JPWO2011096181A1 - 観察装置及び観察方法 - Google Patents

観察装置及び観察方法 Download PDF

Info

Publication number
JPWO2011096181A1
JPWO2011096181A1 JP2011552685A JP2011552685A JPWO2011096181A1 JP WO2011096181 A1 JPWO2011096181 A1 JP WO2011096181A1 JP 2011552685 A JP2011552685 A JP 2011552685A JP 2011552685 A JP2011552685 A JP 2011552685A JP WO2011096181 A1 JPWO2011096181 A1 JP WO2011096181A1
Authority
JP
Japan
Prior art keywords
observation
substance
roi
image
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011552685A
Other languages
English (en)
Other versions
JP5397484B2 (ja
Inventor
宏昭 紀伊
宏昭 紀伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011552685A priority Critical patent/JP5397484B2/ja
Publication of JPWO2011096181A1 publication Critical patent/JPWO2011096181A1/ja
Application granted granted Critical
Publication of JP5397484B2 publication Critical patent/JP5397484B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • F05D2230/41Hardening; Annealing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • F05D2300/2263Carbides of tungsten, e.g. WC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/506Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/70Treatment or modification of materials
    • F05D2300/701Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Multimedia (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electromagnetism (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

観察領域内で不規則的に出現する特定の物質を効率良く観察する。本発明を例示する観察装置は、所定の観察領域(15)のタイムラプス撮影を行う第1観察手段(53a、54、44、57)と、前記第1観察手段が取得する画像に基づき、前記観察領域内で第1物質が発現したか否かを判別する第1判別手段と、前記観察領域内に前記第1物質が発現したタイミングで、その第1物質の発現した箇所に関するタイムラプス撮影を開始する第2観察手段(53a、53b、54、44、57)とを備え、前記第2観察手段によるタイムラプス撮影の撮影頻度は、前記第1観察手段によるタイムラプス撮影の撮影頻度よりも高い。

