JP7207336B2 - ベルト式無段変速機のベルト滑り診断装置 - Google Patents

ベルト式無段変速機のベルト滑り診断装置 Download PDF

Info

Publication number
JP7207336B2
JP7207336B2 JP2020002452A JP2020002452A JP7207336B2 JP 7207336 B2 JP7207336 B2 JP 7207336B2 JP 2020002452 A JP2020002452 A JP 2020002452A JP 2020002452 A JP2020002452 A JP 2020002452A JP 7207336 B2 JP7207336 B2 JP 7207336B2
Authority
JP
Japan
Prior art keywords
belt
slip
continuously variable
variable transmission
type continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020002452A
Other languages
English (en)
Other versions
JP2021110388A (ja
Inventor
賢治 松尾
勇仁 服部
彰英 伊藤
英明 樗澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020002452A priority Critical patent/JP7207336B2/ja
Priority to US17/135,007 priority patent/US11236821B2/en
Priority to CN202110021321.XA priority patent/CN113108054B/zh
Publication of JP2021110388A publication Critical patent/JP2021110388A/ja
Application granted granted Critical
Publication of JP7207336B2 publication Critical patent/JP7207336B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1208Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1276Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a friction device, e.g. clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1288Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H2061/6629Detection of slip for determining level of wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Description

