JPWO2006030854A1 - Polishing method and polishing apparatus for complex shapes - Google Patents

Polishing method and polishing apparatus for complex shapes

Info

Publication number
JPWO2006030854A1
JPWO2006030854A1 JP2006535197A JP2006535197A JPWO2006030854A1 JP WO2006030854 A1 JPWO2006030854 A1 JP WO2006030854A1 JP 2006535197 A JP2006535197 A JP 2006535197A JP 2006535197 A JP2006535197 A JP 2006535197A JP WO2006030854 A1 JPWO2006030854 A1 JP WO2006030854A1
Authority
JP
Japan
Prior art keywords
polishing
magnetic
fluid
polishing liquid
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006535197A
Other languages
Japanese (ja)
Inventor
慶太 山本
慶太 山本
玲 花村
玲 花村
松尾 良夫
良夫 松尾
島田 邦雄
邦雄 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Publication of JPWO2006030854A1 publication Critical patent/JPWO2006030854A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/10Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work
    • B24B31/112Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work using magnetically consolidated grinding powder, moved relatively to the workpiece under the influence of pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B35/00Machines or devices designed for superfinishing surfaces on work, i.e. by means of abrading blocks reciprocating with high frequency
    • B24B35/005Machines or devices designed for superfinishing surfaces on work, i.e. by means of abrading blocks reciprocating with high frequency for making three-dimensional objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

【課題】 研磨対象に非接触とする流体研磨を行い、研磨対象が溝など凹凸を有する複雑形状体であっても表面の全域を鏡面に仕上げることができ、強度が弱い研磨対象でも応力なく研磨が行える複雑形状体の鏡面研磨方法,鏡面研磨装置を提供すること【解決手段】 流動槽(2)の底部に研磨対象(3)を固定し、その研磨対象に対して研磨バイト(4)を非接触に対面させ、槽内には磁気研磨液(1)を満たして両者が浸かる状態にする。磁気研磨液には非磁性の砥粒を混合し、増粘剤としてαセルロースなどを混合する。研磨バイトは永久磁石(41)を設けて回転手段(5)により回転させる。流動槽にはこれと連係した振動手段(6)により適宜な動作の振動を行わせ、槽内の磁気研磨液をかき混ぜる。永久磁石の磁場により研磨液中に生成した磁気クラスタが、液中の砥粒を研磨対象の表面に押さえつけ作用し、研磨液が流動するので砥粒が複雑形状の凹部でも動き回る。PROBLEM TO BE SOLVED: To perform fluid polishing without contact with an object to be polished, and to finish the entire surface into a mirror surface even if the object to be polished is a complex shape having irregularities such as grooves, and polishing without stress even for an object having low strength Mirror surface polishing method and mirror surface polishing apparatus for complex shape body capable of performing polishing [Solution] A polishing object (3) is fixed to the bottom of a fluidized tank (2), and a polishing tool (4) is attached to the polishing object. The tank is made to face non-contact, and the tank is filled with the magnetic polishing liquid (1) so that both are immersed. Nonmagnetic abrasive grains are mixed in the magnetic polishing liquid, and α-cellulose or the like is mixed as a thickener. The polishing tool is provided with a permanent magnet (41) and is rotated by a rotating means (5). The fluid tank is vibrated in an appropriate manner by the vibration means (6) linked thereto, and the magnetic polishing liquid in the tank is agitated. The magnetic cluster generated in the polishing liquid by the magnetic field of the permanent magnet presses the abrasive grains in the liquid against the surface of the object to be polished, and the polishing liquid flows, so that the abrasive grains move around even in a concave portion having a complicated shape.

Description

本発明は、精密機械部品や金型など複雑な凹凸形状を有する複雑形状体の研磨方法および研磨装置に関するもので、より具体的には、研磨対象である複雑形状体に対して研磨バイトを非接触に対面し、これらの周辺に磁気研磨液を存在させて流体研磨を行う技術の改良に関する。   The present invention relates to a polishing method and a polishing apparatus for complex shaped bodies having complicated uneven shapes such as precision machine parts and molds. More specifically, the present invention relates to a non-polishing tool for complex shaped bodies to be polished. The present invention relates to an improvement in a technique of facing a contact and performing a fluid polishing in the presence of a magnetic polishing liquid around these contacts.