Description

生体試料などの観察対象をタイムラプス撮影する観察装置及び観察方法に関する。
従来、細胞を培養容器中で培養しながらタイムラプス撮影する生体試料観察装置が知られている(特許文献1)。
その一方で近年、再生医療分野や創薬分野等の様々な分野では、体細胞に分化した培養細胞からiPS細胞(Induced Pluripotent Stem cell)を作製・分化誘導する技術が注目されており、各種の研究が行われている。
培養細胞からiPS細胞を作製する代表的な方法としては、山中因子(Sox2、Klf4、Oct3/4、c−Myc)と呼ばれる外来性遺伝子をレトロウイルスやプラスミド等のベクターで培養細胞へ導入し、数週間培養するという方法が知られている。外来性遺伝子の導入された細胞は、リプログラミング(初期化)され、様々な点においてES細胞と同等の性質(コロニー状の形態で増殖し、多分化能を持つような性質)を有するようになる。このようにして初期化された細胞は、Nanog遺伝子のような、iPS細胞特有の内在性遺伝子が発現する。また、導入された外来性遺伝子は、細胞内のサイレンシングという機構により、細胞の初期化と同時にその発現が停止する。
この方法では、iPS細胞の評価、機能解明という観点から、外来性遺伝子が発現してからサイレンシングにより発現が停止する過程(1)と、iPS細胞特有の内在性遺伝子が初期化により発現する過程(2)とをモニタリングすることが重要となる。
これらの過程(1)、(2)は可視化することが可能であり、例えば、過程(1)を可視化する場合は、上述した外来性遺伝子(Sox2、Klf4、Oct3/4、c−Myc)の発現とともに発現し、かつその外来性遺伝子のサイレンシングと共にサイレンシングする蛍光タンパク質遺伝子(DsRed遺伝子)を、その外来性遺伝子と共に培養細胞へ導入しておけばよい。また、過程(2)を可視化する場合は、実験動物における内在性遺伝子(Nanog遺伝子)を、蛍光タンパク質を伴う遺伝子(Nanog−GFP遺伝子)に予め組み替えておけばよい。
特開2004−309719号公報
しかしながら、現在のところiPS細胞の作製効率は低いので、培養容器中のごく一部の箇所でしかiPS細胞は発現しない。また、iPS細胞の発現する箇所を予測することも現状では不可能である。このため、iPS細胞が初期化される過程(1)(2)を上述した生体試料観察装置で効率的に観察することは困難であった。
本発明の目的は、観察領域内で不規則的に出現する特定の物質を効率良く観察することのできる観察装置及び観察方法を提供することにある。
本発明を例示する観察装置は、所定の観察領域のタイムラプス撮影を行う第1観察手段と、前記第1観察手段が取得する画像に基づき、前記観察領域内で第1物質が発現したか否かを判別する第1判別手段と、前記観察領域内に前記第1物質が発現したタイミングで、その第1物質の発現した箇所に関するタイムラプス撮影を開始する第2観察手段とを備え、前記第2観察手段によるタイムラプス撮影の撮影頻度は、前記第1観察手段によるタイムラプス撮影の撮影頻度よりも高い。
本発明を例示する観察方法は、所定の観察領域のタイムラプス撮影を行う第1観察ステップと、前記第1観察ステップで取得した画像に基づき、前記観察領域内で第1物質が発現したか否かを判別する第1判別ステップと、前記観察領域内に前記第1物質が発現したタイミングで、その第1物質の発現した箇所に関するタイムラプス撮影を開始する第2観察ステップとを含み、前記第2観察ステップによるタイムラプス撮影の撮影頻度は、前記第1観察ステップによるタイムラプス撮影の撮影頻度よりも高い。
本発明によれば、観察領域内で不規則的に出現する特定の物質を効率良く観察することのできる観察装置及び観察方法が実現する。
生体試料観察装置の全体構成を示す正面図。 観察ユニット27の正面図。 観察ユニット27の側面図。 培養容器15(ウェルプレート)の上面図。 制御ユニット31による観察処理のフローチャート。 観察処理における各画像の取得タイミングを示すタイミングチャート。 互いに異なる複数の細胞コロニーの蛍光強度の時間変化と、詳細観察期間T1、猶予期間T2との関係を説明する図。 非重要ROIの設定タイミングと、非重要ROIの個数との関係を示すグラフ。 重要ROIの移行タイミングと、重要ROIの個数との関係を示すグラフ。
[実施形態]
以下、本発明の実施形態として生体試料観察装置を説明する。
図1は、生体試料観察装置の全体構成を示す正面図である。なお、図1において、実線は外観に表れる部位の構造を示し、破線は外観に表れない内部の部位の構造を示している。
図1に示すように、生体試料観察装置1は、細胞を収めた培養容器を収容する第1筐体11と、制御装置を構成する第2筐体12とを有する。第1筐体11は、第2筐体12の上に載せられた状態で使用される。
第1筐体11の内部には、断熱材で覆われた恒温室21が形成されている。この恒温室21は、第1筐体11の正面に形成された正面開口23(正面扉22)と、第1筐体11の正面からみて左側面に形成された搬出入口24とによって外部と連絡している。
恒温室21には、例えば、ペルチェ素子が用いられる温度調節装置等からなる温度制御機構、霧を噴出する噴霧装置等からなる湿度制御機構、外部の二酸化炭素ボンベに接続されるガス導入部等からなるガス制御機構、内部空間における培養容器の環境を検出する環境センサ等(いずれも不図示)が設けられている。これにより、恒温室21の中は、培養容器の環境を維持するために密封され、例えば空気を循環させることにより一定の温度に保たれることで、温度37℃、湿度90%、二酸化炭素濃度5%等に維持される。
また、第1筐体11の恒温室21内には、ストッカ25、容器搬送機構26、及び観察ユニット27が収納されている。
ストッカ25は、複数の棚で上下に区画されており、培養容器15(図2、図3)を水平に収納できる。
容器搬送機構26には、ホルダを支持する搬送アーム部や、培養容器15を搬送するための各種の機構(不図示)が設けられている。容器搬送機構26は、搬送アーム部に支持されたホルダを、垂直方向(Z方向)又は水平方向(X及びY方向)に移動させたり、Z軸を中心として180度回転させたりすることができる。
図2、図3は、観察ユニット27の構成を示す図である。図2には観察ユニット27の正面図が示されており、図3には観察ユニット27の側面図が示されている。
図2、図3に示すように、観察ユニット27は、透過光照明部41、蛍光落射照明部42、試料台43、及び観察部44から構成される。
透過光照明部41は、試料台43の側部から上方向に延びた後に、試料台43に載置される培養容器15の上部に延びるようなアーム状に形成される。透過光照明部41の内部には、透過光用LED(Light Emitting Diode)51と透過光用光学系52とが収納される。透過光用LED51は、所定の波長域の光を発光する。透過光用LED51からの光は、透過光用光学系52を介して、試料台43に載置される培養容器15に上側から照射される。なお、透過光照明部41による照明(透過照明)は、透明な培養容器15と、培養容器15内に存在する透明の位相物体(細胞など)とを可視化するのに適した照明(暗視野照明など)であることが望ましい。
蛍光落射照明部42は、蛍光用LED53a、53b、53c、及び、蛍光用光学系54を備える。蛍光用LED53a、53b、53cは、互いに異なる波長の光を発光する。蛍光用LED53a、53b、53cから発せられた光は、蛍光用光学系54を介して、試料台43に下側から照射される。
試料台43は、透光性の材質により構成されており、透過光照明部41から発せられ培養容器15を透過した光や、蛍光落射照明部42から発せられた励起光に応じて培養容器15で発した蛍光を、殆ど妨げることなく観察部44へ入射させる。
試料台43にはまた、培養容器15から観察部44へと向かう光を集光する対物レンズ55や、培養容器15を垂直方向又は水平方向に移動させるステージ56などが設けられる。
試料台43の対物レンズ55は、倍率の異なる複数の対物レンズ(例えば、2倍の対物レンズ、4倍の対物レンズ、10倍の対物レンズ、20倍の対物レンズ、40倍の対物レンズ等)から構成されており、観察ユニット27の観察倍率を適宜に切り替えることが可能である。
観察部44は、撮影部57及び画像処理部58から構成される。撮影部57は、結像光学系と、CCD(Charge Coupled Device)等の撮像素子とを有している。観察部44の結像光学系は、撮像素子の撮像面上に、培養容器15を透過した光による像(透過像)や、培養容器15から発せられた蛍光による像(蛍光像)を形成する。
ここで、蛍光用光学系54は、その内部の所定位置に配置されたダイクロイックミラーを挿脱することにより、培養容器15を照射する光の種類(観察ユニット27の照明方式)を、蛍光落射照明部42による照明(落射照明)と、透過光照明部41による照明(透過照明)との間で切り替えることができる。
例えば、観察ユニット27の照明方式が透過照明に設定され、かつ上述した4つのLEDのうち透過光用LED51のみが点灯された状態では、撮像部57は、培養容器15の透過画像を取得することができる。
また、観察ユニット27の照明方式が落射照明に設定され、かつ上述した4つのLEDのうち蛍光用LED53a、53b、53cの何れかが点灯された状態では、撮像部57は、培養容器15の蛍光画像を取得することができる。
また、観察ユニット27の照明方式が落射照明に設定された状態で、3つの蛍光用LED53a、53b、53cのうち点灯するものが切り替われば、培養容器15を照射する光の波長(観察ユニット27の励起波長)が切り替わる。
また、観察ユニット27の照明方式が落射照明に設定された状態で、蛍光用光学系54の内部の所定位置に配置された蛍光フィルタが切り替われば、撮像部57に入射可能な光の波長帯域(観察ユニット27の検出チャンネル)が切り替わる。
画像処理部58は、撮影部57が取得した画像(アナログ画像信号)に対し、増幅処理等を含むアナログ信号処理を適用した後、そのアナログ画像信号をA/D(Analog/Digital)変換し、ディジタル画像信号を得る。このディジタル画像信号は、制御ユニット31へ送られる。
図1に戻り、第1筐体11が載せられた第2筐体12の内部には、上述した観察ユニット27の一部の他に、制御ユニット31も収納される。
制御ユニット31は、生体試料観察装置1の各部の動作を制御する。具体的には、制御ユニット31は、観察スケジュール又はユーザの操作による直接の指示にしたがって、恒温室21内の環境条件の調整、恒温室21内外への培養容器15の搬出入、培養容器15内の生体試料の観察、恒温室21内での培養容器15の搬送などを実行する。