本発明は、プライマリプーリと、セカンダリプーリと、これらの間に巻き掛けられたベルトと、を備えたベルト式無段変速機のベルト滑り診断装置に関する。
プライマリプーリと、セカンダリプーリと、これらの間に巻き掛けられたベルトと、を備えたベルト式無段変速機がよく知られている。例えば、特許文献1に記載の無段変速機がそれである。特許文献1には、入力部材(本明細書においてプライマリプーリ)と、出力部材(本明細書においてセカンダリプーリ)と、これらに巻き掛けられた伝達部材(本明細書においてベルト)と、を備えた無段変速機において、入力部材および出力部材の何れか一方と伝達部材との間の滑りと伝達部材を介して伝達される動力との相互関係に基づいて、伝達部材の劣化の度合を検出することが記載されている。
特開2003-329126号公報
ところで、特許文献1では、無段変速機の変速比の変化に基づいてベルトの滑りが判断されているが、急変速の操作や路面からの入力による変速比の急変化が発生した場合でもベルトの滑りと判断されてしまう可能性があった。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、プライマリプーリと、セカンダリプーリと、これらの間に巻き掛けられたベルトと、を備えたベルト式無段変速機のベルト滑りの発生を精度良く判定できるベルト滑り診断装置を提供することにある。
第1発明の要旨とするところは、(a)プライマリプーリと、セカンダリプーリと、そのプライマリプーリおよびそのセカンダリプーリの間に巻き掛けられたベルトと、を備えたベルト式無段変速機のベルト滑りを検出するベルト式無段変速機のベルト滑り診断装置であって、(b)前記プライマリプーリと前記セカンダリプーリとの回転速度の比である変速比の一階微分値が第1閾値以上になるとともに、前記変速比の二階微分値が第2閾値以上になった場合において、前記ベルト滑りの発生を判定する滑り判定部を備えることを特徴とする。
第2発明の要旨とするところは、第1発明のベルト式無段変速機のベルト滑り診断装置において、前記ベルト滑りの発生が判定された場合、そのベルト滑りによる発熱量が第3閾値以上であるかを判定する発熱量判定部を備えることを特徴とする。
第3発明の要旨とするところは、第1発明または第2発明のベルト式無段変速機のベルト滑り診断装置において、前記ベルト滑りの発生の継続時間を測定し、その継続時間が第4閾値以下であるかを判定する継続時間判定部を備えることを特徴とする。
第4発明の要旨とするところは、第1発明から第3発明の何れか1のベルト式無段変速機のベルト滑り診断装置において、前記ベルト滑りの発生回数を測定する滑り回数測定部を備えることを特徴とする。
第5発明の要旨とするところは、第1発明から第4発明の何れか1のベルト式無段変速機のベルト滑り診断装置において、前記ベルト滑りが発生したときの、前記プライマリプーリの指示圧および実圧、前記セカンダリプーリの指示圧および実圧、および前記ベルト式無段変速機に入力される入力トルクを記憶する記憶部を備えることを特徴とする。
第6発明の要旨とするところは、第5発明のベルト式無段変速機のベルト滑り診断装置において、前記記憶部は、さらに前記ベルト滑りによる発熱量を記憶することを特徴とする。
第7発明の要旨とするところは、第1発明から第6発明の何れか1のベルト式無段変速機のベルト滑り診断装置において、前記ベルト滑りの発生が判定された場合、前記セカンダリプーリの油圧アクチュエータの油圧の油圧振動が発生したかを判定する油圧振動判定部を備えることを特徴とする。
第8発明の要旨とするところは、第1発明から第7発明の何れか1のベルト式無段変速機のベルト滑り診断装置において、前記ベルト滑りの発生が判定された場合、前記セカンダリプーリの油圧アクチュエータの油圧の応答性不良が発生したかを判定する応答性不良判定部を備えることを特徴とする。
第1発明のベルト式無段変速機のベルト滑り診断装置によれば、ベルト式無段変速機の変速比の一階微分値が第1閾値以上になるとともに、変速比の二階微分値が第2閾値以上になった場合にベルト滑りの発生が判定されるため、ベルト滑りの発生を精度良く判定することができる。例えば、変速比の一階微分値のみで判定する場合、ベルト滑りと急変速の操作や路面からの入力による変速比の急変化とを区別することが困難になる。これに対して、変速比の一階微分値に加えて、変速比の二階微分値によってもベルト滑りの発生が判定されることで、ベルト滑りの判定精度が向上する。
第2発明のベルト式無段変速機のベルト滑り診断装置によれば、ベルト滑りの発生が判定された場合、ベルト滑りによって発生する発熱量が第3閾値以上であるかが判定されるため、発生したベルト滑りが、ベルトの耐久性を低下させるベルト滑りであるか区別することができる。
第3発明のベルト式無段変速機のベルト滑り診断装置によれば、ベルト滑りの発生の継続時間が、第4閾値以下であるか否かに基づいて、極短時間にベルト滑りが発生する微小滑りかその他のベルト滑り(マクロ滑り)であるか区別することができる。
第4発明のベルト式無段変速機のベルト滑り診断装置によれば、ベルト滑りの発生回数が測定されることで、その発生回数に基づいて、ベルトの耐久性低下の度合を推定することができる。
第5発明のベルト式無段変速機のベルト滑り診断装置によれば、ベルト滑りが発生したときのプライマリプーリの指示圧および実圧、セカンダリプーリの指示圧および実圧、ベルト式無段変速機に入力される入力トルクに基づいて、ベルト滑りの発生要因を推定することができる。
第6発明のベルト式無段変速機のベルト滑り診断装置によれば、ベルト滑りによる発熱量に基づいて、ベルト滑りによるベルトの耐久性悪化の度合を推定することができる。
第7発明のベルト式無段変速機のベルト滑り診断装置によれば、ベルト滑りの発生が判定された場合には油圧振動が発生したかがさらに判定されるため、ベルト滑りの発生要因が油圧振動によるものかを推定することができる。
第8発明のベルト式無段変速機のベルト滑り診断装置によれば、ベルト滑りの発生が判定された場合には油圧の応答性不良が発生したかがさらに判定されるため、ベルト滑りの発生要因が油圧の応答性不良によるものかを推定することができる。
本発明が適用された車両の概略構成を説明する図であると共に、車両における各種制御の為の制御機能および制御系統の要部を説明する図である。 図1の電子制御装置の制御作動を説明するためのフローチャートであり、走行中の微小滑りの発生を判定するとともに、微小滑りの原因を特定する制御作動を説明するためのフローチャートである。 本発明の他の本実施例における車両の概略構成を説明する図であると共に、車両における各種制御の為の制御系の要部を説明する図である。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
図1は、本発明が適用された車両10の概略構成を説明する図であると共に、車両10における各種制御の為の制御機能および制御系の要部を説明する図である。図1において、車両10は、走行用駆動力源としてのエンジン12、流体式伝動装置としてのトルクコンバータ14、前後進切替装置16、ベルト式無段変速機18(以下、無段変速機18という)、減速歯車装置20、差動歯車装置22、左右の駆動輪24などを備えている。車両10では、エンジン12から出力される動力は、トルクコンバータ14、前後進切替装置16、無段変速機18、減速歯車装置20、差動歯車装置22などを順次介して、左右の駆動輪24へ伝達される。
トルクコンバータ14は、エンジン12に連結されたポンプ翼車14p、およびタービン軸26を介して前後進切替装置16に連結されたタービン翼車14tを備えており、流体を介して動力伝達を行う。また、トルクコンバータ14には、ポンプ翼車14pおよびタービン翼車14tの間を、すなわちトルクコンバータ14の入出力軸回転部材間を、直結可能な公知のロックアップクラッチであるクラッチLUが設けられている。クラッチLUの作動状態としては、例えばクラッチLUが解放される所謂ロックアップ解放(ロックアップオフ)、クラッチLUが滑りを伴って半係合(スリップ係合)される所謂ロックアップスリップ状態(スリップ状態)、およびクラッチLUが完全係合される所謂ロックアップ状態(ロックアップオン)の3状態に大別される。