研磨対象の表面を鏡面に仕上げる技術としては、一般に、遊離砥粒を分散させた研磨剤を研磨対象とラップ定盤との間に介在させた状態で両者を擦り合わせる動作を行うラッピングや、ラッピングよりも微細な砥粒を用い、ポリッシングパッドと呼ばれる柔らかい工具により研磨対象との擦り合わせ動作を行うポリシングなどが行われている。   As a technique for finishing the surface to be polished into a mirror surface, generally, lapping or lapping is performed in which an abrasive in which loose abrasive grains are dispersed is rubbed between the object to be polished and a lapping surface. Polishing is performed by using a finer abrasive grain and performing a rubbing operation with a polishing object with a soft tool called a polishing pad.

また、非接触の研磨技術にはフロートポリッシングがある。このフロートポリッシングは、錫定盤と研磨対象を、微細な研磨剤を混濁したポリシング液中で同時に回転させることにより両者間に介在するポリシング液の流動圧で研磨対象をわずかに浮上させ、そのポリシング液中の研磨剤により加工を進めるような技術である。   Non-contact polishing techniques include float polishing. This float polishing involves rotating the tin surface plate and the object to be polished simultaneously in a polishing liquid in which a fine abrasive is turbid, so that the object to be polished floats slightly due to the fluid pressure of the polishing liquid interposed between them. It is a technology that advances the processing with the abrasive in the liquid.

しかしながら、そうした従来の鏡面研磨の技術では以下に示すような問題がある。ラッピングやポリシングは、研磨対象に対してラップ定盤,ポリッシングパッドなど工具を接触させて力を加える加工方法であるため、研磨対象に大きな応力が生じる。このため、強度が弱い研磨対象の研磨は、困難であり、仮に研磨をした場合には研磨対象に対して加工変質層を生じる問題がある。   However, such conventional mirror polishing techniques have the following problems. Lapping and polishing are processing methods in which a tool such as a lapping plate or a polishing pad is applied to the object to be polished to apply a force, and thus a large stress is generated on the object to be polished. For this reason, it is difficult to polish an object to be polished with low strength, and there is a problem that a work-affected layer is formed on the object to be polished if the object is polished.

また、ラッピングやポリシングは、研磨対象に工具を接触させて研磨するため、研磨対象が溝などの凹凸を有する複雑形状(複雑形状体)であるときは、その溝の底部など複雑な部位を研磨できない。その結果、表面の全域を鏡面に仕上げられず、部分的にムラができてしまう問題がある。このことは、上記したフロートポリシングでも同様である。フロートポリシングは研磨対象を非接触に浮上させる研磨ではあるが、研磨対象に対して錫定盤の平面度を集積した形状に転写する点は接触研磨と変わりなく、複雑形状体には対応できない。係る複雑形状体等に対する問題は、鏡面研磨に限らず、バリの除去,皮膜の除去その他の研磨にも同様のことが言える。   In addition, lapping and polishing are performed by bringing a tool into contact with the object to be polished, so if the object to be polished has a complicated shape (complex shape body) having irregularities such as a groove, a complicated part such as the bottom of the groove is polished. Can not. As a result, there is a problem in that the entire surface cannot be mirror-finished, and unevenness is caused partially. The same applies to the above-described float policing. Float polishing is polishing that floats the object to be polished in a non-contact manner, but the point of transferring the flatness of the tin surface plate to the object to be polished is the same as contact polishing, and it cannot cope with complicated shapes. The problem with such complex shaped bodies is not limited to mirror polishing, but the same can be said for removal of burrs, removal of coatings, and other polishing.

