CN108148182B - 一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用 - Google Patents

一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用 Download PDF

Info

Publication number
CN108148182B
CN108148182B CN201711278036.6A CN201711278036A CN108148182B CN 108148182 B CN108148182 B CN 108148182B CN 201711278036 A CN201711278036 A CN 201711278036A CN 108148182 B CN108148182 B CN 108148182B
Authority
CN
China
Prior art keywords
benzothiadiazole
fused
cyclic imide
conjugated compound
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711278036.6A
Other languages
English (en)
Other versions
CN108148182A (zh
Inventor
兰柳元
麦裕良
文武
高敏
廖兵
李岱远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemical Engineering of Guangdong Academy of Sciences
Original Assignee
Guangdong Research Institute Of Petrochemical And Fine Chemical Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Research Institute Of Petrochemical And Fine Chemical Engineering filed Critical Guangdong Research Institute Of Petrochemical And Fine Chemical Engineering
Priority to CN201711278036.6A priority Critical patent/CN108148182B/zh
Publication of CN108148182A publication Critical patent/CN108148182A/zh
Application granted granted Critical
Publication of CN108148182B publication Critical patent/CN108148182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/64Solubility
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Photovoltaic Devices (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

本发明公开了一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用。这种基于环酰亚胺稠合苯并噻二唑的共轭化合物,其结构式如式(Ι)所示:

Description

一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方 法和应用
技术领域
本发明涉及一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用。
背景技术
太阳能是一种绿色可再生能源,有机太阳能电池具有低成本、轻重量、半透明、可溶液加工成大面积的柔性薄膜器件等优点,因此在学术界和商业界受到广泛的关注。近年来,通过对活性层材料和器件结构及制备条件的不断优化,有机太阳能电池发展迅速,取得了显著的成果,目前基于聚合物给体或小分子给体与富勒烯受体共混制备的太阳能电池的光电转化效率已突破11%,市场化前景十分光明。
为了获得高效的有机太阳能电池器件,材料是最重要的因素之一。相比于给体材料的迅速发展,受体材料则发展缓慢。在受体材料方面,以PC61BM和PC71BM为代表的富勒烯衍生物占据着主导地位。这是因为PCBM具有大的电子亲和力、高电子迁移率、并且能够与共轭聚合物给体材料混合形成纳米尺寸的相分离结构等。然而以PCBM为代表的富勒烯衍生物自身也存在着难于克服的缺点,比如可见光区吸收弱,能级难于调控,导致开路电压较低,限制了光电转换效率的进一步提高。相比之下,非富勒烯类有机小分子受体材料的结构易于修饰,能级容易微调,使其与给体材料的能级能够很好地相互匹配,从而获得高的开路电压。
近几年,人们为了替换有机太阳能电池中的富勒烯受体,合成了一系列的新型小分子非富勒烯受体材料,当其与不同的给体材料共混制备太阳能电池时,表现出了良好的光电性能。但是,目前有机小分子非富勒烯受体材料开发不足,局限于苝二酰亚胺、萘二酰亚胺以及平面型多元稠环类材料。因此,为了实现有机太阳能电池高效的光电转换,加速其商业化进程,从活性层材料的角度上考虑,合成更多的新型受体材料就显得十分重要。
发明内容
本发明的目的在于提供一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用。
本发明所采取的技术方案是:
一种基于环酰亚胺稠合苯并噻二唑的共轭化合物,其结构式如式(Ι)所示:
Figure BDA0001496977370000021
式(Ι)中,R1、R2和R3独立地为氢原子或C1~C24的烷基链,所述C1~C24烷基链中的一个或多个碳原子可被氧原子取代;
A为拉电子基团;
Ar为芳香基团;
X为O、S或Se;
n为0~6的自然数,m为0~2的自然数。
优选的,拉电子基团A为以下结构中的任意一种:
Figure BDA0001496977370000022
其中,R4为氢原子或C1~C24的烷基链,所述C1~C24烷基链中的一个或多个碳原子可被氧原子取代。
优选的,Ar为以下结构中的任意一种:
Figure BDA0001496977370000031
其中,R5为氢原子或C1~C24的烷基链,所述C1~C24烷基链中的一个或多个碳原子可被氧原子取代。
这种基于环酰亚胺稠合苯并噻二唑的共轭化合物的制备方法,是在惰性气体氛围中,将以环酰亚胺稠合苯并噻二唑为核的双溴代化合物与拉电子基团A的单硼酸酯化合物混合于碱性溶剂中,在催化剂的作用下进行反应,所得的产物经萃取,提纯,得到式(Ι)所示结构的化合物。
制备方法中,以环酰亚胺稠合苯并噻二唑为核的双溴代化合物与拉电子基团A的单硼酸酯化合物的摩尔比为1:(2~8);催化剂与以环酰亚胺稠合苯并噻二唑为核的双溴代化合物的摩尔比为1:(10~20)。
制备方法中,催化剂为四(三苯基膦)钯催化剂。
制备方法中,碱性溶剂为四氢呋喃和碳酸钾水溶液的混合物,碳酸钾水溶液的浓度为1mol/L~2mol/L,碳酸钾与以环酰亚胺稠合苯并噻二唑为核的双溴代化合物的摩尔比为1:(0.01~0.02),四氢呋喃的用量与以环酰亚胺稠合苯并噻二唑为核的双溴代化合物的用量比为(200~300)mL:1g。
制备方法中,反应的温度为60℃~80℃,反应的时间为24h~48h。
这种基于环酰亚胺稠合苯并噻二唑的共轭化合物在制备有机太阳能电池中电子受体或电子给体材料的应用。
本发明的有益效果是:
本发明公开的基于环酰亚胺稠合苯并噻二唑为核的共轭化合物结构新颖,制备方法简单,其热稳定性很好,太阳光子吸收能力强,电子能级合适,适合用于有机太阳能电池中的电子受体或电子给体材料。
具体如下:
1、合成的基于环酰亚胺稠合苯并噻二唑为核的共轭化合物结构新颖,具有独创性;
2、合成的基于环酰亚胺稠合苯并噻二唑为核的共轭化合物溶于氯仿、四氢呋喃和氯苯等有机溶剂,可采用溶液法加工;
3、合成的基于环酰亚胺稠合苯并噻二唑为核的共轭化合物的热稳定性很好,太阳光子吸收能力强,电子能级合适,适合用于有机太阳能电池中的电子受体或电子给体材料,尤其是在有机太阳能电池中能够获得较高的开路电压。
附图说明
图1是实施例所制备的共轭化合物BIBTNI在四氢呋喃溶液和薄膜中的吸收光谱图;
图2是实施例所制备的共轭化合物BIBTNI的热失重曲线图;
图3是实施例所制备的共轭化合物BIBTNI的有机太阳能电池的J-V曲线图。
具体实施方式
一种基于环酰亚胺稠合苯并噻二唑的共轭化合物,是基于环酰亚胺稠合苯并噻二唑为核,齐聚五元芳香杂环和给电子芳香基团为桥接单元,末端为拉电子单元的共轭小分子,其结构式如式(Ι)所示:
Figure BDA0001496977370000041
式(Ι)中,R1、R2和R3独立地为氢原子或C1~C24的烷基链,所述C1~C24烷基链中的一个或多个碳原子可被氧原子取代;
A为拉电子基团;
Ar为芳香基团;
X为O、S或Se;
n为0~6的自然数,m为0~2的自然数。
优选的,拉电子基团A为以下结构中的任意一种:
Figure BDA0001496977370000042
Figure BDA0001496977370000051
其中,R4为氢原子或C1~C24的烷基链,所述C1~C24烷基链中的一个或多个碳原子可被氧原子取代。
优选的,Ar为以下结构中的任意一种:
Figure BDA0001496977370000052
其中,R5为氢原子或C1~C24的烷基链,所述C1~C24烷基链中的一个或多个碳原子可被氧原子取代。
C1~C24的烷基链可以为直链、支链或者环状烷基链。
进一步举例,基于环酰亚胺稠合苯并噻二唑的共轭化合物其结构式为:
Figure BDA0001496977370000053
这种基于环酰亚胺稠合苯并噻二唑的共轭化合物的制备方法,是在惰性气体氛围中,将以环酰亚胺稠合苯并噻二唑为核的双溴代化合物与拉电子基团A的单硼酸酯化合物混合于碱性溶剂中,在催化剂的作用下进行反应,所得的产物经萃取,提纯,得到式(Ι)所示结构的化合物。
优选的,制备方法中,以环酰亚胺稠合苯并噻二唑为核的双溴代化合物与拉电子基团A的单硼酸酯化合物的摩尔比为1:(2~8)。
优选的,制备方法中,催化剂与以环酰亚胺稠合苯并噻二唑为核的双溴代化合物的摩尔比为1:(10~20)。
优选的,制备方法中,催化剂为四(三苯基膦)钯催化剂。
优选的,制备方法中,碱性溶剂为四氢呋喃和碳酸钾水溶液的混合物,碳酸钾水溶液的浓度为1mol/L~2mol/L,碳酸钾与以环酰亚胺稠合苯并噻二唑为核的双溴代化合物的摩尔比为1:(0.01~0.02),四氢呋喃的用量与以环酰亚胺稠合苯并噻二唑为核的双溴代化合物的用量比为(200~300)mL:1g。
优选的,制备方法中,反应的温度为60℃~80℃,反应的时间为24h~48h。
优选的,制备方法中,萃取,提纯具体为采用二氯甲烷进行萃取,有机相浓缩后通过色谱柱提纯。
优选的,制备方法中,惰性气体为氩气或氮气。
制备方法中,以环酰亚胺稠合苯并噻二唑为核的双溴代化合物带有R1,R2,R3和R5取代基。
这种基于环酰亚胺稠合苯并噻二唑的共轭化合物在制备有机太阳能电池材料中的应用。
优选的,这种基于环酰亚胺稠合苯并噻二唑的共轭化合物作为活性层电子受体或电子给体材料在有机太阳能电池中的应用。
以下通过具体的实施例对本发明的内容作进一步详细的说明。
实施例:
一种基于环酰亚胺稠合苯并噻二唑的共轭化合物BIBTNI的合成线路示意如下:
Figure BDA0001496977370000061
在150mL两口圆底烧瓶中分别加入化合物1(0.4g,0.6mmol),化合物2(0.68g,1.56mmol),再加入100mL四氢呋喃作溶剂,开启搅拌,加入K2CO3(5.6g,40.5mmol)的水溶液(1.5M),然后通氩气排气泡30分钟后,加入Pd(PPh3)4(36mg),开启加热,回流反应过夜。反应完后,冷却至常温,用二氯甲烷萃取,浓缩有机相,用硅胶柱色谱分离提纯,得到红色固体产物BIBTNI(0.5g,产率70%)。
1HNMR(300MHz,CDCl3):δ=8.80(d,2H),δ=8.67(t,4H),δ=8.15(d,2H),δ=8.00(d,2H),δ=7.83(t,2H),δ=7.53(d,2H),δ=4.16(d,4H),δ=3.71(d,2H),δ=1.97(m,3H),δ=1.25-1.40(m,24H),δ=0.89-0.97(m,18H)。
这种基于环酰亚胺稠合苯并噻二唑为核的共轭化合物BIBTNI的紫外-可见吸收光谱如附图1所示;热失重曲线如附图2所示(5%失重量的热分解温度为430℃);所制备有机太阳能电池的J-V曲线如图3所示。
有机太阳能电池器件的制备与性能测试
有机太阳能电池采用倒装器件结构,器件结构为ITO/ZnO/活性层/MoO3/Al,导电玻璃ITO作为电子收集电极,ITO玻璃依次用丙酮、洗涤剂、去离子水和异丙醇超声洗涤,然后放入烘箱80℃过夜烘干。在空气中,将电子抽取层材料ZnO旋涂至干净的ITO衬底上,旋涂转速为3000转/秒,紧接着对ITO/ZnO复合衬底进行200℃热退火60min,ZnO薄膜的厚度约为40nm。加热完毕后将ITO/ZnO复合衬底转移至充满氮气保护的手套箱中沉积活性层材料。活性层是以实施例中的共轭化合物BIBTNI作为电子受体材料,共轭聚合物材料P3HT作为电子给体材料,两者按照质量比1.2:1共混溶解在二氯苯溶液中,总质量比为30毫克/毫升,将上述共混溶液通过旋涂方法沉积在ITO/ZnO复合衬底上,紧接着在130℃下热退火10min,活性层薄膜厚度为80-90nm,将ITO/ZnO/活性层基片转移到真空蒸镀腔中,在2×10-4Pa的真空条件下,通过热蒸发的方式沉积10nm的空穴抽取层MoO3和100nm的空穴收集电极金属铝。光伏器件活性层的有效面积为0.16cm2
器件的能量转换效率(PCE)是在AM1.5G太阳光模拟灯(Newport model 94021A)下测得的。太阳模拟灯的光强通过标准硅太阳电池标定为100mW cm-2。电池器件的电流密度-电压(J-V)曲线是通过Keithley 2400电流-电压源表记录测得的。基于P3HT:BIBTNI的有机太阳能电池器件效率可达1.92%,开路电压高达0.78V,表现出其作为非富勒烯受体材料的良好应用前景,相应的J-V曲线见图3。
本发明用核磁共振表征了基于环酰亚胺稠合苯并噻二唑为核的共轭化合物的化学结构,通过热重分析测试了基于环酰亚胺稠合苯并噻二唑为核的共轭化合物的热稳定性,用紫外可见吸收光谱仪测试了基于环酰亚胺稠合苯并噻二唑为核的共轭化合物的光物理性质,将所合成的共轭化合物制备成光电器件表征了其光电性能。
由于环酰亚胺稠合苯并噻二唑的拉电子能力和平面结构,桥接单元的给电子能力,末端拉电子单元的强拉电子能力,本发明的基于环酰亚胺稠合苯并噻二唑为核的共轭化合物具有较强的光子吸收能力、较高的电荷传输性能以及合适的电子能级,适合于作为电子受体或电子给体材料应用于有机太阳能电池中,是一类具有应用前景的材料。
基于环酰亚胺稠合苯并噻二唑为核的共轭化合物材料作为一类有前途的光电材料目前为止在该领域未曾有人报道。本发明首次合成出了基于环酰亚胺稠合苯并噻二唑为核的共轭化合物并成功应用在光电领域。
本发明的实施方式不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的包含范围之内。