クラッチLUがロックアップオフさせられることにより、トルクコンバータ14はトルク増幅作用が得られる。また、クラッチLUがロックアップオンさせられることにより、ポンプ翼車14pおよびタービン翼車14tが一体回転させられてエンジン12の動力が前後進切替装置16側へ直接的に伝達される。また、クラッチLUがスリップ係合させられることにより、車両10の駆動(パワーオン)時には所定のスリップ量でタービン軸26がエンジン12のクランク軸に対して追従回転させられる一方、車両の非駆動(パワーオフ)時には所定のスリップ量でエンジン12のクランク軸がタービン軸26に対して追従回転させられる。また、ポンプ翼車14pには、機械式オイルポンプ28が連結されている。
前後進切替装置16は、前進用クラッチC1および後進用ブレーキB1とダブルピニオン型の遊星歯車装置16pとを主体として構成されている。遊星歯車装置16pのサンギヤ16sにはトルクコンバータ14のタービン軸26が一体的に連結され、遊星歯車装置16pのキャリヤ16cには無段変速機18の入力軸30が一体的に連結されている。キャリヤ16cとサンギヤ16sとは前進用クラッチC1を介して選択的に連結され、キャリヤ16cとサンギヤ16sとが連結されると遊星歯車装置16p全体が一体回転させられる。つまり、前進用クラッチC1は、遊星歯車装置16pを選択的に一体回転させるクラッチ要素である。
遊星歯車装置16pのリングギヤ16rは後進用ブレーキB1を介して非回転部材としてのハウジング32に選択的に固定される。つまり、後進用ブレーキB1は、遊星歯車装置16pの回転要素(サンギヤ16s、キャリヤ16c、リングギヤ16r)のうちの1つの回転要素(リングギヤ16r)を選択的にハウジング32に連結するブレーキ要素である。前進用クラッチC1および後進用ブレーキB1は、公知の油圧式摩擦係合装置である。
このように構成された前後進切替装置16では、前進用クラッチC1が係合されると共に後進用ブレーキB1が解放されると、タービン軸26が入力軸30に直結され、前進用動力伝達経路が成立させられる。後進用ブレーキB1が係合されると共に前進用クラッチC1が解放されると、前後進切替装置16は後進用動力伝達経路が成立させられて、入力軸30はタービン軸26に対して逆方向へ回転させられる。また、前進用クラッチC1および後進用ブレーキB1が共に解放されると、前後進切替装置16は動力伝達を遮断するニュートラル状態(動力伝達遮断状態)とされる。
無段変速機18は、入力軸30に設けられた入力側部材である有効径が可変の入力側のプライマリプーリ34と、出力軸36に設けられた出力側部材である有効径が可変の出力側のセカンダリプーリ38と、プライマリプーリ34およびセカンダリプーリ38の間に巻き掛けられた伝動ベルト40と、を備えている。無段変速機18は、前後進切替装置16と駆動輪24との間の動力伝達経路の一部を構成し、プライマリプーリ34およびセカンダリプーリ38と伝動ベルト40との間の摩擦力を介して動力を伝達する。伝動ベルト40は、無端環状のフープと、そのフープに沿って厚さ方向に多数連ねられた厚肉板片状のブロックであるエレメントとを有する、よく知られた無端環状の圧縮式の伝動ベルトから構成されている。なお、伝動ベルト40が本発明のベルトに対応している。
入力側のプライマリプーリ34は、入力軸30に固定された入力側固定回転体としての固定シーブ34aと、入力軸30に対して軸回りの相対回転不能且つ軸方向の移動可能に設けられた入力側可動回転体としての可動シーブ34bと、それら固定シーブ34aおよび可動シーブ34bの間のV溝幅を変更する為のプライマリプーリ34における入力側の推力(プライマリ推力)Win(=プライマリ圧Pin×受圧面積)を付与する油圧アクチュエータ(油圧シリンダ)34cとを備えている。
また、出力側のセカンダリプーリ38は、出力軸36に固定された出力側固定回転体としての固定シーブ38aと、出力軸36に対して軸回りの相対回転不能且つ軸方向の移動可能に設けられた出力側可動回転体としての可動シーブ38bと、それら固定シーブ38aおよび可動シーブ38bの間のV溝幅を変更する為のセカンダリプーリ38における出力側の推力(セカンダリ推力)Wout(=セカンダリ圧Pout×受圧面積)を付与する油圧アクチュエータ38cとを備えている。
そして、プライマリプーリ34の油圧アクチュエータ34cへ供給される作動油圧であるプライマリ圧Pin、および、セカンダリプーリ38の油圧アクチュエータ38cへ供給される作動油圧であるセカンダリ圧Poutが油圧制御回路70によって各々調圧制御されることにより、プライマリ推力Winおよびセカンダリ推力Woutが制御される。これにより、各プーリ34,38のV溝幅が変化して伝動ベルト40の掛かり径(有効径)が変更され、変速比γ(=入力軸回転速度Nin/出力軸回転速度Nout)が連続的に変化させられると共に、伝動ベルト40が滑りを生じないように各プーリ34,38と伝動ベルト40との間の摩擦力(ベルト挟圧力)が制御される。このように、プライマリ推力Winおよびセカンダリ推力Woutが各々制御されることで伝動ベルト40の滑りが防止されつつ実際の変速比γが目標変速比γtgtとされる。
車両10には、その車両10の各種制御を実行する電子制御装置50が備えられている。電子制御装置50は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置50は、エンジン12の出力制御、無段変速機18の変速制御やベルト挟圧力制御等を実行するようになっており、必要に応じてエンジン制御用、無段変速機18の油圧制御用等に分けて構成される。
電子制御装置50には、車両10に設けられた各種センサ(例えば各回転速度センサ52,54,56,58、アクセル開度センサ60、ブレーキ操作量センサ62、舵角センサ64、油圧センサ66、油圧センサ68など)により検出された検出値に基づく各種入力信号が供給される。例えば、エンジン回転速度Ne(rpm)、タービン回転速度Nt(rpm)、入力軸30の入力軸回転速度Nin(rpm)、車速V(km/h)に対応する出力軸36の出力軸回転速度Nout(rpm)、アクセル開度θacc(%)、ホイールブレーキ装置を作動させる為に運転者により操作されるブレーキ操作部材の操作量であるブレーキ操作量Qbra、ステアリングホイールの操舵角θst、プライマリプーリ34の油圧アクチュエータ34cのプライマリ圧Pin(Pa)、セカンダリプーリ38の油圧アクチュエータ38cのセカンダリ圧Pout(Pa)などが電子制御装置50に供給される。なお、入力軸回転速度Ninは、プライマリプーリ34の回転速度であるプライマリ回転速度Npriと同値であり、出力軸回転速度Noutは、セカンダリプーリ38の回転速度であるセカンダリ回転速度Nsecと同値である。
電子制御装置50からは、車両10に設けられた各装置(例えばエンジン12、油圧制御回路70など)に各種出力信号が供給される。例えば、エンジン12の出力制御の為のエンジン出力制御指令信号Se、無段変速機18の変速等に関する油圧制御の為のCVT油圧制御指令信号Scvt、クラッチLUや前進用クラッチC1や後進用ブレーキB1の係合作動に関する油圧制御の為の油圧制御指令信号Scなどが出力される。
電子制御装置50は、例えば、予め記憶された関係からアクセル開度センサ60により検出されたアクセル開度θaccおよび車速Vに基づいて要求駆動力を算出し、その要求駆動力を最適燃費で得るための目標エンジン出力および目標変速比γtgtを決定し、目標エンジン出力が得られるようにエンジン12の出力を制御するエンジン制御を実行すると同時に、目標変速比γtgtが得られるように無段変速機18の変速比制御を実行する。
ところで、走行中に各プーリ34,38と伝動ベルト40との間で極短時間に発生するベルト滑りである微小滑りが発生することが知られている。この微小滑りが発生すると、微小滑りに伴う摩耗によって伝動ベルト40の耐久性に影響を及ぼすことから、微小滑りの発生を精度良く判定する必要がある。また、微小滑りが発生した場合において、その微小滑りの要因を特定することが望まれる。これに対して、電子制御装置50は、微小滑りの発生を判定する機能、および、微小滑りの発生の要因を特定する機能を備えている。電子制御装置50は、上記機能を実現するため、滑り判定手段として機能する滑り判定部80、発熱量判定手段として機能する発熱量判定部82、継続時間判定手段として機能する継続時間判定部84、滑り回数測定手段として機能する滑り回数測定部86、記憶手段として機能する記憶部88、油圧振動判定手段として機能する油圧振動判定部90、応答性不良判定手段として機能する応答性不良判定部92、および滑り要因特定手段として機能する滑り要因特定部94を、機能的に備えている。なお、電子制御装置50が、本発明のベルト滑りの発生を判定するベルト滑り診断装置に対応している。
滑り判定部80は、走行中に微小滑りが発生したかを判定する。滑り判定部80は、プライマリプーリ34とセカンダリプーリ38との回転速度の比である無段変速機18の変速比γ(=Npri/Nsec=Nin/Nout)を随時算出する。また、滑り判定部80は、随時算出される変速比γに基づいて、変速比γの変化速度に対応する変速比γの一階微分値Δγを随時算出する。変速比γの一階微分値Δγは、随時算出される変速比γをフィルタ等をかけて平滑化した後にその傾きを求めたり、変速比γを数値微分したりして求められる。次いで、滑り判定部80は、変速比γの二階微分値ΔΔγを算出する。変速比γの二階微分値ΔΔγは、随時算出される変速比γの一階微分値Δγをフィルタ等をかけて平滑化した後にその傾きを求めたり、一階微分値Δγを数値微分したりして求められる。
滑り判定部80は、算出された変速比γの一階微分値Δγが予め設定されている第1閾値α1以上であるかを判定する。第1閾値α1は、予め実験的または設計的に求められ、伝動ベルト40の微小滑りが発生したと判断できる範囲の下限値に設定されている。滑り判定部80は、変速比γの一階微分値Δγが第1閾値α1以上と判定された場合、変速比γの二階微分値ΔΔγが予め設定されている第2閾値α2以上であるかを判定する。第2閾値α2は、予め実験的または設計的に求められ、伝動ベルト40の微小滑りが発生したと判断できる範囲の下限値に設定されている。滑り判定部80は、変速比γの一階微分値Δγが第1閾値α1以上になるとともに、変速比γの二階微分値ΔΔγが第2閾値α2以上になった場合において、微小滑りが発生したものと判定する。このとき滑り判定部80は、微小滑りが発生したことを表す仮フラグをONにセットする。
ここで、変速比γの一階微分値Δγのみによっても微小滑りの発生を判定できるが、一階微分値Δγのみでは、急変速の操作があった場合や路面からの入力(段差路等)による変速比γの急変化と区別できない場合がある。これに対して、変速比γの二階微分値ΔΔγによっても微小滑りの発生が判定されることで、微小滑りを精度良く判定することができる。
発熱量判定部82は、微小滑りの発生が判定された場合において、その微小滑りによる発熱量Qdotを算出する。微小滑りによる発熱量Qdotは、セカンダリプーリ38と伝動ベルト40との間に作用する摩擦力と、セカンダリプーリ38と伝動ベルト40との相対滑り速度との積で算出される。具体的には、下式(1)によって算出される。下式(1)において、μは、セカンダリプーリ38と伝動ベルト40との間の静止摩擦係数に対応し、Rは、セカンダリプーリ38の伝動ベルト40に対する巻き掛け半径(掛かり径)に対応し、θは、セカンダリプーリ38の伝動ベルト40の挟み角に対応している。また、Woutは、上述したセカンダリ推力であり、セカンダリプーリ38の伝動ベルト40を挟む力に対応している。発熱量判定部82は、微小滑りの発生が判定された時点から、式(1)に基づいて発熱量Qdotを随時算出し、その最大値(ピーク値)を決定する。なお、式(1)は、セカンダリプーリ38で発生する発熱量Qdotを求めるものであり、セカンダリプーリ38で発生する発熱量Qdotがプライマリプーリ34で発生する発熱量よりも大きいことを前提としたが、プライマリプーリ34で発生する発熱量が大きい場合には、プライマリプーリ34側で発生する発熱量Qdotが算出される。また、プライマリプーリ34およびセカンダリプーリ38で発生する発熱量Qdotをそれぞれ算出し、算出された発熱量Qdotの大きい側を適用するものであっても構わない。
Qdot=2×μ×R×Wout/cosθ×{Nsec-(Npri/γ)}・・・(1)
発熱量判定部82は、発熱量Qdotを算出すると、その発熱量Qdot(最大値)が予め設定されている第3閾値α3以上であるかを判定する。第3閾値α3は、予め実験的または設計的に求められ、例えば伝動ベルト40の耐久性に影響を与えるとされる熱量の下限値に設定されている。発熱量判定部82が発熱量Qdotが第3閾値α3以上と判定した場合、発生した微小滑りが伝動ベルト40の耐久性に影響を与える滑りであったと判断される。一方、発熱量判定部82が発熱量Qdotが第3閾値α3未満と判定した場合、発生した微小滑りが伝動ベルト40の耐久性に影響を与えない滑りであったと判断される。
継続時間判定部84は、微小滑りの発生が検出されると、微小滑りの発生が判定された時点から微小滑りが終了するまでの継続時間tconを測定し、その継続時間tconが予め設定されている第4閾値α4以下であるかを判定する。なお、微小滑りの終了は、例えば変速比γの一階微分値Δγが第1閾値α1未満になった場合に判定される。第4閾値α4は、予め実験的または設計的に求められ、微小滑りと判断できる範囲の上限値に設定されている。継続時間判定部84が継続時間tconが第4閾値α4以下と判定した場合、微小滑りと判定される。一方、継続時間判定部84が継続時間tconが第4閾値α4よりも大きいと判定した場合、ベルト滑りが比較的長く続くマクロ滑りと判断される。このマクロ滑りは、微小滑りとは別の現象として区別される。
滑り判定部80は、微小滑りの発生を検出した場合であって、発熱量Qdotが第3閾値α3以上であり、且つ、継続時間tconが第4閾値α4以下であった場合、微小滑りの発生の確定フラグをONにセットする。
滑り回数測定部86は、車両10において微小滑りの発生を判定した通算の発生回数N1(積算値)を測定する。滑り回数測定部86は、微小滑りの確定フラグがONに設定される毎に、微小滑りの発生回数N1を1つ増加する。微小滑りの発生回数N1が増加するほど、伝動ベルト40の耐久性が低下することから、この発生回数N1に基づいて伝動ベルト40の耐久性の低下の度合を推定することができる。
記憶部88は、微小滑りの発生が検出されると、微小滑りの発生時刻(年月日時分秒)、微小滑りが発生したときの微小滑りによる発熱量Qdot(ピーク値)、微小滑りが発生したときのプライマリプーリ34の油圧アクチュエータ34cの指示圧Pintgtおよび実圧Pin(すなわちプライマリ圧Pin)、セカンダリプーリ38の油圧アクチュエータ38cの指示圧Pouttgtおよび実圧Pout(すなわちセカンダリ圧Pout)、および無段変速機18に入力されるトルク値である入力トルクTin等を記憶する。入力トルクTinは、アクセル開度θacc、車速V、トルクコンバータ14のトルク比等に基づいて算出される。記憶部88は、車両10において初めて微小滑りが検出された場合には、初回の微小滑りとして発生時刻等を記憶する。これら記憶された各種情報(各種データ)を解析することで、微小滑りの発生要因や微小滑りによる伝動ベルト40の耐久性悪化の度合を推定することができる。例えば、微小滑りが発生したときの発熱量Qdotに基づいて、微小滑りによる伝動ベルト40の耐久性悪化の度合を推定することができる。
また、記憶部88は、微小滑りが発生した時点から微小滑りが終了するまでの過渡期において、プライマリプーリ34の油圧アクチュエータ34cの指示圧Pintgtと実圧Pinとの差分ΔPin(=Pintgt-Pin)を随時算出し、その最大値を記憶する。また、記憶部88は、微小滑りが発生した時点から微小滑りが終了するまでの過渡期において、セカンダリプーリ38の油圧アクチュエータ38cの指示圧Pouttgtと実圧Poutとの差分ΔPoutを随時算出し、その最大値を記憶する。これらの差分ΔPin,ΔPoutからも微小滑りの発生要因を推定することができる。例えば、差分ΔPin,ΔPoutが大きい場合、微小滑りの発生の原因が、無段変速機18への入力トルクTinに対して実圧Pin,Poutが不足する油圧制御不良が発生したためと推定できる。また、差分ΔPin,ΔPoutが小さい場合、微小滑りの発生の原因が、無段変速機18への入力トルクTinに対して指示圧Pintgt,Pouttgtが不足する油圧制御不良が発生したためと推定できる。
油圧振動判定部90は、微小滑りの発生が判定された場合、その過渡期に油圧アクチュエータ38cの油圧であるセカンダリ圧Poutの油圧振動が発生したかを判定する。油圧振動判定部90は、微小滑りが発生した時点からの微小滑りが終了するまでのセカンダリ圧Poutの標準偏差を算出し、この標準偏差が第5閾値α5以上である場合に油圧振動が発生したものと判定する。このとき油圧振動判定部90は、油圧振動の発生フラグをONにセットする。第5閾値α5は、予め実験的または設計的に求められ、油圧振動が発生したものと判断できる範囲の下限値に設定されている。滑り要因特定部94は、油圧振動の発生フラグがONにセットされると、油圧振動による微小滑りが発生したことを示す、油圧振動による微小滑り発生カウンタN2(積算値)を1つ増加する。この油圧振動による微小滑り発生カウンタN2が増加することで、微小滑りの要因が油圧振動であると推定できる。
応答性不良判定部92は、微小滑りの発生が判定された場合、その過渡期にセカンダリ圧Poutの油圧の応答性不良が発生したかを判定する。応答性不良判定部92は、微小滑りが発生した時点から微小滑りが終了するまでのセカンダリプーリ38の指示圧Pouttgtと実圧Poutとの差分ΔPoutを算出し、その差分ΔPoutが、予め設定されている第6閾値α6以上である場合に応答性不良が発生したものと判定する。このとき、応答性不良判定部92は、応答性不良の発生フラグをONにセットする。第6閾値α6は、予め実験的または設計的に求められ、応答性不良が発生したものと判断できる範囲の下限値に設定されている。滑り要因特定部94は、応答性不良の発生フラグがONにセットされると、応答性不良による微小滑りが発生したことを示す、応答性不良による微小滑り発生カウンタN3(積算値)を1つ増加する。この応答性不良による微小滑り発生カウンタN3が増加することで、微小滑りの要因が応答性不良であると推定できる。
また、油圧振動の発生フラグがOFFにセットされ、且つ、応答性不良の発生フラグがOFFにセットされている場合、滑り要因特定部94は、その他の要因による微小滑りが発生したことを示す、その他の要因による微小滑り発生カウンタN4(積算値)を1つ増加する。このその他の要因による微小滑り発生カウンタN4が増加することで、油圧振動および応答性不良以外のその他の要因で微小滑りが発生しているものと推定できる。
図2は、電子制御装置50の制御作動を説明するためのフローチャートであり、走行中の微小滑りの発生を判定するとともに微小滑りの原因を特定する制御作動を説明するためのフローチャートである。このフローチャートは、車両走行中において繰り返し実行される。
先ず、滑り判定部80の制御機能に対応するステップST1(以下、ステップを省略)において、変速比γの一階微分値Δγが第1閾値α1以上であるかが判定される。ST1が否定される場合、本ルーチンが終了させられる。ST1が肯定される場合、滑り判定部80の制御機能に対応するST2において、変速比γの二階微分値ΔΔγが第2閾値α2以上であるかが判定される。ST2が否定される場合、本ルーチンが終了させられる。ST2が肯定される場合、滑り判定部80の制御機能に対応するST3において、伝動ベルト40の微小滑りの仮フラグがONにセットされる。ST4では、仮フラグがONにセットされた時点における変速比γが微小滑り開始時点の変速比γhdとして記憶される。発熱量判定部82の制御機能に対応するST5では、発熱量Qdotが算出され、その発熱量Qdotが第3閾値α3以上であるかが判定される。ST5が否定される場合、本ルーチンが終了させられる。ST5が肯定される場合、記憶部88の制御機能に対応するST6において発熱量Qdotの最大値(ピーク値)が記憶される。
継続時間判定部84の制御機能に対応するST7では、仮フラグがONにセットされた時点(微小滑りが検出された時点)からの継続時間tconが第4閾値α4以下であるかが判定される。ST7が否定される場合、本ルーチンが終了させられる。ST7が肯定される場合、滑り判定部80の制御機能に対応するST8において、伝動ベルト40の微小滑りの確定フラグがONにセットされる。次いで、記憶部88の制御機能に対応するST9では、微小滑りが発生した時刻が記憶される。次いで、記憶部88の制御機能に対応するST10では、微小滑りが発生した過渡期におけるプライマリプーリ34の指示圧Pintgt、実圧Pin、および指示圧Pintgtと実圧Pinとの差分ΔPin等が記憶される。また、微小滑りが発生した過渡期におけるセカンダリプーリ38の指示圧Pouttgt、実圧Pout、および指示圧Pouttgtと実圧Poutとの差分ΔPout等が記憶される。
滑り回数測定部86の制御機能に対応するST11では、微小滑りの発生回数N1が1回であるかが判定される。ST11が肯定される場合、記憶部88の制御機能に対応するST12において、ST9において記憶された時刻が、微小滑りの初回の時刻として記憶される。ST11が否定される場合、記憶部88の制御機能に対応するST13において、ST9において記憶された時刻が、微小滑りの最新の発生時刻として記憶される。
油圧振動判定部90の制御機能に対応するST14では、微小滑りの発生過渡期において、セカンダリ圧Poutの油圧振動の発生フラグがONであるかが判定される。微小滑りの発生が判定されると、油圧振動の発生が判定され、油圧振動が発生したと判定された場合には油圧振動の発生フラグがONにセットされる。ST14では、この油圧振動の発生フラグがONであるかが判定される。ST14が肯定される場合、滑り要因特定部94の制御機能に対応するST15において、油圧振動による微小滑り発生カウンタN2が1つ増加される。ST14が否定される場合、応答性不良判定部92の制御機能に対応するST16において、セカンダリ圧Poutの応答性不良の発生フラグがONであるかが判定される。微小滑りの発生が検出されると、応答性不良の発生が判定され、応答性不良が発生したと判定された場合には応答性不良の発生フラグがONにセットされる。ST16では、この応答性不良の発生フラグがONであるかが判定される。ST16が肯定される場合、滑り要因特定部94の制御機能に対応するST17において、応答性不良による微小滑り発生カウンタN3が1つ増加される。ST16が否定される場合、滑り要因特定部94の制御機能に対応するST18において、その他の要因による微小滑り発生カウンタN4が1つ増加される。
車両10の走行中に上述したフローが繰り返し実行されることで、微小滑りが発生する毎に、微小滑りの発生時刻、発熱量Qdot、各プーリ34,38の油圧アクチュエータ34c,38cの指示圧Pintgt,Pouttgtおよび実圧Pin,Pout、指示圧Pintgt,Pouttgtと実圧Pin,Poutとの差分ΔPin,ΔPout、入力トルクTin等が、微小滑りの発生要因や微小滑りによる伝動ベルト40の耐久性悪化の度合を推定するための各種情報として記憶されて蓄積される。さらに、微小滑りの発生要因のカウンタ(油圧振動による微小滑り発生カウンタN2、応答性不良による微小滑り発生カウンタN3、その他の要因による微小滑り発生カウンタN4)が増加し、これらの情報についても電子制御装置50に蓄積される。そして、これら蓄積された各種情報を解析することで、微小滑りの発生の要因や伝動ベルト40の耐久性の低下の度合等を推定することができる。例えば、定期点検時において、これらの各種情報が解析されることで、微小滑りの発生要因を特定し、油圧制御のプログラムを微小滑りの発生要因に応じたものに書き替えるなどして、油圧制御の制御性改善に繋げることが可能になる。
上述のように、本実施例によれば、無段変速機18の変速比γの一階微分値Δγが第1閾値α1以上になるとともに、変速比γの二階微分値ΔΔγが第2閾値α2以上になった場合に微小滑りの発生が判定されるため、微小滑りの発生を精度良く判定することができる。例えば、変速比γの一階微分値Δγのみで判定する場合、微小滑りと急変速の操作や路面からの入力による変速比の急変化とを区別することが困難になる。これに対して、変速比γの一階微分値Δγに加えて、変速比γの二階微分値ΔΔγによっても微小滑りの発生が判定されることで、微小滑りの判定精度が向上する。
また、本実施例によれば、微小滑りの発生が判定された場合、微小滑りによって発生する発熱量Qdotが第3閾値α3以上であるかが判定されるため、発生した微小滑りが、伝動ベルト40の耐久性を低下させる微小滑りであるか区別することができる。また、滑りの発生の継続時間tconが、第4閾値α4以下であるか否かに基づいて、極短時間にベルト滑りが発生する微小滑りかその他のベルト滑り(マクロ滑り)であるか区別することができる。また、微小滑りの発生回数N1が測定されることで、その発生回数N1に基づいて、伝動ベルト40の耐久性低下の度合を推定することができる。また、微小滑りが発生したときのプライマリプーリ34の指示圧Pintgtおよび実圧Pin、セカンダリプーリ38の指示圧Pouttgtおよび実圧Pout、無段変速機18に入力される入力トルクTinに基づいて、微小滑りの発生要因を推定することができる。また、微小滑りの発生が判定された場合には油圧振動が発生したかがさらに判定されるため、微小滑りの発生要因が油圧振動によるものかを推定することができる。また、微小滑りの発生が判定された場合には油圧の応答性不良が発生したかがさらに判定されるため、微小滑りの発生要因が油圧の応答性不良によるものかを推定することができる。
つぎに、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。
前述の実施例1では、車両10に搭載される電子制御装置50において各種情報が処理されて記憶されていた。しかしながら、必ずしも電子制御装置50で各種情報を処理する必要はなく、サーバー上で処理されるものであっても構わない。図3は、本実施例における車両100の概略構成を説明する図であると共に、車両100における各種制御の為の制御系の要部を説明する図である。本実施例では、車両100がサーバー150と通信可能に構成されている。なお、その他の構成については、前述した実施例1と基本的に変わらないため、その説明を省略する。なお、本実施例において、サーバー150が、本発明のベルト滑りの発生を判定するベルト滑り診断装置に対応している。
図3に示すように、車両100は、送受信機102およびゲートウェイECU104等を備えている。
送受信機102は、車両100とは別に存在する、車両100とは別の車外装置であるサーバー150と通信する機器である。サーバー150は、車両状態情報等の各種情報を受け付けたり、処理したり、解析したり、記憶(蓄積)したり、提供したりする。サーバー150は、車両100との間でと同様に、他車両200(200a、200b、・・)との間で、各種情報を送受信する。前記車両状態情報は、例えば各種センサ等により検出された車両10の走行に関わる走行状態、つまり車両10の動作状態を示す情報である。この走行状態は、例えばアクセル開度θacc、車速Vなどである。尚、外部ネットワーク通信用アンテナを介してサーバー150との間で無線通信が行われても良い。
ゲートウェイECU104は、電子制御装置50と同様のハード構成を備えており、例えば電子制御装置50内の書き替え可能なROMに記憶されたプログラムやデータの書き替え用に設けられた中継装置である。ゲートウェイECU104は、送受信機102と接続されており、例えば送受信機102とサーバー150との間での無線通信を用いて、電子制御装置50内の上記ROMに記憶されたプログラムを書き替えるためのものである。サーバー150は、書き替え用のプログラムを配信するソフト配信センターとして機能する。
上記のように構成されることで、車両状態情報が随時送受信機102等を介してサーバー150に供給され、サーバー150において処理される。例えば、サーバー150に供給される無段変速機18の変速比γに基づいて微小滑りの発生が判定される。なお、具体的な処理内容については、前述した実施例1と同じであるため、その説明を省略する。このように、サーバー150において、前述した実施例1と同様の処理が実行されることでも前述した実施例1と同様の効果が得られる。また、サーバー150において微小滑りが発生したときの各種情報や微小滑りの発生要因を特定するためのカウンタが更新されて蓄積されることで、サーバー150上で微小滑りの発生要因等を随時解析することができる。これに関連して、サーバー150から微小滑りの発生要因に応じた更新プログラムが電子制御装置50に提供されて、電子制御装置50のROMの内容が新しいプログラムに書き替えられることで、油圧制御の制御性を常に高いものに維持することができる。
上述のように、本実施例のように車両100とは別のサーバー150において前述の実施例1のように各種情報が処理される場合であっても、前述の実施例1と同様の効果が得られる。また、電子制御装置50のROMに記憶されているプログラムを、微小滑りの要因に応じた内容に随時更新することもできる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例2では、サーバー150において各種情報の処理が実行されるものであったが、各種情報の処理については電子制御装置50で実行され、処理された各種情報の記憶のみサーバー150で行われるものであっても構わない。
また、前述の実施例では、セカンダリプーリ38の油圧アクチュエータ38cの油圧であるセカンダリ圧Poutに基づいて油圧振動および応答性不良が判定されていたが、プライマリプーリ34の油圧アクチュエータ34cの油圧であるプライマリ圧Pinに基づいて油圧振動および応答性不良が判定されるものであっても構わない。
また、前述の実施例では、伝動ベルト40は、無端環状のフープと、そのフープに沿って厚さ方向に多数連ねられた厚肉板片状のブロックであるエレメントとを有する無端環状の圧縮式の伝動ベルトから構成されるものであったが、本発明のベルトは、必ずしもこれに限定されない。例えば、交互に重ねられたリンクプレートの端部が連結ピンによって相互に連結された無端環状のリンクチェーンを構成するチェーンベルト式のベルトであっても構わない。また、ゴム式のベルトであっても構わない。
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
18:ベルト式無段変速機
34:プライマリプーリ
38:セカンダリプーリ
40:伝動ベルト(ベルト)
50:電子制御装置(ベルト滑り診断装置)
80:滑り判定部
82:発熱量判定部
84:継続時間判定部
86:滑り回数測定部
88:記憶部
90:油圧振動判定部
92:応答性不良判定部
150:サーバー(ベルト滑り診断装置)
α1:第1閾値
α2:第2閾値
α3:第3閾値
α4:第4閾値

Claims (8)

  1. プライマリプーリと、セカンダリプーリと、該プライマリプーリおよび該セカンダリプーリの間に巻き掛けられたベルトと、を備えたベルト式無段変速機のベルト滑りを検出するベルト式無段変速機のベルト滑り診断装置であって、
    前記プライマリプーリと前記セカンダリプーリとの回転速度の比である変速比の一階微分値が第1閾値以上になるとともに、前記変速比の二階微分値が第2閾値以上になった場合において、前記ベルト滑りの発生を判定する滑り判定部を備える
    ことを特徴とするベルト式無段変速機のベルト滑り診断装置。
  2. 前記ベルト滑りの発生が判定された場合、該ベルト滑りによる発熱量が第3閾値以上であるかを判定する発熱量判定部を備える
    ことを特徴とする請求項1のベルト式無段変速機のベルト滑り診断装置。
  3. 前記ベルト滑りの発生の継続時間を測定し、該継続時間が第4閾値以下であるかを判定する継続時間判定部を備える
    ことを特徴とする請求項1または2のベルト式無段変速機のベルト滑り診断装置。
  4. 前記ベルト滑りの発生回数を測定する滑り回数測定部を備える
    ことを特徴とする請求項1から3の何れか1のベルト式無段変速機のベルト滑り診断装置。
  5. 前記ベルト滑りが発生したときの、前記プライマリプーリの指示圧および実圧、前記セカンダリプーリの指示圧および実圧、および前記ベルト式無段変速機に入力される入力トルクを記憶する記憶部を備える
    ことを特徴とする請求項1から4の何れか1のベルト式無段変速機のベルト滑り診断装置。
  6. 前記記憶部は、さらに前記ベルト滑りによる発熱量を記憶する
    ことを特徴とする請求項5のベルト式無段変速機のベルト滑り診断装置。
  7. 前記ベルト滑りの発生が判定された場合、前記セカンダリプーリの油圧アクチュエータの油圧の油圧振動が発生したかを判定する油圧振動判定部を備える
    ことを特徴とする請求項1から6の何れか1のベルト式無段変速機のベルト滑り診断装置。
  8. 前記ベルト滑りの発生が判定された場合、前記セカンダリプーリの油圧アクチュエータの油圧の応答性不良が発生したかを判定する応答性不良判定部を備える
    ことを特徴とする請求項1から7の何れか1のベルト式無段変速機のベルト滑り診断装置。
JP2020002452A 2020-01-09 2020-01-09 ベルト式無段変速機のベルト滑り診断装置 Active JP7207336B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020002452A JP7207336B2 (ja) 2020-01-09 2020-01-09 ベルト式無段変速機のベルト滑り診断装置
US17/135,007 US11236821B2 (en) 2020-01-09 2020-12-28 Belt-slippage diagnostic apparatus for belt-type continuously-variable transmission
CN202110021321.XA CN113108054B (zh) 2020-01-09 2021-01-08 带式无级变速器的带滑动诊断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020002452A JP7207336B2 (ja) 2020-01-09 2020-01-09 ベルト式無段変速機のベルト滑り診断装置

Publications (2)

Publication Number Publication Date
JP2021110388A JP2021110388A (ja) 2021-08-02
JP7207336B2 true JP7207336B2 (ja) 2023-01-18

Family

ID=76709192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020002452A Active JP7207336B2 (ja) 2020-01-09 2020-01-09 ベルト式無段変速機のベルト滑り診断装置

Country Status (3)

Country Link
US (1) US11236821B2 (ja)
JP (1) JP7207336B2 (ja)
CN (1) CN113108054B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021003232A1 (en) * 2019-07-01 2021-01-07 Team Industries, Inc. Uniform clamp actuated shift infinitely variable transmission system
KR20220078767A (ko) * 2020-12-03 2022-06-13 현대자동차주식회사 차량의 무단 변속기의 목표 변속비 필터링 방법 및 그 필터링 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031227A (ja) 2000-07-14 2002-01-31 Unisia Jecs Corp 車両用自動変速機の制御装置
JP2003329126A (ja) 2002-03-05 2003-11-19 Toyota Motor Corp 無段変速機の制御装置
JP2005042884A (ja) 2003-07-25 2005-02-17 Toyota Motor Corp 無段変速機の制御装置
JP2007247816A (ja) 2006-03-16 2007-09-27 Jatco Ltd 無段変速機の制御装置
WO2016151661A1 (ja) 2015-03-20 2016-09-29 日産自動車株式会社 電動車両の制振制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3498900B2 (ja) * 1998-12-25 2004-02-23 日産自動車株式会社 ベルト式無段変速機の制御装置
JP3885766B2 (ja) * 2003-05-19 2007-02-28 トヨタ自動車株式会社 車両の動力源と無段変速機との協調制御装置
JP4344380B2 (ja) * 2006-12-26 2009-10-14 ジヤトコ株式会社 無段変速機の制御装置
RU2498132C2 (ru) * 2009-04-30 2013-11-10 Ниссан Мотор Ко., Лтд Устройство и способ управления бесступенчатой трансмиссией ременного типа
KR20110024115A (ko) * 2009-09-01 2011-03-09 강명구 듀얼 모드 구동식 연속 가변 변속기
US8636620B2 (en) * 2010-10-28 2014-01-28 Jatco Ltd Automatic transmission
JP5678929B2 (ja) * 2012-08-01 2015-03-04 トヨタ自動車株式会社 自動変速機の制御装置
KR102015695B1 (ko) * 2013-11-22 2019-08-28 쟈트코 가부시키가이샤 무단 변속기의 제어 장치
JP6360185B2 (ja) * 2014-10-15 2018-07-18 本田技研工業株式会社 無段変速機の異常判定装置
JP6656812B2 (ja) 2015-03-02 2020-03-04 ダイハツ工業株式会社 車両用情報記憶装置
CN115743160A (zh) * 2017-01-20 2023-03-07 北极星工业有限公司 用于估计无级变速器的传动带的磨损的方法和系统
CN109695713B (zh) * 2017-10-20 2020-06-05 上海汽车集团股份有限公司 一种无级变速器的钢带滑移仿真方法及装置
JP7119523B2 (ja) * 2018-04-16 2022-08-17 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031227A (ja) 2000-07-14 2002-01-31 Unisia Jecs Corp 車両用自動変速機の制御装置
JP2003329126A (ja) 2002-03-05 2003-11-19 Toyota Motor Corp 無段変速機の制御装置
JP2005042884A (ja) 2003-07-25 2005-02-17 Toyota Motor Corp 無段変速機の制御装置
JP2007247816A (ja) 2006-03-16 2007-09-27 Jatco Ltd 無段変速機の制御装置
WO2016151661A1 (ja) 2015-03-20 2016-09-29 日産自動車株式会社 電動車両の制振制御装置

Also Published As

Publication number Publication date
JP2021110388A (ja) 2021-08-02
CN113108054B (zh) 2022-05-24
US11236821B2 (en) 2022-02-01
CN113108054A (zh) 2021-07-13
US20210215248A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
KR100676666B1 (ko) 연속 가변 트랜스미션 용 미끄러짐 검출 시스템 및방법
EP2175173A1 (en) Device and method for determining failure of stepless transmission
JP7207336B2 (ja) ベルト式無段変速機のベルト滑り診断装置
EP2988032A1 (en) Control device for vehicle transmission
US20170241492A1 (en) Control apparatus for power transmission system
RU2666088C2 (ru) Устройство управления для приводного агрегата транспортного средства
US10851890B2 (en) Control apparatus for vehicle drive-force transmitting apparatus
EP1589263B1 (en) Failure determination device for stepless speed changer
US10968962B2 (en) Control apparatus for vehicle drive-force transmitting apparatus
US10682910B2 (en) Control apparatus for vehicle
US10683001B2 (en) Control apparatus for vehicle drive-force transmitting apparatus
US20190242475A1 (en) Control apparatus for vehicle
US10465777B2 (en) Vehicle power transmission device
JP5783055B2 (ja) 変速機の異常判定装置
CN113108053B (zh) 车辆的诊断装置
US11092202B2 (en) Control apparatus for vehicle drive-force transmitting apparatus
US20210116022A1 (en) Control device for vehicular transmission
JP7063226B2 (ja) 車両用動力伝達装置の制御装置
US11236820B2 (en) Shift control apparatus for vehicle automatic transmission
US11460103B2 (en) Lock-up disengagement control device for automatic transmission
JP6520788B2 (ja) 車両の制御装置
JP4161657B2 (ja) 動力伝達機構の滑り検出装置
JP2020128767A (ja) 車両の制御装置
JP2021050763A (ja) ベルト無段変速機の制御装置、及びベルト無段変速機の制御方法
JP2004036847A (ja) 摩擦係合装置の変化状態判定装置および制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R151 Written notification of patent or utility model registration

Ref document number: 7207336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151