この発明は上記した課題を解決するもので、その目的は、研磨対象に非接触とする流体研磨を行い、研磨対象が溝など凹凸を有する複雑形状体であっても表面の全域を研磨することができ、強度が弱い研磨対象でも応力なく研磨が行える複雑形状体の研磨方法および研磨装置を提供することにある。   The present invention solves the above-mentioned problems, and its purpose is to perform fluid polishing in a non-contact manner with respect to the object to be polished, and to polish the entire surface even if the object to be polished is a complex shape having irregularities such as grooves. An object of the present invention is to provide a polishing method and a polishing apparatus for a complex-shaped body that can perform polishing without stress even on a polishing object having a low strength.

上記した目的を達成するために、本発明に係る研磨方法は、複雑形状体である研磨対象に対して研磨バイトを非接触に対面させるとともに、これらの周辺に磁気研磨液を存在させて流体研磨を行う複雑形状体の研磨方法あって、前記研磨バイトは磁場を発生する磁場発生源を設けて回転手段により回転動作させ、当該研磨バイトに対面させて前記研磨対象を支持するとともに、これら両者が浸かる状態に周辺に磁気研磨液を満たし、前記磁気研磨液には非磁性の砥粒を混合しておき、前記研磨バイトを回転動作するとともに前記磁場発生源により前記磁気研磨液に時間的に定常的あるいは変動的な磁場を加え、当該磁気研磨液を攪拌手段によりかき混ぜて非接触の状態で流体研磨を行うようにした。   In order to achieve the above-described object, the polishing method according to the present invention makes a polishing tool face non-contact with a polishing object that is a complex shape body, and makes a magnetic polishing liquid exist around the polishing tool to perform fluid polishing. A method of polishing a complex shape body, wherein the polishing tool is provided with a magnetic field generating source for generating a magnetic field, is rotated by a rotating means, and faces the polishing tool to support the object to be polished. The magnetic polishing liquid is filled in the periphery in a soaked state, nonmagnetic abrasive grains are mixed in the magnetic polishing liquid, the polishing tool is rotated, and the magnetic polishing liquid is temporally steady by the magnetic field generation source. The magnetic polishing liquid was stirred by a stirring means and fluid polishing was performed in a non-contact state by applying a magnetic field or a variable magnetic field.

また、本発明に係る研磨装置は、出力軸が回転する回転手段と、永久磁石や電磁コイルなど磁場を発生する磁場発生源を有しており前記出力軸の先端に着脱可能に取り付ける研磨バイトと、前記研磨バイトと対面させて研磨対象を支持して当該両者が浸かる状態に磁気研磨液を満たす流動槽と、前記流動槽に連係して適宜な動作の振動を与える振動手段とを備え、前記磁気研磨液は非磁性の砥粒を混合し、前記研磨バイトは前記研磨対象と接触させずに所定の間隔を隔てて回転動作するとともに前記磁場発生源により前記磁気研磨液に時間的に定常的あるいは変動的な磁場を加え、そして前記流動槽を振動させて当該槽内の磁気研磨液をかき混ぜる構成にする。   The polishing apparatus according to the present invention includes a rotating means for rotating the output shaft, a polishing tool having a magnetic field generating source for generating a magnetic field such as a permanent magnet and an electromagnetic coil, and detachably attached to the tip of the output shaft. A fluid tank that fills the magnetic polishing liquid in a state where the object to be polished is supported while facing the polishing tool, and the both are immersed, and a vibration means that provides vibrations of appropriate operation in conjunction with the fluid tank, The magnetic polishing liquid is mixed with non-magnetic abrasive grains, and the polishing tool rotates at a predetermined interval without being in contact with the object to be polished, and is constantly in time with the magnetic polishing liquid by the magnetic field generation source. Alternatively, a variable magnetic field is applied, and the fluid tank is vibrated to stir the magnetic polishing liquid in the tank.

