JPWO2009101927A1 - マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法 - Google Patents

マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法 Download PDF

Info

Publication number
JPWO2009101927A1
JPWO2009101927A1 JP2009553415A JP2009553415A JPWO2009101927A1 JP WO2009101927 A1 JPWO2009101927 A1 JP WO2009101927A1 JP 2009553415 A JP2009553415 A JP 2009553415A JP 2009553415 A JP2009553415 A JP 2009553415A JP WO2009101927 A1 JPWO2009101927 A1 JP WO2009101927A1
Authority
JP
Japan
Prior art keywords
microwave
top plate
plasma
plasma processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009553415A
Other languages
English (en)
Other versions
JP5243457B2 (ja
Inventor
才忠 田
才忠 田
石橋 清隆
清隆 石橋
野沢 俊久
俊久 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009553415A priority Critical patent/JP5243457B2/ja
Publication of JPWO2009101927A1 publication Critical patent/JPWO2009101927A1/ja
Application granted granted Critical
Publication of JP5243457B2 publication Critical patent/JP5243457B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

プラズマ処理装置のプラズマ発生室は天板(3)により塞がれている。天板(3)はプラズマ発生室側に向かう面に凹部(3A)を設け、反対側の面に中心部の凹部(3B)を備える。天板(3)上には、アンテナが結合されている。アンテナには、導波管が接続されている。導波管よりマイクロ波を供給すると、供給されたマイクロ波はアンテナ間を径方向に伝播し、アンテナのスロットより放射される。マイクロ波は天板(3)を伝播して偏波面を有し、全体として円偏波を形成する。このとき、天板(3)に備えられた凹部(3A)の側面でマイクロ波の共鳴吸収が起こり、凹部(3A)の内部では単一のモードで伝播する。複数ある凹部(3A)それぞれの内部で強いプラズマが形成され、天板(3)に安定したプラズマモードができる。

