JPWO2008123213A1 - 半導体装置及び半導体製造方法 - Google Patents

半導体装置及び半導体製造方法 Download PDF

Info

Publication number
JPWO2008123213A1
JPWO2008123213A1 JP2009509104A JP2009509104A JPWO2008123213A1 JP WO2008123213 A1 JPWO2008123213 A1 JP WO2008123213A1 JP 2009509104 A JP2009509104 A JP 2009509104A JP 2009509104 A JP2009509104 A JP 2009509104A JP WO2008123213 A1 JPWO2008123213 A1 JP WO2008123213A1
Authority
JP
Japan
Prior art keywords
sic
layer
polarity
plane
polar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009509104A
Other languages
English (en)
Inventor
須田 淳
淳 須田
木本 恒暢
恒暢 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2008123213A1 publication Critical patent/JPWO2008123213A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3556Semiconductor materials, e.g. quantum wells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8213Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using SiC technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Si極性面のSiで終端されたSiC表面1aにSi原子3を1原子層成長し、さらにC原子5を1原子層だけ成長する。その後は、SiとCとを供給しSiC層を形成する。この際に成長したSiC層の表面は、Si極性面とは反対のC極性面となる。すなわち、上記の工程によれば、Si極性のSiC層1上に1原子層のSi中間層bを挟んで極性が反転したC極性のSiC層1xを成長することができる。これによりSiCの極性を表面において反転させる技術を提供することが可能になる。

Description

本発明は、半導体装置に関し、より詳細には、SiC層上に形成された半導体装置の極性制御技術に関する。
SiCは極めて高い熱伝導率を有しており、また、導電性基板及び絶縁性基板が入手可能である。加えて、SiCは、AlN、GaN系のIII族窒化物に格子定数と熱膨張係数とが近く、さらにIII族窒化物と同様に極性を持つという特徴を有している。SiC基板上に高品質AlN、GaN系III族窒化物を成長させて、III族窒化物、SiCの一方又は両方を利用した高性能な発光ダイオード、レーザーダイオード、トランジスタ、光電子集積デバイスなどを実現させる研究が盛んに行われている。また、SiCとII族酸化物のZnO系材料も比較的格子定数が近く、II族酸化物基板としての応用も研究されている。
SiCとIII族窒化物の間では、Si−Nの結合とC―III族金属(AlやGa)の結合とが強いという特徴があり、これによりSiC基板上に成長したIII族窒化物の極性制御が可能であるという性質を有している。すなわち、Siの結合手が表面に対して垂直に突き出たSiC(0001)Si極性面では、SiとNとが結合し、結果として、成長したIII族窒化物はIII族原子の結合が垂直に突き出た構造、すなわちIII族極性面を持つ。逆に、Cの結合手が表面に対して垂直に突き出たSiC(000−1)C極性面では、CとIII族金属とが結合し、結果として、成長したIII族窒化物は窒素原子の結合が垂直に突き出た構造、すなわちN(窒素)極性面を持つ。これと同様のことがII族酸化物についても言える。すなわち、Si−Oの結合が強いため、Si極性面上にはII族極性面が、C極性面上にはO極性面のII族酸化物が成長する。
通常のデバイスでは、基板全面にわたって結晶の極性(もしくは方位)が一方に統一されている方が望ましいが、ある種のデバイス、例えば、非線形光学素子の一つである第二次高調波発生素子では、光の進行方向に極性を周期的に反転させた領域を人為的に導入することにより、疑似位相整合を達成し、極めて優れた特性を実現するようになる。また、表面の極性によりデバイスの特性、例えば電界効果トランジスタのしきい値電圧が制御可能な場合は、反対の極性を表面に混在させることができれば、しきい値電圧の大きく異なる2種類のトランジスタを利用可能であり、集積回路設計の自由度が大きく向上する。これらのデバイス・集積回路は、基板面内で極性が一方に統一されてしまうと作製することができない。
Chowdhury A, Ng HM, Bhardwaj M, et al."Second-harmonic generation in periodically poled GaN"APPLIED PHYSICS LETTERS 83 (6): 1077-1079 AUG 11 (2003).
SiCとは異なり、極性を持たないサファイア基板上では、成長条件や基板表面処理条件により得られるIII族窒化物の極性が異なることを利用して、極性反転構造が作製されている。すなわち、最初にGa極性となる成長条件でIII族窒化物を成長し、その後、不必要な部分をエッチングによりGa極性のIII族窒化物を除去して、サファイア基板を露出させる。次に、反対のN極性が形成される成長条件でIII族窒化物を成長することで、サファイア基板が露出した部分に反対のN極性のIII族窒化物を成長することができる(既にGa極性のIII族窒化物が形成された部分には、下地のIII族窒化物の極性を引き継ぎGa極性のIII族窒化物が成長する。)。その結果、基板表面に正反対の極性を持つIII族窒化物が混在した構造を人為的に形成できるのである。上記のような人為的極性反転構造は、基板自体が無極性であり、成長条件によりその上に成長するIII族窒化物の極性を選択できるサファイア基板上においては実現できるが、SiCでは、上述のように基板の極性で上に成長するIII族窒化物の極性が固定されてしまうため、この方法を取ることは不可能である。
本発明は、SiC基板の極性と反対の極性を持つSiC層、III族窒化物層もしくはII族酸化物をSiC基板表面に形成することで、正反対の極性を持つSiC層、III族窒化物層、II族酸化物層をSiC基板上に混在させる技術を提供することを目的とする。
4H、6H、15R−SiC(0001)Si極性面(3C−SiCにおいては(111)Si極性面)においては、Siの結合手は表面に垂直に突き出ている。このSiCのSi極性面に1原子層のSiを成長すると(これを「中間層」と称する。)、Si-Si結合が形成され、結果としてSiの結合が表面から斜めに出た表面構造を実現することができる。この表面構造に、炭素を結合させることで、炭素は3つのSiと結合し、炭素の結合手が垂直に出た、SiCのC極性面と同等な表面となる。この表面にSiCの成長を継続することで、SiCのSi極性面上に中間層を介して反対の極性C極性面SiC層を形成することができる。さらにこのC極性面SiC上にIII族窒化物やII族酸化物を通常の方法で成長することでN極性面のIII族窒化物やO極性面のII族酸化物を成長することができる。
また、Si−Si結合が形成され、結果としてSiの結合が表面から斜めに出た表面構造に、窒素を結合させることで、窒素は3つのSiと結合し、窒素の結合手が垂直に出た、III族窒化物のN極性面と同等な表面となる。この表面上にIII族窒化物を成長するとN極性面を持って成長することになり、通常のSi極性面SiC上の成長で期待される極性と反対の極性のN極性面III族窒化物を得ることができる。
また、Si−Si結合が形成され、結果としてSiの結合が表面から斜めに出た表面構造に、酸素を結合させることで、酸素は3つのSiと結合し、酸素の結合手が垂直に出た、II族酸化物のO極性面と同等な表面となる。この表面上にII族酸化物を成長すると、O極性面を持って成長することになる、通常のSi極性面SiC上の成長で期待される極性と反対の極性のO極性面II族酸化物を得ることができる。
原理的には、Siの挿入層が奇数であれば極性が反転することになり、任意の奇数層Si中間層を利用することができるが、SiとSiCとの大きな格子不整合のため、必要以上に厚いSi中間層を導入すると格子不整合に起因する欠陥が発生し、その上に成長する極性反転層の結晶性が低下する。また、成長条件によっては、Si中間層の厚みが増えるとSiが層状に成長せずに島状に成長し、Siの層数を基板全体に対して制御できなくなる(層状の部分に比べて島状の部分で厚さが増えてしまう、つまり面内で厚さ、つまり極性を統一できない)という問題が生じるので注意が必要である。
また、別の方法として、中間層のSiをあえて厚く成長し、SiCの持っている極性の情報を表面付近で消失させ、あたかも極性を持たないSiの(111)面と等価な状態にし、Si(111)面上でSiCやIII族窒化物、II族酸化物の成長条件を制御することで任意の極性の層を成長する方法を取ることができる。この場合、Siの層数を厳密に制御する必要が無くなるので、中間層の形成プロセスは簡易化できる。但し、SiCやIII族窒化物、II族酸化物の成長条件により極性を制御することになるので、目的とする極性とは反対の極性の領域が若干混入する可能性がある。また、上述のようにSiC上に厚く成長したSiの結晶性は格子不整合のために良好とは言えず、この厚いSi上に成長した結晶の品質は犠牲になる。非線形光学素子のような結晶性に鈍感なデバイスの作製には問題なく使用できるが、発光ダイオードなどの結晶性が性能に顕著な影響をもたらすデバイスにはやや不向きである。
中間層としては、IV−IV族化合物であるSiCと親和性が良く、かつ、無極性である、IV族元素を主体とした材料、すなわち、Si、Ge、Cなどを主体とする材料を用いることができる。純粋なSiを使用するのが製膜装置の簡素化の点で望ましいが、中間層の層状成長を促進するためにGeなどを混ぜたSixGe1−xなどの混晶を使用することも可能である。中間層の結晶性が良いほど、上部の極性反転層の品質を良くできるので、製膜法に応じてもっとも良い結晶性が得られる組成や厚さを選択すればよい。また、中間層に導電性をもたらすためにn型、p型ドーピングなどを行うことも可能である。また、上記ではSi中間層によるSi極性面からC極性面(もしくはN極性面、O極性面)への反転を例に説明したが、まったく同様の議論をC中間層、C極性面についても適用でき、全部で4通りのバリエーションが得られる。
本発明によれば、SiC極性面上に極性が反転した領域を面内に含むSiC、III族窒化物、II族酸化物からなる構造を用意かつ精度良く作製することができる。特に、III族窒化物、II族酸化物による疑似位相整合非線形光学デバイス、電界効果トランジスタ集積回路などの様々な分野に応用することができる。
図1(A)〜(C)までは、SiCの極性に関する図である。 本発明の第1の実施の形態によるSiC半導体結晶の成長方法を示す図であり、合わせてそれぞれの成長過程における表面近傍の結晶構造を示す図である。 本実施の形態によるSiC半導体結晶の表面近傍の結晶構造を示す図である。 Siが過剰に吸着した状態に関連する結晶構造を示す図である。 本発明の第1の実施の形態の第1変形例による半導体成長方法を示す図である。 図6(A)から(C)までは、本発明の第2の実施の形態によるSiC半導体結晶の成長方法を示す図である。 本発明の第1および第2の実施の形態の変形例による半導体成長方法を示す図である。 本発明の第3の実施の形態による半導体装置及びその製造方法を示す簡略化された工程図である。 本発明の第4の実施の形態による半導体装置の製造方法を示す簡略化された工程図である。 本発明の第5の実施の形態による半導体装置及びその製造方法を示す簡略化された工程図である。 図11(A)は、第3の実施の形態で作製したSiC分極反転構造であり、図11(B)は、図11(A)の構造にAlNなどの任意のIII族窒化物、II族酸化物を成長することにより形成された、III族窒化物やII族酸化物の分極反転構造である。 本発明の第6の実施の形態による技術として、上記第4の実施の形態の応用により作製した波長変換機能を持つ半導体装置であって、図12(A)から(D)までは、周期空間反転構造を有する疑似位相整合型波長変換素子を作成する工程の例を示す図である。 図13(A)は図12(C)の斜視図であり、図13(B)は図12(D)の断面図である。 本発明の第7の実施の形態であり、図14(A)から(D)までは、本実施の形態によるGaN系高電子移動度トランジスタ(HEMT)集積回路の作製手順を示す図である。 図14の工程により作成された2種類のHEMTのモノリシック化された構造を示す断面図である。 本発明の第7の実施例の変形例を示す図であり、非反転領域にSiCデバイス(nMOSFET)を配置し、反転領域にIII族窒化物デバイス(HEMT)を配置した図である。 図16に示すHEMTの代わりに中間層を介した反転SiCを有するSiCMOSFETが、図16に示すSiCMOSFETとともに形成されている構造を示す図である。
符号の説明
1…SiC基板、1b…中間層、1c…C原子層、1x…SiC層、3…Si原子、5…C原子、23b…極性反転層、23a…非反転層。
以下に、本発明の実施の形態による半導体技術について図面を参照しながら説明を行う。
まず、本発明の第1の実施の形態による半導体装置及び半導体製造方法について説明する。図1(A)及び図1(B)は、SiCの極性に関する図である。図1(A)に示すように、Si原子(白抜きの丸印で示す。)とC原子(黒塗りの丸印で示す。)とのうちのいずれの原子の結合手(実線で示す。)が結晶表面からその表面(破線で示す。)に垂直な方向に延びているかにより、結晶の極性が定義される。図1(A)に示す構造では、破線で示す表面からSiの結合手が垂直に伸びており、これをSi極性面もしくは(0001)面と称する。一方、図1(B)に示す構造では、破線で示す表面からCの結合手が垂直に伸びており、これをC極性面もしくは(000−1)面と称する。但し、Si極性面であっても、例えばSiCの成長をCの堆積で終了していれば、図1(C)に示すように破線で示す最表面はC原子で終端されているが、その一原子層下のSi原子を見れば表面方向にSiへの結合手が延びており、この場合にはSi極性面である。
また、極性面とは、厳密に言えば(0001)面と(000−1)面のみであるが、例えば、(0001)面から数度ほど傾いた面はSi極性面と見なすことができる。また、(03−38)面や(0−33−8)面など、(0001)面もしくは(000−1)面から数十度傾いた面であっても、前者はSi極性面である(0001)面により近く、後者はC極性面である(000−1)により近いので、本明細書では広い意味の極性面としてこれらの面も極性面に含めることとする。(0001)面の反対極性の面は(000−1)面であり、(0001)面から、ある角度だけ傾いた面の反対極性の面は(000−1)面からある角度傾いた面とする。
一方、(11−20)や(1−100)などの、(0001)面に完全に垂直な面は極性が定義できない無極性面であり、本明細書においては言及していない。
上述の通り、SiとNとの結合及びCとIII族金属との結合が強いため、SiC上にIII族窒化物を成長すると、Si極性面ではSiとNが結合し、成長するIII族窒化物は結果としてIII族原子の結合が垂直に突き出た構造、すなわちIII族極性面を持つようになる。本明細書では、Si極性面に対してIII族極性面を同一の極性と呼び、N極性面を反対の極性と呼ぶ。同様に、II族酸化物については、Si極性面に対してII族極性面を同一の極性と呼び、O極性面を反対の極性と呼ぶ。
図2(A)から(I)までは、本実施の形態によるSiC半導体結晶の成長方法を示す図である。
まず、(0001)Si極性面を持つSiC基板1を準備し、清浄表面にするための表面処理を行う。図2(A)に示すように、SiC基板1の表面1aは、図2(B)に示すようにSi原子から垂直に結合手が出た状態になっている。この状態において、Si原子3を奇数原子層(図では例として1層)積層させる。これにより、図2(D)、図2(E)に示すように、表面1a上にSi−Si結合(中間層)1bが形成される。このSi−Si結合は表面では不安定な結合であるが、非平衡状態であれば維持することができる。尚、正確に奇数原子層だけ積層させることが欠陥等を導入させないという観点からは好ましいが、例えば0.1原子層程度のSi原料を余分に供給してしまった場合でも、Si原子が偶数原子層となる部分は面内全体の10%程度であり、その後の横方向成長などで覆い隠されることにより、極性の反転という目的は達せられる。
次いで、図2(E)、(F)に示すように、中間層1bが形成されたSiC基板1上にC原子5を1原子層だけ成長する。図2(G)に示すように、最表面には、C原子層1cが形成される。その後は、図2(G)、(H)に示すように、通常のSiC成長と同様にSiとCとを供給しSiC層1xを形成する。この際に、成長したSiC層1xの最表面は、Si極性面とは異なるC極性面となる。さらに継続して成長すると、C極性面を有するSiC層が成長していく。上記の工程によれば、図2(I)に示すように、Si極性のSiC層1上に1原子層Si中間層1bを挟んで極性が反転したC極性のSiC層1xを成長することができる。尚、1cで示される炭素1原子層は上部のC極性SiC層1xを構成する1層と見なすことができる。
以上に示した成長工程において、SiC表面1a上のSi中間層1bの厚さを奇数層に正確に制御することが重要である。従って、電子線回折やX線光電子分光、オージェ電子分光などの表面敏感な測定手段を用い、中間層1bの堆積中にリアルタイムに表面被覆率などを観測しながら成長を行うのが好ましい。尚、一旦条件を確定しさえすれば、これら手段によるリアルタイム観測を行わずなくても、供給速度と供給時間とを制御することにより奇数原子層分の中間層を正確に堆積することが可能である。
また、中間層1bおよびその後のSiCの成長の初期においては熱力学的に不安定であるので、熱平衡から離れた状態で行う必要がある。分子線エピタキシー(MBE)法が、非平衡状態の実現と上記のリアルタイム観察が可能という意味で最も適した方法の一つであるが、量産性などを考えると、リアルタイム観察は行えないが、気相エピタキシー(VPE)法も有力な方法となる。また、中間層1b上への成長においては、一般的なSiCの成長温度よりも温度を下げ、表面付近での原子の交換、拡散などが生じないようにすることが重要である。例えば、Si−Si上にCを供給する工程の温度が高いと、表面においてSiとCが入れ替わり、すなわちSi中間層1bは炭化され、下地のSiC1と同一極性を持つSiCが形成され、つまり中間層は消失し、単なる同一極性のSiCホモエピタキシャル成長となってしまう。
中間層1bの厚さとしては、結晶構造から示されるように1層以上の奇数層を用いることができる。しかしながら、SiとSiCとの大きな格子不整合のため、必要以上に厚いSi層を導入すると格子不整合に起因する欠陥が発生し、その上に成長させるSiC極性反転層の結晶性が低下する。また、成長条件によっては、Siが層状に成長せずに島状に成長し、Siの層数を基板全体に対して制御できなくなる(島状になった部分が他の部分に比べて厚くなる)という問題が生じるので、可能な限り薄くすることが望ましく、望ましくは1層もしくは3層、5層程度とするのが好ましい。 本実施の形態による半導体製造方法によれば、以上において説明した図3(A)の構造の他に、図3(B)に示すように、Si極性のSiC層上に奇数層(ここでは例として1層)のC中間層によるC−C結合を介してC極性のSiC層(極性反転層)を精度良く堆積することもできる。また、図3(C)、(D)に示すように、C極性SiC上に奇数層のC中間層を介してSi極性SiCを形成する、C極性SiC上に奇数層のSi中間層を介してSi極性SiCを形成する、ということも可能である。しかしながら、SiC上へのCの堆積において、四配位C−C結合を持つC中間層(ダイヤモンドに相当する)の形成は難しく、三配位のグラファイト構造を取りやすい。グラファイト層が形成されると極性反転は出来なくなってしまうので、中間層にはSiを使用する方が好ましい。
また、本実施の形態においては、完全なSi終端面から結晶成長を開始する例について説明したが、Si終端面にSiが部分的に吸着した状態から結晶成長を開始させることもできる。MBE法では、SiCのSi極性面の清浄化はSi照射しながらの高温加熱により酸化物などの不純物を除去する方法が用いられるが、この方法で得られる清浄SiC表面は、図4(A)に示すように、Si終端面に1/3原子層Siが過剰に吸着した状態となる。この場合には、この表面に2/3原子層Siを供給すれば、図4(B)のように1原子層Siを形成することができる。また、2と2/3原子層分だけSiを供給すれば、図4(C)のように3原子層Siを形成することができる。
以上に説明した、奇数原子層の中間層を用いる極性反転技術における重要な点は、中間層の原子が、4配位構造を取ることである。例えば、C中間層を用いた場合、それが3配位、すなわちグラファイト構造になってしまうと、極性反転はおろか、その上に良好なSiC、III族窒化物、II族酸化物を成長することが困難になってしまう。
次に、上記第1の実施の形態の第1変形例による半導体成長方法について図5を参照しつつ説明を行う。本変形例による半導体成長方法は、SiC中間層1bの堆積工程までは、第1の実施の形態によるSiC半導体成長方法と同様である。但し、中間層1bを成長した図5(A)における構造において、第1の実施の形態のようにSiCを成長するのではなく、N(もしくはO)を基板に供給し、窒素(もしくは酸素)の1原子層1dを形成し、引き続いて、NとIII族元素(もしくはOとII族元素)とを供給してIII族窒化物(もしくはII族酸化物)を成長し、図5(C)に示すようにSiC1と反対の極性をもつAlN層7(或いはGaN層、ZnO層など)を成長することを特徴とする。尚、図5では例としてAlN層7を成長する場合を示している。中間層1bを用いない場合は、Si極性SiC面1上には、通常III族極性III族窒化物(II族極性II族酸化物)が成長する。第1の実施の形態による中間層1bを形成した後のSi結合手の出方の違い(Si極性面は垂直に出るのに対して、Si極性面上の中間層のSiの結合は斜めに出る)を利用して、図5(D)に示すように、反転した極性、つまりN極性を持つIII族窒化物(O極性を持つII族酸化物)を成長させることができる。SiCの反転成長と同様に、C極性面上の反転した成長、つまりIII族極性面(II族極性面)の成長も可能である。また、中間層1bに4配位構造が要請される点も第1の実施の形態と共通である。
次に、本発明の第2の実施の形態による半導体装置及びその製造方法について説明する。第1の実施の形態では、奇数原子層(可能なだけ薄くし、望ましくは、1、3層程度)の中間層1bによる極性の反転を行ったが、別の方法として、中間層のSiをあえて厚く成長し、SiCの持っている極性の影響を消失させ、表面を、擬似的に極性を持たないSi(111)面と等価な状態にし、この表面上に成長するSiCの成長条件を調整することにより反対の極性の層を成長する点に特徴がある。図6(A)から(C)までは、本実施の形態によるSiC半導体結晶の成長方法を示す図である。
まず、(0001)Si極性面を持つSiC基板11を準備し、清浄表面にするための表面処理を行う。次にこの基板11上にSiを供給し、図6(B)に示すように、例えば厚さ20nmのSi中間層11bをヘテロエピタキシャル成長させる。SiCのSi極性面上にはSiの(111)面が成長する(Si(111)には極性はない)。続いて、このSi中間層11b上に、SiCを成長させる。極性を持たないSi(111)上には、SiCはSi極性面、C極性面いずれでも成長することが可能であり、SiC成長直前のSi(111)面の処理方法、炭化プロセス条件、SiC自体の成長条件等で、いずれを成長させるかに関する制御が可能である。例えば、SiCのC極性面が成長する処理、炭化プロセス、成長条件を採用すると、このSi中間層11b上に、C極性面を持つSiC層11cが成長し、極性の反転という目的が達せられる。
この場合、第1の実施の形態とは異なり、Siの層数を厳密に制御する必要が無くなるため、中間層11bの形成プロセスに関する制約を少なくすることができ、工程を大幅に簡易化できるという利点がある。但し、無極性であるSi(111)上はSiCの両方の極性が成長しうるので、目的とする極性とは反対の極性が若干混入する可能性がある。また、格子定数の大きく異なるSiの厚い層が入るために、極薄の中間層を用いる第1の実施の形態ほど反対極性のSiC層11cを高品質化することは難しい。但し、プロセスが簡単であるので、反対極性の層の品質に対する要求が厳しくないデバイスへの応用、例えば非線形光学素子などへの応用には、この厚いSiを中間層を利用できる点で極めて有効な方法である。中間層11bの薄さの下限は、中間層11b上へのSiC成長後に、中間層11bが残留できる厚さがどの程度であるかによって決まる。すなわち、Si上へのSiC成長前には、一般にSiの炭化(SiC化)プロセスが使用されるが、Si中間層11bが薄すぎると、全ての中間層が炭化され、炭化領域はSiC基板11に達し、炭化された層は、SiC基板11の極性を引き継いでしまうため、極性の反転しない単なるホモエピタキシャル成長になってしまう。
一方、中間層の厚さの上限は、その後のデバイス作製のリソグラフィーの細かさにより決まる。すなわち、Si中間層11bが厚すぎると、Si中間層11bの部分領域除去のため、より深いエッチングが必要になり、エッチング処理におけるアスペクト比の制約と関連する面内の最小加工寸法精度が低下するという問題がある。例えば、0.5μmの最小加工寸法を想定すると、Si中間層11bの厚さは0.1μm、すなわち100nm以下とするのが望ましい。尚、厚い中間層を使う場合には、中間層の組成は、Si、C、Geのいずれか1つを含む任意の組成とすることができる。ここで説明した厚い中間層による極性反転に関しては、必ずしも4配位構造になる必要はないが、極性反転した層の結晶性を良好に保つために、最低でも中間層に何らかの配向性を持たせることが望ましく、さらには、SiCに対してエピタキシャル成長していることが望ましい。より望ましいのは、ダイヤモンド構造、閃亜鉛鉱構造、ウルツ鉱構造のいずれかの構造でエピタキシャル成長している場合である。以上のような背景から、ダイヤモンド構造のSiもしくはSi1−xGexのエピタキシャル成長層が厚い中間層として最も適していると言える。
次に、第2の実施の形態の第1変形例による半導体成長方法について説明を行う。本変形例による半導体成長方法は、中間層11bの堆積工程までは第2の実施の形態によるSiC半導体成長方法と同様である。但し、中間層成長後(図6(B))にSiCを成長するのではなく、III族窒化物(もしくはII族酸化物)を成長する。Si(111)上には、III族窒化物(II族酸化物)はIII族極性面(II族極性面)、N極性面(O極性面)どちらでも成長条件の選定で成長可能である。ここではSiC基板がSi極性なので、反対極性に相当する、N極性(O極性)で成長するように、Si中間層の表面を処理し、成長初期条件を選定し、成長を行う。するとこのSi中間層上に、N極性(O極性)を持つIII族窒化物(II族酸化物)が得られ、極性の反転という目的は達せられる。SiCの反転と同様に、C極性面上の反転した成長、つまりIII族極性面(II族極性面)の成長も可能である。また、中間層への要請(SiC基板に対するエピタキシャル成長)も同様である。
次に、第1および第2の実施の形態の変形例による半導体成長方法について図7を参照しつつ説明を行う。本変形例による半導体成長方法は、第1もしくは第2の実施の形態による成長を完了した後、すなわち、図7(A)に示すように、SiC1上に中間層1bを用いて反対極性のSiC層7を形成した後に、通常の方法でIII族窒化物もしくはII族酸化物15を成長する。III族窒化物もしくはII族酸化物15は、成長時の表面におけるSiCの極性を引き継いで成長するため、結果として図7(B)に示すようにSiC基板1とは反対の極性のIII族窒化物15を成長することができる。
次に、本発明の第3の実施の形態による半導体装置及びその製造方法について説明する。図8は、本実施の形態による半導体装置の製造方法を示す簡略化された工程図である。図8(A)に示すように、まず、第1もしくは第2の実施の形態と同様にSi極性面を有するSiC基板21上に中間層21bを形成し、次いで、C極性面を有するSiC21xを成長する。次いで、図8(B)に示すように、C極性面を有するSiC21xを、例えばリソグラフィー法により加工し、SiC21xを残した領域21x’と、SiC21xと中間層21bとを除去しSiC21表面を露出させた領域21’と、を有する構造を形成する。SiC21xおよび中間層21bとの除去には、具体的には反応性イオンエッチングなどの手法を用いる。除去においては、SiC21xと中間層21bのみを除去することが望ましいが、SiC基板21の表面が露出した後に多少SiC基板21の表面を除去したとても、その後の工程で埋め込まれるので問題ない。図8(B)に示す構造の全面にSiとCとを供給しSiCを堆積すると、SiC21xを残した領域21x’上には反転した極性、つまりC極性面を有するSiC層23bが、SiC21xと中間層21bを除去した領域にはSiC基板21と同じSi極性面を有するSiC層23aが堆積する。すなわち、図8(C)に示すように、異なる極性を有するSiC層23aとSiC層23bとが、例えば、ストライプ状に、かつ、面内の一方向に対して交互に配置されるように形成することもできる。尚、図8中における極性を矢印で模式的に表している。このように、本実施の形態による半導体装置及びその製造方法によれば、極性面の異なるSiCを、周期的に形成した構造など、任意の構造を実現することができる。尚、もともと、図8(B)の時点で存在する段差や、極性により成長速度が異なること等から、図8(C)のように表面には凹凸が生じる。もし必要であれば、表面研磨(CMP法など)などの方法により凹凸を除去し、図8(D)のように最表面を平坦化した構造にするとも可能である。
次に、本発明の第4の実施の形態による半導体装置及びその製造方法について説明する。図9は、本実施の形態による半導体装置の製造方法を示す簡略化された工程図である。図9(A)に示すように、まず、第1もしくは第2の実施の形態と同様にSi極性面を有するSiC基板31上に中間層31bを形成し、次いで、C極性面を有するSiC31xを成長する。次いで、図9(B)に示すように、C極性面を有するSiC31xと中間層31bとを、例えばリソグラフィー法により加工し、SiC31xを残した領域31x’と、SiC31xと中間層31bとを除去した領域31’と、を形成する。図9(B)に示す構造を形成した状態において、この全面にAlとNとを供給しAlNを堆積すると、SiC31xを残した領域31x’上には反転した極性、つまりN極性面を有するAlN層35bが、SiC31xと中間層31bとを除去した領域にはSiC基板31のSi極性に対応したIII族極性面(この場合、Al極性面)を有するAlN層35aが堆積する。すなわち、図9(C)に示すように、異なる極性を有するAlN層35aと35bとが、例えば、ストライプ状にかつ面内の一方向に対して交互に配置されるように形成することができる(図中において極性を矢印で模式的に表した。)。
このように、本実施の形態による半導体装置及びその製造方法によれば、極性面の異なるAlN層を、基板面内のある方向に周期的に形成した構造など、任意の構造を実現することができる。もともと、図9(B)の時点で存在する段差や、極性により成長速度が異なることから図9(C)のように表面には凹凸が生じる。このような段差は、必要であれば、研磨などの方法で除去し、図9(D)のように最表面を平坦化することができる。成長する薄膜は、AlN層に限らず、AlxGa1−xN層、GaN層、ZnO層など任意のIII族窒化物、II族酸化物およびそれらの多層膜とすることができる。この方法のメリットは、III族窒化物、II族酸化物の極性は、表面に現れたSiCの極性により規定されるので、窒化物・酸化物の成長条件には特に制約はなく、SiC上に高品質で成長できる通常の成長条件を使用すれば良いことが挙げられる。
次に、本発明の第5の実施の形態による半導体装置及びその製造方法について説明する。図10は、本実施の形態による半導体装置の製造方法を示す簡略化された工程図である。図10(A)に示すように、まず、第1もしくは第2の実施の形態と同様にSi極性面を有するSiC基板31上に中間層31bを形成する。次いで、図10(B)に示すように、中間層31bを、例えばリソグラフィー法により加工し、中間層31bを残した領域31b’と、中間層31bを除去した領域31’と、を形成する。除去には、具体的には化学エッチングなどを用いる。除去は、中間層31bだけを除去できることが望ましいが、SiC基板31を多少除去してもその後の工程で埋め込まれるので問題ない。この全面に中間層31b上でN極性になるような条件で、AlNを堆積すると、中間層31bを残した領域31b’上には反転した極性を有するN極性面を有するAlN層37bが、中間層31bを除去した領域にはSiCの極性によりAlNの極性が決まる、つまり、SiC基板1のSi極性面に対応する、Al極性面を有するAlN層37aが堆積する。すなわち、図10(C)に示すように、異なる極性を有するAlN層37aとAlN層37bとが、例えば、ストライプ状にかつ面内の一方向に対して交互に配置されるように形成することができる(図中極性を矢印で模式的に表した。)。このように、本実施の形態による半導体装置及びその製造方法によれば、極性面の異なるAlNを、周期的に形成した構造など、任意の構造を実現することができる。もともと図10(B)の時点で存在する段差や、極性により成長速度が異なることから図10(C)のように表面には凹凸が生じる。これは必要であれば、研磨などの方法で除去し、図10(D)のように最表面を平坦化することができる。尚、成長する薄膜は、AlNに限らず、III族窒化物、II族酸化物およびそれらの多層膜とすることができる。この方法のメリットは、中間層31bはSiやSi1−xGexなどであり、SiCに比べると化学エッチングにより容易に除去できることである。また、中間層31bは極めて薄いために、図9(C)における表面の凹凸を小さくすることができ、多くの場合、研磨による平坦化工程を省略できる点が挙げられる。一方、AlNなどの成長条件を中間層31b’上とSiC31’上で反対の極性となるように選定する必要があり、このような条件は、一般に高品質結晶の成長条件とは大きく異なっている。従って、ある程度の膜厚の成長を行った後は、高品質結晶成長条件に切り替えて、結晶性を向上させる工夫が必要である。
また、第4、第5の実施の形態以外にも、第3の実施の形態で作製したSiC分極反転構造(図11(A))にAlNなどの任意のIII族窒化物、II族酸化物を成長することで、図11(B)のように、III族窒化物やII族酸化物の分極反転構造を作製することも可能である。図11(A)は、図8(D)に対応する図面であり、SiC21の上の最表面には、Al極性面を有するIII族窒化物(例えばAlN)層23a’と、N極性面を有するIII族窒化物(例えばAlN)層23b’とが交互に並んでいる。III族窒化物に代えてII族酸化物でも良い。また、図11(B)は、図11(A)の構造のようにSiC23a’・23b’上に、III族窒化物39a・39bやII族酸化物の分極反転構造を作製することも可能である。
次に、本発明の第6の実施の形態による技術として、上記第4の実施の形態の応用により作製した波長変換機能を持つ半導体装置について説明する。図12(A)から(D)までに周期空間反転構造を有する疑似位相整合型波長変換素子を作成する工程の例を示す。
図12(A)に示すように、まず、SiC基板41上にMBE法により厚さ10nmのSi中間層43を形成し、引き続き同一MBE装置で厚さ40nmのSiC反転層44aを形成する。次いで、図12(B)に示すように、フォトリソグラフィー法と反応性イオンエッチングを用いて500nm/500nmのラインアンドスペースでストライプ状にSiC反転層44aと中間層43とを除去しSi極性のSiC面を表面に露出させる。
次に、図12(C)に示すように表面にMBE法、VPE法などの方法でAlGaNを成長させ、一度成長装置から取り出し、表面を化学機械研磨により平坦化し、薬品を用いて洗浄する。再び、成長装置に導入し、AlGaN/GaN/AlGaNの光導波路構造を成長する。この際、Si極性の開口領域にはIII族極性の窒化物層45b/46b/47bが、C極性のSiC反転層44b上にはN極性のIII族窒化物層45a/46a/47aが成長する。これにより、図12(C)の断面図、図12(D)の斜視図に示すように、SiC基板41上に、AlGaN層に挟まれたGaN層46bとGaN反転層46aとがストライプ状に周期的に配置された周期構造を形成することができる。また、図13(A)、(B)に示すように、SiC基板41の表面441に形成された周期構造において、周期的に配置される方向に向けて側端面から光(ω)を導入すると、GaNの非線形光学効果と、周期的分極反転による疑似位相整合効果により高効率の2次高調波発生デバイス(2ω)を実現することができる。図12におけるGaN層(光ガイド層)、AlGaN層(クラッド層)は、必要に応じてAlxGayIn1−x−yNなどの他のIII族窒化物層、もしくはその多層構造に置き換えることができる。また、ここではIII族窒化物による素子を示したが、同様にII族酸化物による素子も作製可能である。また、ストライプのラインアンドスペースは、屈折率の波長分散から、疑似位相整合が達せられるように適切に設定することは言うまでもない。
次に、本発明の第7の実施の形態として、第4の実施の形態の応用により作製した半導体装置について図面を参照しつつ説明を行う。図14(A)から(D)までは、本実施の形態によるGaN系高電子移動度トランジスタ(HEMT)集積回路の作製手順を示す図である。図14(A)に示すように、上記第6の実施の形態における手順と同様にして、Si極性面のSiC基板41上にSiC極性反転層44aを形成する。次に、集積回路レイアウトを元に、図14(B)に示すように、小さなしきい値電圧を持たせたいHEMTを配置したい領域でSiC極性反転層44aと中間層43とを除去する。この表面に対して、必要に応じて、ガスエッチング、化学洗浄等の処理を行った後、MBE法、VPE法などにより、HEMT構造となるようにAlN層45、GaN層46、AlGaN層47を形成する。この構造は、AlGaN/GaNヘテロ接合HEMTとして働く。上述の非線形光学デバイスでは、極性の反転していない領域(上向き矢印が続く層)と反転した領域(上向き矢印の上に下向き矢印が続く層)を接続することが光導波路として機能させるために極めて重要であるため、必要に応じて化学機械研磨を行い、両者の面の高さを揃える必要があったが、HEMT集積回路の場合、それぞれの領域が独立してトランジスタとして機能するので、配線工程などで支障がなければ、研磨により高さを揃える工程は省略しても良い。
図14(D)、図15に示すようにSi極性面上に形成されたIII族極性面を持つHEMTは、III族窒化物の分極効果により小さなしきい値電圧Vth1(大きな負の値、ノーマリオン)となり、SiC極性反転層、つまりC極性面上に形成されたN極性面を持つHEMTは分極効果により2次元電子ガスが形成されにくく、大きなしきい値電圧Vth2(0V付近もしくは正の値、ノーマリオフもしくはそれに近い特性)を持つようになる。このように、同じ基板上に、大きく異なるしきい値電圧Vthを有するHEMTを同時に作製可能であるため、本実施の形態による技術を用いると、製造プロセス及び回路設計の自由度を大きくすることができるという利点がある。
次に、本発明の第7の実施例の変形例としては、先ほど説明した、極性の非反転領域、反転領域の両方にIII族窒化物デバイス(HEMT)を配置した図15に示すようなデバイス、非反転領域にSiCデバイス(nMOSFET)を配置し、反転領域にIII族窒化物デバイス(HEMT)を配置した図16に示すようなデバイス、非反転領域、反転領域の両方にSiCデバイス(nMOSFET)を配置した図17に示すようなデバイスを作製することができる。
図16は、SiC基板101と、その上に形成された第1の積層構造130a及び第2の積層構造130bと、を有している。第2の積層構造130bは、中間層103を介して形成されたSiC基板101に対して極性が反転した構造であり、AlNバッファ層105b、GaN層107b、AlGaN電子供給層121bの順に成長されている。一方、第1の積層構造130aは、SiC基板101と同じ極性を有するp−SiC層107aが形成されている。第1の積層構造130aには、SiO2からなるゲート絶縁膜108を介してゲート電極G131が形成され、その両側であってp−SiC107aの表面近傍には高濃度のn型不純物領域(ソース)121a、ドレイン121bが形成され、それぞれに対してソース及びドレイン電極135・137が形成されて、nチャネルSiCMOSFETが構成されている。第1の積層構造130aには、上述のように、2次元電子ガス層111bであってゲート電極141により変調されたチャネル層を有するHEMT構造が形成され、それぞれ、ソース及びドレイン電極145・147が形成されている。矢印は極性を示す。このような構造によれば、同じSiC基板上に、SiCによる高耐圧MOSFETと、GaN/AlGaNへテロ接合を利用した高周波HEMTとを形成することが可能となる。
図17は、図16に示すHEMTの代わりに中間層103を介して極性を反転させたSiCを有するSiCMOSFETが、図16に示すSiCMOSFETとともに形成されている。SiCMOSFETは作製する極性面によりしきい値などの特性が大きく変わる。このようにすることで、同一SiC基板上に、しきい値電圧の異なるSiCMOSFETを集積することができる。
もちろん、III族窒化物をII族酸化物に置き換えたデバイスも作製可能であり、また、素子もMOSFET、HEMTに限らず、ダイオード、発光ダイオード、レーザーダイオード、バイポーラトランジスタなど任意の素子とすることができる。SiC、III族窒化物、II族酸化物は強い極性を持ち、デバイスの種類により最適な極性が異なるため、本実施の形態で説明したように、両方の極性を1枚の基板に集積する技術は非常に有用である。反転領域の作製に関しては、上記第1〜第5の実施の形態およびその変形例を自由に組み合わせることができる。また、SiCデバイス作製は、(0001)面、(000−1)面から2〜9度傾けた面で作製することが一般的であるので、例えば図17のデバイスでは、SiC基板として4H−SiCの(0001)面から4度<11−20>方向に傾いた面を利用することができる。尚、ここで、中間層は基板に対してエピタキシャル関係を持つように堆積されているため、中間層上の極性反転層は(000−1)面から4度<11−20>方向に傾いた面となる。
本発明に係る半導体技術は、非線形光学デバイス、集積回路以外にも、III族窒化物やII族酸化物による光デバイスとSiC電子デバイスを集積化した光集積回路や、III族窒化物、II族酸化物、SiCマイクロマシン(MEMS)の作成などにも利用することができる。また、III族窒化物、II族酸化物に限らず、SiCの極性を引き継いで成長可能な任意の半導体、誘電体についても、同様の手法で反転・非反転領域を混在させた構造が作製できる。
本発明によれば、SiC系の極性反転層を容易かつ精度良く作成することができる。特に、疑似位相整合非線形光学デバイス、HEMT集積回路などの様々な分野に応用することができる。

Claims (17)

  1. 第1の極性面を有する第1のSiC層と、
    該第1のSiC層上に堆積することにより形成されたSi又はGe、Cのうちの少なくとも何れか1つを含む中間層と、
    該中間層の上に堆積することにより形成された前記第1の極性面とは反対の第2の極性面を有する第2のSiC層と
    を有する半導体装置。
  2. 第1の極性面を有する第1のSiC層と、
    該第1のSiC層上に堆積することにより形成されたSi又はGe、Cのうちの少なくとも何れか1つを含む中間層と、
    該中間層の上に堆積することにより形成された前記第1の極性面とは反対の第2の極性面を有する第1のIII族窒化物層またはII族酸化物層と
    を有する半導体装置。
  3. 第1の極性面を有する第1のSiC層と、
    該第1のSiC層上に堆積することにより形成されたSi又はGe、Cのうちの少なくとも何れか1つを含む中間層と、
    該中間層の上に堆積することにより形成された前記第1の極性面とは反対の第2の極性面を有する第2のSiC層と、
    該第2のSiC層上に堆積された前記第2の極性面と同一の極性面を有する第1のIII族窒化物層またはII族酸化物層と
    を有する半導体装置。
  4. 前記第1のSiC層上に前記中間層が存在しない領域があり、該領域に前記第1の極性面と同一の極性面を有する第3のSiC層が形成されている請求項1から3までのいずれか1項に記載の半導体装置。
  5. 前記第1のSiC層上に前記中間層が存在しない領域があり、該領域に前記第1の極性面と同一の極性面を有する第2のIII族窒化物層またはII族酸化物層が形成されている請求項1から3までのいずれか1項に記載の半導体装置。
  6. 前記第1のSiC層上に前記中間層が存在しない領域があり、該領域に前記第1の極性面と同一の極性面を有する第3のSiC層が形成され、さらに該第3のSiC層上に前記第1の極性面と同一の極性面を有する第2のIII族窒化物層またはII族酸化物層が形成されている請求項1から3までのいずれか1項に記載の半導体装置。
  7. 前記中間層がSi層であることを特徴とする請求項1から6までのいずれか1項に記載の半導体装置。
  8. 前記中間層がC層であることを特徴とする請求項1から6までのいずれか1項に記載の半導体装置。
  9. 前記中間層が奇数原子層であることを特徴とする請求項1から8までのいずれか1項に記載の半導体装置。
  10. 前記中間層が1原子層であることを特徴とする請求項1から8までのいずれか1項に記載の半導体装置。
  11. 前記中間層が100nm以下の厚さを有することを特徴とする請求項1から8までのいずれか1項に記載の半導体装置。
  12. 前記第1の極性面は、4H−、6H−、15R−SiCの(0001)Si極性面、又は、3C−SiCの(111)Si極性面、又は、前記(0001)Si極性面、(111)Si極性面から面方向のずれが10度以内の面であることを特徴とする請求項1から11までのいずれか1項に記載の半導体装置。
  13. 前記第1の極性面は、4H−、6H−、15R−SiCの(000−1)C(炭素)極性面、又は、3C−SiCの(-1-1-1)C極性面、又は、前記(000-1)C極性面、(-1-1-1)C極性面から面方向のずれが10度以内の面であることを特徴とする請求項1から11までのいずれか1項に記載の半導体装置。
  14. 前記第1の極性面は、4H−、6H−、15R−SiCの(0001)Si極性面、又は、3C−SiCの(111)Si極性面、又は、前記(0001)Si極性面、(111)Si極性面から面方向のずれが10度以内の面であり、また、前記第2の極性面はIII族窒化物層またはII族酸化物層の(000−1)窒素もしくはO(酸素)極性面、又は、前記(000−1)面から面方向のずれが10度以内の面であることを特徴とする請求項2から11までのいずれか1項に記載の半導体装置。
  15. 前記第1の極性面は、4H−、6H−、15R−SiCの(000−1)C極性面、又は、3C−SiCの(−1−1−1)Si極性面、又は、前記(000−1)C極性面、前記(−1−1−1)Si極性面から面方向のずれが10度以内の面であり、また、前記第2の極性面はIII族窒化物層またはII族酸化物の(0001)III族もしくはII族極性面、又は、前記(0001)面から面方向のずれが10度以内の面であることを特徴とする請求項2から11までのいずれか1項に記載の半導体装置。
  16. 第1の極性面を有する第1のSiC層上に形成された該第1の極性面と同一の極性面を持つ第1のIII族窒化物もしくはII族酸化物からなる第1の光導波路構造と、
    該第1のSiC層上に堆積することにより形成されたSi又はGe、Cのうちの少なくとも何れか一つを含む中間層を介して、該中間層上に堆積することにより形成された、該第1の極性面と反対の極性面を持つ第2のIII族窒化物もしくはII族酸化物からなる第2の光導波路構造とを有し、
    第1の光導波路構造と、第2の光導波路構造が空間的に配置され、かつ、両者の光導波路が相互に接続された導波路型疑似位相整合型波長変換素子。
  17. 第1の極性面を有する第1のSiC層上に形成された該第1の極性面と同一の極性面を持つSiC、III族窒化物もしくはII族酸化物からなる第1の半導体装置と、
    前記第1のSiC層上に堆積により形成されたSi又はGe、Cのうちの少なくとも何れか一つを含む中間層を介して、該中間層上に堆積することにより形成された、該第1の極性面と反対の極性面を持つSiC、III族窒化物もしくはII族酸化物からなる第2の半導体装置とを有する集積回路。
JP2009509104A 2007-03-26 2008-03-25 半導体装置及び半導体製造方法 Pending JPWO2008123213A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007080243 2007-03-26
JP2007080243 2007-03-26
PCT/JP2008/055488 WO2008123213A1 (ja) 2007-03-26 2008-03-25 半導体装置及び半導体製造方法

Publications (1)

Publication Number Publication Date
JPWO2008123213A1 true JPWO2008123213A1 (ja) 2010-07-15

Family

ID=39830708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009509104A Pending JPWO2008123213A1 (ja) 2007-03-26 2008-03-25 半導体装置及び半導体製造方法

Country Status (3)

Country Link
US (1) US20100072485A1 (ja)
JP (1) JPWO2008123213A1 (ja)
WO (1) WO2008123213A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10991575B2 (en) 2018-11-06 2021-04-27 Kabushiki Kaisha Toshiba Semiconductor device with partial regions having impunity concentrations selected to obtain a high threshold voltage
US11276774B2 (en) 2019-01-04 2022-03-15 Kabushiki Kaisha Toshiba Semiconductor device, inverter circuit, driving device, vehicle, and elevator

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640325B2 (ja) * 2009-04-30 2014-12-17 富士通株式会社 化合物半導体装置
JP5487749B2 (ja) * 2009-06-17 2014-05-07 富士通株式会社 半導体装置及びその製造方法
JP5720140B2 (ja) * 2010-08-13 2015-05-20 セイコーエプソン株式会社 立方晶炭化ケイ素膜の製造方法及び立方晶炭化ケイ素膜付き基板の製造方法
JP5672868B2 (ja) * 2010-08-31 2015-02-18 富士通株式会社 化合物半導体装置及びその製造方法
WO2013038980A1 (ja) * 2011-09-15 2013-03-21 シャープ株式会社 窒化物半導体層を成長させるためのバッファ層構造を有する基板
KR20130031598A (ko) * 2011-09-21 2013-03-29 한국전자통신연구원 광 도파로
JP5139567B1 (ja) * 2011-09-22 2013-02-06 シャープ株式会社 窒化物半導体層を成長させるためのバッファ層構造を有する基板
KR20130076314A (ko) * 2011-12-28 2013-07-08 삼성전자주식회사 파워소자 및 이의 제조방법
US8575657B2 (en) 2012-03-20 2013-11-05 Northrop Grumman Systems Corporation Direct growth of diamond in backside vias for GaN HEMT devices
US9166068B2 (en) * 2012-05-03 2015-10-20 The United States Of America As Represented By The Secretary Of The Army Semiconductor heterobarrier electron device and method of making
US8665013B2 (en) * 2012-07-25 2014-03-04 Raytheon Company Monolithic integrated circuit chip integrating multiple devices
JP6149931B2 (ja) * 2013-07-09 2017-06-21 富士電機株式会社 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP2015126024A (ja) * 2013-12-25 2015-07-06 株式会社豊田自動織機 半導体基板および半導体基板の製造方法
JP6447166B2 (ja) * 2015-01-22 2019-01-09 富士通株式会社 化合物半導体装置及びその製造方法
JP6072122B2 (ja) * 2015-04-03 2017-02-01 株式会社東芝 半導体素子
JP6478862B2 (ja) 2015-07-29 2019-03-06 株式会社東芝 半導体装置
US10928329B2 (en) * 2017-10-11 2021-02-23 Board Of Regents, The University Of Texas System Method and system for optically detecting and characterizing defects in semiconductors
JP6989537B2 (ja) 2019-01-04 2022-01-05 株式会社東芝 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
JP7269190B2 (ja) * 2020-02-27 2023-05-08 株式会社東芝 窒化物結晶、光学装置、半導体装置、窒化物結晶の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5802232A (en) * 1996-02-16 1998-09-01 Bell Communications Research, Inc. Bonded structure with portions of differing crystallographic orientations, particularly useful as a non linear optical waveguide
CN1237272A (zh) * 1997-08-27 1999-12-01 松下电器产业株式会社 碳化硅衬底及其制造方法以及使用碳化硅衬底的半导体元件
US6488771B1 (en) * 2001-09-25 2002-12-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for growing low-defect single crystal heteroepitaxial films
JP2004140339A (ja) * 2002-09-25 2004-05-13 Univ Chiba 窒化物系ヘテロ構造を有するデバイス及びその製造方法
JP3993830B2 (ja) * 2003-02-24 2007-10-17 シャープ株式会社 窒化物系iii−v族化合物半導体の製造方法およびそれを含む半導体装置
JP2005011915A (ja) * 2003-06-18 2005-01-13 Hitachi Ltd 半導体装置、半導体回路モジュールおよびその製造方法
JPWO2006114999A1 (ja) * 2005-04-18 2008-12-18 国立大学法人京都大学 化合物半導体装置及び化合物半導体製造方法
JP4762772B2 (ja) * 2006-03-31 2011-08-31 古河電気工業株式会社 波長変換素の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10991575B2 (en) 2018-11-06 2021-04-27 Kabushiki Kaisha Toshiba Semiconductor device with partial regions having impunity concentrations selected to obtain a high threshold voltage
US11276774B2 (en) 2019-01-04 2022-03-15 Kabushiki Kaisha Toshiba Semiconductor device, inverter circuit, driving device, vehicle, and elevator

Also Published As

Publication number Publication date
WO2008123213A1 (ja) 2008-10-16
US20100072485A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JPWO2008123213A1 (ja) 半導体装置及び半導体製造方法
JPWO2006114999A1 (ja) 化合物半導体装置及び化合物半導体製造方法
JP5207598B2 (ja) 窒化物半導体材料、半導体素子およびその製造方法
US9209023B2 (en) Growing III-V compound semiconductors from trenches filled with intermediate layers
TWI280662B (en) Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys
KR100934039B1 (ko) 반도체 헤테로구조
US20050161663A1 (en) Rare earth-oxides, rare earth -nitrides, rare earth -phosphides and ternary alloys with silicon
US20020031851A1 (en) Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US20040029365A1 (en) Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US7273657B2 (en) Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
WO2011136052A1 (ja) エピタキシャル基板およびエピタキシャル基板の製造方法
DE60116381D1 (de) Elektro-optische struktur und verfahren zu ihrer herstellung
JP2007324573A (ja) 熱軟化性絶縁体と共に化合物半導体が形成されたシリコンウェハ
JP5616443B2 (ja) エピタキシャル基板およびエピタキシャル基板の製造方法
US20050163692A1 (en) Rare earth-oxides, rare earth -nitrides, rare earth -phosphides and ternary alloys with silicon
JPWO2011136051A1 (ja) エピタキシャル基板およびエピタキシャル基板の製造方法
JP7092051B2 (ja) 電界効果トランジスタの作製方法
JP2018035051A (ja) SiC構造体およびその製造方法並びに半導体装置
JP6525554B2 (ja) 基板構造体を含むcmos素子
US7173286B2 (en) Semiconductor devices formed of III-nitride compounds, lithium-niobate-tantalate, and silicon carbide
US20220244583A1 (en) Electro-Optical Device Fabricated on a Substrate and Comprising Ferroelectric Layer Epitaxially Grown on the Substrate
CN105280775A (zh) 氮化物半导体层、氮化物半导体装置和用于制造氮化物半导体层的方法
CN105518868A (zh) InGaAlN基半导体元件
CN102437042A (zh) 一种制作结晶态高k栅介质材料的方法
KR101587430B1 (ko) 실리콘(001) 기판 상에 반도체 에피층 성장방법