JPWO2010125672A1 - ベルト式無段変速機の制御装置と制御方法 - Google Patents

ベルト式無段変速機の制御装置と制御方法 Download PDF

Info

Publication number
JPWO2010125672A1
JPWO2010125672A1 JP2009522254A JP2009522254A JPWO2010125672A1 JP WO2010125672 A1 JPWO2010125672 A1 JP WO2010125672A1 JP 2009522254 A JP2009522254 A JP 2009522254A JP 2009522254 A JP2009522254 A JP 2009522254A JP WO2010125672 A1 JPWO2010125672 A1 JP WO2010125672A1
Authority
JP
Japan
Prior art keywords
belt
control
hydraulic pressure
belt slip
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009522254A
Other languages
English (en)
Other versions
JP4435859B1 (ja
Inventor
土井原 克己
克己 土井原
兒玉 仁寿
仁寿 兒玉
泰彰 吉川
泰彰 吉川
中村 健太
健太 中村
聖天 澤野
聖天 澤野
真宏 西
真宏 西
英真 川口
英真 川口
恵介 小山
恵介 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
JATCO Ltd
Original Assignee
Nissan Motor Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, JATCO Ltd filed Critical Nissan Motor Co Ltd
Application granted granted Critical
Publication of JP4435859B1 publication Critical patent/JP4435859B1/ja
Publication of JPWO2010125672A1 publication Critical patent/JPWO2010125672A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

ベルトスリップ状態の推定精度が高いとき、ベルトフリクションの低下による消費駆動エネルギーの削減を確保しながら、ベルトスリップ状態の推定精度が低いとき、ベルトスリップ制御中にベルトが大きく滑ることを防止することができるベルト式無段変速機の制御装置と制御方法を提供する。プライマリプーリ(42)と、セカンダリプーリ(43)と、ベルト(44)を有し、プライマリ油圧とセカンダリ油圧を制御することにより、ベルト(44)のプーリ巻き付け径の比による変速比を制御する。このベルト式無段変速機構(4)において、セカンダリ油圧を加振し、実セカンダリ油圧に含まれる振動成分と実変速比に含まれる振動成分との位相差を監視することでベルトスリップ状態を推定し、所定のベルトスリップ状態を保つように実セカンダリ油圧を低減させる制御を行うベルトスリップ制御手段(ステップS3)と、変速比の変化率である変速速度が所定値未満であるとき、ベルトスリップ制御を許可するベルトスリップ制御許可判定手段(ステップS2)と、を備えた。