Claims (7)

1.一种基于环酰亚胺稠合苯并噻二唑的共轭化合物,其特征在于:其结构式如式(Ι)所示:
Figure FDA0002830761810000011
2.权利要求1所述的一种基于环酰亚胺稠合苯并噻二唑的共轭化合物的制备方法,其特征在于:在惰性气体氛围中,将
Figure FDA0002830761810000012
Figure FDA0002830761810000013
混合于碱性溶剂中,在催化剂的作用下进行反应,所得的产物经萃取,提纯,得到式(Ι)所示结构的化合物。
3.根据权利要求2所述的一种基于环酰亚胺稠合苯并噻二唑的共轭化合物的制备方法,其特征在于:
Figure FDA0002830761810000014
Figure FDA0002830761810000015
的摩尔比为1:(2~8);催化剂与
Figure FDA0002830761810000016
的摩尔比为1:(10~20)。
4.根据权利要求3所述的一种基于环酰亚胺稠合苯并噻二唑的共轭化合物的制备方法,其特征在于:催化剂为四(三苯基膦)钯催化剂。
5.根据权利要求2所述的一种基于环酰亚胺稠合苯并噻二唑的共轭化合物的制备方法,其特征在于:碱性溶剂为四氢呋喃和碳酸钾水溶液的混合物,碳酸钾水溶液的浓度为1mol/L~2mol/L,碳酸钾与
Figure FDA0002830761810000021
的摩尔比为1:(0.01~0.02),四氢呋喃的用量与
Figure FDA0002830761810000022
的用量比为(200~300)mL:1g。
6.根据权利要求2所述的一种基于环酰亚胺稠合苯并噻二唑的共轭化合物的制备方法,其特征在于:反应的温度为60℃~80℃,反应的时间为24h~48h。
7.权利要求1所述的一种基于环酰亚胺稠合苯并噻二唑的共轭化合物在制备有机太阳能电池中电子受体或电子给体材料的应用。
CN201711278036.6A 2017-12-06 2017-12-06 一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用 Active CN108148182B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711278036.6A CN108148182B (zh) 2017-12-06 2017-12-06 一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711278036.6A CN108148182B (zh) 2017-12-06 2017-12-06 一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108148182A CN108148182A (zh) 2018-06-12
CN108148182B true CN108148182B (zh) 2021-04-06

Family

ID=62466500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711278036.6A Active CN108148182B (zh) 2017-12-06 2017-12-06 一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108148182B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891477B2 (en) 2019-12-05 2024-02-06 Raynergy Tek Incorporation Conjugated polymer material and organic photovoltaic device using the same
CN115181251A (zh) * 2022-06-30 2022-10-14 徐州工程学院 一种双受体结构的电子型聚合物及其制备方法和器件应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070149414A1 (en) * 2005-12-28 2007-06-28 Chevron Oronite Company Llc Dispersant viscosity index improvers having high ethylene content and lubricating oil compositions containing the same
JPWO2012102390A1 (ja) * 2011-01-28 2014-07-03 三菱化学株式会社 光電変換素子、太陽電池及び太陽電池モジュール
WO2013065836A1 (ja) * 2011-11-02 2013-05-10 三菱化学株式会社 縮合多環芳香族化合物の製造方法及び共役高分子
WO2014202184A1 (en) * 2013-06-21 2014-12-24 Merck Patent Gmbh Conjugated polymers

Also Published As

Publication number Publication date
CN108148182A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
Xu et al. 15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor
Li et al. Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%
Yi et al. Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells
CN108912140B (zh) 一种不对称a-d-a型共轭小分子及其中间体和应用
Li et al. An expanded isoindigo unit as a new building block for a conjugated polymer leading to high-performance solar cells
CN105017264B (zh) 一种有机小分子光电功能材料及其制备方法
Wan et al. Improved efficiency of solution processed small molecules organic solar cells using thermal annealing
Nho et al. Carbazole and rhodanine based donor molecule with improved processability for high performance organic photovoltaics
Ma et al. Small molecules based on tetrazine unit for efficient performance solution-processed organic solar cells
CN108148182B (zh) 一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用
CN110143976B (zh) 基于支化卟啉-苝二酰亚胺小分子受体的合成方法及应用
Huang et al. Enhanced open circuit voltage of small molecule acceptors containing angular-shaped indacenodithiophene units for P3HT-based organic solar cells
Feng et al. Triphenylamine modified bis-diketopyrrolopyrrole molecular donor materials with extended conjugation for bulk heterojunction solar cells
CN105237749A (zh) 一种共轭聚合物半导体材料、制备方法及应用
CN110128399B (zh) 基于二苯并五元芳杂环有机分子材料及其合成方法和作为空穴传输层的应用
GB2625168A (en) Imide molybdenum oxide cluster-based organic-inorganic hybrid material and preparation method and use thereof
CN114349771B (zh) 一种六苯并蔻基非富勒烯受体材料及其制备和应用
KR101828012B1 (ko) 유기 태양전지용 공액 고분자 및 이의 제조방법
CN114539290B (zh) 共轭有机分子及其制备方法和应用
Wu et al. Incorporation of diketopyrrolopyrrole dye to improve photovoltaic performance of P3HT: PC71BM based bulk heterojunction polymer solar cells
CN113173936B (zh) 一种基于稠环吸电子母核的非掺杂空穴传输材料及其合成方法和应用
CN110982047B (zh) 一类引达省并二呋喃基有机太阳能电池给体材料、其制备方法及应用
CN108084147A (zh) 一种基于烷氧基苯的非稠环单元的a-d-a共轭分子及其制备方法和应用
Su et al. Benzothiadiazole-oligothiophene flanked dicyanomethylenated quinacridone for non-fullerene acceptors in polymer solar cells
Zhang et al. Impact of the alkyl side chain position on the photovoltaic properties of solution-processable organic molecule donor materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 510665 Guangzhou, Guangdong, Tianhe District Province Road West, No. 318

Patentee after: Institute of chemical engineering, Guangdong Academy of Sciences

Address before: 510665 Guangzhou, Guangdong, Tianhe District Province Road West, No. 318

Patentee before: GUANGDONG RESEARCH INSTITITUTE OF PETROCHEMICAL AND FINE CHEMICAL ENGINEERING