Description

本発明は、マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法に関する。
集積回路や液晶、太陽電池など多くの半導体デバイスにプラズマ技術は広く用いられている。半導体製造過程の薄膜の堆積やエッチング工程などで利用されているが、より高性能かつ高機能な製品(例えば超微細加工技術)などのために、高度なプラズマ処理が求められる。特に、低気圧高密度プラズマを得られるマイクロ波プラズマ処理装置が注目されている。
RLSA(Radial Line Slot Antenna)プラズママイクロ波源を用いたプラズマ処理装置は、マイクロ波放電により気体を電離させプラズマを発生する。マイクロ波は導波管を介してアンテナのスロット部分から給電され、天板を伝播してプラズマ発生室内へ放射される。
天板がシンプルでフラットな形態の場合、天板の中心部と周辺部とではマイクロ波の伝播が等しく行われず、均一にプラズマを生成できなかった。これに対し、天板に異なる厚みを持たせる場合や凸部を設ける場合、プラズマ条件に応じたマイクロ波の共振領域を形成するので径方向の伝播を制御できる。
天板中のマイクロ波伝播は径方向と円周方向(回転方向)の2種類同時に存在している。これまでのマイクロ波伝播制御は、特許文献1のように、径方向の伝播に注目していた。その結果、円周方向伝播の不均一性により、プラズマの偏りが発生するという問題があった。特に低マイクロ波パワーの時に、この現象が顕著化する。更に、径方向と円周方向の同時制御を行うためには、天板の形状が複雑となり、製造コストが増大する問題があった。
特開2005−100931号公報
このように、従来の技術では、マイクロ波の円周方向伝播の不均一性により、プラズマの偏りが発生するという問題がある。また、プラズマ処理の内容により、ガスや温度などチャンバー内の条件を変化させると、マイクロ波の周波数とガス圧によってプラズマモードが変化するため、天板と前記天板内を伝播するマイクロ波の波長を変える必要が生じていた。
本発明はこうした状況に鑑みてなされたものであり、その目的は、プラズマモードが安定し、かつ再現性がよいプラズマを発生させることのできるマイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法を提供することである。
上記目的を達成するため、本発明の第1の観点に係るマイクロ波プラズマ処理装置の天板は、マイクロ波プラズマ処理装置に設けられ、マイクロ波を伝播する誘電体の天板であって、マイクロ波をその側面で共鳴吸収し、かつマイクロ波がその内部で単一のモードで伝播する凹部を、プラズマ発生側の面に備えることを特徴とする。
好ましくは、天板は、マイクロ波がマルチモードで伝播する厚さを有することを特徴とする。
好ましくは、天板は、凹部を複数備えることを特徴とする。
さらに、凹部は、マイクロ波の導入位置を中心とする1または2以上の円上に配置されることを特徴とする。
またさらに、凹部は、配置される円の半径が誘電体内を伝播するマイクロ波の波長のおよそ整数倍の大きさとしてもよい。
好ましくは、凹部は、マイクロ波の導入位置を中心として点対称の位置に配置されてもよい。
好ましくは、凹部は、マイクロ波が伝播する方向の径が誘電体内を伝播するマイクロ波の波長の1/3から1/2の範囲の大きさであることを特徴とする。
好ましくはさらに、凹部は、その深さが誘電体内を伝播するマイクロ波の波長の1/4から3/8の範囲の大きさであることを特徴とする。
なお、好ましくは、凹部は、プラズマ発生側の面に平行な断面が円形であることを特徴とする。
本発明の第2の観点に係るプラズマ処理装置は、
プラズマ処理を行うプラズマ発生室と、
プラズマ発生室内にプラズマ発生のためのマイクロ波を導入するスロットアンテナと、
マイクロ波をその側面で共鳴吸収し、かつマイクロ波がその内部で単一のモードで伝播する凹部を、プラズマ発生側の面に備える天板と、
を備えることを特徴とする。
本発明の第3の観点に係るプラズマ処理方法は、マイクロ波を側面で共鳴吸収し、かつマイクロ波がその内部で単一のモードで伝播する凹部を、プラズマ発生側の面に備える天板を用いてプラズマを発生する工程を有することを特徴とする。
さらに、プラズマを発生する工程は、天板と天板内を伝播するマイクロ波の波長を変えることなく、プラズマ発生室内の異なる2以上の雰囲気条件におけるプラズマの発生を含むことがある。
本発明のマイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法によれば、天板に凹部を備えることで、マイクロ波を凹部の側面で共鳴吸収し内部で単一のモードで伝播し、均一で安定したプラズマを発生することができる。
また、プラズマ発生室内の雰囲気を変えても、天板と天板内を伝播するマイクロ波の波長を変えずにプラズマを発生することができ、かつプラズマモードを安定させることができる。
実施の形態に係るプラズマ処理装置の断面図である。 実施の形態に係るマイクロ波プラズマ処理装置における天板をプラズマ発生室側から見た平面図である。 図2のM−M線断面図である。 図3Aの一部拡大図である。 ラジアルラインスロットアンテナの平面図である。 他の実施の形態として、凹部の変形を示す平面図である。 他の実施の形態として、凹部の変形を示す平面図である。 さらに別の実施の形態として、凹部の変形を示す横断面図である。 さらに別の実施の形態として、凹部の変形を示す横断面図である。 フラット天板の場合のプラズマの例(写真)である。 本実施形態の天板の場合のプラズマの例(写真)である。 本実施形態の天板を用いて、圧力1.33Paの条件下で発生させたプラズマの例(写真)である。 本実施形態の天板を用いて、圧力66.65Paの条件下で発生させたプラズマの例(写真)である。