また、制御ユニット31は、第2筐体12の前面などに設けられた表示パネル32上に必要な情報を表示することにより、培養容器ごとの観察スケジュールをユーザに入力させることができる。なお、ユーザから制御ユニット31への情報入力は、制御ユニット31に接続されたキーボード等の入力器(不図示)を介して行われる。
また、制御ユニット31内には、観察情報記憶部33が設けられており、この観察情報記憶部33は、観察ユニット27から供給されるディジタル画像信号を逐次に格納する。これによって、観察情報記憶部33には、複数の画像の画像データ(以下、単に「画像」と称す。)が蓄積されることになる。
また、制御ユニット31は、観察情報記憶部33に蓄積された複数の画像を培養容器毎かつ日時毎に管理するため、個々の画像に対して、その画像の取得元となった培養容器15の番号(容器番号)やその画像の取得日時などのインデックス情報を付加する。また、観察情報記憶部33には、恒温室21内での環境条件(温度、湿度、二酸化炭素濃度等)の変化履歴等も記録できる。
画像解析部34は、観察情報記憶部33に蓄積されている画像に対し、必要に応じて画像解析処理を施す。
観察制御部35は、観察スケジュール又はユーザの操作による直接の指示にしたがって、観察ユニット27を制御する。また、観察制御部35は、画像解析部34による画像解析処理の結果に基づき観察ユニット27の制御内容を適宜に変更する。
なお、制御ユニット31は、所定の無線又は有線の通信規格に準拠した通信手段(図不示)を備えており、ネットワークを介して外部のパーソナルコンピュータ等の機器とのデータ送受信を行うことが可能である。したがって、ユーザは、培養容器の観察、観察ユニット27の設定変更、恒温室21の設定変更を遠隔地に設置されたコンピュータから行うこともできる。
ここで、本実施形態では、培養容器15として図4に示すようなウェルプレートを想定する。培養容器15のウェル数は、例えば6であり、個々のウェル15Aの径は、約30mmである。個々のウェル15Aには、iPS細胞の作製に必要な各種の要素、すなわち、培養液、フィーダー細胞、体細胞に分化した培養細胞(マウス繊維芽細胞)、山中因子を培養細胞へ導入するためのベクターなどが適当なタイミングで収容されており、特に、培養細胞には、上述した過程(1)、(2)を可視化するための処理(DsRed遺伝子の導入、Nanog遺伝子からNanog−GFP遺伝子への遺伝子組み換え)も予め施されているものとする。
仮に、観察ユニット27の対物レンズ55を2倍の対物レンズに設定した場合、培養容器15のうち1ショットで画像化できる範囲(観察ユニット27の視野55A)のサイズは、例えば4mm×4mmとなる。よって、1つのウェル15Aのほぼ全体を観察するには、図4にグリッド線で示すとおり、観察ユニット27の視野55Aを培養容器15上で移動させながら8×8ショット分の撮像を行い、取得された8×8=16枚の画像を繋ぎ合わせれば(タイリングすれば)よい。
また、観察ユニット27の対物レンズ55を20倍の対物レンズに設定した場合、培養容器15のうち1ショットで画像化できる範囲(観察ユニット27の視野)のサイズは、例えば400μm×400μmとなる。このサイズは、培養容器15内で生じた細胞コロニー1つ分を詳細に観察するのに適している。
また、本実施形態の検出ユニット27の蛍光用LED53aの発光波長は、DsRedの励起波長(558nm)に設定されており、蛍光用LED53bの発光波長は、Nanog−GFPの励起波長(488nm)に設定されているものとする。この場合、観察ユニット27の励起波長は、DsRedの励起波長(558nm)と、Nanog−GFPの励起波長(488nm)との間で切り替えることが可能になる。
また、観察ユニット27の検出チャンネルは、DsRedの蛍光波長帯域(583nmの近傍。以下「赤色チャンネル」という。)と、Nanog−GFPの蛍光波長帯域(520nmの近傍。以下「緑色チャンネル」という。)との間で切り替えることが可能であるとする。
この場合、観察ユニット27の照明方式を落射照明に設定し、かつ観察ユニット27の励起波長を558nmに設定し、かつ観察ユニット27の検出チャンネルを赤色チャンネルに設定すると、培養容器15内に存在するDsRedの蛍光強度分布(DsRed画像)を取得することができる。
また、観察ユニット27の照明方式を落射照明に設定し、かつ観察ユニット27の励起波長を488nmに設定し、かつ観察ユニット27の検出チャンネルを緑色チャンネルに設定すると、培養容器15内に存在するNanog−GFPの蛍光強度分布(GFP画像)を取得することができる。
図5は、制御ユニット31による観察処理のフローチャートである。以下、各ステップを順に説明する。なお、フローの開始時点では、上述した培養容器15が生体試料観察装置へ既に収容済みである(容器番号が付与されストッカ25へ収容済みである)と仮定する。
ステップS11:制御ユニット31は、培養容器15の観察スケジュールをユーザに入力させる。ここで、本実施形態の観察処理には、インターバルの長いタイムラプス撮影(粗観察)と、インターバルの短いタイムラプス撮影(低頻度詳細観察)と、インターバルの更に短いタイムラプス撮影(高頻度詳細観察)とがあるので、本ステップの制御ユニット31は、粗観察のインターバルΔT1と、低頻度詳細観察のインターバルΔT2と、高頻度詳細観察のインターバルΔT3とをそれぞれユーザに設定させる。ユーザは、インターバルΔT1、ΔT2、ΔT3の組み合わせを以下の関係を満たすような組み合わせに設定する。
・ΔT3<ΔT2<ΔT1
・ΔT2=n×ΔT3(但し、nは整数)
・ΔT1=m×ΔT2(但し、mは整数)
よって、例えば、ΔT1=8h、ΔT2=2h、ΔT3=1hなどと設定される。
なお、粗観察、低頻度詳細観察、高頻度詳細観察の各々の1ラウンド当たりの所要時間は、これらのインターバルΔT1、ΔT2、ΔT3と比較して十分に短いので、ここでの説明ではゼロとみなす。
また、制御ユニット31は、DsRedの発現の有無を検知するための輝度閾値A1と、Nanog−GFPの発現の有無を検知するための輝度閾値A2とをそれぞれユーザに設定させる。ユーザは、DsRedの発現の有無を高感度に検知する必要のある場合には輝度閾値A1を低く設定し、Nanog−GFPの発現の有無を高感度に検知する必要のある場合には輝度閾値A2を低く設定する(因みに、通常は、輝度閾値A1よりも輝度閾値A2の方を低くする必要性が高い。)。
また、制御ユニット31は、粗観察で使用すべき対物レンズの倍率mをユーザに設定させる。以下、倍率mは「2」に設定されたと仮定する。
制御ユニット13は、設定された倍率mに応じて、粗観察で培養容器15の全てのウェルを撮像するのに必要なショットパターンP(ステージ56の移動パターン及び撮影部57の駆動タイミング)を算出する。なお、ここでは倍率mが「2」に設定されたので、図4に示すとおりウェル1つ分を8×8ショットで撮像するようなショットパターンがショットパターンPとして算出される。
また、制御ユニット31は、低頻度詳細観察で使用すべき対物レンズの倍率mと、ROIのサイズSROIとをユーザに設定させる。なお、ROIは、低頻度詳細観察の対象となるべき領域のことである。以下、倍率mは「20」に設定され、サイズSROIは、細胞コロニー1つ分に相当するサイズ「300μm×300μm」に設定されたと仮定する。
制御ユニット13は、設定された倍率m及びサイズSROIの組み合わせ応じて、低頻度詳細観察でROI1つ分を撮像するのに必要なショットパターンPを算出する。なお、ここでは倍率mが「20」に設定され、かつサイズSROIが「300μm×300μm」に設定されたので、ROI1つ分を1ショットで撮像するようなショットパターンがショットパターンPとして算出される。
また、制御ユニット31は、低頻度詳細観察及び高頻度詳細観察を継続すべき期間(詳細観察期間)T1をユーザに設定させる。詳細観察期間T1は、図7(A)〜(C)に示すとおり、細胞コロニーにDsRedが発現してから、Nanog−GFPが発現した後に、その細胞コロニーがiPS細胞コロニーになったか否かを確認するまでに必要な期間に設定される。例えば、詳細観察期間T1は504h(3週間)に設定される。
また、制御ユニット31は、低頻度詳細観察の開始から中断までに設けるべき猶予期間T2をユーザに設定させる。猶予期間T2は、図7(D)に示すとおり、細胞コロニーにDsRedが発現してから、これ以上待ってもその細胞コロニーにNanog−GFPが発現しないとみなすまでに必要な期間(詳細観察期間T1より短い)に設定される。例えば、猶予期間T2は336h(2週間)に設定される。
ステップS12:制御ユニット31は、インターバルΔT1によって定まる粗観察のスケジュールと、現在の日時とを比較することにより、粗観察の撮影時期が到来したか否かを判別し、到来した場合にはステップS13へ移行し、到来していない場合にはステップS16へ移行する。
ステップS13:制御ユニット31の観察制御部35は、培養容器15を観察ユニット27へ配置するよう容器搬送機構26に対して指示を出す。容器搬送機構26は、培養容器15をストッカ25から取り出し、観察ユニット27のステージ56上の所定位置へ配置する。但し、2回目以降のステップS13では、培養容器15がステージ56に既に配置済みであった場合には、培養容器15の搬送は省略される。
続いて、制御ユニット31の観察制御部35は、倍率m及びショットパターンPの情報と、粗観察の撮影指示とを、観察ユニット27へ入力する。これを受けた観察ユニット27は、以下の手順(a)〜(d)により、2種類のウェル画像I、Iを全てのウェルについて取得する。
(a)観察ユニット27は、対物レンズの倍率を倍率m(ここでは2倍)に設定し、照明方式を透過照明に設定する。
(b)観察ユニット27は、上述した4つのLEDのうち透過光用LED51のみを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、培養容器15の全てのウェルに関する透過画像(ここでは8×8×6枚の透過画像)を取得する。これらの透過画像は、制御ユニット31の観察情報記憶部33に格納される。
(c)観察ユニット27は、照明方式を落射照明に切り替える。
(d)観察ユニット27は、検出チャンネルを赤色チャンネルに設定した状態で、蛍光用LED53aを点灯しながら、ショットパターンPでステージ56及び撮像部57を駆動することにより、培養容器15の全てのウェルに関するDsRed画像(ここでは8×8×6枚の透過画像)を取得する。これらのDsRed画像は、制御ユニット31の観察情報記憶部33に格納される。
続いて、制御ユニット31の画像解析部34は、手順(b)で取得された透過画像(ここでは8×8×6枚の透過画像)のうち、取得元となったウェルが共通であるもの同士を画像取得順に繋ぎ合わせることにより、ウェル毎の透過画像(6枚のウェル画像I)を作成する。これら6枚のウェル画像Iの各々は、各々の取得元となったウェルの番号(ウェル番号)と、各々の画像の取得日時と共に、観察情報記憶部33へ格納される。
また、制御ユニット31の画像解析部34は、手順(d)で取得されたDsRed画像(ここでは8×8×6枚のDsRed画像)のうち、取得元となったウェルが共通であるもの同士を画像取得順に繋ぎ合わせることにより、ウェル毎のDsRed画像(6枚のウェル画像I)を作成する。これら6枚のウェル画像Iの各々は、各々の取得元となったウェルのウェル番号と、各々の画像の取得日時と共に、観察情報記憶部33へ格納される。
ステップS14:制御ユニット31の画像解析部34は、直前のステップS13で取得されたウェル画像I(6枚のウェル画像I)の各々を輝度閾値A1と比較し、6枚のウェル画像Iの中で輝度閾値A1を超過している1又は複数の高輝度領域を、ROIの設定先として探索する。そして、高輝度領域が1つでも検出された場合、制御ユニット31はステップS15へ移行し、高輝度領域が1つも検出されなかった場合、制御ユニット31はステップS16へ移行する。なお、2回目以降のステップS14では、6枚のウェル画像Iのうち、それ以前のステップS14にてROI(又は後述する重要ROI)が既に設定済みである領域は、探索の範囲から除外される。
ステップS15:制御ユニット31の画像解析部34は、ステップS14で検出された1又は複数の高輝度領域の各々に対して以下の手順(e)〜(g)でROIを設定する。
(e)画像解析部34は、高輝度領域の検出元となったウェル画像I上で、その高輝度領域の中心(又は輝度の重心)に相当する座標を算出する。
(f)画像解析部34は、手順(e)で算出した座標と、そのウェル画像Iのウェル番号とに基づき、培養容器15上で高輝度領域の中心に相当する座標を算出する。
(g)画像解析部34は、手順(f)で算出した座標を中心とした、サイズSROIの領域に対してROIを設定する。
そして、制御ユニット31の画像解析部34は、培養容器15上に設定した1又は複数のROIの各々に対して設定日時の情報を付与すると共に、それらROIの各々に対して設定順に番号(ROI番号)を付与する。但し、ROI番号の付与は、培養容器15毎ではなく培養容器15のウェル毎に行われるものとし、2回目以降のステップS15において或るウェルの最初のROIに付与されるROI番号は、それ以前のステップS15において同じウェルの最後のROIに付与されたROI番号に続く番号である。
ステップS16:制御ユニット31は、インターバルΔT2によって定まる低頻度詳細観察のスケジュールと、現在の日時とを比較することにより、低頻度詳細観察の撮影時期が到来したか否かを判別し、到来した場合にはステップS17へ移行し、到来しない場合にはステップS23へ移行する。
ステップS17:制御ユニット31は、培養容器15にROIが1つでも設定されているか否かを判別し、設定されている場合にはステップS18へ移行し、設定されていなかった場合にはステップS23へ移行する。
ステップS18:制御ユニット31の観察制御部35は、培養容器15を観察ユニット27へ配置するよう容器搬送機構26に対して指示を出す。容器搬送機構26は、培養容器15をストッカ25から取り出し、観察ユニット27のステージ56上の所定位置へ配置する。但し、培養容器15がステージ56に既に配置済みであった場合には、培養容器15の搬送は省略される。
そして、制御ユニット31の観察制御部35は、倍率m及びショットパターンPの情報と、設定中のROIの座標情報と、低頻度詳細観察の撮影指示とを、観察ユニット27へ入力する。これを受けた観察ユニット27は、以下の手順(a’)〜(k’)により、3種類のROI画像I’、I’、I’を設定中の全てのROIについて取得する。
(a’)観察ユニット27は、対物レンズの倍率を倍率m(ここでは20倍)に設定し、照明方式を透過照明に設定する。
(b’)観察ユニット27は、設定中のROIのうち最も端に位置するROIの中心が対物レンズ55の光軸上に位置するようにステージ56の座標をセットする。
(c’)観察ユニット27は、上述した4つのLEDのうち透過光用LED51のみを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、そのROIに関する透過画像(ここでは1枚の透過画像)を取得する。この透過画像は、制御ユニット31の観察情報記憶部33に格納される。
(d’)観察ユニット27は、光軸上に配置されるROIを変更しながら手順(c’)を繰り返すことで、全てのROIに関する透過画像を取得する。
(e’)観察ユニット27は、照明方式を落射照明に切り替える。
(f’)観察ユニット27は、設定中のROIのうち最も端に位置するROIの中心が対物レンズ55の光軸上に位置するようにステージ56の座標をセットする。
(g’)観察ユニット27は、検出チャンネルを赤色チャンネルに設定した状態で、蛍光用LED35aを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、そのROIに関するDsRed画像(ここでは1枚のDsRed画像)を取得する。このDsRed画像は、制御ユニット31の観察情報記憶部33に格納される。
(h’)観察ユニット27は、光軸上に配置されるROIを変更しながら手順(g’)を繰り返すことで、全てのROIに関するDsRed画像を取得する。
(i’)観察ユニット27は、設定中のROIのうち最も端に位置するROIの中心が対物レンズ55の光軸上に位置するようにステージ56の座標をセットする。
(j’)観察ユニット27は、検出チャンネルを緑色チャンネルに設定した状態で、蛍光用LED35bを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、そのROIに関するGFP画像(ここでは1枚のGFP画像)を取得する。このGFP画像は、制御ユニット31の観察情報記憶部33に格納される。
(k’)観察ユニット27は、光軸上に配置されるROIを変更しながら手順(j’)を繰り返すことで、全てのROIに関するGFP画像を取得する。
続いて、制御ユニット31の画像解析部34は、手順(b’)〜(d’)で取得された透過画像のうち、取得元となったROIが共通であるもの同士を画像取得順に繋ぎ合わせることにより、ROI毎の透過画像(ROI画像I’)を作成する(但し、ここでは1つのROIに関する透過画像の枚数が1であるので、繋ぎ合わせを省略し、透過画像をそのままROI画像I’とすればよい。)。作成されたROI画像I’の各々は、各々の取得元となったROIのROI番号と、各々の画像の取得日時と共に、観察情報記憶部33へ格納される。
また、制御ユニット31の画像解析部34は、手順(f’)〜(h’)で取得されたDsRed画像のうち、取得元となったROIが共通であるもの同士を画像取得順に繋ぎ合わせることにより、ROI毎のDsRed画像(ROI画像I’)を作成する(但し、ここでは1つのROIに関するDsRed画像の枚数が1であるので、繋ぎ合わせを省略し、DsRed画像をそのままROI画像I’とすればよい。)。作成されたROI画像I’の各々は、各々の取得元となったROIのROI番号と、各々の画像の取得日時と共に、観察情報記憶部33へ格納される。
また、制御ユニット31の画像解析部34は、手順(i’)〜(k’)で取得されたGFP画像のうち、取得元となったROIが共通であるもの同士を画像取得順に繋ぎ合わせることにより、ROI毎のGFP画像(ROI画像I’)を作成する(但し、ここでは1つのROIに関するGFP画像の枚数が1であるので、繋ぎ合わせを省略し、GFP画像をそのままROI画像I’とすればよい。)。作成されたROI画像I’の各々は、各々の取得元となったROIのROI番号と、各々の画像の取得日時と共に、観察情報記憶部33へ格納される。
ステップS19:制御ユニット31の画像解析部34は、直前のステップS18で取得した1又は複数のROI画像I’の輝度平均値を輝度閾値A2と比較することにより、設定中のROIの中から輝度閾値A2より明るいもの(高輝度なROI)を見出す。そして、高輝度なROIが1つでも見出された場合、制御ユニット31はステップS20へ移行し、高輝度なROIが1つも見出されなかった場合、制御ユニット31はステップS23へ移行する。
ステップS20:制御ユニット31の画像解析部34は、ステップS19で見出された1又は複数の高輝度なROIを、重要ROIに移行させる。なお、重要ROIとは、高頻度詳細観察の対象となるべき領域のことである(以下、単なるROIを重要ROIと区別するために「非重要ROI」と称す。)。また、画像解析部34は、本ステップで非重要ROIから重要ROIへと移行した重要ROIに対して、その移行日時の情報を付与する。
ステップS21:制御ユニット31の画像解析部34は、全ての非重要ROIの各々の設定日時(最初に非重要ROIに設定された日時)と現在の日時とを比較し、その設定日時から猶予期間T2が経過している非重要ROI(期限切れのROI)を見出す。そして、期限切れのROIが1つでも見出された場合、制御ユニット31はステップS22へ移行し、期限切れのROIが1つも見出されなかった場合、制御ユニット31はステップS23へ移行する。
ステップS22:制御ユニット31の画像解析部34は、ステップS21で見出された1又は複数の期限切れのROIを解消する。
ステップS23:制御ユニット31は、インターバルΔT3によって定まる高頻度詳細観察のスケジュールと、現在の日時とを比較することにより、高頻度詳細観察の撮影時期が到来したか否かを判別し、到来した場合にはステップS24へ移行し、到来しない場合にはステップS28へ移行する。
ステップS24:制御ユニット31は、培養容器15に重要ROIが1つでも設定されているか否かを判別し、設定されている場合にはステップS25へ移行し、設定されていなかった場合にはステップS28へ移行する。
ステップS25:制御ユニット31の観察制御部35は、培養容器15を観察ユニット27へ配置するよう容器搬送機構26に対して指示を出す。容器搬送機構26は、培養容器15をストッカ25から取り出し、観察ユニット27のステージ56上の所定位置へ配置する。但し、培養容器15がステージ56に既に配置済みであった場合には、培養容器15の搬送は省略される。
そして、制御ユニット31の観察制御部35は、倍率m及びショットパターンPの情報と、設定中の重要ROIの座標情報と、高頻度詳細観察の撮影指示とを、観察ユニット27へ入力する。これを受けた観察ユニット27は、以下の手順(a”)〜(k”)により、3種類のROI画像I’、I’、I’を設定中の全ての重要ROIについて取得する。
(a”)観察ユニット27は、対物レンズの倍率を倍率m(ここでは20倍)に設定し、照明方式を透過照明に設定する。
(b”)観察ユニット27は、設定中の重要ROIのうち最も端に位置する重要ROIの中心が対物レンズ55の光軸上に位置するようにステージ56の座標をセットする。
(c”)観察ユニット27は、上述した4つのLEDのうち透過光用LED51のみを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、その重要ROIに関する透過画像(ここでは1枚の透過画像)を取得する。この透過画像は、制御ユニット31の観察情報記憶部33に格納される。
(d”)観察ユニット27は、光軸上に配置される重要ROIを変更しながら手順(c”)を繰り返すことで、全ての重要ROIに関する透過画像を取得する。
(e”)観察ユニット27は、照明方式を落射照明に切り替える。
(f”)観察ユニット27は、設定中の重要ROIのうち最も端に位置する重要ROIの中心が対物レンズ55の光軸上に位置するようにステージ56の座標をセットする。
(g”)観察ユニット27は、検出チャンネルを赤色チャンネルに設定した状態で、蛍光用LED35aを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、その重要ROIに関するDsRed画像(ここでは1枚のDsRed画像)を取得する。このDsRed画像は、制御ユニット31の観察情報記憶部33に格納される。
(h”)観察ユニット27は、光軸上に配置される重要ROIを変更しながら手順(g”)を繰り返すことで、全ての重要ROIに関するDsRed画像を取得する。
(i”)観察ユニット27は、設定中の重要ROIのうち最も端に位置する重要ROIの中心が対物レンズ55の光軸上に位置するようにステージ56の座標をセットする。
(j”)観察ユニット27は、検出チャンネルを緑色チャンネルに設定した状態で、蛍光用LED35bを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、その重要ROIに関するGFP画像(ここでは1枚のGFP画像)を取得する。このGFP画像は、制御ユニット31の観察情報記憶部33に格納される。
(k”)観察ユニット27は、光軸上に配置される重要ROIを変更しながら手順(j”)を繰り返すことで、全ての重要ROIに関するGFP画像を取得する。
続いて、制御ユニット31の画像解析部34は、手順(b”)〜(d”)で取得された透過画像のうち、取得元となった重要ROIが共通であるもの同士を画像取得順に繋ぎ合わせることにより、重要ROI毎の透過画像(ROI画像I’)を作成する(但し、ここでは1つの重要ROIに関する透過画像の枚数が1であるので、繋ぎ合わせを省略し、透過画像をそのままROI画像I’とすればよい。)。作成されたROI画像I’の各々は、各々の取得元となった重要ROIのROI番号と、各々の画像の取得日時と共に、観察情報記憶部33へ格納される。
また、制御ユニット31の画像解析部34は、手順(f”)〜(h”)で取得されたDsRed画像のうち、取得元となった重要ROIが共通であるもの同士を画像取得順に繋ぎ合わせることにより、重要ROI毎のDsRed画像(ROI画像I’)を作成する(但し、ここでは1つの重要ROIに関するDsRed画像の枚数が1であるので、繋ぎ合わせを省略し、DsRed画像をそのままROI画像I’とすればよい。)。作成されたROI画像I’の各々は、各々の取得元となった重要ROIのROI番号と、各々の画像の取得日時と共に、観察情報記憶部33へ格納される。
また、制御ユニット31の画像解析部34は、手順(i”)〜(k”)で取得されたGFP画像のうち、取得元となった重要ROIが共通であるもの同士を画像取得順に繋ぎ合わせることにより、重要ROI毎のGFP画像(ROI画像I’)を作成する(但し、ここでは1つの重要ROIに関するGFP画像の枚数が1であるので、繋ぎ合わせを省略し、GFP画像をそのままROI画像I’とすればよい。)。作成されたROI画像I’の各々は、各々の取得元となった重要ROIのROI番号と、各々の画像の取得日時と共に、観察情報記憶部33へ格納される。
ステップS26:制御ユニット31の画像解析部34は、全ての重要ROIの各々の設定日時(最初に非重要ROIに設定された日時)と現在の日時とを比較し、設定日時からの経過時間が詳細観察期間T1を超過している重要ROI(観察済みのROI)を見出す。そして、観察済みのROIが1つでも見出された場合、制御ユニット31はステップS27へ移行し、観察済みのROIが1つも見出されなかった場合、制御ユニット31はステップS28へ移行する。
ステップS27:制御ユニット31の画像解析部34は、ステップS26で見出された1又は複数の観察済みのROIを解消する。
ステップS28:制御ユニット31は、培養容器15をストッカ25へ収納するよう容器搬送機構26に対して指示を出す。容器搬送機構26は、培養容器15を観察ユニット27から取り出し、ストッカ25の所定位置へ収納する。但し、この時点で培養容器15がストッカ25に既に収納済みであった場合は、培養容器15の搬送は省略される。
ステップS29:制御ユニット31は、培養容器15上に重要ROI及び非重要ROIの何れもが設定されなくなってから一定の期間(猶予期間T3)が経過したか否かを判別し、経過した場合にはフローを終了し、経過しない場合にはステップS12に戻る。但し、培養容器15上に非重要ROIの設定された経験が一度も無かった場合には、制御ユニット31は、その判別を省略してステップS12へ戻る(以上、フローの説明)。
図6は、以上の観察処理における各画像の取得タイミングを示すタイミングチャートである。なお、図6では簡単のため、培養容器15の或る1つのウェルの画像のみに着目した。
観察処理が開始されると、先ず、図6の上段に示すとおり粗観察が開始される。粗観察の各ラウンドで取得される画像は、ウェル画像I、Iの2種類であり、粗観察のインターバルは比較的長いインターバルΔT1である。
その後、図6(A)に示すとおり、粗観察で取得されるウェル画像Iの中に輝度閾値A1を超過した高輝度領域が出現すると、その領域に非重要ROI(第1の非重要ROI)が設定される。
その後、図6(B)に示すとおり、粗観察で取得されるウェル画像Iの中に輝度閾値A1を超過した別の高輝度領域が出現すると、その領域に非重要ROI(第2の非重要ROI)が設定される。
また、第1の非重要ROIが設定されると(図6(A))、図6(A’)に示すとおり、その第1の非重要ROIに関する低頻度詳細観察が開始される。
また、第2の非重要ROIが設定されると(図6(B))、図6(B’)に示すとおり、その第2の非重要ROIに関する低頻度詳細観察が開始される。
低頻度観察の各ラウンドで取得される画像は、ROI画像、I、Iの3種類であり、低頻度詳細観察のインターバルは短いインターバルΔT2である。
そして、第1の非重要ROIの低頻度詳細観察で取得されるROI画像I’の平均輝度が輝度閾値A2を超過すると、図6(C)に示すとおり、第1の非重要ROIは重要ROIへと移行する。
また、第2の非重要ROIの低頻度詳細観察で取得されるROI画像I’の平均輝度が輝度閾値A2を超過すると、図6(D)に示すとおり、第2の非重要ROIは重要ROIへと移行する。
そして、第1の非重要ROIが重要ROIに移行すると(図6(C))、その重要ROIに関する高頻度詳細観察が開始される。
また、第2の非重要ROIが重要ROIに移行すると(図6(D))、その重要ROIに関する高頻度詳細観察が開始される。
高頻度詳細観察の各ラウンドで取得される画像は、ROI画像、I、Iの3種類であり、高頻度詳細観察のインターバルは、さらに短いインターバルΔT3である。
すなわち、本実施形態の生体試料観察装置は、ウェル全体を粗観察し、ウェル内にiPS細胞コロニーとなる可能性の高い細胞コロニーが発生した時点で、その細胞コロニーの低頻度詳細観察を開始する。そして、低頻度詳細観察の対象となった細胞コロニーがiPS細胞コロニーとなる可能性が更に高まった時点で、その低頻度詳細観察を高頻度詳細観察へと移行させる。
図7(A)〜(D)は、上述した観察処理において詳細観察の対象となった4つの細胞コロニーの蛍光強度の時間変化を示す図である。なお、図7において「R」で示すのはDsRedの蛍光強度であり、「G」で示すのはNanog−GFPの蛍光強度である。
このうち図7(A)に示す時間変化は、DsRedが発現した後にサイレンシングが起こり、そのDsRedの発現が完全に停止する前にNanog−GFPが発現してiPS細胞コロニーとなった細胞コロニーに関するものである。
また、図7(B)に示す時間変化は、DsRedが発現した後にサイレンシングが起こり、そのDsRedの発現が停止してからNanog−GFPが発現してiPS細胞コロニーとなった細胞コロニーに関するものである。
また、図7(C)に示す時間変化は、DsRedが発現した後にサイレンシングが起こり、そのDsRedの発現が停止してからNanog−GFPが発現したものの、その後に何らかの理由でNanog−GFPの発現が停止してiPS細胞コロニーとならなかった細胞コロニーに関するものである。
また、図7(D)に示す時間変化は、DsRedが発現した後にサイレンシングが起こったものの、何らかの理由でNanog−GFPが発現せずにiPS細胞コロニーとならなかった細胞コロニーに関するものである。
このうち、DsRedとNanog−GFPとの双方が発現した細胞コロニー(図7(A)〜(C))については、DsRedの蛍光強度が輝度閾値A1を超過した時点で低頻度詳細観察が開始され、Nanog−GFPの蛍光輝度が輝度閾値A2を超過した時点で高頻度詳細観察に移行し、低頻度詳細観察の開始時点から詳細観察期間T1が経過した時点で詳細観察が終了する。
よって、DsRedとNanog−GFPとの双方が発現した細胞コロニー(図7(A)〜(C))については、DsRedの蛍光強度の時間変化と、Nanog−GFPの蛍光強度の時間変化とが、それぞれ適当な頻度で適当な期間に亘って画像化される。