Description

本発明は、プーリに掛け渡されたベルトを所定のスリップ率でスリップさせるベルトスリップ制御を行うベルト式無段変速機の制御装置と制御方法に関する。
従来、ベルト式無段変速機の制御装置としては、実セカンダリ油圧を通常制御時よりも低下させて、プーリに掛け渡されたベルトを所定のスリップ率でスリップさせるベルトスリップ制御を行うに際して、
(a) 指令セカンダリ油圧に所定の正弦波を重畳し、すなわち、指令セカンダリ油圧を加振して振動させ、
(b) 実セカンダリ油圧に含まれる振動成分と、実変速比に含まれる振動成分との乗数に基づき、実セカンダリ油圧を制御してベルトスリップ制御を行う。
これにより、ベルトのスリップ率を直接検出する必要がなくなるため、ベルトスリップ制御を容易に行えるようにしたものが知られている(例えば、特許文献1参照)。
WO 2009/007450 A2(PCT/EP2008/059092)
しかしながら、従来のベルト式無段変速機の制御装置にあっては、変速速度が速いと実変速比の変動特性において、指令変速比対応成分と、スリップ率検出のための振動成分との見極め(区別)ができなくなるため、実セカンダリ油圧に含まれる振動成分と、実変速比に含まれる振動成分との乗数に基づくベルトスリップ制御が不適切となり、ベルト式無段変速機への入力トルクの大きさによってはベルトが大きく滑るおそれがある、という問題があった。
本発明は、上記問題に着目してなされたもので、ベルトスリップ状態の推定精度が高いとき、ベルトフリクションの低下による消費駆動エネルギーの削減を確保しながら、ベルトスリップ状態の推定精度が低いとき、ベルトスリップ制御中にベルトが大きく滑ることを防止することができるベルト式無段変速機の制御装置と制御方法を提供することを目的とする。
上記目的を達成するため、本発明のベルト式無段変速機の制御装置では、駆動源から入力するプライマリプーリと、駆動輪へ出力するセカンダリプーリと、前記プライマリプーリと前記セカンダリプーリに掛け渡したベルトと、を有し、前記プライマリプーリへのプライマリ油圧と前記セカンダリプーリへのセカンダリ油圧を制御することにより、前記ベルトのプーリ巻き付け径の比による変速比を制御する。
このベルト式無段変速機の制御装置において、前記セカンダリ油圧を加振し、実セカンダリ油圧に含まれる振動成分と実変速比に含まれる振動成分との位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記実セカンダリ油圧を低減させる制御を行うベルトスリップ制御手段と、前記変速比の変化率である変速速度が所定値未満であるとき、前記ベルトスリップ制御手段によるベルトスリップ制御を許可するベルトスリップ制御許可判定手段と、を備えた。
よって、本発明のベルト式無段変速機の制御装置にあっては、ベルトスリップ制御許可判定手段において、変速比の変化率である変速速度が所定値未満であるとき、ベルトスリップ制御手段によるベルトスリップ制御が許可される。
すなわち、ベルトスリップ制御では、実変速比に含まれる加振による振動成分を用いてベルトスリップ状態を推定しているため、変速比の変化率である変速速度が、加振による振動成分の抽出に影響を及ぼす。つまり、変速速度が所定値未満であるときには、変速による変速比変動と加振による振動成分の切り分けができる。一方、変速速度が所定値を超えるときには、実変速比に含まれる振動成分が消え、変速による変速比変動と加振による振動成分の切り分けができない。
これに対し、ベルトスリップ状態の推定精度が高い変速速度が所定値未満のとき、ベルトスリップ制御を許可するため、プーリ油圧の低減によってベルトフリクションが低下し、変速機駆動負荷が低く抑えられる。一方、ベルトスリップ状態の推定精度が低い変速速度が所定値を超えるときは、ベルトスリップ制御が許可されないため、変速速度にかかわらずベルトスリップ制御を許可する場合のように、ベルトが大きく滑るようなことが防止される。
この結果、ベルトスリップ状態の推定精度が高いとき、ベルトフリクションの低下による消費駆動エネルギーの削減を確保しながら、ベルトスリップ状態の推定精度が低いとき、ベルトスリップ制御中にベルトが大きく滑ることを防止することができる。
実施例1の制御装置と制御方法が適用されたベルト式無段変速機搭載車両の駆動系と制御系を示す全体システム図である。 実施例1の制御装置と制御方法が適用されたベルト式無段変速機構を示す斜視図である。 実施例1の制御装置と制御方法が適用されたベルト式無段変速機構のベルトの一部を示す斜視図である。 実施例1のCVTコントロールユニット8にて実行されるライン圧制御、セカンダリ油圧制御(通常制御/ベルトスリップ制御)を示す制御ブロック図である。 実施例1のCVTコントロールユニット8にて実行されるセカンダリ油圧の通常制御とベルトスリップ制御(=「BSC」)の間での切り替え処理を示す基本フローチャートである。 実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理を示す全体フローチャートである。 実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理のうちトルクリミット処理を示すフローチャートである。 実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理のうちセカンダリ油圧の加振・補正処理を示すフローチャートである。 実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御から通常制御への復帰処理を示す全体フローチャートである。 実施例1のCVTコントロールユニット8にて実行される通常制御への復帰処理のうちトルクリミット処理を示すフローチャートである。 実施例1のCVTコントロールユニット8にて実行される通常制御への復帰処理のうち変速規制処理を示すフローチャートである。 ベルトスリップ制御中に変速変化率が小さい変速が行われるときの実変速比特性と目標変速比特性を示すタイムチャートである。 ベルトスリップ制御中に変速変化率が大きな変速が行われるときの実変速比特性と目標変速比特性を示すタイムチャートである。 変速比変化率の上限しきい値である所定値の決め方を説明する図であり、グラフAは指令変速比対応成分と振動成分の周波数特性を示し、グラフBは変速幅と変速時定数を異ならせたときの変速状態を示す。 通常制御からベルトスリップ制御・復帰制御を経過して通常制御へ戻る走行シーンにおけるBSC作動フラグ・SEC圧F/B禁止フラグ・アクセル開度・車速・エンジントルク・Ratio・SEC油圧・SEC_SOL電流補正量・SEC圧振動とRatio振動との位相差の各特性を示すタイムチャートである。 ベルトスリップ制御から通常制御への復帰制御を説明するためのトルクリミット制御を示すタイムチャートである。
以下、本発明のベルト式無段変速機の制御装置と制御方法を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
まず、構成を説明する。
図1は、実施例1の制御装置と制御方法が適用されたベルト式無段変速機搭載車両の駆動系と制御系を示す全体システム図である。図2は、実施例1の制御装置と制御方法が適用されたベルト式無段変速機構を示す斜視図である。図3は、実施例1の制御装置と制御方法が適用されたベルト式無段変速機構のベルトの一部を示す斜視図である。以下、図1〜図3に基づきシステム構成を説明する。
ベルト式無段変速機搭載車両の駆動系は、図1に示すように、エンジン1と、トルクコンバータ2と、前後進切替機構3と、ベルト式無段変速機構4と、終減速機構5と、駆動輪6,6と、を備えている。
前記エンジン1は、ドライバによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号により出力トルクが制御可能である。このエンジン1には、スロットルバルブ開閉動作や燃料カット動作等により出力トルク制御を行う出力トルク制御アクチュエータ10を有する。
前記トルクコンバータ2は、トルク増大機能を有する発進要素であり、トルク増大機能を必要としないときには、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21を直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、エンジン出力軸11にコンバータハウジング22を介して連結されたタービンランナ23と、トルクコンバータ出力軸21に連結されたポンプインペラ24と、ワンウェイクラッチ25を介して設けられたステータ26と、を構成要素とする。
前記前後進切替機構3は、ベルト式無段変速機構4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、前進クラッチ31と、後退ブレーキ32と、を有する。前記ダブルピニオン式遊星歯車30は、サンギヤがトルクコンバータ出力軸21に連結され、キャリアが変速機入力軸40に連結される。前進クラッチ31は、前進走行時に締結し、ダブルピニオン式遊星歯車30のサンギヤとキャリアを直結する。前記後退ブレーキ32は、後退走行時に締結し、ダブルピニオン式遊星歯車30のリングギヤをケースに固定する。
前記ベルト式無段変速機構4は、ベルト接触径の変化により変速機入力軸40の入力回転数と変速機出力軸41の出力回転数の比である変速比を無段階に変化させる無段変速機能を有する。このベルト式無段変速機構4は、プライマリプーリ42と、セカンダリプーリ43と、ベルト44と、を有する。前記プライマリプーリ42は、固定プーリ42aとスライドプーリ42bにより構成され、スライドプーリ42bは、プライマリ油圧室45に導かれるプライマリ油圧によりスライド動作する。前記セカンダリプーリ43は、固定プーリ43aとスライドプーリ43bにより構成され、スライドプーリ43bは、セカンダリ油圧室46に導かれるプライマリ油圧によりスライド動作する。前記ベルト44は、図2に示すように、プライマリプーリ42のV字形状をなすシーブ面42c,42dと、セカンダリプーリ43のV字形状をなすシーブ面43c,43dに掛け渡されている。このベルト44は、図3に示すように、環状リングを内から外へ多数重ね合わせた2組の積層リング44a,44aと、打ち抜き板材により形成され、2組の積層リング44a,44aに対する挟み込みにより互いに連接して環状に設けられた多数のエレメント44bにより構成される。そして、エレメント44bには、両側位置にプライマリプーリ42のシーブ面42c,42dと、セカンダリプーリ43のシーブ面43c,43dと接触するフランク面44c,44cを有する。
前記終減速機構5は、ベルト式無段変速機構4の変速機出力軸41からの変速機出力回転を減速すると共に差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、変速機出力軸41とアイドラ軸50と左右のドライブ軸51,51に介装され、減速機能を持つ第1ギヤ52と、第2ギヤ53と、第3ギヤ54と、第4ギヤ55と、差動機能を持つギヤディファレンシャルギヤ56を有する。
ベルト式無段変速機搭載車の制御系は、図1に示すように、変速油圧コントロールユニット7と、CVTコントロールユニット8と、を備えている。
前記変速油圧コントロールユニット7は、プライマリ油圧室45に導かれるプライマリ油圧と、セカンダリ油圧室46に導かれるセカンダリ油圧を作り出す油圧制御ユニットである。この変速油圧コントロールユニット7は、オイルポンプ70と、レギュレータ弁71と、ライン圧ソレノイド72と、変速制御弁73と、減圧弁74、セカンダリ油圧ソレノイド75と、サーボリンク76と、変速指令弁77と、ステップモータ78と、を備えている。
前記レギュレータ弁71は、オイルポンプ70から吐出圧を元圧とし、ライン圧PLを調圧する弁である。このレギュレータ弁71は、ライン圧ソレノイド72を有し、オイルポンプ70から圧送された油の圧力を、CVTコントロールユニット8からの指令に応じて所定のライン圧PLに調圧する。
前記変速制御弁73は、レギュレータ弁71により作り出されたライン圧PLを元圧とし、プライマリ油圧室45に導かれるプライマリ油圧を調圧する弁である。この変速制御弁73は、メカニカルフィードバック機構を構成するサーボリンク76にスプール73aが連結され、サーボリンク76の一端に連結された変速指令弁77がステップモータ78によって駆動されると共に、サーボリンク76の他端に連結されたプライマリプーリ42のスライドプーリ42bからスライド位置(実プーリ比)のフィードバックを受ける。つまり、変速時、CVTコントロールユニット8からの指令によりステップモータ78を駆動すると、変速制御弁73のスプール73aの変位によってプライマリ油圧室45へのライン圧PLの供給/排出を行って、ステップモータ78の駆動位置で指令された目標変速比となるようにプライマリ油圧を調整する。そして、変速が終了するとサーボリンク76からの変位を受けてスプール73aを閉弁位置に保持する。