符号の説明
1 プラズマ処理装置
2 プラズマ発生室(チャンバー)
3 天板(誘電体)
3A 凹部
3B 中心部の凹部
4 アンテナ
4A 導波部(シールド部材)
4B ラジアルラインスロットアンテナ(RLSA)
4C 遅波板(誘電体)
5 導波管
6 基板保持台
7 ガス通路、ガス導入口
8 プラズマ
10 基板
(実施の形態)
以下、本発明の第1の観点に係るマイクロ波プラズマ処理装置の天板について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、その説明は繰り返さない。図1は本発明の実施の形態に係るプラズマ処理装置の断面図である。プラズマ処理装置1は、プラズマ発生室(チャンバー)2、天板(誘電体)3、アンテナ4、導波管5、基板保持台6、ガス通路7、を備える。アンテナ4は導波部(シールド部材)4A、ラジアルラインスロットアンテナ(RLSA)4B、遅波板(誘電体)4Cからなる。導波管5は外側導波管5Aと内側導波管5Bからなる同軸導波管である。
プラズマ処理装置1のプラズマ発生室2は天板3により塞がれている。このときプラズマ発生室2内は、真空ポンプで真空状態としておく。天板3上には、アンテナ4が結合されている。アンテナ4には、導波管5が接続されている。導波部4Aは外側導波管5Aに接続され、ラジアルラインスロットアンテナ4Bは内側導波管5Bに結合される。遅波板4Cは、導波部4Aとラジアルラインスロットアンテナ4Bとの間にありマイクロ波の波長を圧縮する。遅波板4Cは例えばSiOやAlなどの誘電体材料から構成される。
マイクロ波源から導波管5を通してマイクロ波を供給する。マイクロ波は導波部4Aとラジアルラインスロットアンテナ4Bとの間を径方向に伝播し、ラジアルラインスロットアンテナ4Bのスロットより放射される。マイクロ波は天板3を伝播して偏波面を有し、全体として円偏波を形成する。
本発明の実施の形態に係る天板3について説明する。天板3はシンプルでフラットな形態、もしくは、プラズマの共振条件に適う異なる厚みを持たせるなどして径方向の伝播を制御できる形態である。
図2は、本発明の実施の形態に係るマイクロ波プラズマ処理装置における天板3をプラズマ発生室側から見た平面図である。図2に示す天板3は、石英もしくはアルミナなどのマイクロ波を伝播する誘電体材料より形成される。天板3の厚みは、マイクロ波がマルチモードで伝播する厚さを有し、例えば石英の場合30mmとすることができる。天板3はチャンバー2側に向かう面に凹部3Aを設け、反対側の面に中心部の凹部3Bを備える。中心部の凹部3Bは、チャンバー2内へマイクロ波を給電するためのアンテナ4および導波管5と中心軸が同じ位置にある。中心部の凹部3Bの位置をマイクロ波の導入位置と合わせることで、中心部の凹部3Bを中心とした軸対称性のよいプラズマをチャンバー2内へ発生する。図2中の矢印Rは、中心部の凹部3Bの中心から径方向を表す一例であり、天板3内を移動するマイクロ波の伝播方向に等しい。同じ径方向にある凹部3Aを中心に近い方から3a1、3a2、3a3とする。
図3Aは、図2のM−M線断面図である。図3Bは図3Aの一部拡大図である。凹部3Aの径方向の長さをW、深さをHとする。中心部の凹部3Bと凹部3Aに垂直に描かれた一点鎖線は、各々の凹部の中心位置を示す。中心部の凹部3Bの中心から凹部3a1の中心までの距離をX1、凹部3a2の中心までの距離をX2、凹部3a3の中心までの距離をX3とおく。
図4は、ラジアルラインスロットアンテナ4Bの一例を示す平面図である。ラジアルラインスロットアンテナ4Bは、導波部4Aのアンテナ4の開口部を覆う形状であり、多数のスロット4b1、4b2が形成されている。ラジアルラインスロットアンテナ4Bを導波部4Aの端部に備えることでプラズマを広げることができる。図4に示すように、スロット4b1、4b2は同心円状に、かつ互いに直交するように形成されている。プラズマはスロット4b1、4b2の長さ方向に垂直に広がるので、天板3直下にプラズマが発生する。
マイクロ波はスロット4b1、4b2から下方向に放射され径方向に伝播し、天板3内で反射が繰り返され、干渉して強め合い、定在波が形成される。このとき、天板3に備えられた凹部3Aの側面でマイクロ波の高効率なエネルギー吸収である共鳴吸収が起こり、凹部3Aの内部で単一のモードで伝播する。複数ある凹部3Aそれぞれの内部で単一のモードで伝播し天板3直下に分布が安定したプラズマができる。天板3の凹部3A以外ではマイクロ波の表面吸収により表面波プラズマが発生する。表面波プラズマのプラズマ密度は低く天板3全体へ与える影響は小さいので、天板3のプラズマの粗密位置パターンが一定となり、プラズマモードが安定する。
チャンバー2内にマイクロ波が給電されプラズマを放射するとき、ガス通路7より、アルゴン(Ar)またはキセノン(Xe)、および窒素(N)などの不活性ガスを、必要に応じて水素などのプロセスガスとともに導入することにより、アルゴン(Ar)またはキセノン(Xe)プラズマ8を形成する。このとき、チャンバー2内を10mPa〜数10Pa程度の比較的圧力が低い高真空状態にした場合でも、安定してプラズマを発生させることができる。
凹部3A内でマイクロ波が単一のモードで伝播するためには、凹部3Aの伝播方向の径Wは、誘電体内を伝播するマイクロ波の波長の1/3から1/2の範囲の大きさであることが望ましい。凹部3Aの伝播方向の径Wが波長の1/2より大きい場合は、凹部3Aの内部で固有モードが形成され、プラズマ発生室内の条件によって異なるモードでプラズマが発生するからである。また、逆位相が起こりマイクロ波パワーが弱くなり、強いプラズマが得られない。径Wが波長の1/2より小さい場合、プラズマモードは安定したままであるが、プラズマの発生する面積が小さくなる。得られるプラズマの面積は径Wのサイズと比例するので、同じプラズマ量を得るためには凹部3Aを多く設ける必要がある。天板3に凹部3Aを加工することを考慮すると凹部3Aの数が少なくて済むように、径Wは波長の大きさの1/3より大きく、できるだけ波長の1/2の大きさに近い方が望ましい。
さらに、凹部3A内でマイクロ波が単一のモードで伝播するためには、凹部3Aの深さHは、誘電体内を伝播するマイクロ波の波長の1/4から3/8の範囲の大きさであることが望ましい。凹部3Aの深さHが波長の1/4より小さい場合は、凹部3Aの開口部付近でプラズマが発生し固有モードが形成されたり、不規則に表面波プラズマが発生し、プラズマの粗密位置パターンが定まらず、プラズマモードが不安定になる。また、凹部3Aの深さHが波長の3/8より大きい場合は、凹部3Aの奥の方でプラズマが発生し、プラズマ処理の効率が低下する。
前述の径Wと深さHを満たす凹部3Aを、天板3のプラズマ発生側の面に複数配置させる場合は、マイクロ波の導入位置を中心とする円上に配置するとよい。このとき円の数は1または2以上で形成する。さらに凹部を配置する円の径は、凹部3Aを定在波の強め合う部分に設置することが望ましい。また、凹部3Aを点対称の位置で配置することで、天板3の周方向に関係なく天板3を設置できる。
例えば、図3BのX1は誘電体内を伝播するマイクロ波の波長の1波長分の大きさ、X2は2波長分の大きさ、X3は3波長分の大きさとする。中心部の凹部3Bの中心から波長の整数倍の位置は、形成された定在波の強め合う位置であり、マイクロ波パワーが最大となる。凹部3Aの側面で共鳴吸収した場合、効率よくエネルギーを得ることができる。そこに凹部3a1、3a2、3a3が配置されることで、各々の凹部側面でマイクロ波の共鳴吸収が起こり、単一のモードで伝播し、安定したプラズマ分布を効率よく得ることができる。
配置される円の半径は、凹部3Aの径Wのサイズを考慮すると、誘電体内を伝播するマイクロ波の波長のおよそ整数倍であればよく、波長の整数倍の大きさから±1/4波長分の範囲内であることが望ましい。
図3Bでは、同じ径方向の波長の整数倍の位置全てに凹部3Aが形成された場合を示したが、同じ径方向で見たときに、X1、X2、X3のいずれかの位置にのみ凹部3Aを設けてよく、X1とX3の組合せやX2とX3の組合せの場合もある。中心部の凹部3Bを中心としたX1を含む円上、X2を含む円上、X3を含む円上の位置に点対称の位置に配置することが望ましい。天板3の径サイズと誘電体内を伝播するマイクロ波の波長の大きさとの関係より、凹部3Aを配置できる円の数は異なる場合があり、3波長分の大きさまでに限定されない。
中心部の凹部3Bは、マイクロ波を導入する位置や天板3の位置を固定するために形成したものであり、必ずしもあるとは限らない。また、マイクロ波の導入位置と一致しない場合や、天板3の中心位置と一致しない場合もある。これらの場合は、マイクロ波の導入位置を基準として凹部3Aの位置を決める。
図5A,5Bは、本発明の他の実施の形態として、凹部の変形を示す平面図で、天板のプラズマ発生側の面に平行な面を表す。図6A,6Bは、さらに別の実施の形態として、凹部の変形を示す横断面図で、天板のプラズマ発生側の面と垂直な面を表す。
本発明の実施の形態に係る天板3の凹部3Aの、天板3のプラズマ発生側の面に平行な面を図2では円形として説明したが、図5A、図5Bにある楕円形や角丸四角形などでもよい。これらは変形例の一例であり、図示しない他の形状でもよい。天板の加工のしやすさより円形であることが望ましいが、径方向に対して線対称の形状で、凹部3Aの径Wが誘電体内を伝播するマイクロ波の波長の1/3から1/2の大きさの範囲を満たせばよい。
また、本発明の実施の形態に係る天板3の凹部3Aの凹みの形状は、図2および図3では円柱形として説明したが、プラズマ発生側の面に底面を有する半球形、円錐形などでもよい(図6A、図6B参照)。凹部3Aの内側で、プラズマ発生側の面と平行でない面において、マイクロ波の共鳴吸収が起こりプラズマを発生する。
凹部3Aの形状は断面や深さ方向の組合せにより様々であり、図示した例に限らない。
(実施例1)
図7A及び7Bは本発明の実施の形態に係る天板3でプラズマ実験を行い、天板3の凹部3Aの効果を確認した例である。図7Aはフラット天板の場合(以下、従来の天板という)のプラズマの例(写真)、図7Bは本発明の凹部3Aを備える天板の場合(以下、本発明の天板という)のプラズマの例(写真)である。
実験に用いる天板3は石英で形成され、本発明の天板は、従来の天板に複数の凹部3Aを備えたものである。プラズマ形成に係る条件は共通で、アルゴンガスを使用し、マイクロ波電力は2000W、圧力は1.33Paで実験を行った。
従来のフラット天板の場合は、プラズマ発生が不均一であり、とくに周辺部の粗密が目立っている。本発明の場合は、天板3の中心部と周辺部の差は見受けられず、複数ある凹部3Aの内部で均一にプラズマが発生し、プラズマモードが安定していることが確認された。
(実施例2)
図8A及び8Bは本発明の実施の形態に係る天板3を用いて、異なる圧力でプラズマを形成した例(写真)である。図8Aは圧力1.33Paの場合(条件A)、図8Bは圧力66.65Paの場合(条件B)を示す。圧力以外の条件は実施例1と同じである。圧力は、条件Aを1.33Pa、条件Bを66.65Paとして、実験を行った。プラズマ形成の有無と、形成された場合はプラズマの分布を比較する。
図8Bのように、条件Bの比較的圧力の高い状態にした場合でも同じパターンでプラズマを発生させることができた。また、図8Aと図8Bを比較した場合、どちらも複数ある凹部を基準にしてプラズマが形成されていることが分かる。条件Aと条件Bのプラズマを比較すると、プラズマの大きさがほぼ等しく、かつ、均一な分布のプラズマが形成されたことが分かった。
従来の天板では、圧力が異なるとプラズマの発生パターン(密度分布)が変化するので、発生パターンを一定に保つには圧力の制御が必要であった。本発明の天板を用いることで、実施例2で示されるように、圧力条件に左右されにくく、再現性のよい均一なプラズマを得ることができた。
圧力条件以外では、温度やガスの種類などを調整してプラズマを発生させる。従来の天板では、圧力の範囲は10mPa〜数10Paと小さく、他条件の設定に制限がかかることもあった。本発明の天板を用いることで、従来よりも低い圧力や高い圧力にした場合でもプラズマを発生できるので、圧力条件に限定されず、最適条件を選択できるようになった。
以下に、本発明の第2の観点に係るプラズマ処理装置について説明する。プラズマ処理装置は、図1で示したものと同じである。天板は、本発明の第1の観点に係るプラズマ処理装置の天板3を用いる。
従来の天板を用いる場合、マイクロ波の径方向の伝播を制御しているものはあったが、周方向の伝播を制御していないので、モードの安定が不十分であった。さらに、プラズマ発生室2内の圧力の変化などの影響でプラズマ発生の密度分布が異なり、モード変化が発生しやすく、導入する気体の圧力や温度などの条件、気体の種類やその成分比などによりモード変化が発生していた。
本発明の実施の形態に係る天板3を用いることで、凹部3Aの内部でマイクロ波が吸収されプラズマを発生させる。マイクロ波の天板3内の伝播モードによらずに、凹部3Aの位置にプラズマ8を発生させることができ、発生強度分布がほぼ同じプラズマを安定して得られる。プラズマ8の発生位置が凹部3Aの位置に限られるので再現性もよい。プラズマ発生の密度分布が凹部の位置に固定して変化しないので、導入する気体の種類と成分比、気体の圧力と温度などの条件を替える場合でも、同じモードのプラズマを発生させることができる。
プラズマ処理装置1で、条件の異なるプラズマ処理を連続して施す場合であっても、安定したプラズマモードを得ることができる。プラズマ処理に合わせた気体の種類や成分比、及び温度や圧力を調整するのみで、発生強度分布がほぼ同じプラズマ8を得られる。別の天板への交換、及び、天板内を伝播するマイクロ波の波長を変える必要はない。さらに、温度や圧力の必要な設定変更後に、必要なモードを得るために行っていた微調整や、安定したモードを得るための微調整もない。従来に比べると短時間で、安定して再現性よく作業することができる。
凹部3Aは、マイクロ波が伝播する方向の径が誘電体内を伝播するマイクロ波の波長の1/3から1/2の範囲の大きさ、深さが1/4から3/8の範囲の大きさが好ましい。また、凹部3Aの位置を、マイクロ波の導入位置を中心とする円上、特に円の半径が誘電体内を伝播するマイクロ波の波長のおよそ整数倍に配置することが望ましい。給電したマイクロ波を効率よく吸収でき、無駄なくプラズマを発生させる。そのとき凹部3Aをマイクロ波の導入位置を中心とした点対称の位置で配置すると、周方向を気にせずにプラズマ処理装置1に天板3を設置できる。
次に、本発明の第3の観点に係るプラズマ処理方法について説明する。
プラズマ処理装置1内でプラズマ8を発生する際、プラズマ発生側の面に凹部3Aを設ける天板3を用いる。マイクロ波は凹部3Aの側面で共鳴吸収することにより、内部に単一のモードで強いプラズマを発生することができる。プラズマの発生が天板3の凹部3Aの箇所となるので、プラズマモードが安定する。
凹部3Aの伝播方向の径は誘電体内を伝播するマイクロ波の波長の1/3から1/2の範囲の大きさ、深さは1/4から3/8の範囲の大きさとすることで、凹部3Aの内部で単一のモードで伝播し、強いプラズマを発生する。さらに、マイクロ波の導入位置を中心として配置する円の半径が、誘電体内を伝播するマイクロ波の波長の大きさのおよそ整数倍とすることで、定在波の強め合う位置にある凹部3Aの側面でマイクロ波の共鳴吸収が起こり、効率よく強いプラズマが得られる。
マイクロ波の導入位置を中心とした点対称の位置に凹部3Aを備えることで、周方向でのプラズマモードが安定し、向きに関係なく天板を設置できる。
プラズマ8を凹部内部で単一モードで発生させるので、プラズマ処理装置1のプラズマ発生室2内の雰囲気や基板処理方法およびプラズマ処理条件を変化させた場合、つまり、導入する気体の種類と成分比、気体の圧力と温度などの条件を変化させた場合であっても、天板3と天板3内を伝播するマイクロ波の波長を変えることなくプラズマ処理することが可能となる。
本発明により、同じモードのプラズマを安定して発生させることができるため、天板と天板内を伝播するマイクロ波の波長を変えることなく、異なる条件で連続してプラズマ処理できる。本発明は成膜処理やエッチング処理の条件を変化させたい場合に特に有効である。本発明のプラズマ処理方法は、他にも、アッシング処理などの全てのプラズマ処理に適用することができる。
また、被処理体としての基板は半導体基板に限定されず、ガラス基板やセラミック基板などを選ぶこともでき、様々な種類の基板のプラズマ処理に適用することができる。
なお、実施の形態で説明した天板及びプラズマ処理装置、プラズマ処理方法は一例であり、これらに限定されるものではない。
本出願は、2008年2月13日に出願された日本国特許出願2008−31310号に基づく。本明細書中に日本国特許出願2008−31310号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
本発明は、マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法として有用である。

Claims (12)

  1. マイクロ波プラズマ処理装置に設けられ、マイクロ波を伝播する誘電体の天板であって、前記マイクロ波をその側面で共鳴吸収し、かつ前記マイクロ波がその内部で単一のモードで伝播する凹部を、プラズマ発生側の面に備えることを特徴とするマイクロ波プラズマ処理装置の天板。
  2. 前記天板は、前記マイクロ波がマルチモードで伝播する厚さを有することを特徴とする請求項1に記載のマイクロ波プラズマ処理装置の天板。
  3. 前記天板は、前記凹部を複数備えることを特徴とする請求項1に記載のマイクロ波プラズマ処理装置の天板。
  4. 前記凹部は、前記マイクロ波の導入位置を中心とする1または2以上の円上に配置されることを特徴とする請求項3に記載のマイクロ波プラズマ処理装置の天板。
  5. 前記凹部は、配置される円の半径が前記誘電体内を伝播するマイクロ波の波長のおよそ整数倍の大きさであることを特徴とする請求項3に記載のマイクロ波プラズマ処理装置の天板。
  6. 前記凹部は、前記マイクロ波の導入位置を中心として点対称の位置に配置されることを特徴とする請求項3に記載のマイクロ波プラズマ処理装置の天板。
  7. 前記凹部は、前記マイクロ波が伝播する方向の径が前記誘電体内を伝播するマイクロ波の波長の1/3から1/2の範囲の大きさであることを特徴とする請求項1に記載のマイクロ波プラズマ処理装置の天板。
  8. 前記凹部は、その深さが前記誘電体内を伝播するマイクロ波の波長の1/4から3/8の範囲の大きさであることを特徴とする請求項1に記載のマイクロ波プラズマ処理装置の天板。
  9. 前記凹部は、前記プラズマ発生側の面に平行な断面が円形であることを特徴とする請求項1に記載のマイクロ波プラズマ処理装置の天板。
  10. プラズマ処理を行うプラズマ発生室と、
    前記プラズマ発生室内にプラズマ発生のためのマイクロ波を導入するスロットアンテナと、
    前記マイクロ波をその側面で共鳴吸収し、かつ前記マイクロ波がその内部で単一のモードで伝播する凹部を、プラズマ発生側の面に備える天板と、
    を備えることを特徴とするプラズマ処理装置。
  11. マイクロ波を側面で共鳴吸収し、かつ前記マイクロ波がその内部で単一のモードで伝播する凹部を、プラズマ発生側の面に備える天板を用いてプラズマを発生する工程を有することを特徴とするプラズマ処理方法。
  12. 前記プラズマを発生する工程は、前記天板と前記天板内を伝播するマイクロ波の波長を変えることなく、プラズマ発生室内の異なる2以上の雰囲気条件におけるプラズマの発生を含むことを特徴とする請求項11に記載のプラズマ処理方法。
JP2009553415A 2008-02-13 2009-02-10 マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法 Expired - Fee Related JP5243457B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553415A JP5243457B2 (ja) 2008-02-13 2009-02-10 マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008031310 2008-02-13
JP2008031310 2008-02-13
PCT/JP2009/052200 WO2009101927A1 (ja) 2008-02-13 2009-02-10 マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法
JP2009553415A JP5243457B2 (ja) 2008-02-13 2009-02-10 マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法

Publications (2)

Publication Number Publication Date
JPWO2009101927A1 true JPWO2009101927A1 (ja) 2011-06-09
JP5243457B2 JP5243457B2 (ja) 2013-07-24

Family

ID=40956959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009553415A Expired - Fee Related JP5243457B2 (ja) 2008-02-13 2009-02-10 マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法

Country Status (6)

Country Link
US (1) US8967080B2 (ja)
JP (1) JP5243457B2 (ja)
KR (1) KR101157143B1 (ja)
CN (1) CN101953236A (ja)
TW (1) TWI402000B (ja)
WO (1) WO2009101927A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415884B2 (en) * 2009-09-08 2013-04-09 Tokyo Electron Limited Stable surface wave plasma source
KR101565432B1 (ko) * 2010-03-31 2015-11-03 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치용 유전체창, 플라즈마 처리 장치 및 플라즈마 처리 장치용 유전체창의 장착 방법
JP5893865B2 (ja) * 2011-03-31 2016-03-23 東京エレクトロン株式会社 プラズマ処理装置およびマイクロ波導入装置
JP5377587B2 (ja) * 2011-07-06 2013-12-25 東京エレクトロン株式会社 アンテナ、プラズマ処理装置及びプラズマ処理方法
KR101420078B1 (ko) 2011-11-11 2014-07-17 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치용 유전체창 및 플라즈마 처리 장치
JP2014075234A (ja) * 2012-10-03 2014-04-24 Tokyo Electron Ltd アンテナ及びプラズマ処理装置
JP2014160557A (ja) * 2013-02-19 2014-09-04 Tokyo Electron Ltd プラズマ処理装置
WO2014159590A1 (en) * 2013-03-13 2014-10-02 Radom Corporation Microwave plasma spectrometer using dielectric resonator
CN104112637A (zh) * 2013-04-17 2014-10-22 北京北方微电子基地设备工艺研究中心有限责任公司 一种进气系统及等离子体加工设备
JP2015018685A (ja) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
JP2015130325A (ja) * 2013-12-03 2015-07-16 東京エレクトロン株式会社 誘電体窓、アンテナ、及びプラズマ処理装置
US9947516B2 (en) * 2014-06-03 2018-04-17 Tokyo Electron Limited Top dielectric quartz plate and slot antenna concept
USD821613S1 (en) 2015-07-03 2018-06-26 Arktura, Llc Architectural fixture
USD859696S1 (en) 2015-07-03 2019-09-10 Arktura Llc Architectural fixture
USD848035S1 (en) 2015-07-03 2019-05-07 Arktura Llc Architectural fixture
USD849275S1 (en) 2015-07-03 2019-05-21 Arktura Llc Architectural fixture
USD849969S1 (en) 2015-07-03 2019-05-28 Arktura Llc Architectural fixture
US10651017B2 (en) 2016-06-30 2020-05-12 Tokyo Electron Limited Method for operation instability detection in a surface wave plasma source
US10337998B2 (en) 2017-02-17 2019-07-02 Radom Corporation Plasma generator assembly for mass spectroscopy
EP3401923A1 (en) * 2017-05-12 2018-11-14 RIToN Holding Ltd A method for amplifying energy and a power amplifier
JP2019008945A (ja) * 2017-06-22 2019-01-17 東京エレクトロン株式会社 アンテナ及びプラズマ処理装置
USD843020S1 (en) 2017-07-28 2019-03-12 Aktura LLC Architectural fixture
USD847383S1 (en) 2017-07-31 2019-04-30 Arktura Llc Architectural fixture
USD849276S1 (en) 2017-07-31 2019-05-21 Arktura Llc Architectural fixture
USD846160S1 (en) 2017-07-31 2019-04-16 Arktura Llc Architectural fixture
JP2019106358A (ja) * 2017-12-14 2019-06-27 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
CN110769585B (zh) * 2018-07-27 2023-08-18 北京北方华创微电子装备有限公司 表面波等离子体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734253A (ja) * 1993-07-20 1995-02-03 Hitachi Ltd マイクロ波プラズマ処理装置
JP3427165B2 (ja) 1994-02-24 2003-07-14 株式会社エルデック 電気集塵装置
JPH09232099A (ja) * 1996-02-20 1997-09-05 Hitachi Ltd プラズマ処理装置
JP5036092B2 (ja) * 1999-03-24 2012-09-26 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
JP3960775B2 (ja) 2001-11-08 2007-08-15 シャープ株式会社 プラズマプロセス装置および処理装置
JP3723783B2 (ja) * 2002-06-06 2005-12-07 東京エレクトロン株式会社 プラズマ処理装置
JP2004200307A (ja) * 2002-12-17 2004-07-15 Tokyo Electron Ltd プラズマ処理装置
DE10324751B4 (de) 2003-05-30 2009-01-22 Infineon Technologies Ag Verfahren zur Herstellung einer Halbleiter-Struktur mit einem Halbleitersubstrat und mit diesem Verfahren hergestellte Halbleiter-Struktur
CN100492591C (zh) 2003-09-04 2009-05-27 东京毅力科创株式会社 等离子处理装置
JP4563729B2 (ja) 2003-09-04 2010-10-13 東京エレクトロン株式会社 プラズマ処理装置
JP4093212B2 (ja) * 2004-07-23 2008-06-04 東京エレクトロン株式会社 プラズマ処理装置
JP4756540B2 (ja) 2005-09-30 2011-08-24 東京エレクトロン株式会社 プラズマ処理装置と方法
JP4910396B2 (ja) 2006-01-12 2012-04-04 東京エレクトロン株式会社 プラズマ処理装置

Also Published As

Publication number Publication date
KR101157143B1 (ko) 2012-06-22
JP5243457B2 (ja) 2013-07-24
TWI402000B (zh) 2013-07-11
WO2009101927A1 (ja) 2009-08-20
CN101953236A (zh) 2011-01-19
US20110000780A1 (en) 2011-01-06
US8967080B2 (en) 2015-03-03
TW200944071A (en) 2009-10-16
KR20100101014A (ko) 2010-09-15

Similar Documents

Publication Publication Date Title
JP5243457B2 (ja) マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法
US8133348B2 (en) Plasma generating apparatus and plasma treatment apparatus
JP3828539B2 (ja) マイクロ波プラズマ処理装置、プラズマ処理方法及びマイクロ波放射部材
TWI685015B (zh) 微波電漿源及電漿處理裝置
JP4008728B2 (ja) プラズマ処理装置
Nagatsu et al. Production of large-area surface-wave plasmas with an internally mounted planar cylindrical launcher
JP2003188152A (ja) プラズマ処理装置およびプラズマ生成方法
JP3787297B2 (ja) プラズマ処理装置
JP7139528B2 (ja) プラズマ処理装置
JP2012190899A (ja) プラズマ処理装置
JP2007035411A (ja) プラズマ処理装置
US7015413B2 (en) Plasma generation system having a refractor
JP5143662B2 (ja) プラズマ処理装置
JP2007035604A (ja) マイクロ波プラズマ発生装置
JP5676675B2 (ja) プラズマ発生装置及びプラズマ処理装置
JP2001167900A (ja) プラズマ処理装置
JPH05129095A (ja) プラズマ処理装置
JP2018006256A (ja) マイクロ波プラズマ処理装置
JP2018006257A (ja) マイクロ波プラズマ処理装置
JP3957565B2 (ja) プラズマ処理装置、処理装置および処理方法
JP3866590B2 (ja) プラズマ発生装置
TW201946503A (zh) 模組化高頻源
JP4486068B2 (ja) プラズマ生成方法
JPH09134797A (ja) マイクロ波プラズマ処理装置
Hur et al. l: il: l: i:: t: li: lil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees