JPWO2008062580A1 - 重量骨材 - Google Patents

重量骨材 Download PDF

Info

Publication number
JPWO2008062580A1
JPWO2008062580A1 JP2008502174A JP2008502174A JPWO2008062580A1 JP WO2008062580 A1 JPWO2008062580 A1 JP WO2008062580A1 JP 2008502174 A JP2008502174 A JP 2008502174A JP 2008502174 A JP2008502174 A JP 2008502174A JP WO2008062580 A1 JPWO2008062580 A1 JP WO2008062580A1
Authority
JP
Japan
Prior art keywords
particles
aggregate
heavy
mixing
heavy aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008502174A
Other languages
English (en)
Other versions
JP4166269B2 (ja
Inventor
康秀 肥後
康秀 肥後
吉本 稔
稔 吉本
武 濱田
武 濱田
真部 永地
永地 真部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007043217A external-priority patent/JP4044956B1/ja
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Application granted granted Critical
Publication of JP4166269B2 publication Critical patent/JP4166269B2/ja
Publication of JPWO2008062580A1 publication Critical patent/JPWO2008062580A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/04Concretes; Other hydraulic hardening materials
    • G21F1/042Concretes combined with other materials dispersed in the carrier
    • G21F1/047Concretes combined with other materials dispersed in the carrier with metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/308Iron oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/34Metals, e.g. ferro-silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0031Heavy materials, e.g. concrete used as ballast material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

重量コンクリートや重量モルタルの細骨材として適切な粒径と密度を備えた重量骨材を安価に提供することを課題とし、主要構成成分としてFeO、Fe2O3、金属鉄の少なくともひとつを含む骨材であって、全粒子のうち球状の粒子が20%以上であり、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%ないし20%であることを特徴とする重量骨材を提供するものであり、更に、製鋼の圧延工程で発生するミルスケール、製鋼用転炉ダストのうち粒径50μmで篩い分けられた粗粒分、及び高炉水砕スラグから分離された粒状銑鉄から選択される少なくとも2種以上を混合して得られることを特徴とする上記重量骨材を提供するものである。

Description

本発明は、消波ブロック、放射線遮断壁等の重量コンクリート、重量モルタル等に用いられる重量骨材に関するものである。
重量コンクリートとは、通常より単位容積重量を大きくしたコンクリートであり、消波ブロック、護岸堤用コンクリート、放射線遮断壁、橋梁ウェイト等に用いられている。重量コンクリートに用いる重量骨材としては、磁鉄鉱や赤鉄鉱の鉄鉱石が多く用いられてきたが、重量骨材として良質なものの入手が困難になってきており、高価な天然資源の使用は、経済的にも、環境配慮の観点からも好ましくない。鉄鉱石骨材に代わるものとして、電気炉酸化スラグ等の鉄含有量の多いスラグも用いられるが、密度が4g/cm未満のものが多く、重量骨材として十分な密度のものの入手は困難である。他には、製鋼用転炉ダストにセメントを配合する重量コンクリートが提案されている(例えば、特許文献1参照)。しかし、コンクリートやモルタルの細骨材としてそのまま使用するためには、製鋼用転炉ダストの粒径は十分でなく、篩で分けた粗粒分しか使用できない。細粒ダストにセメントを配合して造粒し、直径200μm以上のペレットにして、骨材として用いる技術(例えば、特許文献2参照)も提案されているが、ペレット製造工程を経れば、コスト高になる。
特開平5−319880号公報 特開平6−024813号公報
また、特許文献3には、重量コンクリートの細骨材としてふるい呼び寸法2.5mmないし0.15mmのショットブラスト用スチール細粒を粒度調整して用いることが提案されている。しかし、種々のサイズの均一粒度に調整して製造された高価なショットブラスト用スチール細粒を配合して粒度調整することは極めてコスト高になるため、商業的な適用は進まなかった。これに代わる重量コンクリート用細骨材の材料として、高炉水砕スラグから分離された粒状銑鉄を用いることが提案されている(例えば、特許文献4参照)。しかし、これらの重量コンクリート用細骨材は、粗骨材とともに用いるコンクリート用細骨材として有効であるが、後に詳細を述べるとおり、細骨材のみを用いる重量モルタル用の細骨材としては、十分なモルタルフローが得られない、あるいは骨材とセメントペーストの分離が発生する場合があるという課題があった。
特開平2−172846号公報 特開2004−210574号公報
本発明は、重量コンクリートや重量モルタルの細骨材として適切な粒径と密度を備えた重量骨材を安価に提供するものである。特に、粗骨材とともに用いる重量コンクリート用だけでなく、重量モルタル用にも有用な重量細骨材を提供するものである。
本発明者は、上記課題を解決するため、重量骨材として十分な密度を有するリサイクル材料を種々比較し、重量骨材として最適な使用のための骨材の粒子形状および粒度分布を鋭意研究した結果、主要構成成分としてFeO、Fe、金属鉄の少なくともひとつを含む骨材であって、全粒子のうち球状の粒子が20%以上であり、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%ないし20%である場合に、格段に良好なモルタルフローが得られること等の知見を得た。
したがって、本発明は、主要構成成分としてFeO、Fe、金属鉄の少なくともひとつを含む骨材であって、全粒子のうち球状の粒子が20%以上であり、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%ないし20%であることを特徴とする重量骨材を提供するものである。また、本発明の重量骨材は、鋼スラブ表面の溶削処理工程で発生するリサイクル材料のホットスカーフを含むことも特徴とし、製鋼の圧延工程で発生するミルスケール、製鋼用転炉ダストのうち粒径50μmで篩い分けられた粗粒分、及び高炉水砕スラグから分離された粒状銑鉄から選択される少なくとも1種以上とホットスカーフとを混合して得られることも特徴とする。さらにホットスカーフと、製鋼の圧延工程で発生するリサイクル材料のミルスケールとを混合容積比が100:0から30:70の範囲で混合して得られること、ホットスカーフと製鋼用転炉ダストのうち粒径50μmで篩い分けられた粗粒分とを混合容積比が100:0から70:30の範囲で混合して得られること、ホットスカーフと高炉水砕スラグから分離された粒状銑鉄とを混合容積比が100:0から70:30の範囲で混合して得られることも特徴とする。
さらに、本発明の重量骨材は、製鋼の圧延工程で発生するミルスケール、製鋼用転炉ダストのうち粒径50μmで篩い分けられた粗粒分、及び高炉水砕スラグから分離された粒状銑鉄から選択される少なくとも2種以上を混合して得られることも特徴とし、また、前記ミルスケール、転炉ダスト粗粒分、及び粒状銑鉄の混合割合が、各々質量百分率で20〜70%、20〜50%、及び0〜40%であることも特徴とする。
本発明の重量骨材は、コンクリートやモルタルの細骨材に求められる適切な粒度分布を備え、球状粒子を適度に含有するため、コンクリートやモルタルのフレッシュ性状に適度な流動性とワーカビリティーを与えることができ、また密度が4g/cm以上の重量骨材として十分な密度を提供できる。さらに、製鋼工程で発生するリサイクル材料を混合して得られるため、資源の枯渇が懸念される高価な天然資源である鉄鉱石骨材の代替として有効である。
ホットスカーフ(HS)とミルスケール(MS)の混合比率とモルタルフローの関係を示した図である。(実施例3) ホットスカーフ(HS)とミルスケール(MS)の混合比率とモルタルの単位容積質量の関係を示した図である。(実施例3)
以下、本発明の重量骨材についてさらに詳細に説明する。本発明において重量骨材とは、表乾密度が4g/cm以上の骨材を指す。
本発明の重量骨材は、主要構成成分としてFeO、Fe、金属鉄の少なくともひとつを含む。「主要構成成分としてFeO、Fe、金属鉄の少なくともひとつを含む」とは、鉄をかかる酸化物又は金属の形で含むことをいい、重量骨材中の鉄の含有量に関しては特に限定はないが、構成元素を蛍光X線分析により酸化物換算で求めたときのFeが65%以上であることが好ましい。構成元素を蛍光X線分析により酸化物換算で求めたときのFeが65%に満たないときは、骨材の表乾密度が4g/cm未満となる場合がある。より好ましくは、構成元素を蛍光X線分析により酸化物換算で求めたときのFeが75%以上であり、このときの重量骨材の表乾密度は、4.5g/cm以上になる。したがって、本発明の重量骨材の表乾密度は、好ましくは4.5g/cm以上である。
重量骨材は、セメントペーストとの密度差が大きいため、コンクリートやモルタルの打設時に骨材とペーストが分離しやすい。したがって、重量骨材の形状により流動性が確保される必要がある。本発明の重量骨材は、全粒子のうち球状の粒子(以下、単に「球状粒子」と略記する場合がある)が20%以上含まれるため流動性が高く、コンクリートやモルタルに用いたときにセメントペーストと分離することなく、打設することができる。球状粒子が20%に満たない場合には、コンクリートやモルタルの打設時に骨材とペーストが分離する場合がある。
コンクリート、モルタルに用いる細骨材の最適粒度は、骨材の形状、表面粗滑度、配合等により変化するものである。例えば砕砂のJIS規格(A 5005;非特許文献1)では、表1のように粒度分布が規定され、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で2%ないし15%とされている。一方、電気炉酸化スラグ骨材のJIS規格(A 5011−4;非特許文献2)では、その解説の中で微粒分を多くした方が良好なフレッシュコンクリートの性状が得られることが示され、1.2mm電気炉酸化スラグ骨材では、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%ないし30%とされている。しかし、密度が4.5g/cm以上であり、全粒子のうち球状の粒子が20%以上含まれる重量骨材で、良好なフレッシュコンクリートの性状を得るための最適な粒度分布についての知見が公開されたことはない。
特許文献3には、重量コンクリート用の細骨材としてショットブラスト用スチール細粒を配合して用いることが示されているが、JASS5(日本建築学会 建築工事標準仕様書5 鉄筋コンクリート工事)に規定された粒度分布を満足するように調整されているだけで、コンクリート、モルタルの良好なフレッシュ性状を得るための重量骨材の詳細な粒度分布についての検討はなされていない。
本発明者は、良好なモルタルフローを得るための重量骨材の粒度分布を詳細に検討し、表1に示す最適粒度分布を見出した。すなわち、本発明の重量骨材は、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%ないし20%であることを特徴とする。呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%に満たないとき、あるいは20%を超えるときには、十分なモルタルフローが得られない、あるいは骨材とセメントペーストの分離が発生する場合がある。
日本工業規格 JIS A 5005 コンクリート用砕石及び砕砂 日本工業規格 JIS A 5011−4 コンクリート用スラグ骨材 第4部:電気炉酸化スラグ骨材
Figure 2008062580
また、呼び寸法1.2mmのふるいを通過する粒子が全粒子のうち質量百分率で70%ないし90%であることが好ましい。呼び寸法1.2mmのふるいを通過する粒子が全粒子のうち質量百分率で70%に満たないとき、あるいは90%を超えるときには、十分なモルタルフローが得られない、あるいは骨材とセメントペーストの分離が発生する場合がある。さらに、本発明の重量骨材は、製鋼過程で発生するリサイクル材を混合して得ることが好ましい。
連続鋳造スラブにより鋳造した鋼スラブは、鋳型への溶鋼注入流によって、鋼スラブの長手方向表層部に連続的にAl等の介在物が析出する。この鋼スラブの表層介在物を溶削除去する工程で発生するリサイクル材料のホットスカーフは、主要構成成分としてFeO、Fe、金属鉄を含み、構成元素を蛍光X線分析により酸化物換算で求めたときのFeが80%以上で、表乾密度は、4.8g/cm以上になる。また球状粒子が約70%を占め、しかも呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%ないし20%の範囲内であり、そのまま本発明の重量骨材として用いることができる。
しかし、本リサイクル材料の発生量はあまり多くはなく、他のリサイクル材料との混合使用が好ましい。例えば、製鋼用転炉ダストのうち、50μmで篩い分けられた粗粉分であれば、ホットスカーフ70に対し、粗粉転炉ダスト30の容積比までならば、混合することができる。それ以上に粗粉転炉ダストを混合すると、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で20%を超えるため、十分なモルタルフローが得られない場合がある。
高炉水砕スラグから粉砕過程で分離される粒状銑鉄も金属鉄が主成分で4.8g/cm以上の表乾密度を示すとともに、球形に近い形状の粒子が50%程度含まれ、ホットスカーフと混合使用できるリサイクル材である。ホットスカーフ70に対し、粒状銑鉄30の容積比までならば、混合することができる。それ以上に粒状銑鉄を混合すると、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%に満たないため、十分なモルタルフローが得られない場合がある。
製鋼の圧延工程で発生するリサイクル材料のミルスケールも、主要構成成分としてFeO、Fe、金属鉄を含み、構成元素を蛍光X線分析により酸化物換算で求めたときのFeが80%以上で、表乾密度は、4.8g/cm以上になる。また、ホットスカーフよりも少し粗粒側にシフトし、砕砂JISに近い粒度分布を有している。しかもリサイクル材料としての発生量が比較的多い。しかし、粒子形状は扁平なものが多いため、骨材として利用した場合にはコンクリートやモルタルの流動性が低下しやすく、過剰に単位水量や減水剤量を増やした場合には骨材とペーストが分離しやすい。したがって、ミルスケールをそのまま単独で重量骨材として用いることはできない。
本発明者は、ホットスカーフとミルスケールを種々の混合比で混合し、重量骨材としての適正を検討した。その結果、ホットスカーフ30に対し、ミルスケール70の容積比まで混合できることを確認した。それ以上にミルスケールを混合すると、球状粒子の割合が20%を下回り、流動性が確保できず、十分なモルタルフローが得られない場合がある。さらに、モルタルフローを得るために単位水量を増加した場合には、骨材とセメントペーストとの分離が生じる場合がある。なお、ホットスカーフとミルスケールの混合容積比が40:60か、それよりもホットスカーフの割合が多い場合には、モルタルから空気が抜けやすく、モルタルの単位容積質量が大きくできるので、より好ましい。
ここで本願発明における「球状粒子」について詳細に説明する。球状粒子とは、文字通り真球形に近い形状の粒子である。球状粒子の生成過程には、(1)固体が熱で液状に溶融した後、空中で冷え固まることにより、体積あたりの表面積が最小となる球形に近い形状となる場合、(2)非球形粒子が物理的な研磨により角を失い、球形に近い形状となる場合、(3)粉末または溶解液から析出した微粒が核の周囲に結合し、球形に近い形状に成長する場合がある。(2)(3)の場合には、球形から非球形まで連続的な形状の粒子が生成するが、(1)の場合には、中間形状の粒子は生成しない。
ホットスカーフは前記の通り、鋼スラブの表層介在物を溶削除去する工程で発生するリサイクル材料であり、前記(1)の生成過程で球状粒子が生成する。粗粉転炉ダスト及び粒状銑鉄にも球状粒子が含まれるが、その生成過程は前記(1)だけでなく、(2)の場合も含まれると考えられる。
本発明の重量骨材は、全粒子のうち「球状粒子」が20%以上であることが必須であるが、下記する歪凹凸度が3.3以下の「球状粒子」が、全粒子のうち20%以上であることが好ましい。
ここで、「歪凹凸度」は以下の式で定義される。
[歪凹凸度]=[粒子輪郭の周の長さ]/[粒子輪郭面積と同じ面積の正円の直径]
すなわち、走査型電子顕微鏡(SEM)画像の目視によって、その陰影から円板状や半球状と判断できる粒子を除き、明らかに球形に近い粒子を画像処理して解析する。画像処理は、一般的な画像処理ソフト[例えばAdobe Photoshop(アドビシステムズ社(ADOBE SYSTEMS INCORPORATED)製 登録商標)]を用いて行えばよい。まず、球形に近い粒子の画像から陰影を消して輪郭のみの図形を作成し、該図形の面積と、輪郭の周の長さを求める。該図形を円に近似して(該図形と同面積の円を想定して)、その円の面積πrから半径rを求め、その2倍として直径を求める。直径に対する周の長さの比は、輪郭が円に近いほど、すなわち粒子が球形に近いほど、小さくなり、円周率πに近い値になる。ちなみに、ホットスカーフに含まれる球状粒子では、歪凹凸度が3.2以下となる。
また、全粒子のうちの球状粒子の割合を求める場合、複数のSEM写真に写った全粒子の数と球状粒子の数を数えて平均を求めればよいが、粒子の粒径に関わらず球状粒子の割合は一定であると仮定し、一定粒径、例えば50μm以上の粒子のみを数える。
一方、本発明の重量骨材は、製鋼の圧延工程で発生するミルスケール、製鋼用転炉ダストのうち粒径50μmで篩い分けられた粗粒分、及び高炉水砕スラグから分離された粒状銑鉄から選択される少なくとも2種以上を混合しても得られる。前記ミルスケール、転炉ダスト粗粒分、及び粒状銑鉄は、いずれも、鋼スラブ表面の溶削処理工程で発生するホットスカーフよりも発生量の多いリサイクル材である。
ミルスケールは製鋼の圧延工程で発生するリサイクル材であり、構成元素を蛍光X線分析により酸化物換算で求めたときのFeが80%以上で、表乾密度は4.8g/cm以上になる。しかも表2に示すように砕砂JISに近い粒度分布を有している。しかし、粒子形状は扁平なものが多いため、骨材として利用した場合にはコンクリートやモルタルの流動性が低下しやすく、過剰に単位水量や減水剤量を増やした場合には骨材とペーストが分離しやすい。したがって、ミルスケールをそのまま単独で重量骨材として用いることはできない。
製鋼用転炉ダストの粗粒分は球状粒子を70%以上含むが、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で25%以上、呼び寸法0.3mmのふるいを通過する粒子が65%以上と、骨材としては粒度分布が細粒側に偏りすぎるため、粒子が凝集しやすく、粗粉転炉ダストを単独で重量骨材として用いた場合には十分なモルタルフローを得ることは困難である。
高炉水砕スラグから分離された粒状銑鉄も球状粒子を約50%含むが、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で5%以下、呼び寸法0.3mmのふるいを通過する粒子が20%以下である一方、呼び寸法1.2mmのふるいを通過する粒子が85%以上と、粒径が0.3mmから1.2mmの間に集中する偏った粒度分布を有する。そのため、粒状銑鉄を単独で重量骨材として用いた場合には骨材とセメントペーストの分離が起こりやすい。
以上のように前記3種のリサイクル材は、いずれも単独で重量骨材として用いた場合には、十分なモルタルフローが得られないか、あるいは骨材とセメントペーストの分離が起こりやすい。しかし前記3種のリサイクル材のうち、少なくとも2種以上を適切な混合割合で混合することにより、骨材とセメントペーストの分離が起こらず、モルタルに十分な流動性とワーカビリティーを与えることができる重量骨材が得られる。
Figure 2008062580
本発明の重量骨材は、前記ミルスケール、転炉ダスト粗粒分、及び粒状銑鉄の混合割合が、各々質量百分率で0〜70%、0〜50%、及び0〜60%であることが好ましく、特に20〜70%、20〜50%、及び0〜40%であることが好ましい。
ミルスケールの混合割合が70%を超えるとき、または転炉ダスト粗粒分の混合割合が50%を超えるとき、該重量骨材を用いたモルタルでは、十分なモルタルフローが得られない場合があり、好ましくない。粒状銑鉄の混合割合が60%を超えるとき、該重量骨材を用いたモルタルでは、骨材とセメントペーストの分離が起こる場合があり、好ましくない。
ミルスケールの混合割合が20%に満たないとき、該重量骨材を用いたモルタルでは、残りのリサイクル材の混合割合によっては、骨材とセメントペーストの分離が起こる、または十分なモルタルフローが得られない場合がある。転炉ダスト粗粒分の混合割合が20%に満たないとき、または粒状銑鉄の混合割合が40%を超えるとき、該重量骨材を用いたモルタルでは、残りのリサイクル材の混合割合によっては、骨材とセメントペーストの分離が起こる場合がある。
以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
実施例1
(試験方法)
(1)表乾密度5.08g/cm、球状粒子約75%のホットスカーフと、表乾密度5.84g/cm、球状粒子約73%の粗粉転炉ダストを適宜混合し、表2に粒度分布を示す混合砂1〜4を調整した。(混合砂2の混合容積比;ホットスカーフ70:粗粉転炉ダスト30)
(2)(1)で調整した混合砂に普通ポルトランドセメントを砂セメント容積比3.19で混合し、セメント547kg/mあたり、4.37kg/mのポリカルボン酸エーテル系高性能AE減水剤と、0.22kg/mの消泡剤と、246kg/mの水(水セメント比45.0%)を加えて、混練りした。
(3)JIS R 5201セメントの物理試験方法のフローコーンを用い、直径100mm、高さ40mmのフローコーンに(2)で調整したモルタルを充填し、コーンを引き抜いて、モルタルフローを測定した。
(試験結果)
モルタルフローの測定結果を表3に示した。
Figure 2008062580
表3に示した結果より、混合砂1と2では、良好なモルタルフローが得られた。混合砂4では、粒径の小さな粒子が密に充填するため、混練りも困難なほど硬く、モルタルの流動が見られなかった。混合砂3ではわずかながらモルタルフローが見られ、詳細は示さないが、水セメント比を50%に増加すれば、モルタルフローは130mmまで増加したが、骨材とセメントペーストとの分離が生じた。以上のように、重量骨材の粒度分布を呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で20%以下となるように限定することにより、モルタルフローにおいて格段に顕著な効果が得られることが明らかになった。
実施例2
(試験方法)
(1)表乾密度5.08g/cm、球状粒子約75%のホットスカーフと、表乾密度5.60g/cm、球状粒子約54%の粒状銑鉄(高炉水砕スラグから粉砕過程で磁選分離したもの)を適宜混合し、表4に粒度分布を示す混合砂5〜10を調整した。(混合砂7の混合容積比;ホットスカーフ70:粒状銑鉄30)
(2)(1)で調整した混合砂に普通ポルトランドセメントを砂セメント容積比3.19で混合し、セメント547kg/mあたり、5.46kg/mのポリカルボン酸エーテル系高性能AE減水剤と、0.22kg/mの消泡剤と、246kg/mの水(水セメント比45.0%)を加えて、混練りした。
(3)実施例1と同様に、モルタルフローを測定した。
(試験結果)
モルタルフローの測定結果を表4に示した。
Figure 2008062580
表4に示した結果より、混合砂5、6および7では、良好なモルタルフローが得られた。これに比べ混合砂8、9および10では、明らかにモルタルの流動性が低くなった。また、混合砂9および10では若干、骨材とセメントペーストとの分離が生じた。以上のように、重量骨材の粒度分布を呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%以上となるように限定することにより、モルタルフローにおいて格段に顕著な効果が得られることが明らかになった。
実施例3
(試験方法)
(1)表乾密度5.08g/cm、球状粒子約75%のホットスカーフと、表乾密度4.95g/cm、扁平な粒子で構成されるミルスケールを種々の容積比で混合し、混合砂11〜18を調整した。
(2)(1)で調整した混合砂に普通ポルトランドセメントを砂セメント容積比2.68で混合し、セメント584kg/mあたり、5.84kg/mのポリカルボン酸エーテル系高性能AE減水剤と、0.23kg/mの消泡剤と、292kg/mの水(水セメント比50.0%)を加えて、混練りした。
(3)実施例1と同様に、モルタルフローを測定した。また、モルタルの単位容積質量を測定した。
(試験結果)
モルタルフローの測定結果を図1に、モルタルの単位容積質量を図2に示した。
ホットスカーフ(HS)とミルスケール(MS)の混合比率が、20:80ではほとんどモルタルフローが見られず、骨材とセメントペーストとの分離が見られた。30:70からホットスカーフの混合比率が高い場合には、良好なモルタルフローが得られた。このとき、球状粒子の比率は20%以上であった。
ホットスカーフとミルスケールの混合比率が、40:60からホットスカーフの混合比率が高い場合には、モルタルの単位容積質量が格段に高くなっており、より好ましいことが示された。このとき、球状粒子の比率は25%以上であった。
実施例4
(試験方法)
(1)表乾密度4.95g/cm、扁平な粒子で構成されるミルスケールと、表乾密度5.84g/cm、球状粒子約73%の転炉ダスト粗粉分(粗粒ダスト)と、表乾密度5.60g/cm、球状粒子約54%の粒状銑鉄(高炉水砕スラグから粉砕過程で磁選分離したもの)を各々質量百分率で30〜80%、0〜60%、及び0〜60%の割合で混合し、混合砂を調整した。
(2)(1)で調整した混合砂に普通ポルトランドセメントを砂セメント容積比2.68で混合し、セメント584kg/mあたり、5.84kg/mのポリカルボン酸エーテル系高性能AE減水剤と、0.23kg/mの消泡剤と、292kg/mの水(水セメント比50.0%)を加えて、混練りした。
(3)実施例1と同様に、モルタルフローを測定した。
(試験結果)
モルタルフローの測定結果を表5に示した。モルタルフローの判定は、130mm以上で良好とした。
Figure 2008062580
実施例5
(試験方法)
(1)前記ミルスケールと、転炉ダスト粗粉分と、粒状銑鉄を各々質量百分率で0〜30%、10〜60%、及び10〜70%の割合で混合し、混合砂を調整した。
(2)(1)で調整した混合砂に普通ポルトランドセメントを砂セメント容積比3.19で混合し、セメント547kg/mあたり、5.46kg/mのポリカルボン酸エーテル系高性能AE減水剤と、0.22kg/mの消泡剤と、246kg/mの水(水セメント比45.0%)を加えて、混練りした。
(3)実施例1と同様に、モルタルフローを測定した。
(試験結果)
モルタルフローの測定結果を表6に示した。モルタルフローの判定は、130mm以上で良好とした。
Figure 2008062580
一般に、水セメント比が高い場合には、モルタルの流動性が高くなるが、セメントペーストと骨材の分離が起こりやすくなり、水セメント比が低い場合には、セメントペーストと骨材の分離は起こりにくくなるが、モルタルの流動性が低くなる。一方、ミルスケールの混合割合が高いほど、流動性が低くなり、粒状銑鉄の混合割合が高いほど、セメントペーストと骨材の分離が起こりやすくなる傾向が見られることから、実施例4では、ミルスケールの混合割合を30%以上で、水セメント比を50.0%とし、実施例5では、ミルスケールの混合割合を30%以下で、水セメント比を45.0%とした。表5及び表6に示した結果より、重量モルタルに用いる重量骨材としては、ミルスケール、転炉ダスト粗粒分、及び粒状銑鉄の混合割合が、各々質量百分率で0〜70%、0〜50%、及び0〜60%であることが好ましく、特に20〜70%、20〜50%、及び0〜40%であることが好ましいことが明らかとなった。
なお、ミルスケール、転炉ダスト粗粒分、及び粒状銑鉄の混合割合が、各々質量百分率で0〜70%、0〜50%、及び0〜60%であるとき、該重量骨材は主要構成成分としてFeO、Fe、金属鉄の少なくともひとつを含み、全粒子のうち球状粒子が20%以上であり、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%ないし20%であり、さらに呼び寸法1.2mmのふるいを通過する粒子が全粒子のうち質量百分率で70%ないし90%の各要件を満たしていた。さらには、表1に示す本発明の重量骨材の粒度分布を全ての粒度範囲にわたって満たしていた。
本願は、
2006年11月22日に出願した日本の特許出願である特願2006−316110
2007年2月23日に出願した日本の特許出願である特願2007−043217
2007年3月20日に出願した日本の特許出願である特願2007−071758
に基づくものであり、それらの出願の全ての内容はここに引用し、本発明の明細書の開示として取り込まれるものである。
参考例1
(試験方法)
(1)表乾密度5.08g/cm、球状粒子約75%のホットスカーフと、表乾密度5.84g/cm、球状粒子約73%の粗粉転炉ダストを適宜混合し、表2に粒度分布を示す混合砂1〜4を調整した。(混合砂2の混合容積比;ホットスカーフ70:粗粉転炉ダスト30)
(2)(1)で調整した混合砂に普通ポルトランドセメントを砂セメント容積比3.19で混合し、セメント547kg/mあたり、4.37kg/mのポリカルボン酸エーテル系高性能AE減水剤と、0.22kg/mの消泡剤と、246kg/mの水(水セメント比45.0%)を加えて、混練りした。
(3)JIS R 5201セメントの物理試験方法のフローコーンを用い、直径100mm、高さ40mmのフローコーンに(2)で調整したモルタルを充填し、コーンを引き抜いて、モルタルフローを測定した。
(試験結果)
モルタルフローの測定結果を表3に示した。
参考例2
(試験方法)
(1)表乾密度5.08g/cm、球状粒子約75%のホットスカーフと、表乾密度5.60g/cm、球状粒子約54%の粒状銑鉄(高炉水砕スラグから粉砕過程で磁選分離したもの)を適宜混合し、表4に粒度分布を示す混合砂5〜10を調整した。(混合砂7の混合容積比;ホットスカーフ70:粒状銑鉄30)
(2)(1)で調整した混合砂に普通ポルトランドセメントを砂セメント容積比3.19で混合し、セメント547kg/mあたり、5.46kg/mのポリカルボン酸エーテル系高性能AE減水剤と、0.22kg/mの消泡剤と、246kg/mの水(水セメント比45.0%)を加えて、混練りした。
(3)実施例1と同様に、モルタルフローを測定した。
(試験結果)
モルタルフローの測定結果を表4に示した。
参考例3
(試験方法)
(1)表乾密度5.08g/cm、球状粒子約75%のホットスカーフと、表乾密度4.95g/cm、扁平な粒子で構成されるミルスケールを種々の容積比で混合し、混合砂11〜18を調整した。
(2)(1)で調整した混合砂に普通ポルトランドセメントを砂セメント容積比2.68で混合し、セメント584kg/mあたり、5.84kg/mのポリカルボン酸エーテル系高性能AE減水剤と、0.23kg/mの消泡剤と、292kg/mの水(水セメント比50.0%)を加えて、混練りした。
(3)実施例1と同様に、モルタルフローを測定した。また、モルタルの単位容積質量を測定した。

Claims (9)

  1. 主要構成成分としてFeO、Fe、金属鉄の少なくともひとつを含む骨材であって、全粒子のうち球状の粒子が20%以上であり、呼び寸法0.15mmのふるいを通過する粒子が全粒子のうち質量百分率で10%ないし20%であることを特徴とする重量骨材。
  2. 製鋼過程で発生するリサイクル材を混合して得られる重量骨材であって、呼び寸法1.2mmのふるいを通過する粒子が全粒子のうち質量百分率で70%ないし90%であることを特徴とする請求項1に記載の重量骨材。
  3. 鋼スラブ表面の溶削処理工程で発生するホットスカーフを含むことを特徴とする請求項1または2に記載の重量骨材。
  4. 製鋼の圧延工程で発生するミルスケール、製鋼用転炉ダストのうち粒径50μmで篩い分けられた粗粒分、及び高炉水砕スラグから分離された粒状銑鉄から選択される少なくとも1種以上とホットスカーフとを混合して得られることを特徴とする請求項3に記載の重量骨材。
  5. ホットスカーフとミルスケールとを混合容積比が100:0から30:70の範囲で混合して得られる請求項1から4のいずれかに記載の重量骨材。
  6. ホットスカーフと製鋼用転炉ダストのうち粒径50μmで篩い分けられた粗粒分とを混合容積比が100:0から70:30の範囲で混合して得られる請求項1から4のいずれかに記載の重量骨材。
  7. ホットスカーフと高炉水砕スラグから分離された粒状銑鉄とを混合容積比が100:0から70:30の範囲で混合して得られる請求項1から4のいずれかに記載の重量骨材。
  8. 製鋼の圧延工程で発生するミルスケール、製鋼用転炉ダストのうち粒径50μmで篩い分けられた粗粒分、及び高炉水砕スラグから分離された粒状銑鉄から選択される少なくとも2種以上を混合して得られることを特徴とする請求項1または2に記載の重量骨材。
  9. 前記ミルスケール、転炉ダスト粗粒分、及び粒状銑鉄の混合割合が、各々質量百分率で20〜70%、20〜50%、及び0〜40%であることを特徴とする請求項8に記載の重量骨材。
JP2008502174A 2006-11-22 2007-06-29 重量骨材 Active JP4166269B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2006316110 2006-11-22
JP2006316110 2006-11-22
JP2007043217A JP4044956B1 (ja) 2006-11-22 2007-02-23 重量骨材
JP2007043217 2007-02-23
JP2007071758 2007-03-20
JP2007071758 2007-03-20
PCT/JP2007/063083 WO2008062580A1 (en) 2006-11-22 2007-06-29 Heavy weight aggregates

Publications (2)

Publication Number Publication Date
JP4166269B2 JP4166269B2 (ja) 2008-10-15
JPWO2008062580A1 true JPWO2008062580A1 (ja) 2010-03-04

Family

ID=39429521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008502174A Active JP4166269B2 (ja) 2006-11-22 2007-06-29 重量骨材

Country Status (5)

Country Link
US (1) US20100326324A1 (ja)
JP (1) JP4166269B2 (ja)
KR (1) KR100907203B1 (ja)
CN (1) CN101541704B (ja)
WO (1) WO2008062580A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4295342B1 (ja) * 2008-01-29 2009-07-15 太平洋セメント株式会社 重量コンクリート
JP5095430B2 (ja) * 2008-01-29 2012-12-12 太平洋セメント株式会社 重量骨材
JP2010100480A (ja) * 2008-10-23 2010-05-06 Taiheiyo Cement Corp セメント組成物
JP6959151B2 (ja) * 2018-01-17 2021-11-02 太平洋マテリアル株式会社 モルタル組成物及びモルタル
TR201807042A2 (tr) * 2018-05-18 2018-06-21 Ugur Beton Metal Ve Plastik Sanayi Turizm Ticaret Ltd Sirketi Çeli̇k ve ağir beton bi̇leşenleri̇nden oluşan denge ağirliği ve buna i̇li̇şki̇n üreti̇m yöntemi̇

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122538A (ja) * 1992-10-14 1994-05-06 Kawasaki Steel Corp 重量コンクリートの製造方法及び重量コンクリート
JP2004210574A (ja) * 2002-12-27 2004-07-29 Kokan Kogyo Kk 重量コンクリート
FR2859722B1 (fr) * 2003-09-15 2006-02-03 Wheelabrator Allevard Materiau composite a haute resistance a l'abrasion, comprenant de la grenaille a base d'acier et procede de fabrication d'un tel materiau
JP2004091324A (ja) * 2003-11-06 2004-03-25 Dowa Mining Co Ltd 重量コンクリート
KR20060023100A (ko) * 2004-09-08 2006-03-13 순천대학교 산학협력단 제강슬래그의 처리 분정광과 입철을 이용한 중량재 원료제조
JP2007008758A (ja) * 2005-06-30 2007-01-18 Jtekt Corp 複合材料
JP2007015880A (ja) * 2005-07-06 2007-01-25 Nippon Steel & Sumikin Stainless Steel Corp 重量骨材及び重量コンクリート並びにそれらの製造方法

Also Published As

Publication number Publication date
US20100326324A1 (en) 2010-12-30
CN101541704B (zh) 2013-07-10
CN101541704A (zh) 2009-09-23
KR20080098419A (ko) 2008-11-07
KR100907203B1 (ko) 2009-07-10
JP4166269B2 (ja) 2008-10-15
WO2008062580A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP5313514B2 (ja) カウンターウェイトの製造方法
JP4166269B2 (ja) 重量骨材
JP2009276194A (ja) 放射線遮蔽用コンクリート組成物及びその打設装置並びに放射性廃棄物収容器
JP2007015880A (ja) 重量骨材及び重量コンクリート並びにそれらの製造方法
JP4295342B1 (ja) 重量コンクリート
JP4880625B2 (ja) 重量骨材を含むカウンターウェイト
JP4295343B1 (ja) 重量コンクリート
JP4044956B1 (ja) 重量骨材
JP2009179503A (ja) 重量骨材を含む遮蔽硬化体
JP6181953B2 (ja) 砂代替材及びその製造方法
JP2006016212A (ja) コンクリート組成物
JP2009179498A (ja) 重量骨材を含む地下構造物
JP2009179513A (ja) パイプライン
JP5095430B2 (ja) 重量骨材
JP6719987B2 (ja) セメント混和材、セメント組成物及びセメント硬化体
JP7216462B2 (ja) 吹き付け用モルタルに用いるスラグ細骨材及びそれを用いた吹き付け用モルタル並びに吹き付け用モルタルに用いるスラグ細骨材を製造する方法
JP2009179500A (ja) 重量骨材を含む運搬船用バラスト
JP4867394B2 (ja) 製鉄用非焼成塊成鉱
JP2009179514A (ja) 重量骨材を含む機械基礎
JP3232227B2 (ja) 不定形耐火物用改質マグネシア微粉末およびマグネシア含有不定形耐火物
JP2010100480A (ja) セメント組成物
JP2007015879A (ja) 重量セメント並びに重量コンクリート及びその製造方法
JP2009280427A (ja) プレミックス重量骨材
JP2006083062A (ja) 細骨材およびその製造方法
JP2001026472A (ja) 高炉水砕スラグの製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071210

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20080306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080311

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4166269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250