前記減圧弁74は、レギュレータ弁71により作り出されたライン圧PLを元圧としてセカンダリ油圧室46に導かれるセカンダリ油圧を減圧制御により調圧する弁である。この減圧弁74は、セカンダリ油圧ソレノイド75を備え、CVTコントロールユニット8からの指令に応じてライン圧PLを減圧して指令セカンダリ油圧に制御する。
前記CVTコントロールユニット8は、車速やスロットル開度等に応じた目標変速比を得る制御指令をステップモータ78に出力する変速比制御、スロットル開度等に応じた目標ライン圧を得る制御指令をライン圧ソレノイド72に出力するライン圧制御、変速機入力トルク等に応じた目標セカンダリプーリ推力を得る制御指令をセカンダリ油圧ソレノイド75に出力するセカンダリ油圧制御、前進クラッチ31と後退ブレーキ32の締結/解放を制御する前後進切替制御、ロックアップクラッチ20の締結/解放を制御するロックアップ制御、等を行う。このCVTコントロールユニット8には、プライマリ回転センサ80、セカンダリ回転センサ81、セカンダリ油圧センサ82、油温センサ83、インヒビタースイッチ84、ブレーキスイッチ85、アクセル開度センサ86、他のセンサ・スイッチ類87等からのセンサ情報やスイッチ情報が入力される。また、エンジンコントロールユニット88からはトルク情報を入力し、エンジンコントロールユニット88へはトルクリクエストを出力する。
図4は、実施例1のCVTコントロールユニット8にて実行されるライン圧制御、セカンダリ油圧制御(通常制御/ベルトスリップ制御)を示す制御ブロック図である。
実施例1のCVTコントロールユニット8の油圧制御系は、図4に示すように、基礎油圧計算部90と、ライン圧制御部91と、セカンダリ油圧制御部92と、正弦波加振制御部93と、セカンダリ油圧補正部94と、を備えている。
前記基礎油圧計算部90は、エンジンコントロールユニット88(図1参照)からのトルク情報(エンジン回転数、燃料噴射時間等)に基づいて、変速機入力トルクを計算する入力トルク計算部90aと、入力トルク計算部90aで求めた変速機入力トルクから基礎セカンダリ推力(セカンダリプーリ43に必要なベルトクランプ力)を計算する基礎セカンダリ推力計算部90bと、変速時に必要な差推力(プライマリプーリ42とセカンダリプーリ43のベルトクランプ力の差)を計算する変速時必要差推力計算部90cと、計算した基礎セカンダリ推力を変速時必要差推力に基づいて補正する補正部90dと、補正したセカンダリ推力を目標セカンダリ油圧に変換するセカンダリ油圧変換部90eと、を有する。さらに、入力トルク計算部90aで求めた変速機入力トルクから基礎プライマリ推力(プライマリプーリ42に必要なベルトクランプ力)を計算する基礎プライマリ推力計算部90fと、計算した基礎プライマリ推力を、変速時必要差推力計算部90cで計算した変速時必要差推力に基づいて補正する補正部90gと、補正したプライマリ推力を目標プライマリ油圧に変換するプライマリ油圧変換部90hと、を有する。
前記ライン圧制御部91は、プライマリ油圧変換部90hから出力された目標プライマリ油圧を、セカンダリ油圧制御部92から得られる指示セカンダリ油圧と比較して、目標プライマリ油圧≧指示セカンダリ油圧であるとき、目標ライン圧を目標プライマリ油圧と同じ値に設定し、目標プライマリ油圧<指示セカンダリ油圧であるとき、目標ライン圧を指示セカンダリ油圧と同じ値に設定する目標ライン圧決定部91aと、目標ライン圧決定部91aで決定された目標ライン圧を、ソレノイドに印加する電流値に変換し、レギュレータ弁71のライン圧ソレノイド72に変換後の指示電流値を出力する油圧−電流変換部91bと、を有する。
前記セカンダリ油圧制御部92は、通常制御時、セカンダリ油圧センサ82にて検出した実セカンダリ油圧を用いたフィードバック制御により指示セカンダリ油圧を求め、ベルトスリップ制御時、実セカンダリ油圧を用いることのないオープン制御により指示セカンダリ油圧を求める。セカンダリ油圧変換部90eからの目標セカンダリ油圧をフィルタ処理するローパスフィルタ92aと、実セカンダリ油圧と目標セカンダリ油圧の偏差を算出する偏差算出部92bと、偏差=0を設定したゼロ偏差設定部92cと、算出偏差とゼロ偏差の何れかを選択して切り替える偏差切替部92dと、油温により積分ゲインを決定する積分ゲイン決定部92eと、を有する。そして、積分ゲイン決定部92eからの積分ゲインと偏差切替部92dからの偏差を乗算する乗算器92fと、乗算器92fからのFB積分制御量を積算する積分器92gと、セカンダリ油圧変換部90eからの目標セカンダリ油圧に積算したFB積分制御量を加算する加算器92hと、加算した値に上下限リミッタを施して指示セカンダリ油圧(なお、ベルトスリップ制御時は、「基本セカンダリ油圧」という。)を求める制限器92iと、を有する。そして、ベルトスリップ制御時、基本セカンダリ油圧に正弦波加振指令を加える振動加算器92jと、加振した基本セカンダリ油圧をセカンダリ油圧補正量により補正して指示セカンダリ油圧とする油圧補正器92kと、指示セカンダリ油圧をソレノイドに印加する電流値に変換し、減圧弁74のセカンダリ油圧ソレノイド75に変換後の指示電流値を出力する油圧−電流変換部92mと、を有する。なお、前記偏差切替部92dでは、BSC作動フラグ=0(通常制御中)のとき算出偏差が選択され、BSC作動フラグ=1(ベルトスリップ制御中)のときゼロ偏差が選択される。
前記正弦波加振制御部93は、ベルトスリップ制御に適した加振周波数と加振振幅を決定し、決定した周波数と振幅による正弦波油圧振動を加える正弦波加振器93aと、正弦波油圧振動を全く加えないゼロ加振設定器93bと、正弦波油圧振動とゼロ加振の何れかを選択して切り替える加振切替部93cと、を有する。なお、前記加振切替部93cでは、BSC作動フラグ=0(通常制御中)のときゼロ加振が選択され、BSC作動フラグ=1(ベルトスリップ制御中)のとき正弦波油圧振動が選択される。
前記セカンダリ油圧補正部94は、プライマリ回転センサ80からのプライマリ回転数Npriとセカンダリ回転センサ81からのセカンダリ回転数Nsecの比により実変速比Ratioを算出する実変速比算出部94aと、セカンダリ油圧センサ82により取得された実セカンダリ油圧Psecをあらわす信号から振動成分を抽出する第1バンドパスフィルタ94bと、実変速比算出部94aにより取得された算出データから振動成分を抽出する第2バンドパスフィルタ94cと、を有する。そして、両バンドパスフィルタ94b,94cにて抽出された振動成分を掛け合わせる乗算器94dと、乗算した結果から位相差情報を抽出するローパスフィルタ94eと、ローパスフィルタ94eからの位相差情報に基づいてセカンダリ油圧補正量を決定するセカンダリ油圧補正量決定部94fと、セカンダリ油圧のゼロ補正量を設定するゼロ補正量設定器94gと、セカンダリ油圧補正量とゼロ補正量の何れかを選択して切り替える補正量切替部94hと、を有する。なお、前記補正量切替部94hでは、BSC作動フラグ=0(通常制御中)のときゼロ補正量が選択され、BSC作動フラグ=1(ベルトスリップ制御中)のとき決定したセカンダリ油圧補正量が選択される。
図5は、実施例1のCVTコントロールユニット8にて実行されるセカンダリ油圧の通常制御とベルトスリップ制御(=「BSC」)の間での切り替え処理を示す基本フローチャートである。以下、図5の各ステップについて説明する。
ステップS1では、キーオンによるスタート、あるいは、ステップS2でのBSC不許可の判定、あるいは、ステップS5での通常制御復帰処理に続き、ベルト式無段変速機構4の通常制御を行い、ステップS2へ進む。なお、通常制御中は、BSC作動フラグ=0にセットする。
ステップS2では、ステップS1での通常制御に続き、下記のBSC許可条件を全て満たすか否かを判定し、YES(全てのBSC許可条件を満たす)の場合、ステップS3へ進み、ベルトスリップ制御(BSC)を行う。NO(BSC許可条件のうち1つでも満たさない条件がある)の場合、ステップS1へ戻り、通常制御を続ける。
ここで、BSC許可条件の一例を下記に示す。
(1) ベルト式無段変速機構4の伝達トルク容量が安定していること(伝達トルク容量の変化率が小さいこと)。
この条件(1)は、例えば、
a. |指令トルク変化率|<所定値
b. |指令変速比変化率|<所定値
という2つの条件成立に基づき判断する。
(2) プライマリプーリ42への入力トルクの推定精度が信頼できる範囲に入っていること。
この条件(2)は、例えば、エンジンコントロールユニット88からのトルク情報(推定エンジントルク)、トルクコンバータ2のロックアップ状態、ブレーキペダルの操作状態、レンジ位置等に基づき判断する。
(3) 所定時間、上記(1),(2)の許可状態を継続すること。
ステップS2では、以上の条件(1),(2),(3)の全ての条件を満たすか否かを判断する。
ステップS3では、ステップS2でのBSC許可判定、あるいは、ステップS4でのBSC継続判定に続き、ベルト式無段変速機構4のベルト44への入力を低減し、ベルト44を滑らせることなく、適正なスリップ状態を保つベルトスリップ制御(図6〜図8)を行い、ステップS4へ進む。なお、ベルトスリップ制御中は、BSC作動フラグ=1にセットする。
ステップS4では、ステップS3でのベルトスリップ制御に続き、下記のBSC継続条件を全て満たすか否かを判定し、YES(全てのBSC継続条件を満たす)の場合、ステップS3へ戻り、ベルトスリップ制御(BSC)をそのまま継続する。NO(BSC継続条件のうち1つでも満たさない条件がある)の場合、ステップS5へ進み、通常制御復帰処理を行う。
ここで、BSC継続条件の一例を下記に示す。
(1) ベルト式無段変速機構4の伝達トルク容量が安定していること(伝達トルク容量の変化率が小さいこと)。
この条件(1)は、例えば、
a. |指令トルク変化率|<所定値
b. |指令変速比変化率|<所定値
という2つの条件成立に基づき判断する。
(2) プライマリプーリ42への入力トルクの推定精度が信頼できる範囲に入っていること。
この条件(2)は、例えば、エンジンコントロールユニット88からのトルク情報(推定エンジントルク)、トルクコンバータ2のロックアップ状態、ブレーキペダルの操作状態、レンジ位置等に基づき判断する。
以上の条件(1),(2)を共に満たすか否かを判断する。
すなわち、BSC許可条件とBSC継続条件の差異は、BSC継続条件にはBSC許可条件のうち(3)の継続条件が無いことである。
ステップS5では、ステップS4でのBSC継続条件のうち1つでも満たさない条件があるとの判断に続き、ベルトスリップ制御から通常制御へ復帰するときのベルト44の滑りを防止する通常制御復帰処理(図9〜図11)を行い、処理終了後、ステップS1へ戻り、通常制御へ移行する。
図6は、実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理を示す全体フローチャートである。図7は、実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理のうちトルクリミット処理を示すフローチャートである。図8は、実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理のうちセカンダリ油圧の加振・補正処理を示すフローチャートである。
まず、図6から明らかなように、BSC許可判定からBSC継続判定が維持されているベルトスリップ制御中、実セカンダリ油圧を用いて指示セカンダリ油圧を求めるフィードバック制御の禁止処理(ステップS31)と、通常制御への復帰に備えたトルクリミット処理(ステップS32)と、ベルトスリップ制御のためのセカンダリ油圧の加振・補正処理(ステップS33)と、が同時進行にて行われる。
ステップS31では、BSC許可判定からBSC継続判定が維持されているベルトスリップ制御中、セカンダリ油圧センサ82にて検出した実セカンダリ油圧を用いて指示セカンダリ油圧を求めるフィードバック制御を禁止する。
すなわち、指令セカンダリ油圧を求めるに際して、通常制御時のフィードバック制御を禁止して、ベルトスリップ制御中のゼロ偏差を用いたオープン制御に切り替える。そして、ベルトスリップ制御から通常制御へ移行すると、再びフィードバック制御に復帰する。
ステップS32では、BSC許可判定からBSC継続判定が維持されているベルトスリップ制御中、図7のトルクリミット処理を行う。
すなわち、図7のフローチャートにおいて、ステップS321では、“ベルトスリップ制御からのトルクリミット要求”をドライバ要求トルクとする。
ステップS33では、BSC許可判定からBSC継続判定が維持されているベルトスリップ制御中、図8のセカンダリ油圧の加振・補正を行う。以下、図8のフローチャートの各ステップについて説明する。
ステップS331では、指令セカンダリ油圧を加振する。すなわち、指令セカンダリ油圧に所定振幅かつ所定周波数の正弦波油圧を重畳し、ステップS332へ進む。
ステップS332では、ステップS331での指令セカンダリ油圧の加振に続き、セカンダリ油圧センサ82から実セカンダリ油圧を検出し、プライマリ回転センサ80とセカンダリ回転センサ81からの回転数情報に基づき、実変速比を計算により検出し、ステップS333へ進む。
ステップS333では、ステップS332での実セカンダリ油圧と実変速比の検出に続き、実セカンダリ油圧と実変速比のそれぞれにバンドパスフィルタ処理を行い、実セカンダリ油圧と実変速比それぞれの振動成分(正弦波)を抽出し、それらを掛け合わせて乗算し、乗算値にローパスフィルタ処理を行い、振幅と実セカンダリ油圧振動から実変速比振動までの位相差θ(余弦波)にて表される値に変換し、ステップS334へ進む。
ここで、実セカンダリ油圧振幅をA、実変速比振幅をBとすると、
実セカンダリ油圧振動:Asinωt …(1)
実変速比振動:Bsin(ωt+θ) …(2)
で表される。
(1)と(2)を掛け合わせ、積和の公式である
sinαsinβ=-1/2{cos(α+β)−cos(α−β)} …(3)
を用いると、
Asinωt×Bsin(ωt+θ)=(1/2)ABcosθ−(1/2)ABcos(2ωt+θ) …(4)
となる。
上記(4)式において、ローパスフィルタを通すと、加振周波数の2倍成分である(1/2)ABcos(2ωt+θ)が低減され、上記(4)式は、
Asinωt×Bsin(ωt+θ)≒(1/2)ABcosθ …(5)
というように、振幅A,Bと実セカンダリ油圧振動から実変速比振動までの位相差θの式にて表すことができる。
ステップS334では、ステップS333での実セカンダリ油圧振動から実変速比振動までの位相差θの算出に続き、実セカンダリ油圧振動から実変速比振動までの位相差θが、0≦位相差θ<所定値1(マイクロスリップ領域)であるか否かを判断し、YES(0≦位相差θ<所定値1)の場合はステップS335へ進み、NO(所定値1≦位相差θ)の場合はステップS336へ進む。
ステップS335では、ステップS334での0≦位相差θ<所定値1(マイクロスリップ領域)であるとの判断に続き、セカンダリ油圧補正量を「−ΔPsec」とし、ステップS339へ進む。
ステップS336では、ステップS334での所定値1≦位相差θであるとの判断に続き、実セカンダリ油圧振動から実変速比振動までの位相差θが、所定値1≦位相差θ<所定値2(目標スリップ領域)であるか否かを判断し、YES(所定値1≦位相差θ<所定値2)の場合はステップS337へ進み、NO(所定値2≦位相差θ)の場合はステップS338へ進む。
ステップS337では、ステップS336での所定値1≦位相差θ<所定値2(目標スリップ領域)であるとの判断に続き、セカンダリ油圧補正量を「0」とし、ステップS339へ進む。
ステップS338では、ステップS336での所定値2≦位相差θ(マイクロ/マクロスリップ遷移領域)であるとの判断に続き、セカンダリ油圧補正量を「+ΔPsec」とし、ステップS339へ進む。
ステップS339では、ステップS335、ステップS337、ステップS338でのセカンダリ油圧補正量の設定に続き、基本セカンダリ油圧+セカンダリ油圧補正量を、指令セカンダリ油圧とし、エンドへ進む。
図9は、実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御から通常制御への復帰処理を示す全体フローチャートである。図10は、実施例1のCVTコントロールユニット8にて実行される通常制御への復帰処理のうちトルクリミット処理を示すフローチャートである。図11は、実施例1のCVTコントロールユニット8にて実行される通常制御への復帰処理のうち変速規制処理を示すフローチャートである。
まず、図9から明らかなように、BSC継続中止から通常制御が開始されるまでのベルトスリップ制御から通常制御への復帰中、実セカンダリ油圧を用いて指示セカンダリ油圧を求めるフィードバック制御の復帰処理(ステップS51)と、通常制御への復帰に向かうトルクリミット処理(ステップS52)と、ベルトスリップ制御のためのセカンダリ油圧の加振・補正のリセット処理(ステップS53)と、変速速度を規制する変速規制処理(ステップS54)と、が同時進行にて行われる。
ステップS51では、BSC継続中止から通常制御が開始されるまでのベルトスリップ制御から通常制御への復帰中、セカンダリ油圧センサ82にて検出した実セカンダリ油圧を用いて指示セカンダリ油圧を求めるフィードバック制御に復帰する。
ステップS52では、BSC継続中止から通常制御が開始されるまでのベルトスリップ制御から通常制御への復帰中、図10の通常制御への復帰に向かうトルクリミット処理を行う。
ステップS53では、BSC継続中止から通常制御が開始されるまでのベルトスリップ制御から通常制御への復帰中、図8のセカンダリ油圧の加振・補正をリセットし、通常制御に備える。
ステップS54では、BSC継続中止から通常制御が開始されるまでのベルトスリップ制御から通常制御への復帰中、図11の変速速度を規制する変速規制処理を行う。
以下、図10のトルクリミット処理を示すフローチャートの各ステップについて説明する。このトルクリミット処理では、「ドライバ要求トルク」と「BSCからのトルクリミット要求」と「トルク容量(算出トルク容量)」との3つの値の大小関係に基づき制御を切替えるのがポイントである。
ここで、「ドライバ要求トルク」とは、運転者が要求するエンジントルクである。「BSCからのトルクリミット要求」とは、図16のフェーズ(2)、(3)におけるトルク制限量である。「トルク容量」とは、通常(図16のフェーズ(1))は、設計上の許容トルク容量であり、ベルト滑りが生じないよう、ベルト式無段変速機構4のメカニカル的バラツキを考慮した安全マージン分だけドライバ要求トルクより高めに設定される値である。ここで、実際のトルク容量の制御は、セカンダリ油圧制御で行う。
さらに、「算出トルク容量」とは、BSC中(図16のフェーズ(2))と復帰処理時(図16のフェーズ(3))のトルク容量である。この算出トルク容量は、実セカンダリ油圧と実変速比に基づく値であり、具体的には、実セカンダリ油圧と実変速比により算出される値である(二つのプーリ42,43のうち、エンジントルクが入ってくる側のプーリ、すなわち、プライマリプーリ42でのトルク容量)。
ステップS521では、「ドライバ要求トルク」が「BSCからのトルクリミット要求」より大きいか否かを判断し、YESの場合はステップS522へ進み、NOの場合はステップS525へ進む。
ステップS522では、ステップS521での「ドライバ要求トルク」>「BSCからのトルクリミット要求」であるとの判断に続き、「算出トルク容量」が「BSCからのトルクリミット要求」より大きいか否かを判断し、YESの場合はステップS523へ進み、NOの場合はステップS524へ進む。
ステップS523では、ステップS522での「算出トルク容量」>「BSCからのトルクリミット要求」であるとの判断に続き、「BSCからのトルクリミット要求」を、「BSCからのトルクリミット要求(前回値)+ΔT」と「算出許容トルク容量」のうち小さい方の値に設定し、リターンへ進む。
ステップS524では、ステップS522での「算出トルク容量」≦「BSCからのトルクリミット要求」であるとの判断に続き、「BSCからのトルクリミット要求」を、「BSCからのトルクリミット要求(前回値)」と「ドライバ要求トルク」のうち小さい方の値に設定し、リターンへ進む。
ステップS525では、ステップS521での「ドライバ要求トルク」≦「BSCからのトルクリミット要求」であるとの判断に続き、「算出トルク容量」が「BSCからのトルクリミット要求」より大きいか否かを判断し、YESの場合はステップS527へ進み、NOの場合はステップS526へ進む。
ステップS526では、ステップS525での「算出トルク容量」≦「BSCからのトルクリミット要求」であるとの判断に続き、「BSCからのトルクリミット要求」を、「BSCからのトルクリミット要求(前回値)」と「ドライバ要求トルク」のうち小さい方の値に設定し、リターンへ進む。
ステップS527では、ステップS525での「算出トルク容量」>「BSCからのトルクリミット要求」であるとの判断に続き、「BSCからのトルクリミット」を解除し、エンドへ進む。
以下、図11の目標プライマリ回転数の制限による変速規制処理を示すフローチャートの各ステップについて説明する。
ステップS541では、エンジントルクにより目標イナーシャトルクを算出し、ステップS542へ進む。
ステップS542では、ステップS541での目標イナーシャトルクの算出に続き、目標イナーシャトルクにより目標プライマリ回転変化率を算出し、ステップS543へ進む。
ステップS543では、ステップS542での目標プライマリ回転変化率の算出に続き、目標プライマリ回転変化率を超えない制限目標プライマリ回転数を算出し、ステップS544へ進む。
ステップS544では、ステップS543での制限目標プライマリ回転数の算出に続き、制限目標プライマリ回転数に基づき、変速制御を行い、ステップS545へ進む。
ステップS545では、ステップS544での変速制御に続き、制限目標プライマリ回転数に基づく変速制御が終了したか否か、すなわち、実プライマリ回転数が制限目標プライマリ回転数に到達したか否かを判断する。YES(変速制御終了)の場合はエンドへ進み、NO(変速制御途中)の場合はステップS541へ戻る。
次に、作用を説明する。
実施例1のベルト式無段変速機構4の制御装置と制御方法における作用を、「BSC許可判定作用とBSC継続判定作用」、「|指令変速変化率|<所定値によるBSC許可・継続判定作用」、「ベルトスリップ制御作用(BSC作用)」、「BSCから通常制御への復帰制御作用」に分けて説明する。
[BSC許可判定作用とBSC継続判定作用]
車両走行を開始すると、図5のフローチャートにおいて、ステップS1→ステップS2へと進み、ステップS2でのBSC許可判定条件の全てを満足しない限り、ステップS1→ステップS2へと進む流れが繰り返され、通常制御が維持される。すなわち、ステップS2でのBSC許可判定条件の全てを満足することが、BSC制御の開始条件とされる。
ここで、実施例1でのBSC許可条件について下記に述べる。
(1) ベルト式無段変速機構4の伝達トルク容量が安定していること(伝達トルク容量の変化率が小さいこと)。
この条件(1)は、例えば、
a. |指令トルク変化率|<所定値
b. |指令変速比変化率|<所定値
という2つの条件成立に基づき判断する。
(2) プライマリプーリ42への入力トルクの推定精度が信頼できる範囲に入っていること。
この条件(2)は、例えば、エンジンコントロールユニット88からのトルク情報(推定エンジントルク)、トルクコンバータ2のロックアップ状態、ブレーキペダルの操作状態、レンジ位置等に基づき判断する。
(3) 所定時間、上記(1),(2)の許可状態を継続すること。
ステップS2では、以上の条件(1),(2),(3)の全ての条件を満たすか否かを判断する。
したがって、通常制御中、ベルト式無段変速機構4の伝達トルク容量が安定していて、かつ、プライマリプーリ42への入力トルクの推定精度が信頼できる範囲に入っている状態が、所定時間継続すると、ベルトスリップ制御の開始が許可される。
このように、BSC許可条件の全てを満足することにより、ベルトスリップ制御の開始が許可されるため、高い制御精度が保証される好ましい適応領域でベルトスリップ制御を開始することができる。
そして、ステップS2でBSC許可判定がなされると、ステップS3へ進み、ベルト式無段変速機構4のベルト44への入力を低減し、ベルト44を滑らせることなく、適正なスリップ状態を保つベルトスリップ制御が行われる。そして、ステップS3でのベルトスリップ制御に続き、次のステップS4では、BSC継続条件を全て満たすか否かが判定され、全てのBSC継続条件を満たす限り、ステップS3→ステップS4へと進む流れが繰り返され、ベルトスリップ制御(BSC)が継続される。
ここで、実施例1でのBSC継続条件としては、BSC許可条件のうち(1),(2)条件を用いている。つまり、BSC許可条件のうち(3)の所定時間継続条件がBSC継続条件には無い。
このため、ベルトスリップ制御中において、(1),(2)の条件のうち1つの条件でも満足しない状態となったら直ちにベルトスリップ制御を止めて通常制御へ復帰させるため、制御精度が保証されない状態でのベルトスリップ制御の継続を防止することができる。
[|指令変速変化率|<所定値によるBSC許可・継続判定作用]
実施例1のベルトスリップ制御許可判定では、変速比の変化率である変速速度が所定値未満であることを条件の一つとし、ベルトスリップ制御を許可するようにしている。
すなわち、変速変化率(変速比の単位時間当たりの変化幅=変速速度)が小さいときには、図12の目標変速比特性に対する実変速比特性に示すように、変速中も加振による振動成分が生じるが、変速変化率が小さいため、変速による変速比変動と加振による振動成分の切り分けができる。つまり、実変速比の振動成分を用いた位相差監視によるベルトスリップ状態の推定精度が高いといえる。
一方、変速変化率が大きいときには、図13の領域Cに示すように、実変速比に含まれる振動成分が消え、変速による変速比変動と加振による振動成分の切り分けができない。つまり、実変速比の振動成分を用いた位相差監視によるベルトスリップ状態の推定精度が低いといえる。
これに対し、実施例1では、|指令変速比変化率|<所定値であり、ベルトスリップ状態の推定精度が高いときは、ベルトスリップ制御を許可する。このため、セカンダリ油圧の低減によってベルトフリクションが低下し、ベルトフリクションの低下分、変速機駆動負荷が低く抑えられる。この結果、エンジン1の実用燃費の向上を図ることができる。
一方、|指令変速比変化率|≧所定値であり、ベルトスリップ状態の推定精度が低いときは、ベルトスリップ制御が許可されない。このため、変速速度条件を含めないでベルトスリップ制御を許可した場合のように、ベルトスリップ制御中にベルトが大きく滑ってしまうようなことが防止される。すなわち、ベルトスリップ制御中は、セカンダリ油圧を低減することでベルトクランプ力が低下している。この状態で変速機入力トルクが増大すると、クランプ力の低いベルトが大きく滑るおそれがある。
次に、実施例1の|指令変速比変化率|<所定値というBSC許可条件のうち、指令変速比変化率の大きさ判断の上限値である「所定値」の決め方について説明する。
ベルトスリップ制御系は、図4の正弦波加振制御部93において、指令セカンダリ油圧に正弦波油圧振動を重畳して加振し、この加振によって実セカンダリ油圧に含まれる振動成分と実変速比Ratioに含まれる振動成分を用いてベルトスリップ状態を推定している。このため、ベルトスリップ制御を成立させるには、実セカンダリ油圧に含まれる振動成分の抽出と実変速比Ratioに含まれる振動成分の抽出と、抽出した振動成分に基づくベルトスリップ状態の推定精度を確保できることが必要条件となる。つまり、ベルトスリップ制御中にベルト式無段変速機構4への変速比変化率を徐々に上昇させたとき、実セカンダリ油圧と実変速比Ratioに含まれる振動成分が抽出でき、かつ、抽出した振動成分に基づくベルトスリップ状態の推定精度を確保できる限界域と判定された変速比変化率を、「所定値」として設定する。
この「所定値」の詳しい設定手法を、図14グラフAに示す指令変速比対応成分と振動成分の周波数特性と、図14グラフBに示す変速幅と変速時定数を異ならせたときの変速状態に基づいて説明する。
変速状態は、1次遅れ系に近似できるため、変速幅Kと折れ点周波数f(=1/T)で表すことができる。この図14グラフAに示す周波数特性において、変速幅として異なる変速幅K1<K2を与え、折れ点周波数として異なる折れ点周波数f1<f2<f3を与えた場合を考える。まず、折れ点周波数f1の場合の変速状態は、図14グラフBの{K1/(1+T1s)}となり、折れ点周波数f2の場合の変速状態は、図14グラフBの{K1/(1+T2s)}となり、折れ点周波数f3の場合の変速状態は、図14グラフBの{K1/(1+T3s)}となる。つまり、折れ点周波数は、一定の変速幅における変速速度の指標となり、折れ点周波数が大きな値になるほど変速速度が速くなる。このように、変速幅K1と折れ点周波数f1<f2<f3を与えた場合、図14に示すように、指令変速比対応成分が加振による振動成分と干渉しない限界の周波数である限界周波数Dまでに余裕がある。そこで、「所定値」を求めるに際し、変速幅を、システムより決まる最大変速幅K2にしたとき、変速速度の上限しきい値がどこに存在するかを解析する。
例えば、折れ点周波数f3にて変速幅をK2としたとき、図14グラフAに示すように、加振による振動成分と{k2/(1+T3s)}の特性が干渉する。この状態は、変速速度が「所定値」を超えていることを意味する。折れ点周波数f2にて変速幅をK2としたとき、図14グラフAに示すように、加振よる振動成分と{k2/(1+T2s)}の特性が干渉しない限界周波数Dにて一致する。つまり、この折れ点周波数f2が、変速速度の上限しきい値を決める上限折れ点周波数であり、上限折れ点周波数f2での変速速度が「所定値」であることを意味する。そして、最大変速幅K2のとき、上限周波数f2より小さい値であると、変速速度が「所定値」までに余裕があることを意味する。
実際に変速速度の上限しきい値である「所定値」を求める際の手法を説明する。指令変速比対応成分のプロフィールが一定特性(平坦+一定勾配低下による特性)であり、振動成分のゲイン特性と干渉しない限界周波数Dと、最大変速幅は既知である。このため、これらの既知情報により上限周波数f2が一義的に決まり、{k2/(1+T2s)}の周波数特性を描くことができる。そして、変速速度は,図14グラフBに示す{k2/(1+T2s)}の特性の立ち上がり傾き(=単位時間当たりの変速比変化幅)であらわせ、この変速速度が、ベルトスリップ制御を許可する上限しきい値(=「所定値」)となる。
したがって、実セカンダリ油圧と実変速比Ratioに含まれる振動成分の抽出限界域までの変速速度(=変速比変化率)を許容することで、ベルトスリップ状態の推定精度を確保しつつ、変速速度に関するベルトスリップ制御の許可条件範囲を拡大することができる。
実施例1では、指令変速変化率が所定値未満であるとき、ベルトスリップ制御を許可するようにしている。
すなわち、ベルト式無段変速機構4における実際の変速比変化率に基づいて判断するのではなく、目標変速比を演算により決め、現在の変速比と目標変速比により指令変速比変化率が算出された時点で、ベルトスリップ制御の開始許可判定と継続判定が行われることになる。
したがって、指令変速比変化率という予測情報に基づき、実際にベルト式無段変速機構4において変速比が変化するのに先行して、ベルトスリップ制御の開始許可判定およびベルトスリップ制御の継続判定を行うことができる。
[ベルトスリップ制御作用(BSC作用)]
ベルトスリップ制御の開始時は、安全率を見積もってベルト滑りのないクランプ力を得るセカンダリ油圧となっているため、位相差θが所定値1未満という条件が成立し、図8のフローチャートにおいて、ステップS331→ステップS332→ステップS333→ステップS334→ステップS335→ステップS339へと進む流れが繰り返され、この流れを繰り返す毎に指令セカンダリ油圧が、−ΔPsecの補正を受けて低下する。そして、位相差θが所定値1以上になると、位相差θが所定値2になるまでは、図8のフローチャートにおいて、ステップS331→ステップS332→ステップS333→ステップS334→ステップS336→ステップS337→ステップS339へと進む流れとなり、指令セカンダリ油圧が維持される。そして、位相差θが所定値2以上になると、図8のフローチャートにおいて、ステップS331→ステップS332→ステップS333→ステップS334→ステップS336→ステップS338→ステップS339へと進む流れとなり、指令セカンダリ油圧が、+ΔPsecの補正を受けて上昇する。
すなわち、ベルトスリップ制御では、位相差θが所定値1以上で所定値2未満という範囲内となるスリップ率を維持する制御が行われることになる。
図15に示すタイムチャートにより、ベルトスリップ制御を説明する。
まず、時刻t1にて上記(1),(2)のBSC許可条件が成立し、(1),(2)のBSC許可条件成立が継続し((3)のBSC許可条件)、時刻t2に達すると、上記(1),(2)のBSC継続条件のうち、少なくとも一つの条件が不成立となる時刻t2〜時刻t3までの間、BSC作動フラグとSEC圧F/B禁止フラグ(セカンダリ圧フィードバック禁止フラグ)が立てられ、ベルトスリップ制御が行われる。なお、時刻t3の少し前からのアクセル踏み込み操作によりBSC継続条件のうち、少なくとも一つの条件が不成立になると、時刻t3から時刻t4までは、通常制御への復帰制御が行われ、時刻t4以降は、通常制御が行われることになる。
このように、ベルトスリップ制御は、アクセル開度特性・車速特性・エンジントルク特性から明らかなように、図15の矢印Eに示す定常走行判定中において、セカンダリ油圧ソレノイド75へのソレノイド電流補正量特性に示すように、セカンダリ油圧を加振した結果あらわれるセカンダリ油圧の振動成分と変速比の振動成分との位相差θを監視し、電流値を増減させることで行われる。なお、セカンダリ油圧ソレノイド75は、ノーマルオープン(常開)であり、電流値を上昇させるとセカンダリ油圧は逆に低下する。
このベルトスリップ制御により、実変速比は、図15の実変速比特性(Ratio)に示すように、小さな振幅にて振動しているがほぼ一定に維持される。そして、位相差θは、図15のSEC圧振動とRatio振動との位相差特性に示すように、スリップ率がゼロに近い時刻t2からの時間経過にしたがって、スリップ率が徐々に高まって目標値(目標スリップ率)に収束する特性を示す。そして、セカンダリ油圧は、図15のSEC油圧特性に示すように、安全率を持った時刻t2からの時間経過にしたがって矢印Fに示すように低下していき、最終的に設計上の最低圧に油圧振幅を加えたものとなり、実最低圧に対しては余裕のある油圧レベルに収束する特性を示す。なお、ベルトスリップ制御が長く継続する場合は、位相差θの目標値(スリップ率の目標値)を保つように、設計上の最低圧+油圧振幅域での実セカンダリ油圧を維持することになる。
このように、ベルトスリップ制御によりセカンダリ油圧を低減することによって、ベルト44に作用するベルトフリクションが低下し、このベルトフリクションの低下分、ベルト式無段変速機構4を駆動する駆動負荷が低く抑えられる。この結果、BSC許可判定によるベルトスリップ制御中、走行性能に影響を与えることなく、エンジン1の実用燃費の向上を図ることができる。
[BSCから通常制御への復帰制御作用]
図6のステップS32では、BSC許可判定からBSC継続判定が維持されているベルトスリップ制御中、図7のステップS321において、“ベルトスリップ制御からのトルクリミット要求”をドライバ要求トルクとすることで、トルクリミット処理を行うようにしている。以下、図10及び図16に基づいて通常制御復帰時のトルクリミット作用を説明する。
まず、エンジンコントロールユニット88は、制御上のエンジントルク上限として、トルク制限量を有している。これにより、エンジン1の実トルクが上記トルク制限量を上回らないように制限される。
このトルク制限量は、様々な要求から決まる。例えば、ベルト式無段変速機構4からの要求として、通常制御中(図16のフェーズ(1))のベルト式無段変速機構4の入力トルク上限を“通常制御中のトルクリミット要求”とし、CVTコントロールユニット8がエンジンコントロールユニット88に対しこの“通常制御中のトルクリミット要求”を送信する。エンジンコントロールユニット88は、このようにして様々なコントローラから要求される複数の“トルクリミット要求”のうち最小のものをトルク制限量として選択することになる。
すなわち、通常制御のフェーズ(1)から時刻t5にてベルトスリップ制御に入ると、図16のトルク制限量特性に示すように、フェーズ(2)では、“BSCからのトルクリミット要求”がエンジンコントロールユニット88に送信される。
ただし、BSC中(図16のフェーズ(2))の“BSCからのトルクリミット要求”は、図10のトルクリミットのための事前準備であり、BSC中(図16のフェーズ(2))においては、事実上、トルク制限としては機能していない。
そして、時刻t6にてBSC継続中止となり、通常制御への復帰制御に入ると、時刻t6では、ドライバ要求トルク>BSCからのトルクリミット要求であり、かつ、算出トルク容量≦BSCからのトルクリミット要求であるため、図10のフローチャートにおいて、ステップS521→ステップS522→ステップS524→リターンへと進む流れが繰り返され、ステップS524では、BSCからのトルクリミット要求(前回値)が維持される。
その後、ドライバ要求トルク>BSCからのトルクリミット要求であるが、算出トルク容量>BSCからのトルクリミット要求となる時刻t7からは、図10のフローチャートにおいて、ステップS521→ステップS522→ステップS523→リターンへと進む流れが繰り返され、ステップS523では、BSCからのトルクリミット要求が、(前回値+ΔT)とされ、徐々にBSCからのトルクリミット要求が上昇する特性となり、実トルクもこの上昇勾配に沿って徐々に上昇する。
その後、時刻t7から「BSCからのトルクリミット要求」が上昇することにより、ドライバ要求トルク≦BSCからのトルクリミット要求となる時刻t8では、算出トルク容量>BSCからのトルクリミット要求であるため、図10のフローチャートにおいて、ステップS521→ステップS525→ステップS527→エンドへと進み、ステップS527では、BSCからのトルクリミットが解除される。
なお、この例では、ステップS526は通過しないが、ステップS526を通過するのは、アクセル踏み込みやアクセル戻し(足離し)のアクセル操作が短時間にて実施される場合である。すなわち、アクセル踏み込みによりベルトスリップ制御が解除され、復帰制御に入った途端、アクセル足離し操作が行われるようなとき、ステップS526を通過することになる。
したがって、ベルトスリップ制御から通常制御への復帰時、ベルト式無段変速機構4への入力トルクの変化速度を制限するトルクリミット制御を行うため、ベルト式無段変速機構4への入力トルクがベルトクランプ力に対して過大となることが抑えられ、ベルト44の滑りの発生を防止できる。
そして、ベルトスリップ制御から通常制御への復帰制御時に、上記のように、トルクリミット制御を行い、ベルト式無段変速機構4への入力トルクの変化速度を抑制した状態で変速比を通常の変速速度で変化させると、回転イナーシャ変化に基づく入力トルクの低下が顕著にあらわれるため、ドライバに不要な減速感(引きショック)を与えてしまう。このため、ベルト式無段変速機構4への入力トルクの変化速度制限に伴い、変速比の変化速度を制限するようにしている。
すなわち、BSC継続中止となり、通常制御への復帰制御に入ると、図11のフローチャートにおいて、ステップS541→ステップS542→ステップS543→ステップS544→ステップS545へと進む流れが、変速終了まで繰り返され、制限目標プライマリ回転数に基づく変速制御が行われることになる。
したがって、プライマリ回転の変化率に制限を設けることにより、回転イナーシャ変化を低減して、変速機入力トルクの低下を抑制することができ、この結果、ドライバに与える不要な減速感(引きショック)を防止することができる。
次に、効果を説明する。
実施例1のベルト式無段変速機構4の制御装置と制御方法にあっては、下記に列挙する効果を得ることができる。
(1) 駆動源(エンジン1)から入力するプライマリプーリ42と、駆動輪6,6へ出力するセカンダリプーリ43と、前記プライマリプーリ42と前記セカンダリプーリ43に掛け渡したベルト44と、を有し、前記プライマリプーリ42へのプライマリ油圧と前記セカンダリプーリ43へのセカンダリ油圧を制御することにより、前記ベルト44のプーリ巻き付け径の比による変速比を制御するベルト式無段変速機構4の制御装置において、前記セカンダリ油圧を加振し、実セカンダリ油圧に含まれる振動成分と実変速比に含まれる振動成分との位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記実セカンダリ油圧を低減させる制御を行うベルトスリップ制御手段(ステップS3)と、前記変速比の変化率である変速速度が所定値未満であるとき、前記ベルトスリップ制御手段によるベルトスリップ制御を許可するベルトスリップ制御許可判定手段(ステップS2)と、を備えた。
このため、ベルトスリップ状態の推定精度が高いとき、ベルトフリクションの低下による消費駆動エネルギーの削減を確保しながら、ベルトスリップ状態の推定精度が低いとき、ベルトスリップ制御中にベルト44が大きく滑ることを防止するベルト式無段変速機構4の制御装置を提供することができる。
(2) 前記ベルトスリップ制御許可判定手段(ステップS2)は、前記変速速度の所定値を、周波数に対する変速比対応成分のゲイン特性と振動成分のゲイン特性に基づき、最大変速幅にて振動成分のゲイン特性に干渉しない上限周波数を決め、決めた上限周波数と最大変速幅により算出した変速速度に設定した(図14グラフA,グラフB)。
このため、ベルトスリップ状態の推定精度を確保しつつ、変速速度に関するベルトスリップ制御の許可条件範囲を最大限まで拡大することで、走行時、ベルトスリップ制御が行われる頻度と制御継続時間を増大することができる。
(3) 前記ベルトスリップ制御許可判定手段(ステップS2)は、指令変速変化率が所定値未満であるとき、前記ベルトスリップ制御手段(ステップS3)によるベルトスリップ制御を許可する。
このため、指令変速変化率という予測情報に基づき、実際にベルト式無段変速機構4の変速比が変化するのに先行して、ベルトスリップ制御の開始許可判定を行うことができる。
(4) プライマリプーリ42およびセカンダリプーリ43とベルト44との間のベルトスリップ状態を油圧で制御するベルトスリップ制御を行うベルト式無段変速機構4の制御方法において、前記ベルトスリップ制御は、前記油圧を加振し、実油圧に含まれる振動成分と実変速比に含まれる振動成分との積算値に基づき前記油圧を制御し、前記ベルトスリップ制御は、前記変速比の変化率である変速速度が所定値未満であるとき許可される。
このため、ベルトスリップ状態の推定精度が高いとき、ベルトフリクションの低下による消費駆動エネルギーの削減を確保しながら、ベルトスリップ状態の推定精度が低いとき、ベルトスリップ制御中にベルト44が大きく滑ることを防止するベルト式無段変速機構4の制御方法を提供することができる。
(5) 前記ベルトスリップ制御は、前記積算値に基づき算出される位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記油圧を制御する。
このため、ベルトスリップ状態と相関関係にある位相差の監視によりベルトスリップ状態の変化を的確に把握できることで、ベルトスリップ制御中、所定のベルトスリップ状態を安定して保つことができる。この結果、ベルトフリクションの低下状態が安定して保たれるベルトスリップ制御により、狙っている消費駆動エネルギーの削減効果を実現することができる。
以上、本発明のベルト式無段変速機の制御装置と制御方法を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
実施例1では、変速油圧コントロールユニット7として、片調圧方式でステップモータ制御による油圧回路を有する例を示した。しかし、他の片調圧方式や両調圧方式の変速油圧コントロールユニットに対しても適用できる。
実施例1では、セカンダリ油圧のみを加振する例を示した。しかし、例えば、直動制御方式であれば、セカンダリ油圧と共にプライマリ油圧を同位相で同時に加振する例としても良い。また、ライン圧を加振することで、セカンダリ油圧と共にプライマリ油圧を同位相で加振する例としても良い。
実施例1では、加振する手段として、指示セカンダリ油圧に適切な振動成分を与える例を示したが、ソレノイド電流値に適切な振動成分を与えるような例であっても良い。
実施例1では、ベルト式無段変速機を搭載したエンジン車両への適用例を示したが、ベルト式無段変速機を搭載したハイブリッド車両やベルト式無段変速機を搭載した電気自動車等に対しても適用することができる。要するに、油圧変速制御を行うベルト式無段変速機を搭載した車両であれば適用できる。
1 エンジン
2 トルクコンバータ
3 前後進切替機構
4 ベルト式無段変速機構
40 変速機入力軸
41 変速機出力軸
42 プライマリプーリ
43 セカンダリプーリ
44 ベルト
45 プライマリ油圧室
46 セカンダリ油圧室
5 終減速機構
6,6 駆動輪
7 変速油圧コントロールユニット
70 オイルポンプ
71 レギュレータ弁
72 ライン圧ソレノイド
73 変速制御弁
74 減圧弁
75 セカンダリ油圧ソレノイド
76 サーボリンク
77 変速指令弁
78 ステップモータ
8 CVTコントロールユニット
80 プライマリ回転センサ
81 セカンダリ回転センサ
82 セカンダリ油圧センサ
83 油温センサ
84 インヒビタースイッチ
85 ブレーキスイッチ
86 アクセル開度センサ
87 他のセンサ・スイッチ類
88 エンジンコントロールユニット
上記目的を達成するため、本発明のベルト式無段変速機の制御装置では、駆動源から入力するプライマリプーリと、駆動輪へ出力するセカンダリプーリと、前記プライマリプーリと前記セカンダリプーリに掛け渡したベルトと、を有し、前記プライマリプーリへのプライマリ油圧と前記セカンダリプーリへのセカンダリ油圧を制御することにより、前記ベルトのプーリ巻き付け径の比による変速比を制御する。
このベルト式無段変速機の制御装置において、前記セカンダリ油圧を加振し、実セカンダリ油圧に含まれる振動成分と実変速比に含まれる振動成分との位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記実セカンダリ油圧を低減させる制御を行うベルトスリップ制御手段と、ベルト式無段変 速機の変速比の変化率である変速速度が所定値未満で実変速比に含まれる加振による振動 成分と実変速比の変動の切り分けができるとき、前記ベルトスリップ制御手段によるベルトスリップ制御を許可するベルトスリップ制御許可判定手段と、を備えた。
(1) 駆動源(エンジン1)から入力するプライマリプーリ42と、駆動輪6,6へ出力するセカンダリプーリ43と、前記プライマリプーリ42と前記セカンダリプーリ43に掛け渡したベルト44と、を有し、前記プライマリプーリ42へのプライマリ油圧と前記セカンダリプーリ43へのセカンダリ油圧を制御することにより、前記ベルト44のプーリ巻き付け径の比による変速比を制御するベルト式無段変速機構4の制御装置において、前記セカンダリ油圧を加振し、実セカンダリ油圧に含まれる振動成分と実変速比に含まれる振動成分との位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記実セカンダリ油圧を低減させる制御を行うベルトスリップ制御手段(ステップS3)と、前記ベルト式無段変速機構4の変速比の変化率である変速速度が所定値未満で実変速比に含まれる加振による振動成分と実変速比の変 動の切り分けができるとき、前記ベルトスリップ制御手段によるベルトスリップ制御を許可するベルトスリップ制御許可判定手段(ステップS2)と、を備えた。
このため、ベルトスリップ状態の推定精度が高いとき、ベルトフリクションの低下による消費駆動エネルギーの削減を確保しながら、ベルトスリップ状態の推定精度が低いとき、ベルトスリップ制御中にベルト44が大きく滑ることを防止するベルト式無段変速機構4の制御装置を提供することができる。
(4) プライマリプーリ42およびセカンダリプーリ43とベルト44との間のベルトスリップ状態を油圧で制御するベルトスリップ制御を行うベルト式無段変速機構4の制御方法において、前記ベルトスリップ制御は、前記油圧を加振し、実油圧に含まれる振動成分と実変速比に含まれる振動成分との乗算値に基づき前記油圧を制御し、前記ベルトスリップ制御は、前記ベルト式無段変速機構4の変速比の変化率である変速速度が所定値未満で実変速比に含まれる加振による振動成分を実変速比の変動から切り分けができるとき許可される。
このため、ベルトスリップ状態の推定精度が高いとき、ベルトフリクションの低下による消費駆動エネルギーの削減を確保しながら、ベルトスリップ状態の推定精度が低いとき、ベルトスリップ制御中にベルト44が大きく滑ることを防止するベルト式無段変速機構4の制御方法を提供することができる。
(5) 前記ベルトスリップ制御は、前記乗算値に基づき算出される位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記油圧を制御する。
このため、ベルトスリップ状態と相関関係にある位相差の監視によりベルトスリップ状態の変化を的確に把握できることで、ベルトスリップ制御中、所定のベルトスリップ状態を安定して保つことができる。この結果、ベルトフリクションの低下状態が安定して保たれるベルトスリップ制御により、狙っている消費駆動エネルギーの削減効果を実現することができる。

Claims (5)

  1. 駆動源から入力するプライマリプーリと、駆動輪へ出力するセカンダリプーリと、前記プライマリプーリと前記セカンダリプーリに掛け渡したベルトと、を有し、
    前記プライマリプーリへのプライマリ油圧と前記セカンダリプーリへのセカンダリ油圧を制御することにより、前記ベルトのプーリ巻き付け径の比による変速比を制御するベルト式無段変速機の制御装置において、
    前記セカンダリ油圧を加振し、実セカンダリ油圧に含まれる振動成分と実変速比に含まれる振動成分との位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記実セカンダリ油圧を低減させる制御を行うベルトスリップ制御手段と、
    前記変速比の変化率である変速速度が所定値未満であるとき、前記ベルトスリップ制御手段によるベルトスリップ制御を許可するベルトスリップ制御許可判定手段と、
    を備えたことを特徴とするベルト式無段変速機の制御装置。
  2. 請求項1に記載されたベルト式無段変速機の制御装置において、
    前記ベルトスリップ制御許可判定手段は、前記変速速度の所定値を、周波数に対する変速比対応成分のゲイン特性と振動成分のゲイン特性に基づき、最大変速幅にて振動成分のゲイン特性に干渉しない上限周波数を決め、決めた上限周波数と最大変速幅により算出した変速速度に設定したことを特徴とするベルト式無段変速機の制御装置。
  3. 請求項1または請求項2に記載されたベルト式無段変速機の制御装置において、
    前記ベルトスリップ制御許可判定手段は、指令変速変化率が所定値未満であるとき、前記ベルトスリップ制御手段によるベルトスリップ制御を許可することを特徴とするベルト式無段変速機の制御装置。
  4. プライマリプーリおよびセカンダリプーリとベルトとの間のベルトスリップ状態を油圧で制御するベルトスリップ制御を行うベルト式無段変速機の制御方法において、
    前記ベルトスリップ制御は、前記油圧を加振し、実油圧に含まれる振動成分と実変速比に含まれる振動成分との積算値に基づき前記油圧を制御し、
    前記ベルトスリップ制御は、前記変速比の変化率である変速速度が所定値未満であるとき許可されることを特徴とするベルト式無段変速機の制御方法。
  5. 請求項4に記載されたベルト式無段変速機の制御方法において、
    前記ベルトスリップ制御は、前記積算値に基づき算出される位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記油圧を制御することを特徴とするベルト式無段変速機の制御方法。
JP2009522254A 2009-04-30 2009-04-30 ベルト式無段変速機の制御装置と制御方法 Expired - Fee Related JP4435859B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058468 WO2010125672A1 (ja) 2009-04-30 2009-04-30 ベルト式無段変速機の制御装置と制御方法

Publications (2)

Publication Number Publication Date
JP4435859B1 JP4435859B1 (ja) 2010-03-24
JPWO2010125672A1 true JPWO2010125672A1 (ja) 2012-10-25

Family

ID=42193816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009522254A Expired - Fee Related JP4435859B1 (ja) 2009-04-30 2009-04-30 ベルト式無段変速機の制御装置と制御方法

Country Status (9)

Country Link
US (1) US8914200B2 (ja)
EP (1) EP2426380A4 (ja)
JP (1) JP4435859B1 (ja)
KR (1) KR101288669B1 (ja)
CN (1) CN102414486B (ja)
BR (1) BRPI0924736A2 (ja)
MX (1) MX2011011451A (ja)
RU (1) RU2498132C2 (ja)
WO (1) WO2010125672A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010009832A1 (de) * 2010-03-02 2011-09-08 Ivd Prof. Hohenberg Gmbh Kraftfahrzeug mit kombiniertem Antrieb
JP5374434B2 (ja) * 2010-04-08 2013-12-25 本田技研工業株式会社 自動変速機の制御装置
KR101469672B1 (ko) * 2013-06-27 2014-12-05 주식회사 현대케피코 금속벨트식 무단변속기에서의 슬립 상태 추정 방법 및 장치
KR102015695B1 (ko) * 2013-11-22 2019-08-28 쟈트코 가부시키가이샤 무단 변속기의 제어 장치
JP6119676B2 (ja) * 2014-06-13 2017-04-26 トヨタ自動車株式会社 車両用駆動装置の制御装置
US10228055B2 (en) * 2014-07-29 2019-03-12 Jatco Ltd Continuously variable transmission and method for controlling the same
CN107002835A (zh) * 2014-11-26 2017-08-01 通用汽车环球科技运作有限责任公司 具有固定档位功能的无级变速器中的模式转变控制
DE102016211958A1 (de) * 2016-06-30 2018-01-04 Zf Friedrichshafen Ag Verfahren zur Übertragung und Dämpfung von Drehmomenten
DE102016211956A1 (de) * 2016-06-30 2018-01-04 Zf Friedrichshafen Ag Verfahren zur Übertragung und Dämpfung von Drehmomenten
CN111051745B (zh) * 2017-08-23 2021-06-11 日产自动车株式会社 无级变速器的控制方法以及控制装置
US11162581B2 (en) * 2017-09-15 2021-11-02 Jatco Ltd. Device and method for controlling continuously variable transmission
CN108953587B (zh) * 2018-07-17 2020-06-02 湖南大学 用于无级变速器的激励自调整极值搜索控制器及构建方法
JP7207336B2 (ja) * 2020-01-09 2023-01-18 トヨタ自動車株式会社 ベルト式無段変速機のベルト滑り診断装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214054A (ja) 1982-06-07 1983-12-13 Toyota Motor Corp ベルト駆動式無段変速機の油圧制御装置
EP0111854B1 (en) 1982-12-17 1989-03-15 Nissan Motor Co., Ltd. Control method for continuously variable transmission or the like
NL8403461A (nl) 1984-11-13 1986-06-02 Doornes Transmissie Bv Traploos variabele overbrenging.
SU1682691A1 (ru) * 1989-01-02 1991-10-07 В.М.Бел ев Бесступенчата силова передача дл транспортных средств
RU2012833C1 (ru) * 1991-02-20 1994-05-15 Петр Никитич Королев Механизм бесступенчатого автоматического регулирования передаточного отношения
IN189939B (ja) 1993-12-20 2003-05-17 Torotrak Dev Ltd
JP2003065428A (ja) 2001-03-02 2003-03-05 Toyota Central Res & Dev Lab Inc ベルト式無段変速機のプーリ推力制御装置
DE60208455D1 (de) 2001-03-02 2006-03-30 Toyota Chuo Kenkyusho Aichi Kk Riemenscheiben-Axialdruckgerät für ein stufenloses Getriebe
JP2003202075A (ja) 2002-01-08 2003-07-18 Nissan Motor Co Ltd トルクコンバータの制御装置
JP2003214533A (ja) 2002-01-22 2003-07-30 Nissan Motor Co Ltd Vベルト式無段変速機のスリップ防止装置
JP4013575B2 (ja) 2002-02-12 2007-11-28 松下電工株式会社 生ごみ処理装置
NL1022243C2 (nl) 2002-12-23 2004-06-24 Doornes Transmissie Bv Werkwijze voor het bedienen van een continu variabele transmissie.
JP4148008B2 (ja) * 2003-04-18 2008-09-10 トヨタ自動車株式会社 無段変速機の制御装置
US7666110B2 (en) 2003-03-26 2010-02-23 Toyota Jidosha Kabushiki Kaisha Control system for power transmission mechanism
JP2004293652A (ja) 2003-03-26 2004-10-21 Toyota Motor Corp 無段変速機を含む駆動機構の制御装置
JP3947134B2 (ja) * 2003-05-27 2007-07-18 株式会社豊田中央研究所 ベルト挟圧力設定装置
JP4114548B2 (ja) 2003-06-02 2008-07-09 トヨタ自動車株式会社 動力源と無段変速機との協調制御装置および制御方法
JP2005030511A (ja) 2003-07-07 2005-02-03 Toyota Motor Corp 無段変速機を備えた車両の制御装置
JP4296957B2 (ja) 2004-02-18 2009-07-15 トヨタ自動車株式会社 車両用無段変速機の制御装置
JP2005291111A (ja) 2004-03-31 2005-10-20 Jatco Ltd 車両用ベルト式無段変速機の入力トルク制御装置
JP4799129B2 (ja) 2005-10-31 2011-10-26 ジヤトコ株式会社 自動車用無段変速機の制御装置
JP4849870B2 (ja) 2005-10-31 2012-01-11 ジヤトコ株式会社 自動車用無段変速機の制御装置
JP4593486B2 (ja) 2006-02-08 2010-12-08 ジヤトコ株式会社 ベルト式無段変速機の変速制御装置
JP4857004B2 (ja) 2006-03-29 2012-01-18 富士重工業株式会社 無段変速機の制御装置
JP4762875B2 (ja) 2006-12-15 2011-08-31 ジヤトコ株式会社 ベルト式無段変速機の変速制御装置
CN101688607B (zh) 2007-07-11 2014-04-23 罗伯特·博世有限公司 控制摩擦式无级传动装置的方法及装备有执行该方法的装置的传动装置
CN102165227B (zh) * 2008-09-26 2015-09-30 罗伯特·博世有限公司 控制无级变速器的摩擦接触中的法向力的方法
CN102639906B (zh) 2009-12-15 2015-05-06 日产自动车株式会社 车辆用带式无级变速器的控制装置及控制方法
RU2505727C1 (ru) 2009-12-15 2014-01-27 Ниссан Мотор Ко., Лтд Устройство и способ для управления ременной бесступенчато регулируемой трансмиссией для транспортного средства

Also Published As

Publication number Publication date
RU2011148524A (ru) 2013-06-10
EP2426380A4 (en) 2012-12-19
MX2011011451A (es) 2012-02-08
KR101288669B1 (ko) 2013-07-22
KR20120018346A (ko) 2012-03-02
JP4435859B1 (ja) 2010-03-24
RU2498132C2 (ru) 2013-11-10
US20120115678A1 (en) 2012-05-10
EP2426380A1 (en) 2012-03-07
CN102414486B (zh) 2014-08-06
CN102414486A (zh) 2012-04-11
US8914200B2 (en) 2014-12-16
BRPI0924736A2 (pt) 2016-01-26
WO2010125672A1 (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4435857B1 (ja) ベルト式無段変速機の制御装置と制御方法
JP4435859B1 (ja) ベルト式無段変速機の制御装置と制御方法
JP4633197B1 (ja) 車両用ベルト式無段変速機の制御装置と制御方法
JP4633198B1 (ja) 車両用ベルト式無段変速機の制御装置と制御方法
JP4527805B1 (ja) ベルト式無段変速機の制御装置と制御方法
JP4435860B1 (ja) ベルト式無段変速機の制御装置と制御方法
JP4435858B1 (ja) ベルト式無段変速機の制御装置と制御方法
JP4652475B2 (ja) ベルト式無段変速機の制御装置と制御方法
JP4610672B1 (ja) 車両用ベルト式無段変速機の制御装置と制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090527

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

R150 Certificate of patent or registration of utility model

Ref document number: 4435859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees