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは180℃以下、特に好ましくは160℃以下である。加熱方法としては、特段の制限は無いが、オイルバス加熱、熱電対加熱、赤外線加熱、マイクロウェーブ加熱の他、IHヒーターを用いた接触による加熱等が挙げられる。該反応の時間は、通常1分間以上、好ましくは10分間以上、一方、通常160時間以下、好ましくは120時間以下、より好ましくは100時間以下である。また、窒素(N2)又はアルゴン(Ar)雰囲気下で行うことが好ましい。これらの反応条件で反応を行うことにより、より短時間かつ高い収率でコポリマーが得られうる。
重合反応後に行う工程としては、コポリマーを分離する工程を含む以外は特段の制限はない。コポリマーの末端処理を行う場合には、コポリマーの末端処理後にコポリマーを分離する工程を行うことが好ましく、さらに好ましくは、重合反応後に、コポリマーの末端処理、コポリマーの分離及びコポリマーの精製をこの順に行うことである。なお、必要に応じて、コポリマーの末端処理前に、更にコポリマーの分離及び精製を行なってもよい。
コポリマーの分離方法としては、例えば、反応溶液と貧溶媒とを混合し、コポリマーを析出させる方法、又は水若しくは塩酸で反応系の活性種をクエンチした後に有機溶媒で抽出し、該有機溶媒を留去する方法等が挙げられる。
コポリマーの精製方法としては、再沈精製、ソックスレー、ゲル浸透クロマトグラフィー又はスキャベンジャーによる金属除去等の公知の方法が挙げられる。
重合反応後のコポリマーに対しては、コポリマーの末端処理を行うことが好ましい。コポリマーの末端処理を行うことにより、コポリマーの臭素(Br)やヨウ素(I)等のハロゲン原子やアルキルスタニル基等の末端残基(上述のX及びY)の残存量を減らすことが可能である。この末端処理は、効率及び耐久性の点でよりよい性能のポリマーを得ることができるために、好ましい。
重合反応後に行う、未精製のコポリマーの末端処理方法としては、特段の制限は無いが、以下の方法が挙げられる。Stilleカップリング反応によってコポリマーを重合した場合には、コポリマーの末端に存在する臭素(Br)やヨウ素(I)等のハロゲン原子及びアルキルスタニル基に対する末端処理を行うことができる。
コポリマーのハロゲン原子の末端処理方法としては、反応系中に末端処理剤としてアリールトリアルキルスズを加えた後、加熱攪拌を行うことにより行うことができる。アリールトリアルキルスズとしてはフェニルトリメチルスズ又はチエニルトリメチルスズなどが挙げられる。末端処理剤の添加量としては、特段の制限は無いが、ハロゲン原子末端付加モノマーに対して、通常1.0×10-2当量以上、好ましくは0.1当量以上、より好ましくは1当量以上であり、一方、通常50当量以下、好ましくは20当量以下、より好ましくは10当量以上である。
コポリマーのハロゲン原子の末端処理の反応温度は、通常0℃以上、好ましくは20℃以上、より好ましくは40℃以上、さらに好ましくは60℃以上である。一方、通常300℃以下、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは180℃以下、特に好ましくは160℃以下である。加熱方法としては、特段の制限は無いが、オイルバス加熱、熱電対加熱、赤外線加熱、マイクロウェーブ加熱の他、IHヒーターを用いた接触による加熱等が挙げられる。
コポリマーのハロゲン原子の末端処理の反応時間は、特段の制限は無いが、通常30分以上、好ましくは1時間以上であり、一方、通常50時間以下、好ましくは20時間以下である。これらの反応条件で反応を行うことにより、より短時間かつ高い変換率で末端処理を行うことができる。
コポリマーのハロゲン原子の末端処理をして、末端がアリール基に置換されることにより、共役安定効果により、コポリマーがより安定になるために、好ましい。
コポリマーのアルキルスタニル基の末端処理方法としては、反応系中に末端処理剤としてアリールハライドを加えたのち、加熱攪拌を行うことにより行うことができる。アリールハライドとしてはヨードチオフェン、ヨードベンゼン、ブロモチオフェン又はブロモベンゼンなどが挙げられる。末端処理剤の添加量としては、特段の制限は無いが、アルキルスタニル基末端付加モノマーに対して、通常1.0×10-2当量以上、好ましくは0.1当量以上、より好ましくは1当量以上であり、一方、通常50当量以下、好ましくは20当量以下、より好ましくは10当量以上である。コポリマーのアルキルスタニル基の反応温度又は反応条件は、上記コポリマーのハロゲン原子の末端処理条件と同等である。これらの反応条件で反応を行うことにより、より短時間かつ高い変換率で末端処理を行うことができる。
コポリマーのアルキルスタニル基の末端処理をして、末端がアリール基に置換されることにより、熱分解しやすいアルキルスタニル基中のSn原子がポリマー中に存在しなくなることから、コポリマーの経時劣化が抑えられることが期待される。また、末端がアリール基に置換されることは、共役安定効果によりコポリマーがより安定になりうる点においても好ましい。
上記の末端処理の操作については、特段の制限は無いが、各々独立に行うことが好ましい。なお、各々の末端処理の操作順序に、特段の制限は無く、適宜選択できる。
また、末端処理の操作については、コポリマーの精製前又はコポリマーの精製後に行っても良い。
末端処理をコポリマー精製後に行う場合には、コポリマーと片方の末端処理剤(アリールハライド又はアリールトリメチルスズ)を有機溶剤に溶解した後、パラジウム触媒等の遷移金属触媒を加え、窒素条件下加熱攪拌を行い、さらにもう片方の末端処理剤(アリールトリメチルスズ又はアリールハライド)を加え、加熱攪拌を行うことにより処理できる。上記処理を行うことにより、末端残基を短時間に効率よく除去できるため、好ましい。
パラジウム触媒等の遷移金属触媒の添加量としては、特段の制限は無いが、コポリマーに対して、通常5.0×10-3当量以上、好ましくは1.0×10-2当量以上であり、一方、通常1.0×10-1当量以下、好ましくは5.0×10-2当量以下である。触媒の添加量がこの範囲にあることにより、より低コストかつ高い変換率で末端処理を行うことができる。
精製後コポリマーのアルキルスタニル基の末端処理剤の添加量としては、特段の制限は無いが、アルキルスタニル基末端付加モノマーに対して、通常1.0×10-2当量以上、好ましくは1.0×10-1当量以上、より好ましくは1当量以上であり、一方、通常50当量以下、好ましくは20当量以下、より好ましくは10当量以上である。末端処理剤の添加量がこの範囲にあることにより、より低コストかつ高い変換率で末端処理を行うことができる。
精製後コポリマーのハロゲン基の末端処理剤の添加量としては、特段の制限は無いが、ハロゲン基末端付加モノマーに対して、通常通常1.0×10-2当量以上、好ましくは1.0×10-1当量以上、より好ましくは1当量以上であり、一方、通常50当量以下、好ましくは20当量以下、より好ましくは10当量以上である。末端処理剤の添加量がこの範囲にあることにより、より低コストかつ高い変換率で末端処理を行うことができる。
反応時間は、特段の制限は無いが、通常30分以上、好ましくは1時間以上であり、一方、通常25時間以下、好ましくは10時間以下である。
末端処理後コポリマーの精製方法は上記の通り、ソックスレー、ゲル浸透クロマトグラフィー又はスキャベンジャーによる金属除去等の方法により行うことができる。
なお、Suzuki−Miyauraクロスカップリング反応方法によりコポリマーを重合した場合には、末端処理の方法として、アリールボロン酸を加えた後加熱攪拌を行う方法が挙げられる。
[1−3.一般式(1)で表される繰り返し単位を有するコポリマーを含有する有機半導体材料]
本発明に係るコポリマーは、溶媒溶解性が高く、また長波長領域に高い光吸収を持つことから、有機半導体材料として好適である。
本発明に係る有機半導体材料は、上記コポリマーを少なくとも含有することを特徴とする。本発明に係るコポリマーの一種を単独で含有していてもよく、二種以上を任意の組み合わせで含有していても良い。また、本発明に係るコポリマーのみからなるものであってもよいが、その他の成分(例えば、その他の高分子やモノマー、各種の添加剤等)を含有していてもよい。
本発明に係る有機半導体材料は、後述する有機電子デバイスの有機半導体層又は有機活性層に好適である。その場合、当該有機半導体材料を成膜して用いることが好ましく、この際に前述した有機溶剤への可溶性及びその加工性に優れているなどの物性が好ましい点として現れる。有機電子デバイスの有機半導体層として用いる際の詳細は後述する。
本発明に係る有機半導体材料は、単独でも有機電子デバイスの有機半導体層の材料として十分に作用するが、他の有機半導体材料と混合及び/又は積層して使用することも可能である。本発明に係る有機半導体材料と併用可能な他の有機半導体材料としては、Poly(3−hexylthiophene)(P3HT)、Poly[2,6−(4,4−bis−[2−ethylhexyl]−4H−cyclopenta[2,1−b:3,4−b’]dithiophene)−alt−4,7−(2,1,3−benzothiadiazole)] (PCPDTBT)、ベンゾポルフィリン(BP)、ペンタセンまた、n型半導体化合物として知られているペリレン−ビスイミド、[6,6]−Phenyl−C61−butyric acid methyl ester([60]PCBM)又はC70などのより大きいフラーレンを有するPCBM、[6,6]−Phenyl−C61−butyric acid n−butyl ester([60]PCBNB)又はC70などのより大きいフラーレンを有するPCBNB、等のフラーレン誘導体などの既知の有機半導体材料が挙げられるが、特にこれらに限定されることはない。
本発明に係る有機半導体材料は半導体特性を示し、例えば、電界効果移動度測定において、正孔移動度(ホール移動度と記す場合がある)が通常1.0×10-7cm2/Vs以上、好ましくは1.0×10-6cm2/Vs以上、より好ましくは1.0×10-5cm2/Vs以上、特に好ましくは1.0×10-4cm2/Vs以上であり、一方、正孔移動度が通常1.0×104cm2/Vs以下、好ましくは1.0×103cm2/Vs以下、より好ましくは1.0×102cm2/Vs以下、特に好ましくは1.0×10cm2/Vs以下である。正孔移動度の測定方法としてはFET法が挙げられる。FET法は、公知文献(特開2010−045186)に記載の方法により実施することができる。
[1−4.上記有機半導体材料を用いた有機電子デバイス]
次に、本発明に係る有機電子デバイスについて説明する。
本発明に係る有機電子デバイスは、上述した本発明の有機半導体材料を用いて形成されたことを特徴としている。本発明に係る有機半導体材料を適用可能なものであれば、有機電子デバイスの種類に特に制限はない。例としては、発光素子、スイッチング素子、光電変換素子、光電導性を利用した光センサー等が挙げられる。
発光素子としては、表示デバイスに用いられる各種の発光素子が挙げられる。具体例としては、液晶表示素子、高分子分散型液晶表示素子、電気泳動表示素子、エレクトロルミネッセント素子、エレクトロクロミック素子等が挙げられる。
スイッチング素子の具体例としては、ダイオード(pn接合ダイオード、ショットキー・ダイオード、MOSダイオード等)、トランジスタ(バイポーラートランジスタ、電界効果トランジスタ(FET)等)、サイリスタ、更にはそれらの複合素子(例えばTTL等)等が挙げられる。
光電変換素子の具体例としては、薄膜太陽電池、電荷結合素子(CCD)、光電子増倍管、フォトカプラ等が挙げられる。また、光電導性を利用した光センサーとしては、これらの光電変換素子を利用したものが挙げられる。
本発明に係る有機半導体材料を有機電子デバイスのどの部位に用いるかは特に制限されず、任意の部位に用いることが可能である。特に光電変換素子の場合には、通常は本発明の有機半導体材料を含有する有機半導体層は有機電子デバイスの有機活性層に使用される。
[2.光電変換素子]
本発明に係る光電変換素子は、一対の電極と、該電極間に配置された活性層と、少なくとも一方の前記電極と前記活性層との間に配置された電子取り出し層と、を備える光電変換素子であって、前記活性層に下記一般式(1)で表される繰り返し単位を有するコポリマー(本発明に係るコポリマー)を含有する。
(式(1)中、R1は置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアリール基を表し、R2〜R5は各々独立して、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアリール基を表す。)
また、本発明に係る光電変換素子は、前記電子取り出し層に、後に説明する一般式(E1)で表されるE=X基を有する化合物、好ましくは一般式(P1)で表されるリン原子と周期表第16族から選ばれる原子との二重結合を有するホスフィン化合物を含有する。
(式(E1)中、EはPR22、S、S(=O)又はCを表す。pは1以上の整数を表し、R21及びR22は各々独立して任意の置換基を表し、R21及びR22は互いに結合し環を形成していてもよい。pが2以上の場合に、複数のR21及び複数のR22は各々独立して異なっていてもよく、複数のR21及び複数のR22のうちいずれか2つ以上は互いに結合して環を形成していてもよい。R23は置換基を有していてもよいp価の炭化水素基、置換基を有していてもよいp価の複素環基、又は置換基を有していてもよい炭化水素基及び置換基を有していてもよい複素環基の少なくとも一方が連結したp価の基を表す。Xは周期表第16族から選ばれる原子を表す。)
(式(P1)中、pは1以上の整数を表し、R21及びR22は各々独立して任意の置換基を表し、R21及びR22は互いに結合し環を形成していてもよい。pが2以上の場合に、複数のR21及び複数のR22は各々独立して異なっていてもよく、複数のR21及び複数のR22のうちいずれか2つ以上は互いに結合して環を形成していてもよい。R23は置換基を有していてもよいp価の炭化水素基、置換基を有していてもよいp価の複素環基、又は置換基を有していてもよい炭化水素基及び置換基を有していてもよい複素環基の少なくとも一方が連結したp価の基を表す。Xは周期表第16族から選ばれる原子を示す。)
本明細書において、周期表とは、IUPAC2005年度推奨版(Recommendations of IUPAC 2005)のことを指す。
より好ましくは、R21及びR22が各々独立して、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、又は置換基を有していてもよい複素環基である。
本発明に係る光電変換素子では、詳細のメカニズムは不明であるが、電子取り出し層に有する一般式(E1)で表される化合物のE=X基が極性を有するので、活性層との界面において、本発明に係るコポリマーが有するカルボニル基やチオフェン環等の極性を有する部位と双極子相互作用及び/又はファンデルワールス力等の分子間力により、活性層と電子取り出し層がより密着すると考える。
ゆえに、光電変換素子の変換効率が向上するという効果が得られると考える。
[2−2.光電変換素子の構成]
図1は一般的な有機薄膜太陽電池に用いられる光電変換素子を表すが、これに限るわけではない。本発明の一実施形態としての光電変換素子107は、基板106、アノード101、正孔取り出し層102、有機活性層103(p型半導体化合物とn型半導体化合物混合層)、電子取り出し層104、カソード105が順次、形成された層構造を有する。それぞれの各層の間には、後述の各層機能に影響を与えない程度に、別の層が挿入されていても良い。
<2−2−1.活性層103>
本発明に係る光電変換素子において、活性層103は光電変換が行われる層を指し、p型半導体化合物とn型半導体化合物を含む。光電変換素子107が光を受けると、光が活性層103に吸収され、p型半導体化合物とn型半導体化合物の界面で電気が発生し、発生した電気が電極101及び105から取り出される。
活性層103は無機化合物又は有機化合物のいずれを用いてもよいが、簡易な塗布プロセスにより形成しうる層であることが好ましい。より好ましくは、活性層103は有機化合物からなる有機活性層である。以下では、活性層103が有機活性層であるものとして説明する。
有機活性層の層構成としては、p型半導体化合物とn型半導体化合物が積層された薄膜積層型、又はp型半導体化合物とn型半導体化合物が混合したバルクヘテロ接合型等が挙げられる。バルクへテロ接合型においては、p型、n型両半導体化合物を混合する層があればよく、他にp型半導体化合物のみ、n型のみ半導体化合物の層を有していてもよい。光電変換効率の点で、活性層は好ましくはバルクヘテロ接合型である。
(薄膜積層型の活性層)
薄膜積層型の活性層は、p型半導体化合物を含むp型半導体層と、n型半導体化合物を含むn型半導体層とが積層された構造を有する。薄膜積層型の活性層は、p型半導体層と、n型半導体層とをそれぞれ形成することにより作製することができる。p型半導体層とn型半導体層とが別の方法によって形成されてもよい。
(p型半導体層)
p型半導体層は、上述のコポリマー及び/又は後述するp型半導体化合物を含む層である。p型半導体層の膜厚に制限はない。ただし、通常5nm以上、好ましくは10nm以上、一方、通常500nm以下、好ましくは200nm以下である。p型半導体層の膜厚が500nm以下であると、直列抵抗が低くなる点で好ましい。p型半導体層の膜厚が5nm以上であると、より多くの光を吸収できる点で好ましい。
p型半導体層は、塗布法及び蒸着法を含む任意の方法により形成することができるが、塗布法、好ましくは湿式塗布法を用いるとより簡単にp型半導体層を形成できる点で好ましい。本発明に係るコポリマーは溶媒に易溶解性であるため、塗布成膜性に優れる点で好ましい。
塗布法によりp型半導体層を作製する場合、p型半導体化合物を含む塗布液を調製し、この塗布液を塗布すればよい。塗布方法としては任意の方法を用いることができるが、例えば、スピンコート法、インクジェット法、ドクターブレード法、ドロップキャスティング法、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法又はカーテンコート法などが挙げられる。塗布液の塗布後に、加熱などすることにより乾燥処理を行ってもよい。
p型半導体化合物のうち、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上が、上述のコポリマーである。上記コポリマーはp型半導体化合物として好適な性質を有するため、p型半導体層が、p型半導体化合物として上述のコポリマーのみを含むのが特に好ましい。
(n型半導体層)
n型半導体層は、後述するn型半導体化合物を含む層である。ただし、n型半導体層の膜厚に特段の制限はないが、通常5nm以上、好ましくは10nm以上、一方、通常500nm以下、好ましくは200nm以下である。n型半導体層の膜厚が500nm以下であると、直列抵抗が低くなる点で好ましい。n型半導体層の膜厚が5nm以上であると、より多くの光を吸収できる点で好ましい。
n型半導体層は、塗布法及び蒸着法を含む任意の方法により形成することができるが、塗布法を用いることはより簡単にn型半導体層を形成できることから好ましい。塗布法によりn型半導体層を作製する場合、n型半導体化合物を含む塗布液を調製し、この塗布液を塗布すればよい。塗布方法としては任意の方法を用いることができ、例えばp型半導体層を形成する方法として挙げた方法を用いることができる。塗布液の塗布後に、加熱などすることにより乾燥処理を行ってもよい。
(バルクヘテロ接合型の活性層)
バルクヘテロ接合型の活性層は、後述するp型半導体化合物と後述するn型半導体化合物とが混合されている層(i層)を有する。i層はp型半導体化合物とn型半導体化合物とが相分離した構造を有し、相界面でキャリア分離が起こり、生じたキャリア(正孔及び電子)が電極まで輸送される。
i層に含まれるp型半導体化合物のうち、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上が、上述のコポリマーである。上述のコポリマーはp型半導体化合物として好適な性質を有するため、i層がp型半導体化合物として上述のコポリマーのみを含むのが特に好ましい。
i層の膜厚に制限はない。ただし、通常5nm以上、好ましくは10nm以上、一方、通常500nm以下、好ましくは200nm以下である。i層の膜厚が500nm以下であると、直列抵抗が低くなる点で好ましい。i層の膜厚が5nm以上であると、より多くの光を吸収できる点で好ましい。
i層は、塗布法及び蒸着法(例えば共蒸着法)を含む任意の方法により形成することができるが、塗布法を用いると、より簡単にi層を形成できるため好ましい。本発明に係るコポリマーは溶媒に易溶解性であるため、塗布成膜性に優れる点で好ましい。
塗布法によりi層を作製する場合、p型半導体化合物及びn型半導体化合物を含む塗布液を調製し、この塗布液を塗布すればよい。p型半導体化合物及びn型半導体化合物を含む塗布液は、p型半導体化合物を含む溶液とn型半導体化合物を含む溶液をそれぞれ調製後混合して作製してもよく、後述する溶媒にp型半導体化合物及びn型半導体化合物を溶解して作成してもよい。また後述するように、p型半導体化合物前駆体及びn型半導体化合物を含む塗布液を作製して、この塗布液を塗布した後、p型半導体化合物前駆体をp型半導体化合物へと変換することにより、i層を形成してもよい。塗布方法としては任意の方法を用いることができ、例えばp型半導体層を形成する方法として挙げた方法を用いることができる。塗布液の塗布後に、加熱などすることにより乾燥処理を行ってもよい。
バルクヘテロ接合型の活性層を塗布法によって形成する場合、p型半導体化合物とn型半導体化合物とを含む塗布液に、さらに添加剤を加えてもよい。バルクヘテロ接合型の活性層におけるp型半導体化合物とn型半導体化合物との相分離構造は、光吸収過程、励起子の拡散過程、励起子の乖離(キャリア分離)過程、キャリア輸送過程などに対する影響がある。したがって、相分離構造を最適化することにより、良好な光電変換効率を実現することができるものと考えられる。塗布液が溶媒とは異なる揮発性を有する添加剤を含むと、有機活性層形成時に好ましい相分離構造が得られ、光電変換効率が向上しうるため、添加剤を含むのが好ましい。
添加剤の例としては、例えば国際公開第2008/066933号公報に記載されている化合物等が挙げられる。添加剤のより具体的な例としては、置換基を有するアルカン、又は置換基を有するナフタレンのような芳香族化合物などが挙げられる。置換基としては、アルデヒド基、オキソ基、ヒドロキシ基、アルコキシ基、チオール基、チオアルキル基、カルボキシル基、エステル基、アミン基、アミド基、フルオロ基、クロロ基、ブロモ基、ヨード基、ハロゲン基、ニトリル基、エポキシ基、芳香族基及びアリールアルキル基などが挙げられる。置換基は1つでもよいし、複数、例えば2つでもよい。アルカンが有する置換基として好ましくは、チオール基又はヨード基である。また、ナフタレンのような芳香族化合物が有する置換基として好ましくは、ブロモ基又はクロロ基である。
添加剤は沸点が高いことが好ましいため、添加剤として用いられる脂肪族炭化水素の炭素数は6以上が好ましく、8以上がさらに好ましい。また添加剤は常温で液体であることが好ましいため、脂肪族炭化水素の炭素数は14以下が好ましく、12以下がさらに好ましい。同様の理由により、添加剤として用いられる芳香族炭化水素の炭素数は、通常6以上、好ましくは8以上、より好ましくは10以上であり、一方、通常50以下、好ましくは30以下、より好ましくは20以下である。添加剤として用いられる芳香族複素環の炭素数は、通常2以上、好ましくは3以上、より好ましくは6以上であり、一方、通常50以下、好ましくは30以下、より好ましくは20以下である。添加剤の沸点は、常圧(一気圧)において通常100℃以上、好ましくは、200℃以上、一方、通常600℃以下、好ましくは500℃以下である。
p型半導体化合物とn型半導体化合物とを含む塗布液に含まれる添加剤の量は、塗布液全体に対して0.1重量%以上が好ましく、0.5重量%以上がさらに好ましい。また、塗布液全体に対して10重量%以下が好ましく、3重量%以下がさらに好ましい。添加剤の量がこの範囲にあることにより、有機活性層内に残留する添加剤を減らしながら、好ましい相分離構造を得ることができる。以上のように、p型半導体化合物とn型半導体化合物と、必要により添加剤とを含む塗布液(インク)を塗布することによって、バルクヘテロ接合型の活性層を形成することができる。
(塗布液の溶媒)
上述の、p型半導体化合物を含む塗布液、n型半導体化合物を含む塗布液、及びp型半導体化合物とn型半導体化合物とを含む塗布液の溶媒としては、p型半導体化合物及び/又はn型半導体化合物を均一に溶解できるものであれば特に限定されないが、例えば、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン若しくはデカン等の脂肪族炭化水素類;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、クロロベンゼン若しくはオルトジクロロベンゼン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;メタノール、エタノール若しくはプロパノール等の低級アルコール類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等の脂肪族ケトン類;アセトフェノン若しくはプロピオフェノン等の芳香族ケトン類;酢酸エチル、酢酸ブチル若しくは乳酸メチル等のエステル類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン若しくはトリクロロエチレン等のハロゲン炭化水素類;エチルエーテル、テトラヒドロフラン若しくはジオキサン等のエーテル類;又は、ジメチルホルムアミド若しくはジメチルアセトアミド等のアミド類等が挙げられる。
なかでも好ましくは、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、クロロベンゼン若しくはオルトジクロロベンゼン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等のケトン類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン若しくはトリクロロエチレン等のハロゲン炭化水素類;又は、エチルエーテル、テトラヒドロフラン若しくはジオキサン等のエーテル類である。より好ましくは、トルエン、キシレン、メシチレン若しくはシクロヘキシルベンゼン等の非ハロゲン芳香族炭化水素類;シクロペンタノン若しくはシクロヘキサノン等の非ハロゲン系ケトン類;アセトフェノン若しくはプロピオフェノン等の芳香族ケトン類;テトラヒドロフラン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等のケトン類;又は、1,4−ジオキサン等の非ハロゲン系脂肪族エーテル類である。特に好ましくは、トルエン、キシレン、メシチレン又はシクロヘキシルベンゼン等の非ハロゲン芳香族炭化水素類である。
なお、溶媒として1種の溶媒を単独で用いてもよいし、任意の2種以上の溶媒を任意の比率で併用していてもよい。2種以上の溶媒を併用する場合、沸点が60℃以上150℃以下である低沸点溶媒と、沸点が180℃以上250℃以下である高沸点溶媒とを組み合わせることが好ましい。低沸点溶媒と項沸点溶媒との組み合わせの例としては、非ハロゲン芳香族炭化水素類と脂環式炭化水素類、非ハロゲン芳香族炭化水素類と芳香族ケトン類、エーテル類と脂環式炭化水素類、エーテル類と芳香族ケトン類、脂肪族ケトン類と脂環式炭化水素類、又は脂肪族ケトン類と芳香族ケトン類、等が挙げられる。好ましい組み合わせの具体例としては、トルエンとテトラリン、キシレンとテトラリン、トルエンとアセトフェノン、キシレンとアセトフェノン、テトラヒドロフランとテトラリン、テトラヒドロフランとアセトフェノン、メチルエチルケトンとテトラリン、メチルエチルケトンとアセトフェノン、等が挙げられる。
<2−2−2.p型半導体化合物>
本発明に係るp型半導体化合物としては、本発明に係るコポリマーを少なくとも含有するが、本発明の効果を阻害しない程度に他の有機半導体材料と混合及び/又は積層して併用することも可能である。以下、併用しうる有機半導体材料、例えば、高分子有機半導体化合物や低分子有機半導体化合物について説明する。
(高分子有機半導体化合物)
本発明で併用しうる高分子有機半導体化合物としては、特に限定はなく、ポリチオフェン、ポリフルオレン、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリアセチレン又はポリアニリン等の共役コポリマー半導体化合物;アルキル基やその他の置換基が置換されたオリゴチオフェン等のコポリマー半導体化合物も挙げられる。また、二種以上のモノマー単位を共重合させたコポリマー半導体化合物も挙げられる。共役コポリマーは、例えば、Handbook of Conducting Polymers, 3rd Ed.(全2巻), 2007、Materials Science and Engineering, 2001, 32, 1−40、Pure Appl. Chem. 2002, 74, 2031−3044、Handbook of THIOPHENE−BASED MATERIALS(全2巻), 2009などの公知文献に記載されたコポリマーやその誘導体、及び記載されているモノマーの組み合わせによって合成し得るコポリマーを用いることができる。
なお、一種の化合物でも複数種の化合物の混合物でもよい。併用しうる高分子有機半導体化合物の具体例としては以下のものが挙げられるが、これに限定されない。
(低分子有機半導体化合物)
本発明で併用しうる低分子有機半導体化合物は、特段の制限はないが、具体的には、ナフタセン、ペンタセン又はピレン等の縮合芳香族炭化水素;α−セキシチオフェン等のチオフェン環を4個以上含むオリゴチオフェン類;チオフェン環、ベンゼン環、フルオレン環、ナフタレン環、アントラセン環、チアゾール環、チアジアゾール環及びベンゾチアゾール環のうち少なくとも一つ以上を含み、かつ合計4個以上連結したもの;フタロシアニン化合物及びその金属錯体、又はテトラベンゾポルフィリン等のポルフィリン化合物及びその金属錯体、等の大環状化合物等が挙げられる。好ましくは、フタロシアニン化合物及びその金属錯体又はポルフィリン化合物及びその金属錯体である。
ポルフィリン化合物及びその金属錯体(図中のQがCH)、フタロシアニン化合物及びその金属錯体(図中のQがN)としては、例えば、以下のような構造の化合物が挙げられる。
ここで、Mは金属あるいは2個の水素原子を表し、金属としては、Cu、Zn、Pb、Mg、Co又はNi等の2価の金属のほか、軸配位子を有する3価以上の金属、例えば、TiO、VO、SnCl2、AlCl、InCl又はSi等も挙げられる。
1〜Y4はそれぞれ独立に、水素原子又は炭素数1以上24以下のアルキル基である。炭素数1以上24以下のアルキル基とは、炭素数1以上24以下の飽和若しくは不飽和の鎖状炭化水素基又は炭素数3以上24以下の飽和若しくは不飽和の環式炭化水素である。その中でも好ましくは炭素数1以上12以下の飽和若しくは不飽和の鎖状炭化水素基又は炭素数3以上12以下の飽和若しくは不飽和の環式炭化水素である。
フタロシアニン化合物及びその金属錯体の中でも、好ましくは、29H,31H−フタロシアニン、銅フタロシアニン錯体、亜鉛フタロシアニン錯体、マグネシウムフタロシアニン錯体、鉛フタロシアニン錯体、チタンフタロシアニンオキシド錯体、バナジウムフタロシアニンオキシド錯体、インジウムフタロシアニンハロゲン錯体、ガリウムフタロシアニンハロゲン錯体、アルミニウムフタロシアニンハロゲン錯体、スズフタロシアニンハロゲン錯体、珪素フタロシアニンハロゲン錯体、又は銅4,4’,4’’,4’’’−テトラアザ−29H,31H−フタロシアニン錯体であり、より好ましくは、チタンフタロシアニンオキシド錯体、バナジウムフタロシアニンオキシド錯体、インジウムフタロシアニンクロロ錯体、アルミニウムフタロシアニンクロロ錯体である。なお、上記一種の化合物でも複数種の化合物の混合物でもよい。
ポルフィリン化合物及びその金属錯体の中でも、好ましくは、5,10,15,20−テトラフェニル−21H,23H−ポルフィン、5,10,15,20−テトラフェニル−21H,23H−ポルフィンコバルト(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィン銅(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィン亜鉛(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィンニッケル(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィンバナジウム(IV)オキシド、5,10,15,20−テトラ(4−ピリジル)−21H,23H−ポルフィン、29H,31H−テトラベンゾ[b,g,l,q]ポルフィン、29H,31H−テトラベンゾ[b,g,l,q]ポルフィンコバルト(II)、29H,31H−テトラベンゾ[b,g,l,q]ポルフィン銅(II)、29H,31H−テトラベンゾ[b,g,l,q]ポルフィン亜鉛(II)、29H,31H−テトラベンゾ[b,g,l,q]ポルフィンニッケル(II)又は29H,31H−テトラベンゾ[b,g,l,q]ポルフィンバナジウム(IV)オキシドであり、好ましくは、5,10,15,20−テトラフェニル−21H,23H−ポルフィン又は29H,31H−テトラベンゾ[b,g,l,q]ポルフィンである。なお、上記一種の化合物でも複数種の化合物の混合物でもよい。
低分子有機半導体化合物の成膜方法としては、蒸着法によって成膜する方法や低分子有機半導体化合物前駆体を塗布後に低分子有機半導体化合物に変換することで成膜する方法がある。塗布成膜できるというプロセス上の利点からは後者が好ましい。
低分子有機半導体化合物前駆体とは、例えば加熱や光照射等の外的刺激を与えることにより、その化学構造が変化し、低分子有機半導体化合物に変換される物質である。本発明に係る低分子有機半導体化合物前駆体は成膜性に優れるものが好ましい。特に、塗布法を適用できるようにするためには、前駆体自体が液状で塗布可能であるか又は前駆体が何らかの溶媒に対して溶解性が高く溶液として塗布可能であることが好ましい。このため、低分子有機半導体化合物前駆体の溶媒に対する溶解性は、通常0.1重量%以上、好ましくは0.5重量%以上、より好ましくは1重量%以上である。一方、上限に特段の制限はないが、通常50重量%以下、好ましくは40重量%以下である。
溶媒の種類としては、半導体化合物前駆体を均一に溶解あるいは分散できるものであれば特に限定されないが、例えば、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン又はデカン等の脂肪族炭化水素類;トルエン、キシレン、シクロヘキシルベンゼン、クロロベンゼン又はオルトジクロロベンゼン等の芳香族炭化水素類;メタノール、エタノール又はプロパノール等の低級アルコール類;アセトン、メチルエチルケトン、シクロペンタノン又はシクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル又は乳酸メチル等のエステル類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン又はトリクロロエチレン等のハロゲン炭化水素類;エチルエーテル、テトラヒドロフラン又はジオキサン等のエーテル類;ジメチルホルムアミド又はジメチルアセトアミド等のアミド類等が挙げられる。なかでも好ましくは、トルエン、キシレン、シクロヘキシルベンゼン、クロロベンゼン又はオルトジクロロベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン又はシクロヘキサノン等のケトン類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン又はトリクロロエチレン等のハロゲン炭化水素類;エチルエーテル、テトラヒドロフラン又はジオキサン等のエーテル類である。より好ましくは、トルエン、キシレン又はシクロヘキシルベンゼン等の非ハロゲン芳香族炭化水素類;シクロペンタノン又はシクロヘキサノン等の非ハロゲン系ケトン類;テトラヒドロフラン又は1,4−ジオキサン等の非ハロゲン系脂肪族エーテル類である。特に好ましくは、トルエン、キシレン又はシクロヘキシルベンゼン等の非ハロゲン芳香族炭化水素類である。なお、溶媒は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
さらに、低分子有機半導体化合物前駆体は、容易に半導体化合物に変換できることが好ましい。低分子有機半導体化合物前駆体から半導体化合物への変換工程においてどのような外的刺激を半導体化合物前躯体に与えるかは任意であるが、通常は、熱処理、光処理等を行なう。好ましくは、熱処理である。この場合には、低分子有機半導体化合物前駆体の骨格の一部に逆ディールス・アルダー反応によって脱離可能な所定の溶媒に対する親溶媒性の基を有するものが好ましい。
また、低分子有機半導体化合物前駆体は、変換工程を経て、高い収率で半導体化合物に変換されることが好ましい。この際、低分子有機半導体化合物前駆体から変換して得られる半導体化合物の収率は有機光電変換素子の性能を損なわない限り任意であるが、低分子有機半導体化合物前躯体から得られる低分子有機半導体化合物の収率は、通常90モル%以上、好ましくは95モル%以上、より好ましくは99モル%以上である。
低分子有機半導体化合物前駆体は上記特徴を有するものであれば特に制限はないが、具体的には特開2007−324587号公報に記載の化合物などが用いられうる。なかでも好ましい例としては、下記式(A1)で表わされる化合物が挙げられる。
式(A1)において、X1及びX2の少なくとも一方はπ共役した2価の芳香族環を形成する基を表わし、Z1−Z2は熱又は光により脱離可能な基であって、Z1−Z2が脱離して得られるπ共役化合物が顔料分子となるものを表わす。また、X1及びX2のうちπ共役した2価の芳香族環を形成する基でないものは、置換又は無置換のエテニレン基を表わす。
式(A1)で表わされる化合物は、下記化学反応式に示すように熱又は光によりZ1−Z2が脱離して、平面性の高いπ共役化合物を生成する。この生成されたπ共役化合物が本発明に係る半導体化合物である。本発明においては、この半導体化合物が半導体特性を示すことが好ましい。
式(A1)で表わされる化合物の例としては、以下のものが挙げられる。なお、t−Buはt−ブチル基を表わす。Mは、2価の金属原子又は3価以上の金属と他の原子とが結合した原子団を表わす。
低分子有機半導体化合物前駆体の半導体化合物への変換方法は、公知のものを用いうる。
式(A1)で表わされる低分子有機半導体化合物前駆体は、位置異性体が存在する構造であってもよく、またその場合、複数の位置異性体の混合物から成っていてもよい。複数の位置異性体からなる低分子有機半導体化合物前駆体は、単一異性体成分からなる低分子有機半導体化合物前駆体と比較して溶媒に対する溶解度が向上するため、塗布成膜が行いやすく好ましい。複数の位置異性体の混合物とすると溶解度が向上する理由は、詳細なメカニズムは明確ではないが、化合物そのものの結晶性が潜在的に保持されつつも、複数の異性体混合物が溶液内に混在することで、三次元規則的な分子間相互作用が困難になるためと想定される。本発明においては、複数の異性体化合物からなる前駆体混合物の非ハロゲン性溶媒への溶解度は、通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上である。上限に制限は無いが、通常50重量%以下、より好ましくは40重量%以下である。
本発明に係るコポリマーと併用しうるp型半導体化合物として、中でも好ましくは、高分子有機半導体化合物としてはポリチオフェン等の共役コポリマー半導体化合物であり、低分子有機半導体化合物としては、ナフタセン、ペンタセン、ピレン等の縮合芳香族炭化水素、フタロシアニン化合物及びその金属錯体、又はテトラベンゾポルフィリン(BP)等のポルフィリン化合物及びその金属錯体である。なお、上記一種の化合物でも複数種の化合物の混合物でもよい。
p型半導体化合物は、成膜された状態において、何らかの自己組織化した構造を有するものであっても、アモルファス状態であっても良い。
p型半導体化合物のHOMOレベルは、特に限定は無いが、後述のn型半導体化合物の種類によって選択することができるが、特にフラーレン化合物と組み合わせるp型半導体のHOMOレベルは、通常−5.7eV以上、より好ましくは−5.5eV以上、一方、通常−4.6eV以下、−4.8eV以下が好ましい。p型半導体化合物のHOMOレベルが−5.7eV以上であることによりp型半導体としての特性が向上し、p型半導体化合物のHOMOレベルが−4.6eV以下であることにより化合物の安定性が向上し、開放電圧(Voc)も向上する。また、p型半導体化合物のLUMOレベルは、特に限定は無いが、後述のn型半導体化合物の種類によって選択することができるが、特にフラーレン化合物と組み合わせるp型半導体化合物のLUMOレベルは、通常−3.7eV以上、好ましくは−3.6eV以上である。一方、通常−2.5eV以下、好ましくは−2.7eV以下である。p型半導体のLUMOレベルが−2.5eV以下であることにより、バンドギャップが調整され長波長な光エネルギーを有効に吸収することができ、短絡電流密度が向上する。p型半導体化合物のLUMOレベルが−3.7eV以上であることにより、n型半導体化合物への電子移動が起こりやすくなり短絡電流密度が向上する。
<2−2−3.n型半導体化合物>
n型半導体化合物としては、特段の制限はないが、具体的にはフラーレン化合物、8−ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体;ナフタレンテトラカルボン酸ジイミド又はペリレンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド類;ペリレンジイミド誘導体、ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、チアゾール誘導体、ベンズチアゾール誘導体、ベンゾチアジアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ビピリジン誘導体、ボラン誘導体、アントラセン、ピレン、ナフタセン又はペンタセン等の縮合多環芳香族炭化水素の全フッ化物;単層カーボンナノチューブ、n型ポリマー(n型高分子半導体化合物)等が挙げられる。
その中でも、フラーレン化合物、ボラン誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、ベンゾチアジアゾール誘導体、N−アルキル置換されたナフタレンテトラカルボン酸ジイミドおよびN−アルキル置換されたペリレンジイミド誘導体が好ましく、フラーレン化合物、N−アルキル置換されたペリレンジイミド誘導体、N−アルキル置換されたナフタレンテトラカルボン酸ジイミド又はn型高分子半導体化合物がより好ましい。これらの化合物を一種又は二種以上含んでもよい。
n型半導体化合物の最低空分子軌道(LUMO)の値は、特に限定はされないが、例えばサイクリックボルタモグラム測定法により算出される真空準位に対する値が、通常−3.85eV以上、好ましくは−3.80eV以上である。電子供与体層(p型半導体層)から効率良く電子受容体層(n型半導体層)へと電子を移動させるためには、各電子供与体層及び電子受容体層に用いられる材料の最低空軌道(LUMO)の相対関係が重要である。具体的には、電子供与体層の材料のLUMOが、電子受容体層の材料のLUMOより所定のエネルギーだけ上にあること、言い換えると、電子受容体の電子親和力が電子供与体の電子親和力より所定のエネルギーだけ大きいことが好ましい。開放電圧(Voc)は電子供与体層の材料の最高被占軌道(HOMO)と電子受容体層の材料のLUMOの差で決定されるため、電子受容体のLUMOを高くすると、Vocが高くなる傾向がある。一方、LUMOの値は通常−1.0eV以下、好ましくは−2.0eV以下、より好ましくは−3.0eV以下、更に好ましくは−3.3eV以下である。電子受容体のLUMOを低くすることで、電子の移動が起こりやすくなり、短絡電流(Jsc)が高くなる傾向がある。
n型半導体化合物のLUMOの値の算出方法は、理論的に計算値で求める方法と実際に測定する方法が挙げられる。理論的に計算値で求める方法としては、半経験的分子軌道法及び非経験的分子軌道法があげられる。実際に測定する方法としては、紫外可視吸収スペクトル測定法、サイクリックボルタモグラム測定法があげられる。その中でも好ましくは、サイクリックボルタモグラム測定法である。具体的には、例えば公知文献(国際公報第2011/016430号)に記載の方法で測定することができる。
n型半導体化合物のHOMOの値は、特に限定は無いが、通常−5.0eV以下、好ましくは−5.5eV以下である。一方、通常−7.0eV以上、好ましくは−6.6eV以上である。n型半導体化合物のHOMOの値が−7.0eV以上であることにより、n型材料の吸収も発電に利用出来る点で好ましい。n型半導体化合物のHOMOの値が−5.0eV以下であることにより、正孔の逆移動を阻止できる点で好ましい。
n型半導体化合物の電子移動度は、特段の制限はないが、通常1.0×10-6cm2/Vs以上であり、1.0×10-5cm2/Vs以上が好ましく、5.0×10-5cm2/Vs以上がより好ましく、1.0×10-4cm2/Vs以上がさらに好ましい。一方、通常1.0×103cm2/Vs以下であり、1.0×102cm2/Vs以下が好ましく、5.0×101cm2/Vs以下がより好ましい。該化合物の電子移動度が1.0×10-6cm2/Vs以上であることは、光電変換素子の電子拡散速度向上、短絡電流向上、変換効率向上などの効果が大きくなる傾向にある傾向にあるため、好ましい。
測定方法としてはFET法が挙げられ、公知文献(特開2010−045186)に記載の方法により実施することができる。
n型半導体化合物の25℃でのトルエンに対する溶解度は、通常0.5重量%以上であり、0.6重量%以上が好ましく、0.7重量%以上がより好ましい。一方、通常90重量%以下が好ましく、80重量%以下がより好ましく、70重量%以下がさらに好ましい。該化合物の25℃でのトルエンに対する溶解度を0.5重量%以上とすることにより、溶媒中でのn型半導体材料の分散安定性が向上し、凝集、沈降、分離等を起こしにくくなるため、好ましい。
以下、これらの好ましいn型半導体化合物について説明する。
(フラーレン化合物)
本発明のフラーレン化合物としては、一般式(n1)、(n2)、(n3)及び(n4)で表される部分構造を有することが好ましい。
式中、FLNとは、閉殻構造を有する炭素クラスターであるフラーレンを表わす。フラーレンの炭素数は、通常60以上130以下の偶数であれば何でも良い。フラーレンとしては、例えば、C60、C70、C76、C78、C82、C84、C90、C94、C96及びこれらよりも多くの炭素を有する高次の炭素クラスターなどが挙げられる。その中でも、C60又はC70が好ましい。フラーレンとしては、一部のフラーレン環上の炭素―炭素結合が切れていても良い。又、一部の炭素原子が、他の原子に置き換えられていても良い。さらに、金属原子、非金属原子あるいはこれらから構成される原子団をフラーレンケージ内に内包していても良い。
a、b、c及びdは整数であり、a、b、c及びdの合計が通常1以上であり、一方、通常5以下であり、好ましくは3以下である。(n1)、(n2)、(n3)及び(n4)中の部分構造は、フラーレン骨格中の同一の五員環又は六員環に付加される。一般式(n1)では、フラーレン骨格中の同一の5員環又は6員環上の隣接する2つの炭素原子に対して、−R6と−(CH2Lとがそれぞれ付加している。一般式(n2)では、フラーレン骨格中の同一の5員環又は6員環上の隣接する2つの炭素原子に対して、−C(R10)(R11)−N(R12)−C(R13)(R14)が付加し5員環を形成してなる。一般式(n3)では、フラーレン骨格中の同一の5員環又は6員環上の隣接する2つの炭素原子に対して、−C(R15)(R16)−C−C−C(R17)(R18)が付加し6員環を形成してなる。一般式(n4)では、フラーレン骨格中の同一の5員環又は6員環上の隣接する2つの炭素原子に対して−C(R19)(R20)が付加し3員環を形成してなる。Lは1以上8以下の整数である。Lとして好ましくは1以上4以下の整数であり、さらに好ましくは1以上2以下の整数である。
一般式(n1)中のR6は置換基を有していてもよい炭素数1以上14以下のアルキル基、置換基を有していてもよい炭素数1以上14以下のアルコキシ基又は置換基を有していてもよい芳香族基である。
アルキル基としては、炭素数1以上10以下のアルキル基が好ましく、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基又はイソブチル基がより好ましく、メチル基又はエチル基が更に好ましい。
アルコキシ基としては、炭素数1以上10以下のアルコキシ基が好ましく、炭素数1以上6以下のアルコキシ基がより好ましく、メトキシ基又はエトキシ基が特に好ましい。
芳香族基としては、炭素数6以上20以下の芳香族炭化水素基又は炭素数2以上20以下の芳香族複素環基が好ましく、フェニル基、チエニル基、フリル基又はピリジル基がより好ましく、フェニル基又はチエニル基が更に好ましい。
上記アルキル基、アルコキシ基及び芳香族基が有していてもよい置換基としては、ハロゲン原子又はシリル基が好ましい。ハロゲン原子としてはフッ素原子が好ましい。シリル基としては、ジアリールアルキルシリル基、ジアルキルアリールシリル基、トリアリールシリル基又はトリアルキルシリル基が好ましく、ジアルキルアリールシリル基がより好ましく、ジメチルアリールシリル基がさらに好ましい。
一般式(n1)中のR7〜R9は各々独立して置換基を表し、水素原子、置換基を有していてもよい炭素数1以上14以下のアルキル基又は置換基を有していてもよい芳香族基である。
アルキル基としては、炭素数1以上10以下のアルキル基が好ましく、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基又はn−ヘキシル基が好ましい。アルキル基が有していてもよい置換基としてはハロゲン原子が好ましい。ハロゲン原子としてはフッ素原子が好ましい。フッ素原子で置換されたアルキル基としては、パーフルオロオクチル基、パーフルオロヘキシル基又はパーフルオロブチル基が好ましい。
芳香族基は、炭素数6以上20以下の芳香族炭化水素基又は炭素数2以上20以下の芳香族複素環基が好ましく、フェニル基、チエニル基、フリル基又はピリジル基がより好ましく、フェニル基又はチエニル基が更に好ましい。芳香族基が有していてもよい置換基としては、フッ素原子、炭素数1以上14以下のアルキル基、炭素数1以上14以下のフッ化アルキル基、炭素数1以上14以下のアルコキシ基又は炭素数3以上10以下の芳香族基が好ましく、フッ素原子又は炭素数1以上14以下のアルコキシ基がより好ましく、メトキシ基、n−ブトキシ基又は2−エチルヘキシルオキシ基が更に好ましい。芳香族基が置換基を有する場合、その数に限定は無いが、1以上3以下が好ましく、1がより好ましい。芳香族基が置換基を複数有する場合、その置換基の種類は異なっていてもよいが、好ましくは同一である。
一般式(n2)中のR10〜R14は各々独立に、水素原子、置換基を有していてもよい炭素数1以上14以下のアルキル基又は置換基を有していてもよい芳香族基である。アルキル基として好ましくは、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ヘキシル基又はオクチル基であり、より好ましくはメチル基である。芳香族基は、炭素数6以上20以下の芳香族炭化水素基又は炭素数2以上20以下の芳香族複素環基が好ましく、フェニル基又はピリジル基がより好ましく、フェニル基がさらに好ましい。
アルキル基が有していてもよい置換基としてはハロゲン原子が好ましい。ハロゲン原子としてはフッ素原子が好ましい。フッ素原子で置換されたアルキル基としては、パーフルオロオクチル基、パーフルオロヘキシル基又はパーフルオロブチル基が好ましい。
芳香族基が有していてもよい置換基としては、特に限定は無いが、好ましくはフッ素原子、炭素数1以上14以下のアルキル基、炭素数1以上14以下のアルコキシ基である。アルキル基にはフッ素原子が置換されていてもよい。さらに好ましくは炭素数1以上14以下のアルコキシ基であり、さらに好ましくはメトキシ基である。置換基を有する場合、その数に限定は無いが、好ましくは1以上3以下であり、より好ましくは1である。置換基の種類は異なっていても良いが、好ましくは同一である。
一般式(n3)中のAr1は、置換基を有していてもよい炭素数6以上20以下の芳香族炭化水素基又は炭素数2以上20以下の芳香族複素環基であり、好ましくはフェニル基、ナフチル基、ビフェニル基、チエニル基、フリル基、ピリジル基、ピリミジル基、キノリル基又はキノキサリル基であり、さらに好ましくはフェニル基、チエニル基又はフリル基である。有していても良い置換基として限定は無いが、有していてもよい置換基として限定は無いが、フッ素原子、塩素原子、水酸基、シアノ基、シリル基、ボリル基、アルキル基で置換していてもよいアミノ基、炭素数1以上14以下のアルキル基、炭素数1以上14以下のアルコキシ基、炭素数2以上14以下のアルキルカルボニル基、炭素数1以上14以下のアルキルチオ基、炭素数2以上14以下のアルケニル基、炭素数2以上14以下のアルキニル基、炭素数2以上14以下のエステル基、炭素数3以上20以下のアリールカルボニル基、炭素数2以上20以下のアリールチオ基、炭素数2以上20以下のアリールオキシ基、炭素数6以上20以下の芳香族炭化水素基又は炭素数2以上20以下の複素環基が好ましく、フッ素原子、炭素数1以上14以下のアルキル基、炭素数1以下14以下のアルコキシ基、炭素数2以上14以下のエステル基、炭素数2以上14以下のアルキルカルボニル基又は炭素数3以上20以下のアリールカルボニル基がより好ましい。炭素数1以上14以下のアルキル基は1ないし2以上のフッ素で置換されていてもよい。
炭素数1以上14以下のアルキル基としては、メチル基、エチル基又はプロピル基が好ましい。
炭素数1以上14以下のアルコキシ基としては、メトキシ基、エトキシ基又はプロポキシル基が好ましい。
炭素数1以上14以下のアルキルカルボニル基としては、アセチル基が好ましい。
炭素数2以上14以下のエステル基としては、メチルエステル基又はn−ブチルエステル基が好ましい。
炭素数3以上20以下のアリールカルボニル基としては、ベンゾイル基が好ましい。
置換基を有する場合、その数に限定は無いが、1以上4以下が好ましく、1以上3以下がより好ましい。置換基が複数の場合、その種類は異なっていてもよいが、好ましくは同一である。
一般式(n3)中のR15〜R18は各々独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアルキルチオ基である。R15又はR16は、R17又はR18との間のいずれか一方と環を形成していてもよい。環を形成する場合における構造は、例えば、芳香族基が縮合したビシクロ構造である一般式(n5)で示すことができる。
一般式(n5)中におけるfはcと同様であり、Xは、酸素原子、硫黄原子、アミノ基、アルキレン基又はアリーレン基である。アルキレン基としては炭素数1以上2以下が好ましい。アリーレン基としては炭素数5以上12以下が好ましく、例えばフェニレン基である。アミノ基は、メチル基やエチル基等の炭素数1以上6以下のアルキル基で置換されていてもよい。
アルキレン基は、メトキシ基等の炭素数1以上6以下のアルコキシ基、炭素数1以上5以下の脂肪族炭化水素基、炭素数6以上20以下の芳香族炭化水素基又は炭素数2以上20以下の芳香族複素環基で置換されていてもよい。
アリーレン基は、メトキシ基等の炭素数1以上6以下のアルコキシ基、炭素数1以上5以下の脂肪族炭化水素基、炭素数6以上20以下の芳香族炭化水素基又は炭素数2以上20以下の芳香族複素環基で置換されていてもよい。
式(n5)の構造として特に好ましくは、下記式(n6)又は式(n7)で表される構造である。
一般式(n4)中のR19〜R20は各々独立して、水素原子、アルコキシカルボニル基、置換基を有していてもよい炭素数1以上14以下のアルキル基又は置換基を有していてもよい芳香族基である。
アルコキシカルボニル基におけるアルコキシ基としては、炭素数1以上12以下のアルコキシ基又は炭素数1以上12以下のフッ化アルコキシ基が好ましく、炭素数1以上12以下のアルコキシ基がより好ましく、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、n−ヘキソキシ基、オクトキシ基、2−プロピルペントキシ基、2−エチルヘキソキシ基、シクロヘキシルメトキシ基又はベンジルオキシ基がさらに好ましく、メトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基又はn−ヘキソキシ基が特に好ましい。
アルキル基としては、炭素数1以上8以下の直鎖アルキル基が好ましく、n−プロピル基がより好ましい。アルキル基が有していてもよい置換基には特に限定は無いが、好ましくはアルコキシカルボニル基である。アルコキシカルボニル基のアルコキシ基としては、炭素数1以上14以下のアルコキシ基又はフッ化アルコキシ基が好ましく、炭素数1以上14以下の炭化水素基がより好ましく、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、n−ヘキソキシ基、オクトキシ基、2−プロピルペントキシ基、2−エチルヘキソキシ基、シクロヘキシルメトキシ基又はベンジルオキシ基がさらに好ましく、メトキシ基又はn−ブトキシ基が特に好ましい。
芳香族基としては、炭素数6以上20以下の芳香族炭化水素基又は炭素数2以上20以下の芳香族複素環基が好ましく、フェニル基、ビフェニル基、チエニル基、フリル基又はピリジル基が好ましく、フェニル基又はチエニル基がさらに好ましい。芳香族基が有していてもよい置換基としては、炭素数1以上14以下のアルキル基、炭素数1以上14以下のフッ化アルキル基又は炭素数1以上14以下のアルコキシ基が好ましく、炭素数1以上14以下のアルコキシ基がさらに好ましく、メトキシ基又は2−エチルヘキシルオキシ基が特に好ましい。置換基を有する場合、その数に限定は無いが、好ましくは1以上3以下であり、より好ましくは1である。置換基の種類は異なっていても同一でもよく、好ましくは同一である。
一般式(n4)の構造として好ましくは、R19、R20が共にアルコキシカルボニル基であるか、R19、R20が共に芳香族基であるか又はR19が芳香族基でかつR20が3−(アルコキシカルボニル)プロピル基である。
なお、本発明に用いられるn型半導体化合物は一種の化合物でも複数種の化合物の混合物でもよい。
フラーレン化合物は、塗布法に適用できるようにするためには、当該フラーレン化合物自体が液状で塗布可能であるか、当該フラーレン化合物が何らかの溶媒に対して溶解性が高く溶液として塗布可能であることが好ましい。溶解性の好適な範囲をあげると、25℃でのトルエンに対する溶解度が、通常0.1重量%以上、好ましくは0.4重量%以上、より好ましくは0.7重量%以上である。フラーレン化合物の溶解度が0.1重量%以上であることで、フラーレン化合物の分散安定性が増加し、凝集、沈降、分離等を起こりにくくなるため好ましい。
本発明に係るフラーレン化合物の溶媒は、非極性有機溶媒であれば、特段に制限はないが、非ハロゲン系溶媒が好ましい。ジクロロベンゼンなどのハロゲン系溶媒でも可能であるが、環境負荷の面等から代替が求められている。
非ハロゲン系溶媒としては、例えば、非ハロゲン系芳香族炭化水素類が挙げられる。その中でも好ましくはトルエン、キシレン又はシクロヘキシルベンゼンなどである。
(フラーレン化合物の製造方法)
本発明に係るフラーレン化合物の製造方法としては、特に制限はないが、例えば、部分構造(n1)を有するフラーレン化合物の合成方法としては、国際公開第2008/059771号パンフレットやJ.Am.Chem.Soc.,2008,130(46),15429−15436に記載されている公知文献によって、実施可能である。
部分構造(n2)を有するフラーレン化合物の合成方法としては、J.Am.Chem.Soc.1993,115,9798−9799、Chem.Mater.2007,19,5363−5372及びChem.Mater.2007,19,5194−5199に記載されている公知文献によって、実施可能である。
部分構造(n3)を有するフラーレン化合物の合成方法としては、Angew.Chem.Int.Ed.Engl.1993,32,78−80、Tetrahedron Lett. 1997, 38, 285−288、国際公開第2008/018931号及び国際公開第2009/086210号に記載されている公知文献によって、実施可能である。
部分構造(n4)を有するフラーレン化合物の合成方法としては、J.Chem.Soc., Perkin Trans.1,1997 1595、Thin Solid Films 489(2005)251−256、Adv.Funct.Mater.2005,15,1979−1987及びJ.Org.Chem.1995,60,532−538に記載されている公知文献によって、実施可能である。
市販されているフラーレン化合物として、例えばPCBM(フロンティアカーボン社製)、PCBNB(フロンティアカーボン社)等が好適に使用できる。
(N−アルキル置換されたペリレンジイミド誘導体)
本発明に係るN−アルキル置換されたペリレンジイミド誘導体は、特段の制限はないが、具体的には国際公開第2008/063609号、国際公開第2009/115513号、国際公開第2009/098250号、国際公開第2009/000756号及び国際公開第2009/091670号に記載されている化合物が挙げられる。電子移動度が高く、可視域に吸収を有するため、電荷輸送と発電との両方に寄与する点から好ましい。
(ナフタレンテトラカルボン酸ジイミド)
本発明に係るナフタレンテトラカルボン酸ジイミドは、特段の制限はないが、具体的には国際公開第2008/063609号、国際公開第2007/146250号及び国際公開第2009/000756号に記載されている化合物が挙げられる。電子移動度が高く、溶解性が高く塗布性に優れている点から好ましい。
(n型高分子半導体化合物)
本発明に係るn型高分子半導体化合物は、特段の制限はないが、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド類、ペリレンジイミド誘導体、ベンゾイミダゾール誘導体、ベンズオキサゾール誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、ベンゾチアジアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ビピリジン誘導体及びボラン誘導体のうち少なくとも一つを構成ユニットとするn型高分子半導体化合物が挙げられる。
その中でも、ボラン誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、ベンゾチアジアゾール誘導体、N−アルキル置換されたナフタレンテトラカルボン酸ジイミド及びN−アルキル置換されたペリレンジイミド誘導体のうち少なくとも一つを構成ユニットとするポリマーが好ましく、N−アルキル置換されたペリレンジイミド誘導体及びN−アルキル置換されたナフタレンテトラカルボン酸ジイミドのうち少なくとも一つを構成ユニットとするn型高分子半導体化合物がより好ましい。これらの化合物を一種又は二種以上含んでもよい。
具体的には国際公開第2009/098253号、国際公開第2009/098250号、国際公開第2010/012710号及び国際公開第2009/098250号に記載されている化合物が挙げられる。可視域に吸収を有するため、発電に寄与し、粘度が高く、塗布性に優れている点から好ましい。
<2−2−4.バッファ層(102、104)>
本発明の光電変換素子107は、1対の電極(101、105)、及びその間に配置された有機活性層103の他に、さらにバッファ層を1以上有することが好ましい。バッファ層としては、電子取り出し層104及び正孔取り出し層102に分類することができ、それぞれ、有機活性層103と電極(101、105)の間に設けることができる。バッファ層を設けることで、活性層と電極の間での電子や正孔の移動度が高まるほか、電極間の短絡を防止しうるという利点がある。
電子取り出し層104と正孔取り出し層102とは、1対の電極間(101、105)に、有機活性層103を挟むように配置される。すなわち、本発明に係る光電変換素子107が電子取り出し層104と正孔取り出し層102の両者を含む場合、電極101、正孔取り出し層102、有機活性層103、電子取り出し層104、電極105がこの順に配置されている。本発明に係る光電変換素子107が電子取り出し層104を含み正孔取り出し層102を含まない場合は、電極101、有機活性層103、電子取り出し層104、電極105がこの順に配置されている。電子取り出し層104と正孔取り出し層102とは積層順序が逆であってもよいし、また電子取り出し層104と正孔取り出し層102との少なくとも一方が異なる複数の膜により構成されていてもよい。
<2−2−5.電子取り出し層104>
電子取り出し層104の材料は、以下に説明する一般式(E1)で表されるE=X基を有する化合物、好ましくは一般式(P1)で表されるリン原子と周期表第16族から選ばれる原子との二重結合を有するホスフィン化合物を含む。
なお、p型半導体化合物とn型半導体化合物を含む有機活性層103から電極101へ電子の取り出し効率を向上させるために、電子取り出し層104はさらに、無機化合物又は有機化合物を材料として有していてもよい。無機化合物の材料の例として、Li、Na、K又はCs等のアルカリ金属の塩;酸化チタン(TiOx)や酸化亜鉛(ZnO)のようなn型半導体酸化物、等が挙げられる。前記アルカリ金属の塩としては、LiF、NaF、KF又はCsFのようなフッ化物塩が好ましい。このような材料の動作機構は不明であるが、Al等の電子取り出し電極(カソード105)と組み合わされてカソード105の仕事関数を小さくし、太陽電池素子内部に印加される電圧を上げる事が考えられる。
前記有機化合物の材料としては、具体的には、バソキュプロイン(BCP)、バソフェナントレン(Bphen)、(8−ヒドロキシキノリナト)アルミニウム(Alq3)、ホウ素化合物、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸無水物(NTCDA)、ペリレンテトラカルボン酸無水物(PTCDA)等が挙げられる。
電子取り出し層104の材料のLUMOの値は、特に限定は無いが、通常−4.0eV以上、好ましくは−3.9eV以上である。一方、通常−1.9eV以下、好ましくは−2.0eV以下である。電子取り出し層104の材料のLUMOの値が−1.9eV以下であることにより、電荷移動が促進される点で好ましい。電子取り出し層104の材料のLUMOの値が−4.0eV以上であることにより、n型材料への逆電子移動が防がれる点で好ましい。
電子取り出し層104の材料のLUMOの値の算出方法としては、サイクリックボルタモグラム測定法が挙げられる。例えば、公知文献(国際公報第2011/016430号)に記載の方法を参考にして実施することができる。
電子取り出し層104の材料のHOMOの値は、特に限定は無いが、通常−9.0eV以上、好ましくは−8.0eV以上である。一方、通常−5.0eV以下、好ましくは−5.5eV以下である。電子取り出し層104の材料のHOMOの値が−5.0eV以下であることにより、正孔が移動してくることを阻止出来る点で好ましい。
電子取り出し層104の材料が有機化合物である場合の、この化合物のDSC法によるガラス転移温度(以下、Tgと記載する場合もある)は、特段の制限はないが、観測されないか、又は55℃以上であることが好ましい。DSC法によるガラス転移温度が観測されないとは、ガラス転移温度がないことを意味する。具体的には400℃以下のガラス転移温度の有無により判別する。DSC法によるガラス転移温度が観測されない材料は、熱的に高い安定性を有している点で好ましい。
又、DSC法によるガラス転移温度が55℃以上の化合物の中でも、ガラス転移温度が好ましくは65℃以上、より好ましくは80℃以上、さらに好ましくは110℃以上、特に好ましくは120℃以上である化合物が望ましい。一方、ガラス転移温度の上限は特に限定はないが、通常400℃以下、好ましくは350℃以下、より好ましくは300℃以下である。また、電子取り出し層104の材料は、DSC法によるガラス転移温度が30℃以上55度未満に観測されないものであることが好ましい。
本明細書におけるガラス転移温度とは、化合物のアモルファス状態の固体において、熱エネルギーにより局所的な分子運動が開始される温度とされており、比熱が変化する点として定義される。Tgよりさらに温度が上がると、固体構造が変化して結晶化が起こる(この時の温度を結晶化温度(Tc)とする)。さらに温度が上がると、融点(Tm)で融解し液体状態に変化することが一般的である。但し、高温で分子が分解したり、昇華したりして、これらの相転移が見られないこともある。ガラス転移温度は公知の方法で測定すれば良く、たとえばDSC法が挙げられる。
DSC法とは、JIS K−0129“熱分析通則”に定義された熱物性の測定法(示差走査熱量測定法)である。ガラス転移温度は、ガラス状態から分子運動が開始する温度であり、比熱の変化する温度としてDSCで測定できる。ガラス転移温度をより明確に決める為には、一度ガラス転移点以上の温度に加熱したサンプルを急冷した後に測定することが望ましい。例えば、公知文献(国際公報第2011/016430号)に記載の方法により、実施することができる。
電子取り出し層に用いられる化合物のガラス転移温度が55℃以上であることにより、この化合物は、印加される電場、流れる電流、曲げや温度変化による応力等の外部ストレスに対して構造が変化しにくいため、耐久性の面で好ましい。さらに、化合物の薄膜の結晶化が進みにくい傾向も有すことから、使用温度範囲においてこの化合物がアモルファス状態と結晶状態との間で変化しにくくなることにより、電子取り出し層としての安定性が良くなるため、耐久性の面で好ましい。この効果は、材料のガラス転移温度が高ければ高いほど、より顕著に表れる。
電子取り出し層104の膜厚は特に限定はないが、通常0.01nm以上、好ましくは0.1nm以上、より好ましくは0.5nm以上である。一方、通常40nm以下、好ましくは20nm以下である。電子取り出し層104の膜厚が0.01nm以上であることでバッファ材料としての機能を果たすことになり、電子取り出し層104の膜厚が40nm以下であることで、電子が取り出し易くなり、光電変換効率が向上する。
(E=X基を有する化合物)
以下、一般式(E1)で表されるE=X基を有する化合物について説明する。
式(E1)中、EはPR22、S、S(=O)、又はCを表す。EがPR22であることがガラス転移温度の上昇を伴い、光電変換素子の使用時に構造変化が低減する点で好ましい。EがPR22のとき、式(E1)の化合物は、下記一般式(P1)で表されるリン原子と周期表第16族から選ばれる原子との二重結合を有するホスフィン化合物である。下記一般式(P1)で表される化合物を電子取り出し層104の材料として用いることは、光電変換効率が向上する点及び/又は光電変換素子の耐久性が向上する点で好ましい。
式(E1)及び(P1)においてXは周期表第16族から選ばれる原子を表す。具体的には、酸素、硫黄又はセレンが挙げられる。なかでも、酸素又は硫黄が好ましく、酸素が特に好ましい。周期表第16族から選ばれる原子は、化合物分子内の極性がより大きくなり分子間の相互作用が強まり化合物のガラス転移温度の上昇と太陽電池特性の向上という本発明の効果が得られると考えられる。
E=X基のより具体的な例としては、−P(=O)R22−、−P(=S)R22−、−S(=O)−、−S(=O)2−、−C(=O)−、−C(=S)−、等が挙げられる。
式(E1)及び(P1)中、pは1以上の整数を表す。通常6以下であり、5以下であることが好ましく、3以下であることがさらに好ましく、2以下であることが、溶解性が向上し塗布による成膜が容易となる点でより好ましく、1であることが、異なる分子との間における分子間相互作用が効果的に発揮される点で好ましい。
21及びR22は各々独立して、任意の置換基である。置換基の種類は、式(E1)及び(P1)で表される化合物が電子取り出し層の機能を発現する限り特段の制限はないが、炭化水素基、酸素原子を介して結合する炭化水素基、複素環基、又は、ヒドロキシ基が好ましい。炭化水素基、酸素原子を介して結合する炭化水素基、及び複素環基は、置換基を有していてもよい。
21及びR22は各々独立して、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、又は置換基を有していてもよい複素環基であるのが好ましい。
炭化水素基としては、脂肪族炭化水素基及び芳香族炭化水素基が挙げられる。脂肪族炭化水素基としては、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基が挙げられる。飽和脂肪族炭化水素基としては、アルキル基、シクロアルキル基等が挙げられる。
アルキル基としては、炭素数1以上20以下のものが好ましく、例えば、メチル基、エチル基、i−プロピル基、t−ブチル基およびヘキシル基等が挙げられる。
シクロアルキル基としては、炭素数3以上20以下のものが好ましく、例えば、シクロプロピル基、シクロペンチル基又はシクロヘキシル基などが挙げられる。
不飽和脂肪族炭化水素基としては、アルケニル基、シクロアルケニル基、及びアルキニル基等が挙げられる。
アルケニル基としては、炭素数2以上20以下のものが好ましく、例えば、ビニル基又はスチリル基等が挙げられる。
シクロアルケニル基としては、炭素数3以上20以下のものが好ましく、例えば、シクロプロペニル基、シクロペンテニル基、又はシクロヘキセニル基等が挙げられる。
アルキニル基としては、炭素数2以上20以下のものが好ましく、例えば、メチルエチニル基又はトリメチルシリルエチニル基等が挙げられる。
脂肪族炭化水素基の中でも、飽和脂肪族炭化水素基が好ましく、アルキル基がより好ましい。
芳香族炭化水素基としては、炭素数6以上30以下のものが好ましく、例えば、フェニル基、ナフチル基、フェナントリル基、ビフェニレニル基、トリフェニレニル基、アントリル基、ピレニル基、フルオレニル基、アズレニル基、アセナフテニル基、フルオランテニル基、ナフタセニル基、ペリレニル基、ペンタセニル基又はクオーターフェニル基等が挙げられる。なかでも、フェニル基、ナフチル基、フェナントリル基、トリフェニレニル基、アントリル基、ピレニル基、フルオレニル基、アセナフテニル基、フルオランテニル基又はペリレニル基が好ましい。
酸素原子を介して結合する炭化水素基としては、アルコキシ基、アリールオキシ基等が挙げられる。なかでも、溶解性の点でアルコキシ基が好ましい。
アルコキシ基としては、炭素数1以上20以下のものが好ましく、例えば、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基およびt−ブトキシ基、ベンジルオキシ基、エチルヘキシルオキシ基などの直鎖又は分岐のアルコキシ基が挙げられる。
アリールオキシ基としては、炭素数2以上20以下のものが好ましく、例えば、フェノキシ基、ナフチルオキシ基、ピリジルオキシ基、チアゾリルオキシ基、オキサゾリルオキシ基又はイミダゾリルオキシ基等が挙げられる。なかでも、フェノキシ基又はピリジルオキシ基が好ましい。
複素環基としては、脂肪族複素環基及び芳香族複素環基が挙げられる。
脂肪族複素環基としては、炭素数2以上30以下のものが好ましく、例えば、ピロリジニル基、ピペリジニル基、ピペラジニル基、テトラヒドロフラニル基、ジオキサニル基、モルホリニル基又はチオモルホリニル基が挙げられる。なかでも、ピロリジニル基、ピペリジニル基又はピペラジニル基が好ましい。
芳香族複素環基としては、炭素数2以上30以下のものが好ましく、例えば、ピリジル基、チエニル基、フリル基、ピロリル基、オキサゾリル基、チアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピラジニル基、ピリミジニル基、ピラゾリル基、イミダゾリル基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、フェニルカルバゾリル、フェノキサチイニル基、キサンテニル基、ベンゾフラニル基、チアントレニル基、インドリジニル基、フェノキサジニル基、フェノチアジニル基、アクリジニル基、フェナントリジニル基、フェナントロリニル基、キノリル基、イソキノリル基、インドリル基又はキノキサリニル基等が挙げられる。なかでも、ピリジル基、ピラジニル基、ピリミジニル基、ピラゾリル基、キノリル基、イソキノリル基、イミダゾリル基、アクリジニル基、フェナントリジニル基、フェナントロリニル基、キノキサリニル基、ジベンゾフリル基、ジベンゾチエニル基、フェニルカルバゾリル、キサンテニル基又はフェノキサジニル基が好ましい。
また、芳香族炭化水素基及び芳香族複素環基は、縮合多環芳香族基を形成していてもよい。縮合多環芳香族基を形成する環としては、置換基を有していてもよい環状アルキル基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基が挙げられる。
環状アルキル基としては、例えば、シクロペンチル基又はシクロヘキシル基が挙げられる。
芳香族炭化水素基としては、例えば、フェニル基が挙げられる。
芳香族複素環基としては、例えば、ピリジル基、チエニル基、フリル基、ピロリル基、オキサゾリル基、チアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピラジニル基、ピリミジニル基、ピラゾリル基又はイミダゾリル基等が挙げられる。これらの中でも、ピリジル基又はチエニル基が好ましい。
縮合多環芳香族基としては、縮合多環芳香族炭化水素基および縮合多環芳香族複素環基が挙げられる。縮合多環芳香族基の有する環の数は、通常2以上、好ましくは3以上であり、一方、通常10以下、好ましくは8以下、より好ましくは6以下である。縮合多環芳香族基の有する環の数が上記範囲にある場合、活性層のn型半導体化合物とより相互作用が強まる点で好ましい。
縮合多環芳香族炭化水素基としては、例えば、フェナントリル基、アントリル基、ピレニル基、フルオランテニル基、ナフタセニル基、ペリレニル基、ペンタセニル基又はトリフェニレニル基等が挙げられる。また、縮合多環芳香族複素環基としては、例えば、フェノキサジニル基、フェノチアジニル基、アクリジニル基、フェナントリジニル基又はフェナントロリニル基等が挙げられる。
縮合多環芳香族基は、例えば以下の縮合多環芳香族化合物に由来する基であるが、これに限定されることはない。また、下記縮合多環芳香族化合物において、Eと結合する原子の位置は特に限定されない。
21及びR22のうち少なくとも一つが置換基を有していてもよい飽和脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基であることが好ましい。
21及びR22のうち少なくとも一つが飽和脂肪族炭化水素基であると、溶解性が向上するために、塗布による成膜が容易となる点で好ましい。一方でR21及びR22のうち少なくとも一つが芳香族基が好ましく、R21及びR22のうち少なくとも一つが縮合多環芳香族基がより好ましく、熱安定性が向上する点で好ましい。
さらに芳香族基は平面性が高いため、R21及びR22のうち少なくとも一つが芳香族化合物である場合、活性層103のn型半導体化合物と、E=X基を有する化合物(又はホスフィン化合物)とが相互作用しやすくなることが考えられる。この場合、バッファ層と活性層との間での電荷移動がより起こりやすくなるために、より好ましい。更に、R21及びR22の両方が芳香族基であることが好ましく、また、R21及びR22の両方が同一の芳香族基であることがより好ましく、R21及びR22の両方が同一の縮合多環芳香族基であることがさらに好ましく、R21及びR22の両方が同一の縮合多環芳香族炭化水素基であることが特に好ましい。特にn型半導体化合物がフラーレン化合物の場合に、フラーレン化合物のπ電子と芳香族化合物であるR21及び/又はR22のπ電子同士が隣接しやすくなるため、上記効果がより顕著になり、芳香族化合物が縮合多環芳香族基であれば、さらに効果が顕著になると考えられる。
21及びR22は互いに結合し環を形成していてもよい。
pが2以上の場合には複数のR21及び複数のR22が存在することとなるが、複数のR21及び複数のR22は各々独立して異なっていてもよい。また、複数のR21及び複数のR22のうちいずれか2つ以上が、互いに結合して環を形成していてもよい。
式(E1)及び(P1)において、R23は置換基を有していてもよいp価の炭化水素基、置換基を有していてもよいp価の複素環基、又は置換基を有していてもよい炭化水素基及び置換基を有していてもよい複素環基の少なくとも一方が連結したp価の基を表す。置換基を有していてもよい炭化水素基及び置換基を有していてもよい複素環基の少なくとも一方が連結したp価の基とは、例えば、置換基を有していてもよい炭化水素基及び/又は置換基を有していてもよい複素環基が直接結合により連結したp価の基、又は、置換基を有していてもよい炭化水素基及び/又は置換基を有していても良い複素環基がアルキレン基、シリレン基、アミノ基、酸素原子及び硫黄原子等を介して連結したp価の基である。
炭化水素基としては、R21及びR22について説明した1価の炭化水素基又はそれに対応する2価以上の炭化水素基が挙げられる。炭化水素基は通常6価以下であり、5価以下が好ましく、3価以下がより好ましい。炭化水素基の種類としては、R21及びR22と同様に脂肪族炭化水素基又は芳香族炭化水素基が挙げられる。
複素環基としては、R21及びR22について説明した1価の複素環基又はそれに対応する2価以上6価以下の複素環基が挙げられる。複素環基の種類としては、R21及びR22と同様に脂肪族複素環基又は芳香族複素環基が挙げられる。
また、芳香族炭化水素基及び芳香族複素環基は、縮合多環芳香族基を形成していてもよい。
縮合多環芳香族基としては、R21及びR22について説明した1価の縮合多環芳香族基又はその2価以上の縮合多環芳香族基が挙げられる。縮合多環芳香族基は通常6価以下であり、5価以下が好ましく、3価以下がより好ましい。
23が2価の基の場合、以下の具体例が挙げられるがこれらに限定されるものではない。
23は、好ましくは、置換基を有していてもよいp価の芳香族基であり、より好ましくは、置換基を有していてもよいp価の縮合多環芳香族基である。
21、R22及びR23についての説明における「置換基を有していてもよい」との用語は、置換基を1以上有していてもよいことを意味する。この置換基としては特に限定はないが、ハロゲン原子、水酸基、シアノ基、アミノ基、カルボキシル基、カルボニル基、アセチル基、スルホニル基、シリル基、ボリル基、ニトリル基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、芳香族炭化水素基又は芳香族複素環基などが挙げられる。
ハロゲン原子としては、フッ素原子が好ましい。
アルキル基としては、炭素数1以上20以下のものが好ましく、例えば、メチル基、エチル基、i−プロピル基、t−ブチル基およびシクロヘキシル基等が挙げられる。
アルケニル基としては、炭素数2以上20以下のものが好ましく、例えば、ビニル基、スチリル基およびジフェニルビニル基等が挙げられる。
アルキニル基としては、炭素数2以上20以下のものが好ましく、例えば、メチルエチニル基、フェニルエチニル基およびトリメチルシリルエチニル基等が挙げられる。
シリル基としては,炭素数2以上20以下のものが好ましく、例えば、トリメチルシリル基およびトリフェニルシリル基などが挙げられる。
ボリル基としては、例えば、ジメシチルボリル基などの芳香族基置換ボリル基が挙げられる。
アルコキシ基としては、炭素数2以上20以下のものが好ましく、例えば、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、エチルヘキシルオキシ基、ベンジルオキシ基およびt−ブトキシ基などの直鎖又は分岐のアルコキシ基が挙げられる。
アミノ基としては、例えば、ジフェニルアミノ基、ジトリルアミノ基又はカルバゾリル基等の芳香族置換アミンが挙げられる。
芳香族炭化水素基としては、炭素数6以上20以下のものが好ましく、これらは単環基に何ら限定されず、単環芳香族炭化水素基、縮合多環芳香族炭化水素基および環連結芳香族炭化水素基のいずれであってもよい。
単環芳香族炭化水素基としては、例えば、フェニル基等が挙げられる。縮合多環芳香族炭化水素基としては、例えば、ビフェニル基、フェナントリル基、ナフチル基、アントリル基、フルオレニル基、ピレニル基又はペリレニル基等が挙げられる。環連結芳香族炭化水素基としては、例えば、ビフェニル基およびターフェニル等が挙げられる。これらの中でも、フェニル基又はナフチル基が好ましい。
芳香族複素環基としては、炭素数5以上20以下のものが好ましく、例えば、ピリジル基、チエニル基、フリル基,オキサゾリル基、チアゾリル基、オキサジアゾリル基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、ピラジニル基、ピリミジニル基、ピラゾリル基、イミダゾリル基又はフェニルカルバゾリル基等が挙げられる。これらの中でも、ピリジル基、チエニル基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基又はフェナントリル基が好ましい。
式(P1)で表される化合物の中でもより好ましくは、アリール基で置換されたリン原子と周期表第16族から選ばれる原子との二重結合を有するホスフィン化合物である。例えば、アリール基で置換されたホスフィンオキシド化合物又はアリール基で置換されたホスフィンスルフィド化合物等が挙げられる。さらに好ましい例としては、トリアリールホスフィンオキシド化合物、トリアリールホスフィンスルフィド化合物、ジアリールホスフィンオキシドユニットを2つ以上有する芳香族炭化水素化合物、ジアリールホスフィンスルフィドユニットを2つ以上有する芳香族炭化水素化合物、ジアリールホスフィンオキシドユニットを2つ以上有する芳香族炭化水素化合物、等が挙げられる。上記アリール基は、フッ素原子、ヒドロキシ基又はパーフルオロアルキル基等のフッ素原子で置換されたアルキル基等で置換されていてもよい。上記リン原子と周期表第16族から選ばれる原子との二重結合を有するホスフィン化合物に対して、アルカリ金属又はアルカリ土類金属をドープしていてもよい。
式(E1)又は(P1)で表される化合物の具体例(Xは酸素、硫黄又はセレン等の周期表第16族から選ばれる原子を表す。)を以下に例示する。
(E=X基を有する化合物の製造方法)
上記式(E1)及び(P1)で表される化合物の原料となる化合物の製造方法としては特に限定はない。例えば、公知文献(国際公開第2011/016430号、特開2011−046697号公報、Journal of the American Chemical Society, 128(17), 5672−5679; 2006、Organic Letters, 10(20), 4637−4640; 2008)に記載の方法で合成しうる。
<2−2−6.正孔取り出し層102>
正孔取り出し層102の材料は、特に限定は無く有機活性層103からアノード101へ正孔の取り出し効率を向上させることが可能な材料であれば特に限定されない。具体的には、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミン又はポリアニリンなどに、スルホン酸及び/又はヨウ素などがドーピングされた導電性ポリマー、スルホニル基を置換基に有するポリチオフェン誘導体、アリールアミン等の導電性有機化合物、後述のp型半導体化合物等が挙げられる。その中でも、スルホン酸をドーピングした導電性ポリマーが好ましく、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたポリ(3,4−エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)(PEDOT:PSS)がより好ましい。また、金、インジウム、銀又はパラジウム等の金属等の薄膜も使用することができる。さらに、金属等の薄膜は、単独で形成してもよく、上記の有機材料と組み合わせて用いることもできる。
正孔取り出し層102の膜厚は特に限定はないが、通常2nm以上である。一方、通常40nm以下、好ましくは20nm以下である。正孔取り出し層102の膜厚が2nm以上であることでバッファ材料としての機能を果たすことになり、正孔取り出し層102の膜厚が40nm以下であることで、正孔が取り出し易くなり、光電変換効率が向上する。
電子取り出し層104と正孔取り出し層102の形成方法に制限はない。例えば、昇華性を有する材料を用いる場合は真空蒸着法等により形成することができる。また、例えば、溶媒に可溶な材料を用いる場合は、スピンコートやインクジェット等の湿式塗布法等により形成することができる。正孔取り出し層102に半導体材料を用いる場合は、上述の有機活性層の低分子有機半導体化合物と同様に、前駆体を用いて層を形成した後に前駆体を半導体化合物に変換してもよい。
<2−2−7.電極101、105>
本発明に係る電極(101及び105)は、光吸収により生じた正孔及び電子を捕集する機能を有するものである。したがって、一対の電極には、正孔の捕集に適した電極101(以下、アノードと記載する場合もある)と電子の捕集に適した電極105(以下、カソードと記載する場合もある)を用いることが好ましい。1対の電極は、いずれか一方が透光性であればよく、両方が透光性であっても構わない。透光性があるとは太陽光が40%以上透過する程度のものである。また、透明電極の太陽光線透過率が70%以上であることが、透明電極を透過させて活性層に光を到達させるためには、好ましい。なお、光の透過率は、通常の分光光度計で測定可能できる。
正孔の捕集に適した電極101(アノード)とは、一般には仕事関数がカソードよりも高い値を有する導電性材料で、有機活性層103で発生した正孔をスムーズに取り出す機能を有する電極である。
アノード101の材料を挙げると、例えば、酸化ニッケル、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、インジウムージルコニウム酸化物(IZO)、酸化チタン、酸化インジウム又は酸化亜鉛等の導電性金属酸化物;金、白金、銀、クロム又はコバルト等の金属あるいはその合金が挙げられる。
これらの物質は高い仕事関数を有するため、好ましく、さらに、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT/PSSで代表されるような導電性高分子材料を積層することができるため、好ましい。このような導電性高分子を積層する場合には、その導電性高分子材料の仕事関数が高いことから、上記のような高い仕事関数の材料でなくとも、AlやMg等のカソードに適した金属も広く用いることが可能である。
ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT/PSSや、ポリピロール又はポリアニリン等にヨウ素等のドーピングした導電性高分子材料をアノードの材料として使用することもできる。
また、アノード101が透明電極である場合には、ITO、酸化亜鉛又は酸化錫等の透光性がある導電性金属酸化物を用いることが好ましく、特にITOが好ましい。
アノード101の膜厚は特に制限は無いが、通常10nm以上、好ましくは20nm以上、さらに好ましくは、50nm以上である。一方、通常10μm以下、好ましくは1μm以下、さらに好ましくは500nm以下である。アノード101の膜厚が10nm以上であることにより、シート抵抗が抑えられ、アノード101の膜厚が10μm以下であることにより、光透過率が低下せずに効率よく光を電気に変換することができる。透明電極に用いる場合には、光透過率とシート抵抗を両立する膜厚を選ぶ必要がある。
アノード101のシート抵抗は、特段の制限はないが、通常1Ω/□以上、一方、1000Ω/□以下、好ましくは500Ω/□以下、さらに好ましくは100Ω/□以下である。
アノード101の形成方法は、蒸着若しくはスパッタ等の真空成膜方法又はナノ粒子や前駆体を含有するインクを塗布して成膜する方法等がある。
電子の捕集に適した電極105(カソード)とは、一般には仕事関数がアノードよりも高い値を有する導電性材料で、有機活性層103で発生した電子をスムーズに取り出す機能を有する電極であり、本発明の電子取り出し層104と隣接することを特徴とする。
カソード105の材料を挙げると、例えば、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム又はマグネシウム等の金属及びその合金;フッ化リチウムやフッ化セシウム等の無機塩;酸化ニッケル、酸化アルミニウム、酸化リチウム又は酸化セシウムのような金属酸化物等が挙げられる。これらの材料は低い仕事関数を有する材料のため、好ましい。カソード105についてもアノード101と同様に、電子取り出し層104にチタニアのようなn型半導体で導電性を有するものを用いることにより、アノード101に適した高い仕事関数を有する材料も用いることができる。電極保護の観点から、アノード101材料として好ましくは、白金、金、銀、銅、鉄、錫、アルミニウム、カルシウム又はインジウム等の金属及びこれらの金属を用いた合金である。
カソード105の膜厚は特に制限は無いが、通常10nm以上、好ましくは20nm以上下、より好ましくは50nm以上である。一方、通常10μm以下、好ましくは1μm以下、より好ましくは500nm以下である。透明電極に用いる場合には、光透過率とシート抵抗を両立する膜厚を選ぶ必要がある。カソード105の膜厚が10nm以上であることにより、シート抵抗が抑えられ、カソード105の膜厚が10μm以下であることにより、光透過率が低下せずに効率よく光を電気に変換することができる。
カソード105のシート抵抗は、特に制限は無いが、通常1000Ω/□以下、好ましくは500Ω/□以下、さらに好ましくは100Ω/□以下である。下限に制限は無いが、通常は1Ω/□以上である。
カソード105の形成方法は、蒸着若しくはスパッタ等の真空成膜方法又はナノ粒子や前駆体を含有するインクを塗布して成膜する方法等がある。
さらに、アノード101又はカソード105は2層以上積層してもよく、表面処理により特性(電気特性やぬれ特性等)を改良していてもよい。
アノード101及びカソード105を積層した後に、当該光電変換素子を通常50℃以上、好ましくは80℃以上、一方、通常300℃以下、好ましくは280℃以下、より好ましくは250℃以下の温度範囲において、加熱することが好ましい(この工程をアニーリング処理工程と称する場合がある)。該アニーリング処理工程の温度を50℃以上にすることで、電子取り出し層104と電極101及び/又は電子取り出し層104と活性層103の密着性が向上する効果が得られるため、好ましい。該アニーリング処理工程の温度が300℃以下にすることで、活性層の有機化合物が熱分解する可能性が低くなるため、好ましい。
なお、温度操作については上記範囲内で段階的に加熱していてもよい。
加熱する時間としては、通常1分以上、好ましくは3分以上、一方、通常3時間以下、好ましくは1時間以下である。該アニーリング処理は太陽電池性能のパラメータである開放電圧、短絡電流及びフィルファクターが一定の値になったところで終了させることが好ましい。また、該アニーリング処理の雰囲気は常圧下、かつ不活性ガス雰囲気で実施することが好ましい。
該アニーリング処理工程により、電子取り出し層104と電極101及び/又は電子取り出し層104と活性層103の密着性を向上させることで、光電変換素子の熱安定性や耐久性等が向上する効果とともに、有機活性層の自己組織化が促進される効果が得られる。
加熱する方法としては、ホットプレート等の熱源に当該光電変換素子を載せても良いし、オーブン等の加熱雰囲気下に当該光電変換素子を入れても良い。また、バッチ式であっても連続方式であっても構わない。
<2−2−8.基板106>
本発明に係る光電変換素子は、通常は支持体となる基板106を有する。すなわち、基板上に、電極と、活性層、バッファ層とが形成される。基板の材料(基板材料)は本発明の効果を著しく損なわない限り任意である。基板材料の好適な例を挙げると、石英、ガラス、サファイア又はチタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル又はポリエチレン等のポリオレフィン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン又はエポキシ樹脂等の有機材料;紙又は合成紙等の紙材料;ステンレス、チタン又はアルミニウム等の金属に、絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料等が挙げられる。
ガラスとしてはソーダガラスや青板ガラスや無アルカリガラスなどが挙げられる。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましい。
基板106の形状に制限はなく、例えば、板、フィルム、シート等の形状を用いることができる。基板106の膜厚に制限はない。ただし、通常5μm以上、中でも20μm以上であり、一方、通常20mm以下、中でも10mm以下に形成することが好ましい。基板の膜厚が5μm以上であると、半導体デバイスの強度が不足する可能性は少なくなるため、好ましい。基板の膜厚が20mm以下であることで、コストが抑えられ、かつ重量が重くならず、好ましい。又、基板がガラスの場合の膜厚は、通常0.01mm以上、好ましくは0.1mm以上であり、一方、また、通常1cm以下、好ましくは0.5cm以下である。ガラス基板の膜厚が0.01mm以上であると、機械的強度が増加し、割れにくくなるために、好ましい。ガラス基板の膜厚が0.5cm以下であると、重量が重くならずに好ましい。
[3.太陽電池モジュール]
<3−1.太陽電池モジュール13>
本発明に係る光電変換素子107は、太陽電池、中でも薄膜太陽電池の太陽電池素として使用されることが好ましい。
図2は本発明の一実施形態としての薄膜太陽電池の構成を模式的に示す断面図である。図2に示すように、本実施形態の薄膜太陽電池14は、耐候性保護フィルム1と、紫外線カットフィルム2と、ガスバリアフィルム3と、ゲッター材フィルム4と、封止材5と、太陽電池素子6と、封止材7と、ゲッター材フィルム8と、ガスバリアフィルム9と、バックシート10とをこの順に備える。そして、耐候性保護フィルム1が形成された側(図中下方)から光が照射されて、太陽電池素子6が発電するようになっている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等の防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
<3−2.耐候性保護フィルム1>
耐候性保護フィルム1は天候変化から太陽電池素子6を保護するフィルムである。
太陽電池素子6の構成部品のなかには、温度変化、湿度変化、自然光及び/又は風雨による侵食等により劣化するものがある。そこで、耐候性保護フィルム1で太陽電池素子6を覆うことにより、太陽電池素子6等を天候変化等から保護し、発電能力を高く維持するようにしている。
耐候性保護フィルム1は、薄膜太陽電池14の最表層に位置するため、耐候性、耐熱性、透明性、撥水性、耐汚染性及び/又は機械強度等の、薄膜太陽電池14の表面被覆材として好適な性能を備え、しかもそれを屋外暴露において長期間維持する性質を有することが好ましい。
また、耐候性保護フィルム1は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360以上830nm以下)の光の透過率が80%以上であることが好ましく、90%以上であることがより好ましく、特に好ましくは95%である。
さらに、薄膜太陽電池14は光を受けて熱せられることが多いため、耐候性保護フィルム1も熱に対する耐性を有することが好ましい。この観点から、耐候性保護フィルム1の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池14の使用時に耐候性保護フィルム1が融解・劣化する可能性を低減できる。
耐候性保護フィルム1を構成する材料は、天候変化から太陽電池素子6を保護することができるものであれば任意である。その材料の例を挙げると、ポリエチレン樹脂、ポリプロピレン樹脂、環状ポリオレフィン樹脂、AS(アクリロニトリル−スチレン)樹脂、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリ塩化ビニル樹脂、フッ素系樹脂、ポリエチレンテレフタラート、ポリエチレンナフタレート等のポリエステル樹脂、フェノール樹脂、ポリアクリル系樹脂、各種ナイロン等のポリアミド樹脂、ポリイミド樹脂、ポリアミド−イミド樹脂、ポリウレタン樹脂、セルロース系樹脂、シリコーン系樹脂又はポリカーボネート樹脂等が挙げられる。
中でも好ましくはフッ素系樹脂が挙げられ、その具体例を挙げるとポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)又はポリフッ化ビニル(PVF)等が挙げられる。
なお、耐候性保護フィルム1は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、耐候性保護フィルム1は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
耐候性保護フィルム1の厚みは特に規定されないが、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
また耐候性保護フィルム1には、他のフィルムとの接着性の改良のために、コロナ処理及び/又はプラズマ処理等の表面処理を行なってもよい。
耐候性保護フィルム1は、薄膜太陽電池14においてできるだけ外側に設けることが好ましい。薄膜太陽電池14の構成部材のうちより多くのものを保護できるようにするためである。
<3−3.紫外線カットフィルム2>
紫外線カットフィルム2は紫外線の透過を防止するフィルムである。
薄膜太陽電池14の構成部品のなかには紫外線により劣化するものがある。また、ガスバリアフィルム3、9等は種類によっては紫外線により劣化するものがある。そこで、紫外線カットフィルム2を薄膜太陽電池14の受光部分に設け、紫外線カットフィルム2で太陽電池素子6の受光面6aを覆うことにより、太陽電池素子6及び必要に応じてガスバリアフィルム3、9等を紫外線から保護し、発電能力を高く維持することができるようになっている。
紫外線カットフィルム2に要求される紫外線の透過抑制能力の程度は、紫外線(例えば、波長300nm)の透過率が50%以下であることが好ましく、30%以下であることがより好ましく、特に好ましくは10%以下である。
また、紫外線カットフィルム2は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360以上830nm以下)の光の透過率が80%以上であることが好ましく、90%以上であることがより好ましく、特に好ましくは95%以上である。
さらに、薄膜太陽電池14は光を受けて熱せられることが多いため、紫外線カットフィルム2も熱に対する耐性を有することが好ましい。この観点から、紫外線カットフィルム2の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点が低すぎると薄膜太陽電池14の使用時に紫外線カットフィルム2が融解する可能性がある。
また、紫外線カットフィルム2は、柔軟性が高く、隣接するフィルムとの接着性が良好であり、水蒸気や酸素をカットしうるものが好ましい。
紫外線カットフィルム2を構成する材料は、紫外線の強度を弱めることができるものであれば任意である。その材料の例を挙げると、エポキシ系、アクリル系、ウレタン系又はエステル系の樹脂に紫外線吸収剤を配合して成膜したフィルム等が挙げられる。また、紫外線吸収剤を樹脂中に分散あるいは溶解させたものの層(以下、適宜「紫外線吸収層」という)を基材フィルム上に形成したフィルムを用いてもよい。
紫外線吸収剤としては、例えば、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系のものを用いることができる。中でもベンゾフェノン系、ベンゾトリアゾール系が好ましい。この例としては、ベンゾフェノン系やベンゾトリアゾール系の種々の芳香族系有機化合物等が挙げられる。なお、紫外線吸収剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用していてもよい。
前記したように、紫外線吸収フィルムとしては紫外線吸収層を基材フィルム上に形成したフィルムを用いることもできる。このようなフィルムは、例えば、紫外線吸収剤を含む塗布液を基材フィルム上に塗布し、乾燥させることで作製できる。
基材フィルムの材質は特に限定されないが、耐熱性、柔軟性のバランスが良好なフィルムが得られる点で、例えばポリエステルが挙げられる。
塗布は任意の方法で行うことができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法又はカーテンコート法等が挙げられる。また、これらの方法は1種を単独で行なってもよく、2種以上を任意に組み合わせて行うこともできる。
塗布液に用いる溶剤は、紫外線吸収剤を均一に溶解あるいは分散できるものであれば特に限定されない。例えば液状の樹脂を溶剤として用いることができ、その例を挙げると、ポリエステル系、アクリル系、ポリアミド系、ポリウレタン系、ポリオレフィン系、ポリカーボネート系又はポリスチレン系等の各種合成樹脂等が挙げられる。また、例えば、ゼラチンやセルロース誘導体等の天然高分子;水、水とエタノール等のアルコール混合溶液等も溶剤として用いることができる。さらに、溶剤として有機溶剤を使用していてもよい。有機溶剤を使用すれば、色素や樹脂を溶解又は分散させることが可能となり、塗工性を向上させることが可能となる。なお、溶剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
塗布液にはさらに界面活性剤も含有させてもよい。界面活性剤の使用により、紫外線吸収色素の樹脂への分散性が向上する。これにより、紫外線吸収層において、微小な泡によるヌケ、異物等の付着による凹み及び/又は乾燥工程でのハジキ等の発生が抑制される。
界面活性剤としては、公知の界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤又はノニオン系界面活性剤)を用いることができる。中でも、シリコーン系界面活性剤又はフッ素系界面活性剤が好ましい。なお、界面活性剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
なお、塗布液を基材フィルムに塗布した後の乾燥は、例えば熱風乾燥、赤外線ヒーターによる乾燥等の公知の乾燥方法が採用できる。中でも、乾燥速度が速い熱風乾燥が好適である。
紫外線カットフィルム2の具体的な商品の例を挙げると、カットエース(MKVプラスティック株式会社)等が挙げられる。
なお、紫外線カットフィルム2は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、紫外線カットフィルム2は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
紫外線カットフィルム2の厚みは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで紫外線の吸収が高まる傾向にあり、薄くすることで可視光の透過率を増加させられる傾向にある。
紫外線カットフィルム2は、太陽電池素子6の受光面6aの少なくとも一部を覆う位置に設ければよいが、好ましくは太陽電池素子6の受光面6aの全てを覆う位置に設ける。
ただし、太陽電池素子6の受光面6aを覆う位置以外の位置にも紫外線カットフィルム2が設けられていてもよい。
<3−4.ガスバリアフィルム3>
ガスバリアフィルム3は水及び酸素の透過を防止するフィルムである。
太陽電池素子6は湿気及び酸素に弱い傾向があり、特に、ZnO:Al等の透明電極や、化合物半導体系太陽電池素子及び有機太陽電池素子が水分及び酸素により劣化することがある。そこで、ガスバリアフィルム3で太陽電池素子6を被覆することにより、太陽電池素子6を水及び酸素から保護し、発電能力を高く維持することができる。
ガスバリアフィルム3に要求される防湿能力の程度は、太陽電池素子6の種類等に応じて様々である。例えば、太陽電池素子6が化合物半導体系太陽電池素子である場合には、単位面積(1m2)の1日あたりの水蒸気透過率が、1×10-1g/m2/day以下であることが好ましく、1×10-2g/m2/day以下であることがより好ましく、1×10-3g/m2/day以下であることが更に好ましく、1×10-4g/m2/day以下であることが中でも好ましく、1×10-5g/m2/day以下であることがとりわけ好ましく、1×10-6g/m2/day以下であることが特に好ましい。
また、太陽電池素子6が有機太陽電池素子である場合には、単位面積(1m2)の1日あたりの水蒸気透過率が、1×10-1g/m2/day以下であることが好ましく、1×10-2g/m2/day以下であることがより好ましく、1×10-3g/m2/day以下であることが更に好ましく、1×10-4g/m2/day以下であることが中でも好ましく、1×10-5g/m2/day以下であることがとりわけ好ましく、1×10-6g/m2/day以下であることが特に好ましい。水蒸気が透過しなければしないほど、太陽電池素子6及び当該素子6のZnO:Al等の透明電極の水分との反応に起因する劣化が抑えられるので、発電効率が上がると共に寿命が延びる。
ガスバリアフィルム3に要求される酸素透過性の程度は、太陽電池素子6の種類等に応じて様々である。例えば、太陽電池素子6が化合物半導体系太陽電池素子である場合には、単位面積(1m2)の1日あたりの酸素透過率が、1×10-1cc/m2/day/atm以下であることが好ましく、1×10-2cc/m2/day/atm以下であることがより好ましく、1×10-3cc/m2/day/atm以下であることが更に好ましく、1×10-4cc/m2/day/atm以下であることが中でも好ましく、1×10-5cc/m2/day/atm以下であることがとりわけ好ましく、1×10-6cc/m2/day/atm以下であることが特に好ましい。また、例えば、太陽電池素子6が有機太陽電池素子である場合には、単位面積(1m2)の1日あたりの酸素透過率が、1×10-1cc/m2/day/atm以下であることが好ましく、1×10-2cc/m2/day/atm以下であることがより好ましく、1×10-3cc/m2/day/atm以下であることが更に好ましく、1×10-4cc/m2/day/atm以下であることが中でも好ましく、1×10-5cc/m2/day/atm以下であることがとりわけ好ましく、1×10-6cc/m2/day/atm以下であることが特に好ましい。酸素が透過しなければしないほど、太陽電池素子6及び当該素子6のZnO:Al等の透明電極の酸化による劣化が抑えられる。
従来はこのように高い防湿及び酸素遮断能力を有するガスバリアフィルム3の実装が困難であったため、化合物半導体系太陽電池素子及び有機太陽電池素子のように優れた太陽電池素子を備えた太陽電池を実現することが困難であったが、このようなガスバリアフィルム3を適用することにより化合物半導体系太陽電池素子及び有機太陽電池素子等の優れた性質を活かした薄膜太陽電池14の実施が容易となる。
また、ガスバリアフィルム3は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360以上830nm以下)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
さらに、薄膜太陽電池14は光を受けて熱せられることが多いため、ガスバリアフィルム3も熱に対する耐性を有することが好ましい。この観点から、ガスバリアフィルム3の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池14の使用時にガスバリアフィルム3が融解・劣化する可能性を低減できる。
ガスバリアフィルム3の具体的な構成は、太陽電池素子6を水から保護できる限り任意である。ただし、ガスバリアフィルム3を透過しうる水蒸気や酸素の量を少なくできるフィルムほど製造コストが高くなるため、これらの点を総合的に勘案して適切なものを使用することが好ましい。
以下、ガスバリアフィルム3の構成について、例を挙げて説明する。
ガスバリアフィルム3の構成として好ましいものは以下の2例が挙げられる。
一つ目の例は、プラスチックフィルム基材に無機バリア層を配置したフィルムである。この際、無機バリア層は、プラスチックフィルム基材の片面のみに形成していてもよいし、プラスチックフィルム基材の両面に形成していてもよい。両面に形成するときは、両面に形成する無機バリア層の数が、それぞれ一致していていもよく、異なっていてもよい。
二つ目の例は、プラスチックフィルム基材に、無機バリア層とポリマー層とが互いに隣接して配置された2層からなるユニット層が形成されたフィルムである。この際、無機バリア層とポリマー層とが互いに隣接して配置された2層からなるユニット層を1単位として、このユニット層が1単位(無機バリア層1層とポリマー層1層を合わせて1単位の意味)のみを形成しても良いが、2単位以上形成しても良い。例えば2単位以上5単位以下、積層していてもよい。
ユニット層は、プラスチックフィルム基材の片面のみに形成していてもよいし、プラスチックフィルム基材の両面に形成していてもよい。両面に形成するときは、両面に形成する無機バリア層及びポリマー層の数が、それぞれ一致していていもよく、異なっていてもよい。また、プラスチックフィルム基材上にユニット層を形成する場合、無機バリア層を形成してからその上にポリマー層を形成してもよいし、ポリマー層を形成してから無機バリア層を形成してもよい。
(プラスチックフィルム基材)
ガスバリアフィルム3に使用されるプラスチックフィルム基材は、上記の無機バリア層及びポリマー層を保持しうるフィルムであれば特に制限はなく、ガスバリアフィルム3の使用目的等から適宜選択することができる。
プラスチックフィルム基材の材料の例を挙げると、ポリエステル樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂又はアクリロイル化合物が挙げられる。また、スピロビインダン、スピロビクロマンを含む縮合ポリマーを用いるのも好ましい。ポリエステル樹脂の中でも、二軸延伸を施したポリエチレンテレフタレート(PET)又は同じく二軸延伸したポリエチレンナフタレート(PEN)は、熱的寸度安定性に優れるため、プラスチックフィルム基材として好ましく用いられる。
なおプラスチックフィルム基材の材料は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用していてもよい。
プラスチックフィルム基材の厚みは特に規定されないが、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
プラスチックフィルム基材は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360以上830nm以下)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
プラスチックフィルム基材には、無機バリア層との密着性向上のため、アンカーコート剤の層(アンカーコート層)を形成してもよい。通常、アンカーコート層はアンカーコート剤を塗布して形成される。アンカーコート剤としては、例えば、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、オキサゾリン基含有樹脂、カルボジイミド基含有樹脂、エポキシ基含有樹脂、イソシアネート含有樹脂及びこれらの共重合体等が挙げられる。中でも、ポリエステル樹脂、ウレタン樹脂及びアクリル樹脂の中から選ばれる少なくとも1種類以上の樹脂と、オキサゾリン基含有樹脂、カルボジイミド基含有樹脂、エポキシ基含有樹脂及びイソシアネート基含有樹脂の中から選ばれる少なくとも1種類以上の樹脂とを組み合わせたものが好ましい。なお、アンカーコート剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
アンカーコート層の厚さは、通常0.005μm以上、好ましくは0.01μm以上であり、通常5μm以下、好ましくは1μm以下である。この範囲の上限値以下の厚さであれば滑り性が良好であり、アンカーコート層自体の内部応力によるプラスチックフィルム基材からの剥離もほとんどない。また、この範囲の下限値以上の厚さであれば、均一な厚さを保つことができ好ましい。
また、プラスチックフィルム基材へのアンカーコート剤の塗布性、接着性を改良するため、アンカーコート剤の塗布前に、プラスチックフィルム基材に通常の化学処理、放電処理等の表面処理を施していてもよい。
(無機バリア層)
無機バリア層は通常は金属酸化物、窒化物又は酸化窒化物により形成される層である。なお、無機バリア層を形成する金属酸化物、窒化物及び酸化窒化物は、1種でもよく、2種以上を任意の組み合わせ及び比率で併用していてもよい。
金属酸化物としては、例えば、Si、Al、Mg、In、Ni、Sn、Zn、Ti、Cu、Ce又はTa等の酸化物が挙げられる。中でも、高いバリア性と高透明性とを両立させるために、酸化アルミニウム又は酸化珪素を含むことが好ましく、特に水分の透過性、光線透過性の観点から、酸化珪素を含むことが好ましい。
各々の金属原子と酸素原子との比率も任意であるが、無機バリア層の透明度を向上させ着色を防ぐためには、酸素原子の比率が酸化物の化学量論的な比率から極端に少なくないことが望ましい。一方、無機バリア層の緻密性を向上させバリア性を高くするためには、酸素原子を少なくすることが望ましい。この観点から、例えば金属酸化物としてSiOxを用いる場合には前記xの値は1.5以上1.8以下が特に好ましい。また、例えば金属酸化物としてAlOxを用いる場合には前記xの値は1.0以上1.4以下が特に好ましい。
また、2種以上の金属酸化物より無機バリア層を構成する場合、金属酸化物としては酸化アルミニウム及び酸化珪素を含むことが望ましい。中でも無機バリア層が酸化アルミニウム及び酸化珪素からなる場合、無機バリア層中のアルミニウムとケイ素との比率は任意に設定することができるが、Si/Alの比率は、通常1/9以上、好ましくは2/8以上であり、また、通常9/1以下、好ましくは8/2以下である。
無機バリア層の厚みを厚くするとバリア性が高まる傾向にあるが、曲げた際にクラックを生じにくくし割れを防ぐためには、厚みを薄くすることが望ましい。そこで無機バリア層の適正な厚みとしては、通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは200nm以下である。
無機バリア層の成膜方法に制限は無いが、一般的にスパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法等で行うことができる。例えばスパッタリング法では1種類のあるいは複数の金属ターゲットと酸素ガスを原料とし、プラズマを用いた反応性スパッタ方式で形成することができる。
(ポリマー層)
ポリマー層にはいずれのポリマーでも使用することができ、例えば真空チャンバー内で成膜できるものも用いることができる。なお、ポリマー層を構成するポリマーは、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
前記ポリマーを与える化合物としては多種多様なものを用いることができるが、例えば以下の(i)〜(vii)のようなものが例示される。なお、モノマーは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
(i)例えばヘキサメチルジシロキサン等のシロキサンが挙げられる。ヘキサメチルジシロキサンを用いる場合のポリマー層の形成方法の例を挙げると、RF電極を用いた平行平板型のプラズマ装置にヘキサメチルジシロキサンを蒸気として導入し、プラズマ中で重合反応を起こさせ、プラスチックフィルム基材上に堆積させることでポリマー層をポリシロキサン薄膜として形成できる。
(ii)例えばジパラキシリレン等のパラキシリレンが挙げられる。ジパラキシリレンを用いる場合のポリマー層の形成方法の例を挙げると、まず高真空中でジパラキシリレンの蒸気を650℃以上700℃以下で加熱することで熱分解させて熱ラジカルを発生させる。そして、そのラジカルモノマー蒸気をチャンバー内に導いて、プラスチックフィルム基材へと吸着させると同時にラジカル重合反応を進行させてポリパラキシリレンを堆積させることでポリマー層を形成できる。
(iii)例えば二種のモノマーを交互に繰り返し付加重合させることができるモノマーが挙げられる。これにより得られるポリマーは重付加ポリマーである。重付加ポリマーとしては、例えば、ポリウレタン(ジイソシアナート/グリコール)、ポリ尿素(ジイソシアナート/ジアミン)、ポリチオ尿素(ジチオイソシアナート/ジアミン)、ポリチオエーテルウレタン(ビスエチレンウレタン/ジチオール)、ポリイミン(ビスエポキシ/第一アミン)、ポリペプチドアミド(ビスアゾラクトン/ジアミン)又はポリアミド(ジオレフィン/ジアミド)等が挙げられる。
(iv)例えばアクリレートモノマーが挙げられる。アクリレートモノマーには単官能、2官能又は多官能のアクリレートモノマーがあるが、いずれを用いてもよい。ただし、適切な蒸発速度、硬化度及び/又は硬化速度等を得るために、前記のアクリレートモノマーを2種以上組み合わせて併用することが好ましい。
また、単官能アクリレートモノマーとしては、例えば脂肪族アクリレートモノマー、脂環式アクリレートモノマー、エーテル系アクリレートモノマー、環状エーテル系アクリレートモノマー、芳香族系アクリレートモノマー、水酸基含有アクリレートモノマー又はカルボキシ基含有アクリレートモノマー等があるが、いずれも用いることができる。
(v)例えばエポキシ系やオキセタン系等の、光カチオン硬化ポリマーが得られるモノマーが挙げられる。エポキシ系モノマーとしては、例えば、脂環式エポキシ系モノマー、2官能性モノマー又は多官能性オリゴマー等が挙げられる。また、オキセタン系モノマーとしては、例えば、単官能オキセタン、2官能オキセタン又はシルセスキオキサン構造を有するオキセタン等が挙げられる。
(vi)例えば酢酸ビニルが挙げられる。モノマーとして酢酸ビニルを用いると、その重合体をケン化することでポリビニルアルコールが得られ、このポリビニルアルコールをポリマーとして使用できる。
(vii)例えば、アクリル酸、メタクリル酸、エタクリル酸、フマル酸、マレイン酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸又は無水イタコン酸等の不飽和カルボン酸等が挙げられる。これらは、エチレンとの共重合体を構成させ、この共重合体をポリマーとして使用できる。さらに、これらの混合物、あるいはグリシジルエーテル化合物を混合した混合物、さらにはエポキシ化合物との混合物もポリマーとして用いることができる。
前記のモノマーを重合してポリマーを生成させる際、モノマーの重合方法に制限は無い。ただし、通常は、モノマーを含む組成物を塗布又は蒸着して成膜した後で重合を行うようにする。重合方法の例を挙げると、熱重合開始剤を用いたときはヒーター等による接触加熱又は赤外線若しくはマイクロ波等の放射加熱等により重合を開始させる。また、光重合開始剤を用いたときは活性エネルギー線を照射して重合を開始させる。活性エネルギー線を照射する場合には様々な光源を使用することができ、例えば、水銀アークランプ、キセノンアークランプ、蛍光ランプ、炭素アークランプ、タングステンーハロゲン輻射ランプ又は日光による照射光等を用いることができる。また、電子線照射や大気圧プラズマ処理を行うこともできる。
ポリマー層の形成方法は、例えば、塗布法、真空成膜法等が挙げられる。
塗布法でポリマー層を形成する場合、例えば、ロールコート、グラビアコート、ナイフコート、ディップコート、カーテンフローコート、スプレーコート、バーコート等の方法を用いることができる。また、ポリマー層形成用の塗布液をミスト状で塗布するようにしてもよい。この場合の液滴の平均粒径は適切な範囲に調整すればよく、例えば重合性モノマーを含有する塗布液をミスト状でプラスチックフィルム基材上に成膜して形成する場合には、液滴の平均粒径は通常5μm以下、好ましくは1μm以下である。
他方、真空成膜法でポリマー層を形成する場合、例えば、蒸着やプラズマCVD等の成膜方法が挙げられる。
ポリマー層の厚みについては特に限定はないが、通常10nm以上であり、また、通常5000nm以下、好ましくは2000nm以下、より好ましくは1000nm以下である。ポリマー層の厚みを厚くすることで、厚みの均一性が得やすくなり無機バリア層の構造欠陥を効率よくポリマー層で埋めることができ、バリア性が向上する傾向にある。また、ポリマー層の厚みを薄くする事で、曲げ等の外力によりポリマー層自身がクラックを発生しにくくなるためバリア性が向上しうる。
中でも好適なガスバリアフィルム3としては、例えば、ポリエチレンテレフタレート(PET)或いはポリエチレンナフタレート(PEN)等の基材フィルムにSiOxを真空蒸着したフィルム等が挙げられる。
なお、ガスバリアフィルム3は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、ガスバリアフィルム3は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
ガスバリアフィルム3の厚みは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることでガスバリア性が高まる傾向にあり、薄くすることで柔軟性が高まりまた可視光の透過率が向上する傾向にある。
ガスバリアフィルム3は、太陽電池素子6を被覆して湿気及び酸素から保護できればその形成位置に制限は無いが、太陽電池素子6の正面(受光面側の面。図2では下側の面)及び背面(受光面とは反対側の面。図2では上側の面)を覆うことが好ましい。薄膜太陽電池14においてはその正面及び背面が他の面よりも大面積に形成されることが多いためである。本実施形態ではガスバリアフィルム3が太陽電池素子6の正面を覆い、後述するガスバリアフィルム9が太陽電池素子6の背面を覆うようになっている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等の防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
<3−5.ゲッター材フィルム4>
ゲッター材フィルム4は水分及び/又は酸素を吸収するフィルムである。太陽電池素子6の構成部品のなかには前記のように水分で劣化するものがあり、また、酸素によって劣化するものもある。そこで、ゲッター材フィルム4で太陽電池素子6を覆うことにより、太陽電池素子6等を水分及び/又は酸素から保護し、発電能力を高く維持するようにしている。
ここで、ゲッター材フィルム4は前記のようなガスバリアフィルム3とは異なり、水分の透過を妨げるものではなく、水分を吸収するものである。水分を吸収するフィルムを用いることにより、ガスバリアフィルム3等で太陽電池素子6を被覆した場合に、ガスバリアフィルム3及び9で形成される空間に僅かに浸入する水分をゲッター材フィルム4が捕捉して水分による太陽電池素子6への影響を排除できる。
ゲッター材フィルム4の水分吸収能力の程度は、通常0.1mg/cm2以上、好ましくは0.5mg/cm2以上、より好ましくは1mg/cm2以上である。この数値が高いほど水分吸収能力が高く太陽電池素子6の劣化を抑制しうる。また、上限に制限は無いが、通常10mg/cm2以下である。
また、ゲッター材フィルム4が酸素を吸収することにより、ガスバリアフィルム3及び9等で太陽電池素子6を被覆した場合に、ガスバリアフィルム3及び9で形成される空間に僅かに浸入する酸素をゲッター材フィルム4が捕捉して酸素による太陽電池素子6への影響を排除できる。
さらに、ゲッター材フィルム4は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360以上830nm以下)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
さらに、薄膜太陽電池14は光を受けて熱せされることが多いため、ゲッター材フィルム4も熱に対する耐性を有することが好ましい。この観点から、ゲッター材フィルム4の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池14の使用時にゲッター材フィルム4が融解・劣化する可能性を低減できる。
ゲッター材フィルム4を構成する材料は、水分及び/又は酸素を吸収することができるものであれば任意である。その材料の例を挙げると、水分を吸収する物質としてアルカリ金属、アルカリ土類金属又はアルカリ土類金属の酸化物;アルカリ金属又はアルカリ土類金属の水酸化物;シリカゲル、ゼオライト系化合物、硫酸マグネシウム、硫酸ナトリウム又は硫酸ニッケル等の硫酸塩;アルミニウム金属錯体又はアルミニウムオキサイドオクチレート等の有機金属化合物等が挙げられる。具体的には、アルカリ土類金属としては、Ca、Sr又はBa等が挙げられる。アルカリ土類金属の酸化物としては、CaO、SrO又はBaO等が挙げられる。その他にZr−Al−BaOやアルミニウム金属錯体等も挙げられる。具体的な商品名を挙げると、例えば、OleDry(双葉電子社製)等が挙げられる。
酸素を吸収する物質としては、活性炭、シリカゲル、活性アルミナ、モレキュラーシーブ、酸化マグネシウム又は酸化鉄等が挙げられる。またFe、Mn、Zn、及びこれら金属の硫酸塩・塩化物塩・硝酸塩等の無機塩も挙げられる。
なお、ゲッター材フィルム4は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、ゲッター材フィルム4は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
ゲッター材フィルム4の厚みは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
ゲッター材フィルム4は、ガスバリアフィルム3及び9で形成される空間内であればその形成位置に制限は無いが、太陽電池素子6の正面(受光面側の面。図2では下側の面)及び背面(受光面とは反対側の面。図2では上側の面)を覆うことが好ましい。薄膜太陽電池14においてはその正面及び背面が他の面よりも大面積に形成されることが多いため、これらの面を介して水分及び酸素が浸入する傾向があるからである。この観点から、ゲッター材フィルム4はガスバリアフィルム3と太陽電池素子6との間に設けることが好ましい。本実施形態ではゲッター材フィルム4が太陽電池素子6の正面を覆い、後述するゲッター材フィルム8が太陽電池素子6の背面を覆い、ゲッター材フィルム4、8がそれぞれ太陽電池素子6とガスバリアフィルム3、9との間に位置するようになっている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
ゲッター材フィルム4は吸水剤又は乾燥剤の種類に応じて任意の方法で形成することができるが、例えば、吸水剤又は乾燥剤を分散したフィルムを粘着剤で添付する方法、吸水剤又は乾燥剤の溶液をスピンコート法、インクジェット法又はディスペンサー法等で塗布する方法等を用いることができる。また真空蒸着法やスパッタリング法等の成膜法を使用してもよい。
吸水剤又は乾燥剤のためのフィルムとしては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂又はポリカーボネート系樹脂等を用いることができる。中でも、ポリエチレン系樹脂、フッ素系樹脂、環状ポリオレフィン系樹脂又はポリカーボネート系樹脂のフィルムが好ましい。なお、前記樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
<3−6.封止材5>
封止材5は、太陽電池素子6を補強するフィルムである。太陽電池素子6は薄いため通常は強度が弱く、ひいては薄膜太陽電池の強度が弱くなる傾向があるが、封止材5により強度を高く維持することが可能である。
また、封止材5は、薄膜太陽電池14の強度保持の観点から強度が高いことが好ましい。
具体的強度については、封止材5以外の耐候性保護フィルム1やバックシート10の強度とも関係することになり一概には規定しにくいが、薄膜太陽電池14全体が良好な曲げ加工性を有し、折り曲げ部分の剥離を生じないような強度を有するのが望ましい。
また、封止材5は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360以上830nm以下)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
さらに、薄膜太陽電池14は光を受けて熱せられることが多いため、封止材5も熱に対する耐性を有することが好ましい。この観点から、封止材5の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池14の使用時に封止材5が融解・劣化する可能性を低減できる。
封止材5の厚みは特に規定されないが、通常100μm以上、好ましくは150μm以上、より好ましくは200μm以上であり、また、通常700μm以下、好ましくは600μm以下、より好ましくは500μm以下である。厚みを厚くすることで薄膜太陽電池14全体の強度が高まる傾向にあり、薄くすることで柔軟性が高まりまた可視光の透過率が向上する傾向にある。
封止材5を構成する材料としては、例えば、エチレン−酢酸ビニル共重合体(EVA)樹脂組成物をフィルムにしたもの(EVAフィルム)等を用いることができる。EVAフィルムには通常は耐候性の向上のために架橋剤を配合して架橋構造を構成させる。この架橋剤としては、一般に、100℃以上でラジカルを発生する有機過酸化物が用いられる。このような有機過酸化物としては、例えば、2,5−ジメチルヘキシル−2,5−ジハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン又はt−ブチルパーオキサイド等を用いることができる。これらの有機過酸化物の配合量は、EVA樹脂100重量部に対して、通常5重量部以下、好ましくは3重量部以下であり、通常1重量部以上である。なお、架橋剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
このEVA樹脂組成物には、接着力向上の目的で、シランカップリング剤を含有させてもよい。この目的に供されるシランカップリング剤としては、例えば、γ−クロロプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニル−トリス−(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン又はβ−(3,4−エトキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。これらのシランカップリング剤の配合量は、EVA樹脂100重量部に対して、通常5重量部以下、好ましくは2重量部以下であり、通常0.1重量部以上である。なお、シランカップリング剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
更に、EVA樹脂のゲル分率を向上させ、耐久性を向上するために、EVA樹脂組成物に架橋助剤を含有させてもよい。この目的に供される架橋助剤としては、例えば、トリアリルイソシアヌレート等の3官能の架橋助剤又はトリアリルイソシアネート等の単官能の架橋助剤等が挙げられる。これらの架橋助剤の配合量は、EVA樹脂100重量部に対して、通常10重量部以下、好ましくは5重量部以下であり、また、通常1重量部以上である。なお、架橋助剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用していてもよい。
更に、EVA樹脂の安定性を向上する目的で、EVA樹脂組成物に、例えばハイドロキノン、ハイドロキノンモノメチルエーテル、p−ベンゾキノン又はメチルハイドロキノンなどを含有させてもよい。これらの配合量は、EVA樹脂100重量部に対して、通常5重量部以下である。
しかし、EVA樹脂の架橋処理には1時間以上2時間以下程度の比較的長時間を要するため、薄膜太陽電池14の生産速度及び生産効率を低下させる原因となる場合がある。また、長期間使用の際には、EVA樹脂組成物の分解ガス(酢酸ガス)又はEVA樹脂自体が有する酢酸ビニル基が、太陽電池素子6に悪影響を与えて発電効率が低下させる場合がある。
そこで、封止材5としては、EVAフィルムの他に、プロピレン・エチレン・α−オレフィン共重合体からなる共重合体のフィルムを用いることもできる。この共重合体としては、例えば、下記成分1及び成分2が配合された熱可塑性樹脂組成物が挙げられる。
・成分1:プロピレン系重合体が、通常0重量部以上、好ましくは10重量部以上であり、また、通常70重量部以下、好ましくは50重量部以下である。
・成分2:軟質プロピレン系共重合体が、30重量部以上、好ましくは50重量部以上であり、また、通常100重量部以下、好ましくは90重量部以下である。
なお、成分1及び成分2の合計量は100重量部である。上記のように、成分1および成分2が好ましい範囲にあると、封止材5のシートへの成形性が良好であるとともに、得られる封止材5の耐熱性、透明性及び柔軟性が良好となり、薄膜太陽電池14に好適である。
上記の成分1及び成分2が配合された熱可塑性樹脂組成物は、メルトフローレート(ASTM D 1238、230度、荷重2.16kg)が、通常0.0001g/10分以上であり、また、通常1000g/10分以下、好ましくは900g/10分以下、より好ましくは800g/10分以下である。
成分1及び成分2が配合された熱可塑性樹脂組成物の融点は、通常100℃以上、好ましくは110℃以上である。また通常140℃以下、好ましくは135℃以下である。
また成分1及び成分2が配合された熱可塑性樹脂組成物の密度は、0.98g/cm3以下が好ましく、0.95g/cm3以下がより好ましく、0.94g/cm3以下がさらに好ましい。
この封止材5においては、上記成分1及び成分2に、プラスチック等に対する接着促進剤としてカップリング剤を配合することが可能である。カップリング剤は、シラン系、チタネート系、クロム系の各カップリング剤が好ましく用いられ、特にシラン系のカップリング剤(シランカップリング剤)が好適に用いられる。
上記シランカップリング剤としては公知のものが使用でき、特に制限はないが、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β−メトキシーエトキシシラン)、γ−グリシドキシプロピルートリメトキシシラン又はγ−アミノプロピルトリエトキシシラン等が挙げられる。なお、カップリング剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、これらは熱可塑性樹脂組成物(成分1及び成分2の合計量)100重量部に対して、上記シランカップリング剤を通常0.1重量部以上含み、また、通常5重量部以下、好ましくは3重量部以下含むことが望ましい。
また、上記カップリング剤は、有機過酸化物を用いて、当該熱可塑性樹脂組成物にグラフト反応させてもよい。この場合、熱可塑性樹脂組成物(成分1及び成分2の合計量)100重量部に対して、上記カップリング剤を0.1重量部以上5重量部以下含むことが望ましい。シラングラフト化された熱可塑性樹脂組成物を用いても、ガラスやプラスチックに対して、シランカップリング剤ブレンドと同等以上の接着性が得られる。
有機過酸化物を用いる場合、有機過酸化物は、熱可塑性樹脂組成物(成分1及び成分2の合計量)100重量部に対して、通常0.001重量部以上、好ましくは0.01重量部以上であり、また、通常5重量部以下、好ましくは3重量部以下である。
また、封止材5としてエチレン・α−オレフィン共重合体からなる共重合体を用いることもできる。この共重合体としては、下記に示す成分A及び成分Bからなる封止材用樹脂組成物と基材とを積層してなる、ホットタック性が5℃以上25℃以下のラミネートフィルムが例示される。
・成分A:エチレン系樹脂。
・成分B:以下の(a)〜(d)の性状を有するエチレンとα−オレフィンとの共重合体。
(a)密度が0.86g/cm3以上0.935g/cm3以下。
(b)メルトフローレート(MFR)が1g以上50g以下/10分。
(c)温度上昇溶離分別(TREF)によって得られる溶出曲線のピークが1つであり、かつ該ピーク温度が100℃以下である。
(d)温度上昇溶離分別(TREF)による積分溶出量が、90℃のとき90%以上である。
成分Aと成分Bとの配合割合(成分A/成分B)は、重量比で、通常50/50以上、好ましくは55/45以上、より好ましくは60/40以上であり、また、通常99/1以下、好ましくは90/10以下、より好ましくは85/15以下である。成分Bの配合量を多くすることで透明性やヒートシール性が高まる傾向にあり、成分Bの配合量を少なくすることでフィルムの作業性が高まる傾向にある。
成分Aと成分Bを配合して生成される封止材用樹脂組成物のメルトフローレート(MFR)は、通常2g/10分以上、好ましくは3g/10分以上であり、通常50g/10分以下、好ましくは40g/10分以下である。なおMFRの測定と評価は、JIS K7210(190℃、2.16kg荷重)に準拠する方法によって実施することができる。
封止材用樹脂組成物の融点は、好ましくは50℃以上、より好ましくは55℃以上であり、また、通常300℃以下、好ましくは250℃以下、さらに好ましくは200℃以下である。融点を高くすることで薄膜太陽電池14の使用時に融解・劣化する可能性を低減できる。
封止材用樹脂組成物の密度は、0.80g/cm3以上が好ましく、0.85g/cm3以上がより好ましく、また、0.98g/cm3以下が好ましく、0.95g/cm3以下がより好ましく、0.94g/cm3以下がさらに好ましい。なお、密度の測定と評価は、JIS K7112に準拠する方法によって実施することができる。
さらに、エチレン・α−オレフィン共重合体を用いた封止材5において、前記プロピレン・エチレン・α−オレフィン共重合体を用いた場合と同様に、カップリング剤を用いることが可能である。
上述した封止材5は、材料由来の分解ガスを発生することがないため、太陽電池素子6への悪影響がなく、良好な耐熱性、機械強度、柔軟性(太陽電池封止性)及び透明性を有する。また、材料の架橋工程を必要としないため、シート成形時及び薄膜太陽電池14の製造時間が大きく短縮できるとともに、使用後の薄膜太陽電池14のリサイクルも容易となる。
なお、封止材5は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、封止材5は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
封止材5の厚みは、通常2μm以上、好ましくは5μm以上、より好ましくは10μm以上であり、また、通常500μm以下、好ましくは300μm以下、より好ましくは100μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まりまた光線透過率が高まる傾向にある。
封止材5を設ける位置に制限は無いが、通常は太陽電池素子6を挟み込むように設ける。太陽電池素子6を確実に保護するためである。本実施形態では、太陽電池素子6の正面及び背面にそれぞれ封止材5及び封止材7を設けるようにしている。
<3−7.太陽電池素子6>
太陽電池素子6は、前述の光電変換素子と同様である。
・太陽電池素子同士の接続
太陽電池素子6は、薄膜太陽電池14の1個あたり1個だけを設けてもよいが、通常は2個以上の太陽電池素子6を設ける。具体的な太陽電池素子6の個数は任意に設定すればよい。太陽電池素子6を複数設ける場合、太陽電池素子6はアレイ状に並べて設けられていることが多い。
太陽電池素子6を複数設ける場合、通常は、太陽電池素子6同士は電気的に接続され、接続された一群の太陽電池素子6から生じた電気を端子(図示せず)から取り出すようになっていて、この際、電圧を高めるため通常は太陽電池素子は直列に接続される。
このように太陽電池素子6同士を接続する場合には、太陽電池素子6間の距離は小さいことが好ましく、ひいては、太陽電池素子6と太陽電池素子6との間の隙間は狭いことが好ましい。太陽電池素子6の受光面積を広くして受光量を増加させ、薄膜太陽電池14の発電量を増加させるためである。
<3−8.封止材7>
封止材7は、上述した封止材5と同様のフィルムであり、配設位置が異なる他は封止材5と同様のものを同様に用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
<3−9.ゲッター材フィルム8>
ゲッター材フィルム8は、上述したゲッター材フィルム4と同様のフィルムであり、配設位置が異なる他はゲッター材フィルム4と同様のものを同様に必要に応じて用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。また使用する水分あるいは酸素吸収剤をゲッター材フィルム4よりも多く含有するフィルムを用いることも可能となる。このような吸収剤としては、水分吸収剤としてCaO、BaO又はZr−Al−BaO等が挙げられ、酸素の吸収剤として活性炭やモレキュラーシーブ等が挙げられる。
<3−10.ガスバリアフィルム9>
ガスバリアフィルム9は、上述したガスバリアフィルム3と同様のフィルムであり、配設位置が異なる他はガスバリアフィルム9と同様のものを同様に必要に応じて用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
<3−11、バックシート10>
バックシート10は、上述した耐候性保護フィルム1と同様のフィルムであり、配設位置が異なる他は耐候性保護フィルム1と同様のものを同様に用いることができる。また、このバックシート10が水及び酸素を透過させ難いものであれば、バックシート10をガスバリア層として機能させることも可能である。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。このため、バックシート10としては、以下に説明するもの(i)〜(iv)を用いることが特に好ましい。
(i)バックシート10としては、強度に優れ、耐候性、耐熱性、耐水性及び/又は耐光性に優れた各種の樹脂のフィルム又はシートを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルーブタジエンースチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート若しくはポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂又はその他等の各種の樹脂のシートを使用することができる。これらの樹脂のシートの中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂又はポリエステル系樹脂のシートを使用することが好ましい。なお、これらは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用していてもよい。
(ii)バックシート10としては、金属薄膜を用いることもできる。例えば、腐蝕防止したアルミニウム金属箔、ステンレス製薄膜等が挙げられる。なお、前記の金属は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
(iii)バックシート10としては、例えばアルミ箔の両面にフッ素系樹脂フィルムを接着した防水性の高いシートを用いてもよい。フッ素系樹脂としては、例えば、一フッ化エチレン(商品名:テドラー、デュポン社製)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとエチレン若しくはプロピレンとのコポリマー(ETFE)、フッ化ビニリデン系樹脂(PVDF)又はフッ化ビニル系樹脂(PVF)等が挙げられる。なお、フッ素系樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
(iv)バックシート10としては、例えば、基材フィルムの片面又は両面に、無機酸化物の蒸着膜を設け、更に、上記の無機酸化物の蒸着膜を設けた基材フィルムの両面に、耐熱性のポリプロピレン系樹脂フィルムを積層したものを用いてもよい。なお、通常は、基材フィルムにポリプロピレン系樹脂フィルムを積層する場合には、ラミネート用接着剤で張り合わせることで積層する。無機酸化物の蒸着膜を設けることで、水分及び/又は酸素等の侵入を防止する防湿性に優れたバックシート10として使用できる。
・基材フィルム
基材フィルムとしては、基本的には、無機酸化物の蒸着膜等との密接着性に優れ、強度に優れ、耐候性、耐熱性、耐水性、耐光性に優れた各種の樹脂のフィルムを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルーブタジエンースチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート若しくはポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂又はその他等の各種の樹脂のフィルムを使用することができる。中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂又はポリエステル系樹脂のフィルムを使用することが好ましい。
上記のような各種の樹脂のフィルムのなかでも、例えば、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン系樹脂(PVDF)又はフッ化ビニル系樹脂(PVF)等のフッ素系樹脂のフィルムを使用することがより好ましい。更に、このフッ素系樹脂のフィルムの中でも、特に、ポリフッ化ビニル系樹脂(PVF)又はテトラフルオロエチレンとエチレン若しくはプロピレンとのコポリマー(ETFE)からなるフッ素系樹脂のフィルムが、強度等の観点から特に好ましい。なお、前記樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、上記のような各種の樹脂のフィルムのなかでも、シクロペンタジエン及びその誘導体又はシクロヘキサジエン及びその誘導体等の環状ポリオレフィン系樹脂のフィルムを使用することもより好ましい。
基材フィルムの膜厚としては、通常12μm以上、好ましくは20μm以上であり、また、通常300μm以下、好ましくは200μm以下である。
・無機酸化物の蒸着膜
無機酸化物の蒸着膜としては、基本的に金属の酸化物を蒸着した薄膜であれば使用可能である。例えば、ケイ素(Si)やアルミニウム(Al)の酸化物の蒸着膜を使用することができる。この際、酸化ケイ素としては例えばSiOx(xは1.0以上2.0以下)を用いることができ、酸化アルミニウムとしては例えばAlOx(xは0.5以上1.5以下)を用いることができる。
なお、使用する金属及び無機酸化物の種類は1種でもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
無機酸化物の蒸着膜の膜厚としては、通常50Å以上、好ましくは100Å以上であり、また、通常4000Å以下、好ましくは1000Å以下である。
蒸着膜の作製方法としては、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を用いることができる。具体例を挙げると、基材フィルムの一方の面に、有機珪素化合物等の蒸着用モノマーガスを原料とし、キャリヤーガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、更に、酸素供給ガスとして、酸素ガス等を使用し、低温プラズマ発生装置等を利用する低温プラズマ化学気相成長法を用いて酸化珪素等の無機酸化物の蒸着膜を形成することができる。
・ポリプロピレン系樹脂フィルム
ポリプロピレン系樹脂としては、例えば、プロピレンの単独重合体又はプロピレンと他のモノマー(例えばα−オレフィン等)との共重合体を使用することができる。また、ポリプロピレン系樹脂としては、アイソタクチック重合体を用いることもできる。
ポリプロピレン系樹脂の融点は通常164℃以上であり、一方、通常170℃以下である。ポリプロピレン系樹脂の比重は通常0.90以上であり、一方、通常0.91以下である。ポリプロピレン系樹脂の分子量は通常10万以上であり、一方、通常20万以下である。
ポリプロピレン系樹脂は、その結晶性により性質が大きく支配されるが、アイソタクチックの高いポリマーは、引っ張り強さ、衝撃強度に優れ、耐熱性、耐屈曲疲労強度を良好であり、かつ、加工性は極めて良好なものである。
・接着剤
基材フィルムにポリプロピレン系樹脂フィルムを積層する場合には、通常はラミネート用接着剤を用いる。これにより、基材フィルムとポリプロピレン系樹脂フィルムとはラミネート用接着剤層を介して積層されることになる。
ラミネート用接着剤層を構成する接着剤としては、例えば、ポリ酢酸ビニル系接着剤、ポリアクリル酸エステル系接着剤、シアノアクリレート系接着剤、エチレン共重合体系接着剤、セルロース系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ポリイミド系接着剤、アミノ樹脂系接着剤、フェノール樹脂系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、反応型(メタ)アクリル系接着剤又はシリコーン系接着剤等が挙げられる。なお、接着剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
上記の接着剤の組成系は、水性型、溶液型、エマルジョン型又は分散型等のいずれの組成物形態でもよい。また、その性状は、フィルム・シート状、粉末状、固形状等のいずれの形態でもよい。さらに、接着機構については、化学反応型、溶剤揮発型、熱溶融型又は熱圧型等のいずれの形態でもよいものである。
上記の接着剤は、例えば、ロールコート法、グラビアロールコート法、キスコート法又はその他等のコート法あるいは印刷法等によって施すことができる。そのコーティング量としては、乾燥状態で通常0.1g/m2以上が望ましく、一方、通常10g/m2以下が望ましい。
<3−12.寸法等>
本実施形態の薄膜太陽電池14は、通常、膜状の薄い部材である。このように膜状の部材として薄膜太陽電池14を形成することにより、薄膜太陽電池14を建材、自動車又はインテリア等に容易に設置できるようになっている。薄膜太陽電池14は、軽く、割れにくく、従って安全性の高い太陽電池が得られ、また曲面にも適用可能であるため更に多くの用途に使用しうる。薄くて軽いため輸送や保管等流通面でも好ましい。更に、膜状であるためロール・トゥ・ロール式の製造が可能であり大幅なコストカットが可能である。
薄膜太陽電池14の具体的な寸法に制限は無いが、その厚みは、通常300μm以上、好ましくは500μm以上、より好ましくは700μm以上であり、また、通常3000μm以下、好ましくは2000μm以下、より好ましくは1500μm以下である。
<3−13.製造方法>
本実施形態の薄膜太陽電池14の製造方法に制限は無いが、例えば、耐候性保護フィルム1とバックシート10との間に、1個又は2個以上の太陽電池素子6を直列又は並列接続したものを、紫外線カットフィルム2、ガスバリアフィルム3、9、ゲッター材フィルム4、8及び封止材5、7と共に一般的な真空ラミネート装置でラミネートすることで製造できる。この際、加熱温度は通常130℃以上、好ましくは140℃以上であり、通常180℃以下、好ましくは170℃以下である。また、加熱時間は通常10分以上、好ましくは20分以上であり、通常100分以下、好ましくは90分以下である。圧力は通常0.001MPa以上、好ましくは0.01MPa以上であり、通常0.2MPa以下、好ましくは0.1MPa以下である。圧力をこの範囲とすることで封止を確実に行い、かつ、端部からの封止材5、7がはみ出しや過加圧による膜厚低減を抑え、寸法安定性を確保しうる。
[4.用途]
本発明の太陽電池、特に、上述した薄膜太陽電池14の用途に制限はなく、任意の用途に用いることができる。本発明の太陽電池、特には薄膜太陽電池はそのまま用いても、基材上に太陽電池を設置して太陽電池モジュールとして用いてもよい。例えば、図3に模式的に示すように、基材12上に薄膜太陽電池14を備えた太陽電池モジュール13を用意し、これを使用場所に設置して用いればよい。具体例を挙げると、基材12として建材用板材を使用した場合、この板材の表面に薄膜太陽電池14を設けて太陽電池モジュール13として太陽電池パネルを作製し、この太陽電池パネルを建物の外壁等に設置して使用すればよい。
基材12は太陽電池素子6を支持する支持部材である。基材12を形成する材料としては、例えば、ガラス、サファイア又はチタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル、ポリエチレン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン等の有機材料;紙又は合成紙等の紙材料;ステンレス、チタン又はアルミニウム等の金属に絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料等が挙げられる。なお、基材の材料は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。また、これら有機材料あるいは紙材料に炭素繊維を含ませ、機械的強度を補強させても良い。
本発明の薄膜太陽電池を適用する分野の例を挙げると、建材用太陽電池、自動車用太陽電池、インテリア用太陽電池、鉄道用太陽電池、船舶用太陽電池、飛行機用太陽電池、宇宙機用太陽電池、家電用太陽電池、携帯電話用太陽電池又は玩具用太陽電池等に用いて好適である。具体例として以下のようなものを挙げることができる。
<4−1.建築用途>
4−1.1ハウス屋根材として太陽電池
基材として屋根用板材等を使用した場合、この板材の表面に薄膜太陽電池を設けて太陽電池ユニットとして太陽電池パネルを作製し、この太陽電池パネルをハウスの屋根の上に設置して使用すればよい。また、基材として瓦を直接用いることもできる。本発明の太陽電池が柔軟性を有するという特性を生かし、瓦の曲線に密着させることができるので好適である。
4−1.2屋上
ビルの屋上に取り付けることもできる。基材上に薄膜太陽電池を設けた太陽電池ユニットを用意し、これをビルの屋上に設置することもできる。この時基材とともに防水シートを併用し、防水作用を有するのが望ましい。さらに、本発明の薄膜太陽電池が柔軟性を有するという特性を生かし、平面ではない屋根、例えば折半屋根に密着させることもできる。この場合も防水シートを併用するのが望ましい。
4−1.3トップライト
エントランスや吹き抜け部分に外装として本発明の薄膜太陽電池を用いることもできる。何らかのデザイン処理を施されたエントランス等は曲線が用いられている場合が多く、そのような場合において本発明の薄膜太陽電池の柔軟性が生かされる。またエントランス等ではシースルーである場合があり、このような場合には、有機太陽電池の緑色系の色合いが、環境対策が重要視される時代において意匠的な美観も得られるので好適である。
4−1.4壁
基材として建材用板材を使用した場合、この板材の表面に薄膜太陽電池を設けて太陽電池ユニットとして太陽電池パネルを作製し、この太陽電池パネルを建物の外壁等に設置して使用すればよい。また、カーテンウオールに設置することもできる。その他、スパンドレルや方立等への取り付けも可能である。
この場合、基材の形状に制限はないが、通常は板材を使用する。また、基材の材料、寸法等は、その使用環境に応じて任意に設定すればよい。このような基材の例を挙げると、アルポリック(登録商標;三菱樹脂製)等が挙げられる。
4−1.5窓
また、シースルーの窓に使用することもできる。有機太陽電池の緑色系の色合いが、環境対策が重要視される時代において意匠的な美観も得られるので好適である。
4−1.6その他
その他建築の外装としてひさし、ルーバー、手摺等にも使用できる。このような場合においても、本発明の薄膜太陽電池の柔軟性が、これら用途にとり好適である。
<4−2.内装>
本発明の薄膜太陽電池はブラインドのスラットに取り付けることもできる。本発明の薄膜太陽電池は軽量であり、柔軟性に富むことから、このような用途が可能となる。また、内装用窓についても有機太陽電池素子がシースルーである特性を生かし使用することができる。
<4−3.野菜工場>
蛍光灯等の照明光を活用する植物工場の設置件数は増えているが、照明に掛かる電気代や光源の交換費用等によって栽培コストを引き下げにくいというのが現状である。そこで本発明の薄膜太陽電池を野菜工場に設置し、LED又は蛍光灯と組み合わせた照明システムを作製することができる。
このとき蛍光灯よりも寿命が長いLEDと本発明の太陽電池を組み合わせた照明システムを用いることで、照明に要するコストを現状に比べて30%程度減らせることができるので好適である。
また、野菜等を一定温度で輸送するリーファー・コンテナ (reefer container)の屋根や側壁に本発明の太陽電池を用いることもできる。
<4−4.道路資材・土木>
本発明の薄膜太陽電池は、駐車場の外壁や高速道路の遮音壁や浄水場の外壁等にも用いることができる。
<4−5.自動車>
本発明の薄膜太陽電池は、自動車のボンネット、ルーフ、トランクリッド、ドア、フロントフェンダー、リアフェンダー、ピラー、バンパー又はバックミラー等の表面に用いることができる。なおルーフとしてはトラック車輌の荷台のルーフも含まれる。得られた電力は走行用モータ、モータ駆動用バッテリー、電装品及び電装品用バッテリーのいずれに供給することができる。太陽電池パネルにおける発電状況と該走行用モータ、該モータ駆動用バッテリー、該電装品及び該電装品用バッテリーにおける電力使用状況とに合わせて選択する制御手段とを備えることで、得られた電力が適正にかつ効率的に使用することができる。
前記の場合、基材12の形状に制限はないが、通常は板材を使用する。また、基材12の材料、寸法等は、その使用環境に応じて任意に設定すればよい。
このような基材12の例を挙げると、アルポリック(登録商標;三菱樹脂製)等が挙げられる。
以下に実施例により本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の例に限定されるものではない。なお、本実施例に記載の項目は以下の方法によって測定した。
[重量平均分子量及び数平均分子量の測定方法]
ポリスチレン換算の重量平均分子量及び数平均分子量は、ゲル浸透クロマトグラフィ(GPC)により求めた。
ゲル浸透クロマトグラフィ(GPC)測定は以下の条件で行った。
カラム:Shim−pack GPC−803(島津製作所社製、内径8.0mm、長さ30cm)、Shim−pack GPC−804(島津製作所社製、内径8.0mm、長さ30cm)(それぞれ1本ずつ直列接続)
ポンプ:LC−10AT(島津製作所社製)
オーブン:CTO−10A(島津製作所社製)
検出器:示差屈折率検出器(島津製作所社製:RID−10A)及びUV−vis検出器(島津製作所社製:SPD−10A)
サンプル:試料をテトラヒドロフラン(THF)に溶解させた液5μL
移動相:THF
流速:1.0mL/min
解析:LC−Solution(島津製作所社製)
[元素分析]
試料を湿式分解後、分解液中のパラジウム(Pd)及びスズ(Sn)をICP質量分析装置にて分析し、試料中の含有量を求めた。
また、試料を試料燃焼装置(三菱化学アナリテック社製、QF−02型)にて燃焼し、燃焼ガスを還元剤入りのアルカリ吸収液に吸収し、吸収液中の臭素イオン(Br-)及びヨウ素イオン(I-)をICP質量分析装置にて分析し、試料中の含有量を求めた。
装置:ICP質量分析装置(Agilent Technologies社製、7500ce型)
解析:検量線法
[吸収スペクトル]
吸収スペクトル測定には、分光光度計(日立製作所製、U−3500)を用いた。コポリマーのクロロホルム溶液(吸光度極大値が0.8以下になるように調整)を、1cm角の石英セルを用いて測定を行った。コポリマーA1、コポリマーA2、コポリマーA3及びコポリマーBのスペクトルは、吸収波長610nmの吸光度を0.25として規格化した。コポリマーA2及びコポリマーCのスペクトルは、得られたスペクトルの吸光度極大値を0.38として規格化した。
[X線回折(XRD)スペクトルの測定]
X線回折(XRD)スペクトルは、X線回折装置(RIGAKU社製、RINT−2000)を用い、対陰極にはCuを使用して測定した。
[電子取り出し層材料の最低空分子軌道(LUMO)測定]
サイクリックボルタモグラム測定により得られた第一還元電位の値を基に、C60PCBM(フロンティアカーボン社製、1−(3−メトキシカルボニル)プロピル−1−フェニル(6,6)−C60)のLUMOエネルギー準位を−3.80eVとした場合の相対値より、LUMOエネルギー準位の算出を行った(非特許文献:J.Am.Chem.Soc.2008,130,15429−15436 参照)。
サイクリックボルタモグラム測定は以下の条件で行った。
温度:室温
作用電極:グラッシーカーボン電極
対極:白金電極
参照電極:Ag/Ag+
電解質:過塩素酸テトラブチルアンモニウム(TBAP)(0.1M)を含むo−ジクロロベンゼンとアセトニトリルの混合溶液(4:1、容積比)
フラーレン化合物濃度:約0.5mM
電位基準:フェロセンの酸化還元電位
[DSC法によるガラス転移温度(Tg)測定]
約4mgの試料をアルミニウム製試料容器に入れ、示差熱走査熱量分析装置(エスアイアイ・ナノテクノロジー株式会社製)を用いて、N2ガス50ml/min、昇温速度10℃/minの条件で測定することにより求めた。
[光電変換素子の評価]
光電変換素子に4mm角のメタルマスクを付け、照射光源としてエアマス(AM)1.5G、放射照度100mW/cm2のソーラシミュレータを用い、ソースメーター(ケイスレー社製,2400型)により、ITO電極とアルミニウム電極との間における電流−電圧特性を測定した。上記測定により、開放電圧Voc[V]、短絡電流密度Jsc[mA/cm2]、形状因子FF、光電変換効率PCE[%]を測定することができる。
ここで、開放電圧Vocとは電流値=0(mA/cm2)の際の電圧値(V)、短絡電流密度Jscとは電圧値=0(V)の際の電流密度(mA/cm2)である。形状因子(FF)とは内部抵抗を表すファクターであり、最大出力点をPmaxとすると次式で表される。
FF = Pmax/(Voc×Jsc)
また、光電変換効率PCEは、入射エネルギーをPinとすると次式で与えられる。
PCE = Pmax/Pin=Voc×Jsc×FF/Pin×100
[ポリマーの電界効果トランジスタ(FET)特性]
膜厚300nmの酸化膜を形成したn型シリコン(Si)基板(Sbドープ、抵抗率0.02Ω・cm以下、住友金属工業社製)上に、フォトリソグラフィーで長さ(L)100μm、幅(W)500μmのギャップを有する金電極をソース電極及びドレイン電極として形成した。また、酸化膜の一部を除去してゲート電極に利用した。各ポリマーのクロロホルム溶液(10mmol/L)を調製し、それを上述の基板上に、0.1mL滴下してから1000rpm30秒間スピンコートすること(ミカサ社製スピンコーターMS−A100)により、厚さ約50nmの良好な半導体膜を作製した。
得られたFET素子は、アジレントテクノロジー社製半導体パラメータアナライザー4155Cを用いて評価した。ソース電極とドレイン電極との間に電圧Vd(−60から0Vの範囲)を印加し、ソース電極とゲート電極との間に電圧Vg(−60から30Vの範囲)を印加した際に、半導体膜(ポリマー膜)を流れる電流Idを測定した。
閾値電圧をVt、絶縁膜の単位面積当たりの静電容量をCi、ソース電極とドレイン電極の間隔をL、幅をW、半導体膜のホール移動度をμとすると、その動作は、次のように表すことができる。
Vd<Vg−Vtのとき
Id=μCi(W/L)[(Vg−Vt)Vd−(Vd2/2)]
Vd>Vg−Vtのとき
Id=(1/2)μCi(W/L)(Vg−Vt)2
ホール移動度μは、電流電圧特性に従って上の2つの式のいずれかから求めることができるが、本実施例においては、Vd>Vg−Vtのときについての式(飽和電流部分)に従って、Id1/2とVdとをプロットした際の傾きから求める方法を採用した。
<実施例1>
[各種コポリマーの合成]
<合成例1>
[イミドチオフェンモノマー1の合成]
500mLナスフラスコにチオフェンジカルボン酸5.3g(30.7mmol)、無水酢酸100mLを加え140℃で6時間加熱した。減圧留去により溶媒を除去し、トルエンで再結晶を行い3.5gの1H,3H−thieno[3,4−c]furan−1,3−dioneを得た。
窒素下、100mLナスフラスコ中で1H,3H−thieno[3,4−c]furan−1,3−dione3.57g(0.023mol)を脱水DMF35mLに溶解した。次いで、氷浴中でnオクチルアミン4.2mL(0.025mol)を加えた後、140℃で2時間加熱した。放冷後水と混合して析出した肌色粉末を濾取し、冷メタノールで洗浄を行い、4−[[1−octylamino]carbonyl]−3−thiophenecarboxylic acid 5.3gを得た。
100mLナスフラスコに、4−[[1−octylamino]carbonyl]−3−thiophenecarboxylic acid 5.27g(18.6mmol)と塩化チオニル18mLを加えバス温度を72℃に設定して3時間加熱した。放冷後、1N水酸化ナトリウム水溶液に滴下し、析出した茶色粉末を濾取した。冷メタノールを用いて洗浄し、乾燥させ5−octyl−4H−thieno[3,4−c]pyrrole−4,6(5H)−dioneを4.55g得た(収率91%)。
(イミドチオフェンモノマー1)
窒素下、200mLナスフラスコ中で5−octyl−4H−thieno[3,4−c]pyrrole−4,6(5H)−dione 2.65g(10mmol)を、トリフルオロ酢酸50mL、濃硫酸15mLに溶解した。氷浴中で、更にNBS5.33g(30mmol)を溶解するまで攪拌後、氷浴を外して室温まで上昇させ20時間攪拌した。氷水と混合してクエンチ後、クロロホルムを用いて抽出、溶媒を減圧留去により除去し、カラムクロマトグラフィー(展開溶媒 ヘキサン:クロロホルム2:1→1:1)にて精製した。ヘキサンを用いて懸濁洗浄後、イミドチオフェンモノマー1(1,3−dibromo−5−octyl−4H−thieno[3,4−c]pyrrole−4,6−(5H)−dione)を2.58g得た(収率61%)。
<合成例2>
[ジチエノシロールモノマー1の合成]
(ジチエノシロールモノマー1)
50mL多口フラスコに4,4’−dioctyl−5,5−dibromo−dithieno[3,2−b:2’,3’−d]silole 0.1gを加え、真空ポンプとドライヤーを用いて十分に窒素置換を行った。脱水THF5mLを加え、ドライアイス−アセトンバスで系を冷やした後、nBuLi in hexane 溶液0.28mLを加え、15分間攪拌した。その後トリメチルスズクロリド105mgを加え室温まで上昇させ2時間攪拌した。水を加えてクエンチし、ヘキサンで抽出後硫酸ナトリウムを用いて乾燥させ、減圧留去により溶媒を除去し、ジチエノシロールモノマー1(4,4’−dioctyl−5,5−bis(trimethyltin)−dithieno[3,2−b:2’,3’−d]silole、緑色オイル)125mgを得た。
<合成例3>
[コポリマーAの合成]
(コポリマーA)
窒素下50mLナスフラスコに、合成例1で得られたイミドチオフェンモノマー1:187mg(1,3−dibromo−5−octyl−4H−thieno[3,4−c]pyrrole−4,6−(5H)−dione、0.443mmol)、合成例2で得られたジチエノシロールモノマー1:340mg(4,4’−dioctyl−5,5−bis(trimethyltin)−dithieno[3,2−b:2’,3’−d]silole、0.443mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0価)15mg(0.013mmol)、酸化銅(II)35mg(0.443mmol)、トルエン6.75mL及びDMF1.62mLを加え、100℃で20時間攪拌した。その後末端処理として、ブロモベンゼン0.1mLを加え3時間加熱攪拌し、さらにトリメチル(フェニル)ティン0.1mLを加え3時間加熱攪拌後、トルエンで5倍に希釈した反応溶液をメタノール400mLに滴下した。析出したコポリマーを濾取した後、シリカゲルを用いて精製し目的のコポリマーAを得た。具体的には、JAIGEL−3H(40φ)、2H(40φ)を取り付けたJAL908ーC60装置(日本分析工業)を用いて展開液:クロロホルム、流速14mL/minの条件下、濾取したコポリマー(50ー100mg)のクロロホルム溶液(10mL)を充填し、分取精製をおこなった。
分取されたコポリマーA(以後、コポリマーA1と記す)の重量平均分子量、数平均分子量及びPDIは、それぞれ、5.5×104、4.1×104及び1.34であった。コポリマーA1の元素分析を行ったところ、コポリマーA1中の末端残基を構成する原子の残存量はBr:90ppm、Pd:25ppm、Sn:67ppmであった。
また、同様の方法に従って反応を行うことにより、重量平均分子量、数平均分子量及びPDIがそれぞれ4.4×104、2.8×104及び1.50であるコポリマーA(以後、コポリマーA2と記す)、並びに、重量平均分子量、数平均分子量及びPDIがそれぞれ1.9×104、1.8×104及び1.08であるコポリマーA(以後、コポリマーA3と記す)を得た。コポリマーA2の元素分析を行ったところ、コポリマーA2中の末端残基を構成する原子の残存量はBr:170ppm、Pd:3.2ppm、Sn:600ppmであった。
また、同様の方法に従って反応を行うことにより、重量平均分子量、数平均分子量及びPDIがそれぞれ8.1×104、3.4×104及び2.37であるコポリマーA(以後、コポリマーA4と記す)を得た。コポリマーA4の元素分析を行ったところ、コポリマーA4中の末端残基を構成する原子の残存量はBr:210ppm、Pd:64ppm、Sn:170ppmであった。上述の方法に従って測定したコポリマーA4のホール移動度を表3に示す。
また、同様の方法に従って反応を行うことにより、重量平均分子量、数平均分子量及びPDIがそれぞれ3.1×105、6.0×104及び5.22であるコポリマーA(以後、コポリマーA5と記す)を得た。コポリマーA5の元素分析を行ったところ、コポリマーA5中の末端残基を構成する原子の残存量はBr:73ppm、Pd:40ppm、Sn:150ppmであった。上述の方法に従って測定したコポリマーA5のホール移動度を表3に示す。
また、同様の方法に従って反応を行うことにより、重量平均分子量、数平均分子量及びPDIがそれぞれ2.4×105、3.1×104及び7.60であるコポリマーA(以後、コポリマーA6と記す)を得た。コポリマーA6の元素分析を行ったところ、コポリマーA6中の末端残基を構成する原子の残存量はBr:200ppm、Pd:68ppm、Sn:1300ppmであった。上述の方法に従って測定したコポリマーA6のホール移動度を表3に示す。
また、同様の方法に従って反応を行うことにより、重量平均分子量、数平均分子量及びPDIがそれぞれ2.6×104、2.2×104及び1.18であるコポリマーA(以後、コポリマーA7と記す)を得た。コポリマーA7の元素分析を行ったところ、コポリマーA7中の末端残基を構成する原子の残存量はBr:160ppm、Pd:23ppm、Sn:210ppmであった。上述の方法に従って測定したコポリマーA7のホール移動度を表3に示す。
<合成例4>
[ジチエノシロールモノマー2の合成]
(ジチエノシロールモノマー2)
合成例2において、4,4’−dioctyl−5,5−dibromo−dithieno[3,2−b:2’,3’−d]siloleの代わりに、4,4’−di−n−octyl−5,5−dibromo−dithieno[3,2−b:2’,3’−d]silole(Lumtec社製)を用いた以外は同様にして、ジチエノシロールモノマー2(4,4’−di−n−octyl−5,5−bis(trimethyltin)−dithieno[3,2−b:2’,3’−d]silole)を合成した。
<合成例5>
[イミドチオフェンモノマー2の合成]
(イミドチオフェンモノマー2)
合成例1において、nオクチルアミンの代わりに、3,5−ビストリフルオロメチルフェニルアミンを用いた以外は同様にして、イミドチオフェンモノマー2(1,3−dibromo−5−(3,5−bis(trifluoromethyl)phenyl)−4H−thieno[3,4−c]pyrrole−4,6−(5H)−dione)を合成した。
<合成例6>
[コポリマーBの合成]
(コポリマーB)
合成例3において、合成例2で得られたジチエノシロールモノマー1(4,4’−dioctyl−5,5−bis(trimethyltin)−dithieno[3,2−b:2’,3’−d]silole)の代わりに、合成例4で得られたジチエノシロールモノマー2(4,4’−di−n−octyl−5,5−bis(trimethyltin)−dithieno[3,2−b:2’,3’−d]silole)を用いた以外は同様にして、コポリマーBを合成した。合成されたコポリマーBの重量平均分子量、数平均分子量及びPDIは、それぞれ2.8×104、3.5×103及び7.87であった。
<合成例7>
[コポリマーCの合成]
(コポリマーC)
合成例6において、イミドチオフェンモノマー1に代えてイミドチオフェンモノマー2を用いた以外は、同様にして、コポリマーCを合成した。合成されたコポリマーCの重量平均分子量、数平均分子量及びPDIは、それぞれ、4.7×104、3.3×104及び1.42であった。コポリマーCの元素分析を行ったところ、コポリマーC中の末端残基を構成する原子の残存量はBr:190ppm、Pd:750ppm、Sn:3600ppmであった。
<吸収スペクトルの測定>
各種コポリマー(コポリマーA1、コポリマーA2、コポリマーA3、コポリマーB及びコポリマーC)のクロロホルム溶液の吸収スペクトルを測定した結果を図4及び図5に示す。図4の結果から、実施例1に係るコポリマーA1〜A3は、吸収スペクトルの650から700nmの範囲における吸光度が比較的高いことが判る。吸収スペクトルの650から700nmの範囲における吸光度が向上することは、より幅広い波長の光を吸収できることを意味するため、コポリマーA1〜A3を活性層に含む光電変換素子において変換効率が向上することが期待される。
また、ジチエノシロール骨格のSiに結合している置換基(R3及びR4)が直鎖アルキル基であるコポリマー(コポリマーB)は、この置換基が直鎖アルキル基であるコポリマー(コポリマーA2)と比較して、吸収スペクトルの最長端が720nm近傍まで長波長化すること及び400から600nmの範囲における吸光度が向上することが判る。コポリマーが長波長の光をより多く吸収できること及び400から600nmの範囲における吸収特性が向上することは、より幅広い波長の光を吸収できることを意味するため、このようなコポリマーを活性層に含む光電変換素子において変換効率が向上することが期待される。
また、図5の結果から、イミドチオフェン骨格の窒素原子に結合している置換基(R1)がアリール基であるコポリマー(コポリマーC)は、該置換基(R1)が直鎖アルキル基であるコポリマー(コポリマーA2)と比較して、吸収スペクトルの吸収極大波長及び最長端がともに長波長化することが判った。コポリマーが長波長の光をより多く吸収できることは、より幅広い波長の光を吸収できることを意味するため、このようなコポリマーを活性層に含む光電変換素子において変換効率が向上することが期待される。
<参考例1>
[コポリマーA1を用いた光電変換素子]
[有機活性層塗布液S0の作製]
p型半導体化合物である、合成例3で得られた重量平均分子量が5.5×104のコポリマーA1と、n型半導体化合物であるPC71BM(フロンティアカーボン社製 NS−E112)とを重量比が1:1.5となるように混合し、混合物が1.0重量%の濃度となるように窒素雰囲気中でクロロベンゼンに溶解させた。ついでこの溶液に、有機活性層塗布液全体に対して3.2重量%の割合となるように1,8−ジヨードオクタンを添加し、ホットスターラーを用いて80℃にて4時間攪拌混合した。攪拌混合後の溶液を0.45μmのポリテトラフルオロエチレン(PTFE)フィルターで濾過することにより、有機活性層塗布液S0を得た。
[光電変換素子の作製]
インジウム・スズ酸化物(ITO)透明導電膜がパターニングされたガラス基板を、界面活性剤による超音波洗浄、超純水による水洗、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させた。
最後に、基板に対して紫外線オゾン洗浄を行った。この基板上に、正孔取り出し層としてポリ(3,4−エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)水性分散液(エイチ・シー・スタルク社製「CLEVIOSTM PVP AI4083」)を4000rpm、30秒の条件にてスピンコートにより塗布し、塗布後の基板を120℃のホットプレート上で10分間、大気中で加熱した。正孔取り出し層の膜厚は約30nmであった。
正孔取り出し層を成膜した基板を、窒素雰囲気のグローブボックス内のホットプレート上で、220℃にて3分間加熱処理した。基板が冷却された後に上述のように作製した有機活性層塗布液S0を230rpmの速度にてスピンコートすることにより、約100nmの厚みの有機活性層を形成した。その後、電子取り出し層として0.6nmの膜厚のフッ化リチウムを、電極として80nmの膜厚のアルミニウムを、抵抗加熱型真空蒸着法により順次成膜し、5mm角の光電変換素子を作製した。
[光電変換素子の評価]
作製した光電変換素子の電流−電圧特性を測定した。開放電圧Voc(V)、短絡電流密度Jsc(mA/cm2)、形状因子FF、光電変換効率PCE(%)の各パラメータの測定結果を表1に示す。
<実施例2>
[コポリマーA2とPOPy2を用いた光電変換素子]
参考例1において、重量平均分子量が5.5×104のコポリマーA1の代わりに、合成例3に記載の重量平均分子量が4.4×104のコポリマーA2を用い、電子取り出し層としてフッ化リチウムの代わりに以下に示す合成例8に従って得られたPOPy2を使用し、電子取り出し層の膜厚を0.6nmから2.5nmに変更した以外は、同様にして、5mm角の光電変換素子を作製した。電流−電圧特性の測定結果を表1に示す。
<合成例8>
[POPy2の合成例]
窒素雰囲気下、1−ブロモピレン(東京化成社製:14g、50mmol)を脱水THF(関東化学社製:200mL)に溶解し、−78℃に冷却した後、n−BuLi(関東化学:33mL、1.6M)をゆっくり滴下し、−78℃を保持したまま、30分間攪拌した。つづいて、ジクロロフェニルホスフィン(東京化成社製:4.3g、9.0mmol)を滴下し、十分攪拌した後、室温まで昇温し、1.5h攪拌した。得られた反応溶液にメタノール(純正化学社製)30mLを加え、得られた粗精製物を、ろ過し、ベンゼンを用いて再結晶することにより、10.7gの目的物を得た。
ここで得られた化合物をTHF(純正化学社製)350mL、CH2Cl2(関東化学社製)300mL、アセトン(関東化学社製)100mLに溶解し、過酸化水素水(和光純薬社製:30重量%溶液10mL)を加え、室温で30分間攪拌した。反応溶液に水30mLを加え600mLまで濃縮後、ろ過することにより、目的物(POPy2)を7.5g得た。
<実施例3>
[コポリマーA2とBINAPOを用いた光電変換素子]
実施例2において、電子取り出し層としてPOPy2の代わりに以下に示す合成例9に従って得られたBINAPOを使用し、電子取り出し層の膜厚を2.5nmから5nmに変更した以外は、同様にして、5mm角の光電変換素子を作製した。電流−電圧特性の測定結果を表1に示す。
<合成例9>
[BINAPOの合成例]
BINAP(和光純薬:1.86g、3mmol)のテトラヒドロフラン(80mL)溶液に30重量%過酸化水素水(和光純薬:3mL)を加え、2.5時間攪拌した。その後水を20mL加え、テトラヒドロフランを減圧留去し、得られた粗精製物をメタノールで洗浄ろ過することにより、目的物BINAPO(1.78g、2.7mmol)を91%の収率で得た。
<実施例4>
[コポリマーA2とF−POPy2を用いた光電変換素子]
実施例3において、電子取り出し層としてBINAPOの代わりに以下に示す合成例10に従って得られたF−POPy2を使用した以外は、同様にして、5mm角の光電変換素子を作製した。電流−電圧特性の測定結果を表1に示す。
<合成例10>
[F−POPy2の合成例]
窒素雰囲気下、1−ブロモピレン(東京化成:5.6g、20mmol)を脱水テトラヒドロフラン(関東化学:100mL)に溶解し、−78℃に冷却した後、n−ブチルリチウム(関東化学:13mL、1.6M)をゆっくり滴下し、−78℃を保持したまま、45分間攪拌した。つづいて、亜リン酸トリフェニル(和光純薬:3.1g、10mmol)を滴下し、十分攪拌した後、室温まで昇温し、さらに1.5h攪拌し、再度−78℃まで冷却した。一方、別の反応容器で4−フルオロブロモベンゼン(東京化成:3.5g、20mmol)を脱水テトラヒドロフラン(50mL)に溶解し、窒素雰囲気下、−78℃の状態でn−ブチルリチウム(関東化学:13mL、1.6M)を加え、30分間攪拌をおこなったのち、最初の容器に滴下し、室温まで昇温し、さらに1時間攪拌した。
得られた反応溶液に水20mLを加え、テトラヒドロフランを減圧留去し、塩化メチレンを用いて抽出をおこなった。有機層に硫酸マグネシウムを加えて乾燥後、ろ過濃縮し、カラムクロマトグラフィー(展開溶媒:ヘキサン)で精製することにより、3.7gの目的物を得た。ここで得られた化合物をアセトン(関東化学:150mL)に溶解し、過酸化水素水(和光純薬:30重量%溶液2mL)を加え、室温で攪拌した。反応溶液に水20mLを加えてから濃縮し、アセトニトリルで洗浄することにより、目的物(F−POPy2)を1.9g得た。
<実施例5>
[コポリマーA2と(CF32−POPy2を用いた光電変換素子]
実施例3において、電子取り出し層としてBINAPOの代わりに以下に示す合成例11に従って得られた(CF32−POPy2を使用した以外は、同様にして、5mm角の光電変換素子を作製した。電流−電圧特性の測定結果を表1に示す。
<合成例11>
[(CF32−POPy2の合成例]
窒素雰囲気下、1−ブロモピレン(東京化成:5.6g、20mmol)を脱水テトラヒドロフラン(関東化学:100mL)に溶解し、−78℃に冷却した後、n−BuLi(関東化学:13mL、1.6M)をゆっくり滴下し、−78℃を保持したまま、30分間攪拌した。つづいて、亜リン酸トリフェニル(和光純薬:3.1g、10mmol)を滴下し、十分攪拌した後、室温まで昇温し、1.5時間攪拌し、再度−78℃まで冷却した。
一方、別の反応容器に3、5−ビストリフルオロメチルブロモベンゼン(東京化成:5.8g、20mmol)を脱水テトラヒドロフラン(50mL)に溶解し、窒素雰囲気下、−78℃の状態で、n−ブチルリチウム(関東化学:13mL、1.6M)を加え、30分間攪拌を行ったのち、最初の容器に滴下し、室温まで昇温し、12時間攪拌した。得られた反応溶液に水20mLを加え、テトラヒドロフランを減圧留去し、ジクロロメタンを用いて抽出を行った。有機層に硫酸マグネシウムを加えて乾燥後、ろ過濃縮し、カラムクロマトグラフィー(展開溶媒:ヘキサン/ジクロロメタンの混合溶媒)を用いて精製することにより、0.9gの目的物前駆体を得た。なお化合物の同定はNMRを用いて行った。
上記で得られた化合物0.9gをジクロロメタン(関東化学:100mL)に溶解し、過酸化水素水(和光純薬:30%溶液2mL)を加え、室温で攪拌した。反応溶液に水20mLを加え、生成物を抽出し、硫酸ナトリウムを用いて乾燥し、減圧留去により溶媒を除去した。ヘキサン、メタノールで懸洗し目的物((CF32−POPy2)を0.6g(収率9%)得た。得られた生成物はNMRにより確認した。
<実施例6>
[コポリマーA4とPOPy2を用いた光電変換素子]
実施例2において、p型半導体化合物としてコポリマーA2の代わりに、コポリマーA4を使用し、有機活性層塗布液S0の溶媒としてクロロベンゼンの代わりにo−キシレンを使用し、活性層の膜厚を100nmから120nmに変更した以外は、同様にして、5mm角の光電変換素子を作製した。電流−電圧特性の測定結果を表1に示す。
<比較例1>
[PBDTTPDを用いた光電変換素子]
[有機活性層塗布液S1の作製]
p型半導体化合物である、以下に示す合成例12で得られたPBDTTPDと、n型半導体化合物であるPC71BM(フロンティアカーボン社製 NS−E112)を重量比が1:1.5となるように混合し、混合物が0.8重量%の濃度となるように窒素雰囲気中でクロロベンゼンに溶解させた。ついでこの溶液に、有機活性層塗布液全体に対して2.0重量%の割合となるように1,8−ジヨードオクタンを添加し、ホットスターラーを用いて80℃の温度にて4時間攪拌混合した。攪拌混合後の溶液を0.45μmのポリテトラフルオロエチレン(PTFE)フィルターで濾過することにより、有機活性層塗布液S1を得た。
[光電変換素子の作製・評価]
有機活性層塗布液S0の代わりに有機活性層塗布液S1を用い、上述の参考例1と同様の方法で光電変換素子を作製し、作製した光電変換素子の電流−電圧特性を測定した。なお、有機活性層のスピンコート条件は300rpmであり、有機活性層の厚みは約100nmであった。電流−電圧特性の測定結果を表1に示す。
<合成例12>
[PBDTTPDの合成]
(PBDTTPD)
Poly(2,6−(4,8−bis(2−ethylhexyloxy)benzo[1,2−b:4,5−b′]dithiophene))−alt−(5−octyl−4H−thieno[3,4−c]pyrrole−4,6(5H)−dione−1,3−dilyl)(PBDTTPD)は、J.Am.Chem.Soc. 2010, 132, 7595−7597の記載を参考にし、合成を行った。
<比較例2>
[PDTSBTを用いた光電変換素子]
[有機活性層塗布液S2の作製]
p型半導体化合物である、以下に示す合成例13で得られたPDTSBTと、n型半導体化合物であるPC71BM(フロンティアカーボン社製 NS−E112)とを重量比が1:1となるように混合し、混合物が1.0重量%の濃度となるように窒素雰囲気中でクロロベンゼンに溶解させた。ついでこの溶液に、有機活性層塗布液全体に対して3.2重量%の割合となるように1,8−ジヨードオクタンを添加し、ホットスターラーを用いて80℃の温度にて4時間攪拌混合した。攪拌混合後の溶液を1.0μmのポリテトラフルオロエチレン(PTFE)フィルターで濾過することにより、有機活性層塗布液S2を得た。
[光電変換素子の作製・評価]
有機活性層塗布液S0の代わりに有機活性層塗布液S2を用い、上述の参考例1と同様の方法で光電変換素子を作製し、作製した光電変換素子の電流−電圧特性を測定した。なお、有機活性層のスピンコート条件は500rpmであり、有機活性層の厚みは約80nmであった。電流−電圧特性の測定結果を表1に示す。
<合成例13>
[PDTSBTの合成]
(PDTSBT)
Poly(2,6−(4,4−bis(2−ethylhexyl)4H−silolo[3,2−b:4,5−b′]dithiophene)−alt−(benzo[c][1,2,5]thiadiazole−4,7−diyl))(PDTSBT)は、国際公開第2010/022058号の記載を参考にし、合成を行った。
<比較例3>
実施例2において、電子取り出し層であるPOPy2を使用せず、電極として80nmの膜厚のアルミニウムの代わりに、10nmの膜厚のCaとその上に80nmの膜厚のアルミニウムを積層したものに変更した以外は、同様にして、5mm角の光電変換素子を作製した。電流−電圧特性の測定結果を表1に示す。
表1に示すように、E=X基を有する化合物、特にリン原子と周期表第16族から選ばれる原子との二重結合を有するホスフィン化合物であるPOPy2を電子取り出し層材料として用い、かつイミドチオフェン骨格及びジチエノシロール骨格を含有するコポリマーを含む有機半導体材料を活性層材料として用いる実施例2、6では、比較例1、2を大幅に上回る光電変換特性が得られた。また、E=X基を有する化合物、特にリン原子と周期表第16族から選ばれる原子との二重結合を有するホスフィン化合物を電子取り出し層材料として用いる実施例2〜6では、フッ化リチウムを電子取り出し層材料として用いる参考例1、及び電子取り出し層材料を用いずCaとアルミニウムを積層した電極を用いる比較例3よりも、高い光電変換効率が得られた。
[電子取り出し層材料のLUMO及びガラス転移温度(Tg)の測定]
各種電子取り出し層材料のLUMO及びガラス転位温度(Tg)を上記記載の方法で測定した。それぞれの結果を表2に示す。
表1と表2の結果から、電子取り出し層の材料のLUMOが特定の範囲にある化合物を使用することで、光電変換効率が向上することが判った。また、電子取り出し層の材料のTgが特定の範囲にある化合物を使用することで、光電変換効率が向上することが判り、光電変換素子の耐久性が向上することが期待される。
[X線回折の測定]
コポリマーA2のX線回折スペクトルを図6に示す。回折ピーク(2θ=4.77°)が検出された。このピーク値より面間隔(d)を算出すると、d=1.85nmとなった。P3HTに代表されるチオフェンオリゴマーは分子同士の配列が促進され密に積み重なった二次元的な積層ラメラ構造を有し、面間隔d=1.6nm付近に相当する回折ピークが観測される。このことから考えて、コポリマーA2もまた、分子同士が配列した積層構造を有する結晶性材料であるものと考えられる。
[電界効果トランジスタ(FET)特性の測定]
表3より、本発明に係るコポリマーはホール移動度が高いことが判る。また、正孔移動度と数平均分子量(Mn)に相関があることが判る。
以上より、本発明に係るコポリマーは、実用的な塗布プロセスで成膜可能であり、かつ長波長に光吸収をもつため、本発明に係るポリマーを含有する活性層と、一般式(E1)で表される化合物を含有する電子取り出し層を備えた光電変換素子は開放電圧及び変換効率が高く及び/又は耐久性にも優れるため、太陽電池などに使用しうることが裏付けられた。
1 耐候性保護フィルム
2 紫外線カットフィルム
3,9 ガスバリアフィルム
4,8 ゲッター材フィルム
5,7 封止材
6 太陽電池素子
10 バックシート
12 基材
13 太陽電池モジュール
14 薄膜太陽電池
101 アノード
102 正孔取り出し層
103 活性層(p型半導体化合物とn型半導体化合物混合層)
104 電子取り出し層
105 カソード
106 基板
107 光電変換素子

Claims (6)

  1. 一対の電極と、該電極間に配置された活性層と、少なくとも一方の前記電極と前記活性層との間に配置された電子取り出し層と、を備える光電変換素子であって、前記活性層に下記一般式(1)で表される繰り返し単位を有するコポリマーを含有し、かつ前記電子取り出し層に下記一般式(E1)で表される化合物を含有することを特徴とする、光電変換素子。
    (式(1)中、R1は置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアリール基を表し、R2〜R5は各々独立して、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアリール基を表す。)
    (式(E1)中、EはPR22、S、S(=O)又はCを表す。pは1以上の整数を表し、R21及びR22は各々独立して任意の置換基を表し、R21及びR22は互いに結合し環を形成していてもよい。pが2以上の場合に、複数のR21及び複数のR22は各々独立して異なっていてもよく、複数のR21及び複数のR22のうちいずれか2つ以上は互いに結合して環を形成していてもよい。R23は置換基を有していてもよいp価の炭化水素基、置換基を有していてもよいp価の複素環基、又は置換基を有していてもよい炭化水素基及び置換基を有していてもよい複素環基の少なくとも一方が連結したp価の基を表す。Xは周期表第16族から選ばれる原子を表す。)
  2. 前記一般式(E1)で表される化合物が、下記一般式(P1)で表される化合物であることを特徴とする、請求項1に記載の光電変換素子。
    (式(P1)中、pは1以上の整数を表し、R21及びR22は各々独立して任意の置換基を表し、R21及びR22は互いに結合し環を形成していてもよい。pが2以上の場合に、複数のR21及び複数のR22は各々独立して異なっていてもよく、複数のR21及び複数のR22のうちいずれか2つ以上は互いに結合して環を形成していてもよい。R23は置換基を有していてもよいp価の炭化水素基、置換基を有していてもよいp価の複素環基、又は置換基を有していてもよい炭化水素基及び置換基を有していてもよい複素環基の少なくとも一方が連結したp価の基を表す。Xは周期表第16族から選ばれる原子を表す。)
  3. 21及びR22が、各々独立して、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、又は置換基を有していてもよい複素環基であることを特徴とする、請求項1又は2に記載の光電変換素子。
  4. 前記活性層がさらに、フラーレン化合物、ボラン誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、ベンゾチアジアゾール誘導体、N−アルキル置換されたナフタレンテトラカルボン酸ジイミド、N−アルキル置換されたペリレンジイミド誘導体及びn型高分子半導体化合物よりなる群から選ばれる少なくとも1種のn型半導体化合物を含有する、請求項1乃至3の何れか1項に記載の光電変換素子。
  5. 太陽電池である、請求項1乃至4の何れか1項に記載の光電変換素子。
  6. 請求項5に記載の光電変換素子を含有することを特徴とする、太陽電池モジュール。
JP2012554870A 2011-01-28 2012-01-27 光電変換素子、太陽電池及び太陽電池モジュール Pending JPWO2012102390A1 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2011016941 2011-01-28
JP2011016941 2011-01-28
JP2011102534 2011-04-28
JP2011102534 2011-04-28
JP2011189783 2011-08-31
JP2011189783 2011-08-31
PCT/JP2012/051870 WO2012102390A1 (ja) 2011-01-28 2012-01-27 光電変換素子、太陽電池及び太陽電池モジュール

Publications (1)

Publication Number Publication Date
JPWO2012102390A1 true JPWO2012102390A1 (ja) 2014-07-03

Family

ID=46580953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012554870A Pending JPWO2012102390A1 (ja) 2011-01-28 2012-01-27 光電変換素子、太陽電池及び太陽電池モジュール

Country Status (5)

Country Link
US (1) US20130333758A1 (ja)
EP (1) EP2669966A4 (ja)
JP (1) JPWO2012102390A1 (ja)
CN (1) CN103380506A (ja)
WO (1) WO2012102390A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176156A1 (ja) * 2012-05-25 2013-11-28 東レ株式会社 電子供与性有機材料、それを用いた光起電力素子用材料および光起電力素子
JP2014189666A (ja) * 2013-03-27 2014-10-06 Mitsubishi Chemicals Corp 半導体層形成用組成物及びそれを用いた太陽電池素子
CN103159941B (zh) * 2013-04-01 2015-05-27 苏州大学 一种全共轭侧链聚合物及其在聚合物太阳能器件中的应用
JP2015067621A (ja) * 2013-09-26 2015-04-13 三菱化学株式会社 共役高分子、光電変換素子、及び太陽電池
CN103694457A (zh) * 2013-11-25 2014-04-02 福建师范大学 含氟的噻吩并吡咯二酮单体及其共聚物制备方法
CN104051671B (zh) * 2014-06-16 2016-03-16 京东方科技集团股份有限公司 一种oled显示装置及其制备方法
WO2016038878A1 (ja) * 2014-09-09 2016-03-17 パナソニックIpマネジメント株式会社 硬化性組成物、プリプレグ、樹脂付き金属箔、金属張積層板、及びプリント配線板
JP6662042B2 (ja) * 2014-10-14 2020-03-11 東レ株式会社 有機半導体組成物、光起電力素子、光電変換デバイスおよび光起電力素子の製造方法
CN104402901B (zh) * 2014-10-30 2016-05-11 中国科学院重庆绿色智能技术研究院 一种dbtpd的合成方法
US10115917B2 (en) * 2015-05-19 2018-10-30 Northwestern University Dopant-free polymeric hole-transporting materials for perovskite solar cell
CN112002810B (zh) * 2015-05-29 2024-03-22 索尼半导体解决方案公司 光电转换元件和固体摄像装置
CN105185911B (zh) * 2015-08-13 2017-11-17 电子科技大学 一种基于溶剂掺杂的聚合物太阳能电池及其制备方法
WO2017159025A1 (ja) * 2016-03-15 2017-09-21 ソニー株式会社 光電変換素子および固体撮像装置
JP6666996B2 (ja) * 2016-04-07 2020-03-18 富士フイルム株式会社 有機薄膜トランジスタ素子、有機半導体膜形成用組成物、有機半導体膜の製造方法及び有機半導体膜
CN117062501A (zh) * 2016-11-30 2023-11-14 索尼公司 光电转换元件和光检测设备
CN107221604A (zh) 2017-06-01 2017-09-29 深圳市华星光电技术有限公司 有机发光二极管及制造方法
JPWO2019059231A1 (ja) * 2017-09-21 2020-11-26 東レ株式会社 光起電力装置
US10991842B2 (en) 2017-10-23 2021-04-27 Sumitomo Chemical Company, Limited Photoelectric conversion element
CN109755395B (zh) * 2017-11-08 2021-07-16 中国科学院化学研究所 一种应用风刀涂布制备有机聚合物薄膜太阳能电池的方法
CN108148182B (zh) * 2017-12-06 2021-04-06 广东省石油与精细化工研究院 一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用
JP6992228B2 (ja) * 2018-03-06 2022-01-13 エルジー・ケム・リミテッド 有機太陽電池の製造方法およびこれを用いて製造された有機太陽電池
JP7039414B2 (ja) * 2018-07-26 2022-03-22 株式会社東芝 放射線検出素子の作製方法および放射線検出素子
CN110444673A (zh) * 2019-08-27 2019-11-12 电子科技大学 一种基于无机化合物添加剂的有机薄膜太阳能电池及其制备方法
CN112038421B (zh) * 2020-08-19 2022-04-05 上海纳米技术及应用国家工程研究中心有限公司 一种光诱导太阳能电池表面自清洁涂层的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073583A (ja) * 2004-08-31 2006-03-16 Toray Ind Inc 光電変換素子用材料およびこれを用いた光電変換素子
JP2007527116A (ja) * 2004-02-20 2007-09-20 メルク パテント ゲーエムベーハー 有機電子デバイス
JP2011016941A (ja) * 2009-07-09 2011-01-27 Sekisui Plastics Co Ltd ポリ乳酸系樹脂発泡体の製造方法及びポリ乳酸系樹脂発泡体
WO2011016430A1 (ja) * 2009-08-04 2011-02-10 三菱化学株式会社 光電変換素子及びこれを用いた太陽電池
JP2011102534A (ja) * 2011-01-04 2011-05-26 Takashi Takeda ルーバー羽根における枠材の枠組み構造
JP2011189783A (ja) * 2010-03-12 2011-09-29 Honda Motor Co Ltd 車両のシート装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662228B2 (en) * 2003-02-14 2010-02-16 Naum Sapozhnikov Concrete with enriched quarry limestone waste as a coarse aggregate
CN101671428B (zh) * 2008-09-09 2011-08-03 中国科学院化学研究所 基于含噻吩的稠环和苯并噻二唑的共轭聚合物及其制备方法和应用
US8816035B2 (en) * 2009-11-30 2014-08-26 Universite Laval Photoactive polymers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527116A (ja) * 2004-02-20 2007-09-20 メルク パテント ゲーエムベーハー 有機電子デバイス
JP2006073583A (ja) * 2004-08-31 2006-03-16 Toray Ind Inc 光電変換素子用材料およびこれを用いた光電変換素子
JP2011016941A (ja) * 2009-07-09 2011-01-27 Sekisui Plastics Co Ltd ポリ乳酸系樹脂発泡体の製造方法及びポリ乳酸系樹脂発泡体
WO2011016430A1 (ja) * 2009-08-04 2011-02-10 三菱化学株式会社 光電変換素子及びこれを用いた太陽電池
JP2011189783A (ja) * 2010-03-12 2011-09-29 Honda Motor Co Ltd 車両のシート装置
JP2011102534A (ja) * 2011-01-04 2011-05-26 Takashi Takeda ルーバー羽根における枠材の枠組み構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TA-YA CHU: "Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dioneand Dithieno[3,2-b:20,30-d]silol", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. Volume 133, Issue 12, JPN6015050376, 4 March 2011 (2011-03-04), pages 4250 - 4253, ISSN: 0003218504 *

Also Published As

Publication number Publication date
CN103380506A (zh) 2013-10-30
US20130333758A1 (en) 2013-12-19
EP2669966A4 (en) 2014-11-12
WO2012102390A1 (ja) 2012-08-02
EP2669966A1 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5920677B2 (ja) 新規コポリマー、有機半導体材料、及びこれを用いた有機電子デバイス、光電変換素子並びに太陽電池モジュール
WO2012102390A1 (ja) 光電変換素子、太陽電池及び太陽電池モジュール
JP5622181B2 (ja) コポリマー、有機半導体材料、並びにこれを用いた有機電子デバイス、光電変換素子及び太陽電池モジュール
WO2011016430A1 (ja) 光電変換素子及びこれを用いた太陽電池
JP5743301B2 (ja) ポリマー、有機半導体材料、並びにこれを用いた有機電子デバイス、光電変換素子及び太陽電池モジュール
JP6015672B2 (ja) 有機光電変換素子
JP2012216832A (ja) 光電変換素子、太陽電池、太陽電池モジュール及びインク
JP5601039B2 (ja) チアジアゾール含有高分子
JP2012199541A (ja) 有機薄膜太陽電池素子、太陽電池及び太陽電池モジュール
JP2013065722A (ja) 光電変換素子及び太陽電池モジュール
JP5633184B2 (ja) 光電変換素子
JP5652712B2 (ja) 光電変換素子及びその製造方法、並びにインク
JP5822117B2 (ja) 光電変換素子、フラーレン化合物の製造方法、及びフラーレン化合物
JP2013128001A (ja) 光電変換素子、太陽電池及び太陽電池モジュール
JP5605299B2 (ja) 新規コポリマー、有機半導体材料、及びこれを用いた有機電子デバイス並びに太陽電池モジュール
JP2013055322A (ja) 光電変換素子、太陽電池及び太陽電池モジュール
JP5747706B2 (ja) 新規コポリマー、有機半導体材料、及びこれを用いた有機電子デバイス、光電変換素子並びに太陽電池モジュール
JP5445200B2 (ja) ビシクロポルフィリン化合物及び溶媒を含有する光電変換素子半導体層形成用組成物、それを用いて得られる光電変換素子。
JP2012207104A (ja) ヨウ素化縮合チオフェン化合物を用いたコポリマーの製造方法、及びヨウ素化ジオキソピロロチオフェン化合物
JP2012248766A (ja) フラーレン化合物、並びにこれを用いた光電変換素子、太陽電池及び太陽電池モジュール
JP2016149505A (ja) 組成物、光電変換素子、太陽電池及び太陽電池モジュール
JP2013110224A (ja) 光電変換素子、太陽電池、及び太陽電池モジュール
JP5742204B2 (ja) 光電変換素子、太陽電池及び太陽電池モジュール
JP2014005460A (ja) コポリマー、有機半導体材料、有機電子デバイス及び太陽電池モジュール
JP5569021B2 (ja) 光電変換素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160419