一方、DsRedとNanog−GFPとのうち前者のみが発現した細胞コロニー(図7(D))については、DsRedの蛍光強度が輝度閾値A1を超過した時点で低頻度詳細観察が開始され、その開始時点から猶予期間T2が経過した時点で詳細観察が中断される。
よって、DsRedとNanog−GFPとのうち前者のみが発現した細胞コロニー(図7(D))については、DsRedの蛍光強度の時間変化のみが適当な頻度で適当な期間に亘って画像化される。
すなわち、本実施形態の生体試料観察装置は、様々な細胞コロニーの各状態を、それぞれ適当な頻度で適当な期間に亘って画像化する。
以上の結果、本実施形態の生体試料観察装置は、培養容器15で不規則的に発生するiPS細胞コロニーを、効率よく観察することができる。
ここで、培養容器15の細胞を蛍光観察するためには、励起光を照射する必要があり、細胞のダメージを伴うので、なるべく励起光の照射量を抑えるべきである。よって、培養容器15の狭い範囲を詳細に観察する(ミクロ観察する)タイミングや頻度等を細胞の状態に応じて適切に設定する本実施形態は、細胞のダメージを抑える上で有効である。
さらに、培養容器15の広い範囲を粗く観察する(マクロ観察する)際には、細胞コロニーからの自家蛍光の影響を受け、見たいコロニーの観察の邪魔となることがあるので、ミクロ観察を適切に行う本実施形態は、有効である。
[実施形態への補足]
なお、上述した実施形態の制御ユニット31は、図5に示した観察処理の終了後又は観察処理の実行過程において、例えば図8に示すとおり、非重要ROIの設定タイミングと、設定された非重要ROIの個数との関係を示すヒストグラムを、ウェル毎又は培養容器毎に作成し、観察情報記憶部33へ格納してもよい。このヒストグラムは、DsRedの発現タイミングのヒストグラムである。
また、上述した実施形態の制御ユニット31は、図5に示した観察処理の終了後又は観察処理の実行過程において、例えば図9に示すとおり、重要ROIの移行タイミング(非重要ROIから重要ROIへの移行タイミング)と、重要ROIの個数との関係を示すヒストグラムを、ウェル毎又は培養容器毎に作成し、観察情報記憶部33へ格納してもよい。このヒストグラムは、Nanog−GFPの発現タイミングのヒストグラムである。
また、上述した実施形態の制御ユニット31は、図5に示した観察処理の終了後又は観察処理の実行過程において、ROI番号の共通する複数のROI画像I(非重要ROIのROI画像I及び重要ROIのROI画像I)を画像取得順に連結することにより、ROI番号毎のタイムラプス動画像(DsRedのタイムラプス動画像)を作成し、観察情報記憶部33へ格納してもよい。但し、非重要ROIのROI画像Iは、重要ROIのROI画像Iよりもインターバルが広いので、両者を連結する際には、非重要ROIのROI画像Iを時間方向に補間することが望ましい。
同様に、上述した実施形態の制御ユニット31は、図5に示した観察処理の終了後又は観察処理の実行過程において、ROI番号の共通する複数のROI画像I(非重要ROIのROI画像I及び重要ROIのROI画像I)を画像取得順に連結することにより、ROI番号毎のタイムラプス動画像(Nanog−GFPのタイムラプス動画像)を作成し、観察情報記憶部33へ格納してもよい。但し、非重要ROIのROI画像Iは、重要ROIのROI画像Iよりもインターバルが広いので、両者を連結する際には、非重要ROIのROI画像Iを時間方向に補間することが望ましい。
同様に、上述した実施形態の制御ユニット31は、図5に示した観察処理の終了後又は観察処理の実行過程において、ROI番号の共通する複数のROI画像I(非重要ROIのROI画像I及び重要ROIのROI画像I)を画像取得順に連結することにより、ROI番号毎のタイムラプス動画像(透過画像のタイムラプス動画像)を作成し、観察情報記憶部33へ格納してもよい。但し、非重要ROIのROI画像Iは、重要ROIのROI画像Iよりもインターバルが広いので、両者を連結する際には、非重要ROIのROI画像Iを時間方向に補間することが望ましい。
更に、上述した実施形態の制御ユニット31は、ROI番号の共通する、DsRedのタイムラプス動画像と、Nanog−GFPのタイムラプス動画像とに基づき、それらのタイムラプス動画像に写っている細胞コロニーがiPS細胞コロニーであるか否かを自動的に判別してもよい。
例えば、制御ユニット31は、DsRedのタイムラプス動画像の最新フレームと、Nanog−GFPのタイムラプス動画像の最新フレームとを比較し、前者よりも後者の方が一定以上大きかった場合には、それらのタイムラプス動画像に写っている細胞コロニーをiPS細胞コロニーであるとみなし、そうでなかった場合には、それらのタイムラプス動画像に写っている細胞コロニーをnon−iPS細胞コロニーとみなしてもよい。
このような判別方法によると、図7(A)、(B)のような蛍光強度変化を経た細胞コロニーをiPS細胞コロニーと判断し、かつ、図7(C)、(D)のような蛍光強度変化を経た細胞コロニーをnon−iPS細胞コロニーと判断することができる。
また、上述した実施形態では、培養容器15をウェルプレートと仮定したが、ディッシュやフラスコなどの他の培養容器であってもよい。
27…観察ユニット、31…制御ユニット、33…観察情報記憶部、34…画像解析部、35…観察制御部
例えば、観察ユニット27の照明方式が透過照明に設定され、かつ上述した4つのLEDのうち透過光用LED51のみが点灯された状態では、撮部57は、培養容器15の透過画像を取得することができる。
また、観察ユニット27の照明方式が落射照明に設定され、かつ上述した4つのLEDのうち蛍光用LED53a、53b、53cの何れかが点灯された状態では、撮部57は、培養容器15の蛍光画像を取得することができる。
また、観察ユニット27の照明方式が落射照明に設定された状態で、蛍光用光学系54の内部の所定位置に配置された蛍光フィルタが切り替われば、撮部57に入射可能な光の波長帯域(観察ユニット27の検出チャンネル)が切り替わる。
仮に、観察ユニット27の対物レンズ55を2倍の対物レンズに設定した場合、培養容器15のうち1ショットで画像化できる範囲(観察ユニット27の視野55A)のサイズは、例えば4mm×4mmとなる。よって、1つのウェル15Aのほぼ全体を観察するには、図4にグリッド線で示すとおり、観察ユニット27の視野55Aを培養容器15上で移動させながら8×8ショット分の撮像を行い、取得された8×8=64枚の画像を繋ぎ合わせれば(タイリングすれば)よい。
また、本実施形態の観察ユニット27の蛍光用LED53aの発光波長は、DsRedの励起波長(558nm)に設定されており、蛍光用LED53bの発光波長は、Nanog−GFPの励起波長(488nm)に設定されているものとする。この場合、観察ユニット27の励起波長は、DsRedの励起波長(558nm)と、Nanog−GFPの励起波長(488nm)との間で切り替えることが可能になる。
制御ユニット31は、設定された倍率mに応じて、粗観察で培養容器15の全てのウェルを撮像するのに必要なショットパターンP(ステージ56の移動パターン及び撮影部57の駆動タイミング)を算出する。なお、ここでは倍率mが「2」に設定されたので、図4に示すとおりウェル1つ分を8×8ショットで撮像するようなショットパターンがショットパターンPとして算出される。
制御ユニット31は、設定された倍率m及びサイズSROIの組み合わせ応じて、低頻度詳細観察でROI1つ分を撮像するのに必要なショットパターンPを算出する。なお、ここでは倍率mが「20」に設定され、かつサイズSROIが「300μm×300μm」に設定されたので、ROI1つ分を1ショットで撮像するようなショットパターンがショットパターンPとして算出される。
(d)観察ユニット27は、検出チャンネルを赤色チャンネルに設定した状態で、蛍光用LED53aを点灯しながら、ショットパターンPでステージ56及び撮部57を駆動することにより、培養容器15の全てのウェルに関するDsRed画像(ここでは8×8×6枚のDsRed画像)を取得する。これらのDsRed画像は、制御ユニット31の観察情報記憶部33に格納される。
(g’)観察ユニット27は、検出チャンネルを赤色チャンネルに設定した状態で、蛍光用LED53aを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、そのROIに関するDsRed画像(ここでは1枚のDsRed画像)を取得する。このDsRed画像は、制御ユニット31の観察情報記憶部33に格納される。
(j’)観察ユニット27は、検出チャンネルを緑色チャンネルに設定した状態で、蛍光用LED53bを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、そのROIに関するGFP画像(ここでは1枚のGFP画像)を取得する。このGFP画像は、制御ユニット31の観察情報記憶部33に格納される。
(g”)観察ユニット27は、検出チャンネルを赤色チャンネルに設定した状態で、蛍光用LED53aを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、その重要ROIに関するDsRed画像(ここでは1枚のDsRed画像)を取得する。このDsRed画像は、制御ユニット31の観察情報記憶部33に格納される。
(j”)観察ユニット27は、検出チャンネルを緑色チャンネルに設定した状態で、蛍光用LED53bを点灯しながら、ショットパターンPでステージ56及び撮影部57を駆動することにより、その重要ROIに関するGFP画像(ここでは1枚のGFP画像)を取得する。このGFP画像は、制御ユニット31の観察情報記憶部33に格納される。
ステップS26:制御ユニット31の画像解析部34は、全ての重要ROIの各々の設定日時(最初に重要ROIに設定された日時)と現在の日時とを比較し、設定日時からの経過時間が詳細観察期間T1を超過している重要ROI(観察済みのROI)を見出す。そして、観察済みのROIが1つでも見出された場合、制御ユニット31はステップS27へ移行し、観察済みのROIが1つも見出されなかった場合、制御ユニット31はステップS28へ移行する。
低頻度観察の各ラウンドで取得される画像は、ROI画像 、I、Iの3種類であり、低頻度詳細観察のインターバルは短いインターバルΔT2である。
高頻度詳細観察の各ラウンドで取得される画像は、ROI画像 、I、Iの3種類であり、高頻度詳細観察のインターバルは、さらに短いインターバルΔT3である。

Claims (13)

  1. 所定の観察領域のタイムラプス撮影を行う第1観察手段と、
    前記第1観察手段が取得する画像に基づき、前記観察領域内で第1物質が発現したか否かを判別する第1判別手段と、
    前記観察領域内に前記第1物質が発現したタイミングで、その第1物質の発現した箇所に関するタイムラプス撮影を開始する第2観察手段とを備え、
    前記第2観察手段によるタイムラプス撮影の撮影頻度は、前記第1観察手段によるタイムラプス撮影の撮影頻度よりも高い
    ことを特徴とする観察装置。
  2. 請求項1に記載の観察装置において、
    前記第2観察手段が取得する画像に基づき、前記第1物質とは異なる第2物質が前記箇所で発現したか否かを判別する第2判別手段を更に備え、
    前記第2観察手段は、
    前記箇所で前記第2物質が発現したタイミングで、前記箇所に関するタイムラプス撮影の撮影頻度を高める
    ことを特徴とする観察装置。
  3. 請求項2に記載の観察装置において、
    前記第2観察手段は、
    前記箇所に関するタイムラプス撮影の終了タイミングを、前記箇所で前記第1物質が発現してから所定時間が経過した時点とする
    ことを特徴とする観察装置。
  4. 請求項2又は請求項3に記載の観察装置において、
    前記第2観察手段は、
    前記箇所で前記第1物質が発現してから所定時間が経過しても前記第2物質が発現しなかった場合には、前記箇所に関するタイムラプス撮影を中断する
    ことを特徴とする観察装置。
  5. 請求項2〜請求項4の何れか一項に記載の観察装置において、
    前記第2観察手段によるタイムラプス撮影の各ラウンドでは、
    前記第1物質を観察するための第1画像と前記第2物質を観察するための第2画像との双方が取得され、
    前記第1観察手段によるタイムラプス撮影の各ラウンドでは、
    前記第1画像と前記第2画像とのうち前者のみが取得される
    ことを特徴とする観察装置。
  6. 請求項2〜請求項5の何れか一項に記載の観察装置において、
    前記第2観察手段は、
    前記観察領域内の互いに異なる複数の箇所にて互いに異なるタイミングで前記第1物質が発現した場合には、それら複数の箇所の各々に関するタイムラプス撮影を、各々の発現タイミングで開始する
    ことを特徴とする観察装置。
  7. 請求項6に記載の観察装置において、
    前記第1物質の発現タイミングと前記第1物質の発現した箇所の個数との関係を求める統計手段を更に備えた
    ことを特徴とする観察装置。
  8. 請求項6又は請求項7に記載の観察装置において、
    前記第2物質の発現タイミングと前記第2物質の発現した箇所の個数との関係を求める統計手段を更に備えた
    ことを特徴とする観察装置。
  9. 請求項1〜請求項8の何れか一項に記載の観察装置において、
    前記観察領域は、
    生体試料を培養する培養容器の全部又は一部の領域であり、
    前記培養容器の環境を制御する環境制御手段を更に備えた
    ことを特徴とする観察装置。
  10. 請求項2に記載の観察装置において、
    前記観察領域にレーザ光を照射するレーザ光源と、
    前記第1物質および前記第2物質を含む前記観察領域が前記レーザ光で励起されたときに発する蛍光を検出する撮像部とを備え、
    前記第1判別手段は、前記撮像部で検出された前記第1物質の蛍光の光強度を所定のレベルと比較し、前記第1物質が発現したか否かを判別し、
    前記第2判別手段は、前記撮像部で検出された前記第2物質の蛍光の光強度を所定のレベルと比較し、前記第2物質が発現したか否かを判別する
    ことを特徴とする観察装置。
  11. 所定の観察領域のタイムラプス撮影を行う第1観察ステップと、
    前記第1観察ステップで取得した画像に基づき、前記観察領域内で第1物質が発現したか否かを判別する第1判別ステップと、
    前記観察領域内に前記第1物質が発現したタイミングで、その第1物質の発現した箇所に関するタイムラプス撮影を開始する第2観察ステップとを含み、
    前記第2観察ステップによるタイムラプス撮影の撮影頻度は、前記第1観察ステップによるタイムラプス撮影の撮影頻度よりも高い
    ことを特徴とする観察方法。
  12. 請求項11に記載の観察装置において、
    前記第2観察ステップが取得する画像に基づき、前記第1物質とは異なる第2物質が前記箇所で発現したか否かを判別する第2判別ステップを更に含み、
    前記第2観察ステップは、
    前記箇所で前記第2物質が発現したタイミングで、前記箇所に関するタイムラプス撮影の撮影頻度を高める
    ことを特徴とする観察方法。
  13. 請求項12に記載の観察方法において、
    前記観察領域にレーザ光を照射する照射ステップと、
    前記第1物質および前記第2物質が含まれる前記観察領域が前記レーザ光で励起されたときに発する蛍光を検出する検出ステップとを備え、
    前記第1判別ステップは、前記検出ステップで検出された前記第1物質の蛍光の光強度を所定のレベルと比較し、前記第1物質が発現したか否かを判別し、
    前記第2判別ステップは、前記検出ステップで検出された前記第2物質の蛍光の光強度を所定のレベルと比較し、前記第2物質が発現したか否かを判別する
    ことを特徴とする観察方法。
JP2011552685A 2010-02-03 2011-01-28 観察装置及び観察方法 Active JP5397484B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552685A JP5397484B2 (ja) 2010-02-03 2011-01-28 観察装置及び観察方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010022170 2010-02-03
JP2010022170 2010-02-03
JP2011552685A JP5397484B2 (ja) 2010-02-03 2011-01-28 観察装置及び観察方法
PCT/JP2011/000468 WO2011096181A1 (ja) 2010-02-03 2011-01-28 観察装置及び観察方法

Publications (2)

Publication Number Publication Date
JPWO2011096181A1 true JPWO2011096181A1 (ja) 2013-06-10
JP5397484B2 JP5397484B2 (ja) 2014-01-22

Family

ID=44355200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011552685A Active JP5397484B2 (ja) 2010-02-03 2011-01-28 観察装置及び観察方法

Country Status (5)

Country Link
US (3) US9927605B2 (ja)
EP (1) EP2533092B1 (ja)
JP (1) JP5397484B2 (ja)
CN (1) CN102754011B (ja)
WO (1) WO2011096181A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519550A (ja) * 2015-07-01 2018-07-19 上海睿▲玉▼生物科技有限公司Shanghai Ruiyu Biotech Co., Ltd. 蛍光顕微鏡撮像の方法および装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2533092B1 (en) * 2010-02-03 2019-05-08 Nikon Corporation Observation device and observation method
JP5803442B2 (ja) * 2011-08-31 2015-11-04 株式会社ニコン 顕微鏡制御装置、顕微鏡装置、画像処理装置およびプログラム
JP2013109119A (ja) * 2011-11-21 2013-06-06 Nikon Corp 顕微鏡制御装置およびプログラム
JP2013145318A (ja) * 2012-01-13 2013-07-25 Sony Corp 測定装置、プログラム及び測定方法
KR102527811B1 (ko) * 2015-12-22 2023-05-03 삼성전자주식회사 타임랩스 영상을 생성하는 장치 및 방법
CN112460742B (zh) * 2020-11-19 2021-11-23 珠海格力电器股份有限公司 传感器的控制方法、装置、传感器、存储介质及处理器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301252A (en) * 1980-04-04 1981-11-17 Baker Fraser L Controlled environment incubator for light microscopy
US6724419B1 (en) * 1999-08-13 2004-04-20 Universal Imaging Corporation System and method for acquiring images at maximum acquisition rate while asynchronously sequencing microscope devices
JP2004233664A (ja) * 2003-01-30 2004-08-19 Olympus Corp 顕微鏡画像取得装置および方法
JP2004309719A (ja) * 2003-04-04 2004-11-04 Olympus Corp 顕微鏡システム、顕微鏡システムの制御方法、及び制御プログラム
US20050282268A1 (en) * 2004-05-26 2005-12-22 Olympus Corporation Culture microscope and computer program controlling culture microscope
JP5058444B2 (ja) * 2005-02-10 2012-10-24 オリンパス株式会社 顕微鏡写真装置および顕微鏡写真装置制御方法
JP2006267650A (ja) * 2005-03-24 2006-10-05 Olympus Corp 蛍光観察装置及び蛍光計測装置
EP1865073B1 (en) 2005-03-30 2015-01-21 Olympus Corporation Predermined site luminescence measuring method, predetermined site luminenscence measuring apparatus, expression amount measuring method, and measuring apparatus
JP4982974B2 (ja) * 2005-06-16 2012-07-25 横河電機株式会社 共焦点顕微鏡システム
JP5058483B2 (ja) * 2005-09-14 2012-10-24 オリンパス株式会社 生体試料の長期間ないし連続的検出方法
JP2008052227A (ja) * 2005-09-15 2008-03-06 Olympus Corp 観察装置
JP2007114742A (ja) * 2005-09-21 2007-05-10 Olympus Corp 観察装置
JP4431549B2 (ja) * 2006-05-31 2010-03-17 株式会社日立ハイテクノロジーズ 蛍光分析装置
JP4893275B2 (ja) * 2006-11-30 2012-03-07 株式会社ニコン 顕微鏡装置
JP5047669B2 (ja) * 2007-04-04 2012-10-10 オリンパス株式会社 走査型共焦点顕微鏡装置
KR20100045964A (ko) * 2007-07-06 2010-05-04 내셔널 유니버시티 오브 싱가포르 형광 초점변조 현미경 시스템 및 방법
JP2010008856A (ja) * 2008-06-30 2010-01-14 Olympus Corp 顕微鏡撮像装置及び顕微鏡撮像システム
JP5317672B2 (ja) * 2008-12-19 2013-10-16 三洋電機株式会社 観察ユニット
JP5562582B2 (ja) * 2009-06-16 2014-07-30 オリンパス株式会社 蛍光観察装置
JP5336952B2 (ja) * 2009-07-02 2013-11-06 キヤノン株式会社 光学機器
JP5510463B2 (ja) * 2010-01-20 2014-06-04 株式会社ニコン 細胞観察装置及び細胞培養方法
EP2533092B1 (en) * 2010-02-03 2019-05-08 Nikon Corporation Observation device and observation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519550A (ja) * 2015-07-01 2018-07-19 上海睿▲玉▼生物科技有限公司Shanghai Ruiyu Biotech Co., Ltd. 蛍光顕微鏡撮像の方法および装置

Also Published As

Publication number Publication date
EP2533092A4 (en) 2013-07-17
US9927605B2 (en) 2018-03-27
EP2533092A1 (en) 2012-12-12
US10634151B2 (en) 2020-04-28
WO2011096181A1 (ja) 2011-08-11
JP5397484B2 (ja) 2014-01-22
CN102754011B (zh) 2015-08-05
US20180180054A1 (en) 2018-06-28
EP2533092B1 (en) 2019-05-08
US11236755B2 (en) 2022-02-01
US20200224663A1 (en) 2020-07-16
US20120327210A1 (en) 2012-12-27
CN102754011A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5397484B2 (ja) 観察装置及び観察方法
JP5510463B2 (ja) 細胞観察装置及び細胞培養方法
JP5307539B2 (ja) 生体試料撮像方法および生体試料撮像装置
US10466465B2 (en) Organism sample observation device
JP5516108B2 (ja) 観察装置、観察方法、及びプログラム
WO2009081832A1 (ja) タイムラプス画像の画像処理方法、画像処理プログラム及び画像処理装置
WO2007074923A1 (ja) 発光測定装置並びに発光測定方法
JP6102166B2 (ja) 心筋細胞の運動検出方法、心筋細胞の培養方法、薬剤評価方法、画像処理プログラム及び画像処理装置
JP5726956B2 (ja) 微弱光サンプルの解析方法および装置
WO2009119329A1 (ja) 細胞観察画像の画像解析方法、画像処理プログラム及び画像処理装置
JP2011017964A (ja) 培養観察装置
JP5466976B2 (ja) 顕微鏡システム、観察画像の表示方法、プログラム
JP2012039929A (ja) 受精卵観察の画像処理方法、画像処理プログラム及び画像処理装置、並びに受精卵の製造方法
CN104583417A (zh) 选择方法及仪器
JP2012039930A (ja) 培養物観察の画像処理方法、画像処理プログラム及び画像処理装置、並びに培養物の製造方法
JP2009003267A (ja) 細胞培養観察装置
JP2009027948A (ja) 培養装置
JP2010060519A (ja) 観察装置
JP2012039931A (ja) 観察装置、観察方法、及び培養物の製造方法
JP2012042327A (ja) 培養物観察の画像処理方法、画像処理プログラム及び画像処理装置、並びに培養物の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5397484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250