前記研磨バイトは、非磁性体からなる円柱体に同心に永久磁石を埋め込み、当該永久磁石により磁場を発生する構成とすることができる。別の構成としては、前記研磨バイトは、非磁性体からなる円柱体に対して環状の永久磁石を同心に複数を埋め込み、磁性部位と非磁性部位とが同心に交互に繰り返す構成とすることができる。もちろん、前記研磨バイトは、他の構成を採ることもできる。   The polishing tool may be configured such that a permanent magnet is concentrically embedded in a cylindrical body made of a non-magnetic material, and a magnetic field is generated by the permanent magnet. As another configuration, the polishing tool may be configured such that a plurality of annular permanent magnets are concentrically embedded in a cylindrical body made of a nonmagnetic material, and a magnetic part and a nonmagnetic part are alternately and concentrically repeated. it can. Of course, the polishing tool may take other configurations.

上述した各発明に用いられる磁気研磨液は、動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を好ましくは10〜95wt%分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を好ましくは5〜90wt%混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはポリビニルアルコール等の樹脂を混合する構成としたものを用いることができる。The magnetic polishing liquid used in each of the inventions described above is preferably 10 to 95 wt% of ferromagnetic particles having a particle diameter of 1 to 80 μm in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. To the dispersed fluid, a composite fluid in which spherical magnetite particles having a particle diameter of 10 to 50 nm are uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties is preferably mixed to 5 to 90 wt%. A nonmagnetic abrasive having a particle diameter of 0.01 to 100 μm may be mixed, and a fibrous material such as α cellulose or a resin such as polyvinyl alcohol may be further mixed as a thickener.

したがって本発明では、回転動作する研磨バイトは磁場発生源を有し、このため研磨バイトと研磨対象との間に磁場が作用し、磁気研磨液において磁気クラスタが生成する。具体的には、請求項2と請求項6に示す組成において、強磁性粒子(例えば鉄粒子),マグネタイト粒子が磁気吸引力により多数が凝集して磁気クラスタとなる。磁気クラスタは、磁束に沿う。従って、磁気クラスタは、研磨対象に対立して針状に多数が立ち並び、これにより磁気研磨液中に存在する砥粒が研磨対象の表面に押えつけられる。また、磁気クラスタに絡み込まれた砥粒もあるので、それらも研磨対象の表面に押えつけられる。   Accordingly, in the present invention, the rotating polishing tool has a magnetic field generation source, and therefore, a magnetic field acts between the polishing tool and the object to be polished, and magnetic clusters are generated in the magnetic polishing liquid. Specifically, in the compositions shown in claims 2 and 6, a large number of ferromagnetic particles (for example, iron particles) and magnetite particles are aggregated by a magnetic attractive force to form a magnetic cluster. The magnetic cluster is along the magnetic flux. Accordingly, a large number of magnetic clusters are arranged in a needle shape in opposition to the object to be polished, whereby the abrasive grains present in the magnetic polishing liquid are pressed against the surface of the object to be polished. Moreover, since there are abrasive grains entangled in the magnetic cluster, they are also pressed against the surface of the object to be polished.

こうした状態で研磨バイトが回転動作することから研磨対象との間の相対運動によって砥粒は研磨対象の表面を接触しつつ運動する。このため、研磨対象の表面の凸部を砥粒が研削し、より平滑な表面が得られる。よって、仮に研磨対象にバリが存在していたとしても、係るバリも除去される。   Since the polishing tool rotates in this state, the abrasive grains move while contacting the surface of the object to be polished by relative movement with the object to be polished. For this reason, an abrasive grain grinds the convex part of the surface of grinding | polishing object, and a smoother surface is obtained. Therefore, even if burrs exist on the object to be polished, such burrs are also removed.

また、流動槽を動かすことで磁気研磨液をかき混ぜることから、研磨対象の凹部でも磁気研磨液が入れ替わり、磁気研磨液中で砥粒が動き回るため研削の作用をし、研磨が進むことになる。   In addition, since the magnetic polishing liquid is agitated by moving the fluid tank, the magnetic polishing liquid is exchanged even in the concave portion to be polished, and the abrasive grains move around in the magnetic polishing liquid, so that the polishing action is performed and the polishing proceeds.

さらに、磁気クラスタは、磁場発生源(永久磁石)の磁場から飛び外れてしまうものもある。これらは磁気研磨液中に分散してやがて消失してしまうが、少しの間は形状を保持する。従って、磁場から飛び外れた磁気クラスタは、磁気研磨液の流動運動のため研磨対象の側部など各部位に回り込む。そして、その回り込んだ磁気クラスタが当該部位に当たって研削したり、当該部位で近辺に存在した砥粒を動かしたりする。その結果、研磨バイトと対面しない側部でも研磨が進む。もちろん、この浮遊した磁気クラスタは、研磨対象の凹部でも動き回り研削の作用をし、研磨が進むことになる。   Furthermore, there are magnetic clusters that jump off the magnetic field of the magnetic field generation source (permanent magnet). These are dispersed in the magnetic polishing liquid and eventually disappear, but the shape is maintained for a while. Therefore, the magnetic cluster that has jumped out of the magnetic field wraps around each part such as a side portion to be polished due to the flow motion of the magnetic polishing liquid. Then, the magnetic cluster that wraps around hits the part and performs grinding, or moves the abrasive grains existing in the vicinity at the part. As a result, polishing proceeds even on the side that does not face the polishing tool. Of course, the floating magnetic cluster also moves around the concave portion to be polished and acts as a grinding, and polishing proceeds.

すなわち、磁場発生源の磁場により凝集して生じた磁気クラスタの一部は、研磨バイトの回転動作および流動槽の振動動作に伴って磁場から離脱して流動し、研磨対象の凹部に入り込み、そして側部など研磨バイトと対面しない部位に当たり、あるいは近辺の砥粒を動かして当てるなど研削の作用をし、複雑形状の凹部や研磨バイトと対面しない側部でも研磨することになる。   That is, a part of the magnetic cluster generated by agglomeration by the magnetic field of the magnetic field generation source flows away from the magnetic field along with the rotation operation of the polishing bite and the vibration operation of the flow tank, enters the concave portion to be polished, and Grinding action such as hitting a part that does not face the polishing bite such as the side part or moving and hitting a nearby abrasive grain, also polishes even a concave part having a complicated shape or a side part that does not face the polishing bite.

また、上述した組成では、磁気研磨液にはαセルロース等の増粘剤を含むので、添加した増粘剤は磁気クラスタを保持するように作用し、その結果、多数の砥粒が研磨対象の表面に接触する状況を促進でき、研磨を高効率に行えるようになる。   In the composition described above, since the magnetic polishing liquid contains a thickener such as α-cellulose, the added thickener acts to hold the magnetic cluster, and as a result, a large number of abrasive grains are polished. The situation of contacting the surface can be promoted, and polishing can be performed with high efficiency.

本発明に係る複雑形状体の研磨では、磁気研磨液において生成した磁気クラスタにより、研磨対象に対しては非接触の流体研磨を行うことができ、磁気研磨液を攪拌手段によりかき混ぜるので、研磨の作用を促進でき、研磨対象が溝など凹凸を有する複雑形状体であっても表面の全域をムラなく研磨することができる。また、本発明の研磨は、非接触の流体研磨であるため、強度が弱い研磨対象でも応力なく研磨が行える。そして、係る研磨を行なうことにより、バリを除去したり、鏡面に仕上げることができる。   In the polishing of complex shaped bodies according to the present invention, non-contact fluid polishing can be performed on the object to be polished by the magnetic clusters generated in the magnetic polishing liquid, and the magnetic polishing liquid is agitated by the stirring means. The action can be promoted, and even if the object to be polished is a complex shape having irregularities such as grooves, the entire surface can be polished evenly. In addition, since the polishing of the present invention is non-contact fluid polishing, polishing can be performed without stress even on a polishing object having low strength. And by performing such grinding | polishing, a burr | flash can be removed or it can finish to a mirror surface.

本発明をより詳細に説明するにあたり、添付の図面に従ってこれを説明する。図1は、本発明の好適な一実施の形態を示している。本実施の形態において、研磨装置(鏡面研磨装置)は、磁気研磨液1を満たした流動槽2を有し、その流動槽2の底部に固定した研磨対象(試料3)に対して研磨バイト4を非接触に対面させる。研磨バイト4は、例えば永久磁石などの磁場を発生する磁場発生源を備えており、駆動モータ5により回転させる。流動槽2には、振動台6を連係させ、適宜な動作の振動を行わせる。そして、この研磨装置は、磁気研磨液1に生成した磁気クラスタの作用により流体研磨を行う構成になっている。     The present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 shows a preferred embodiment of the present invention. In the present embodiment, the polishing apparatus (mirror polishing apparatus) has a fluid tank 2 filled with a magnetic polishing liquid 1, and a polishing tool 4 with respect to an object to be polished (sample 3) fixed to the bottom of the fluid tank 2. To face non-contact. The polishing tool 4 includes a magnetic field generation source that generates a magnetic field, such as a permanent magnet, and is rotated by a drive motor 5. A vibrating table 6 is linked to the fluidized tank 2 so as to vibrate appropriately. The polishing apparatus is configured to perform fluid polishing by the action of magnetic clusters generated in the magnetic polishing liquid 1.

流動槽2は、底面に試料3を固定し、スプリングネジ7によりトラバース装置8の基台9に取り付けるとともに、そのトラバース装置8を振動台6に取り付ける。スプリングネジ7の部位には、接触式のロードセル10を配置している。トラバース装置8の基台9を動かすことで流動槽2の上下位置を初期設定し、振動台6により適宜な振動動作、例えば研磨バイト4の回転軸との対立面において8の字を描くといった回動動作を与えるとともに、その動作状況をロードセル10により検出するようになっている。   The flow tank 2 fixes the sample 3 on the bottom surface, and is attached to the base 9 of the traverse device 8 with the spring screw 7, and the traverse device 8 is attached to the vibration table 6. A contact-type load cell 10 is arranged at the site of the spring screw 7. By moving the base 9 of the traverse device 8, the vertical position of the fluidized tank 2 is initially set, and an appropriate vibration operation is performed by the vibration table 6, for example, a figure 8 is drawn on the surface opposite to the rotating shaft of the polishing tool 4. A dynamic operation is given, and the operation state is detected by the load cell 10.

磁気研磨液1は非磁性の砥粒を混合している。具体的には、動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を10〜95wt%分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を5〜90wt%混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはポリビニルアルコール等の樹脂を混合している。The magnetic polishing liquid 1 is mixed with nonmagnetic abrasive grains. Specifically, particles are dispersed in a fluid in which 10 to 95 wt% of ferromagnetic particles having a particle diameter of 1 to 80 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. A non-magnetic particle having a particle diameter of 0.01 to 100 μm is mixed with a composite fluid in which 5 to 90 wt% of a fluid in which spherical magnetite particles having a diameter of 10 to 50 nm are uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties is mixed. Abrasive grains are mixed, and a fibrous substance such as α cellulose or a resin such as polyvinyl alcohol is further mixed as a thickener.

図2〜図4に示すように、研磨バイト4は、非磁性体からなる円柱体40に同心に永久磁石41を埋め込んだ構成を採る。すなわち、図2に示す構造は、円柱形状の永久磁石41を一つだけ円柱体40の中心に埋め込んであり、円柱体40の直径w2,永久磁石41の直径w1に関して、
1.0≦w2/w1≦3.0
という設定にしている。
As shown in FIGS. 2 to 4, the polishing tool 4 employs a configuration in which a permanent magnet 41 is concentrically embedded in a cylindrical body 40 made of a nonmagnetic material. That is, in the structure shown in FIG. 2, only one cylindrical permanent magnet 41 is embedded in the center of the cylindrical body 40, and regarding the diameter w2 of the cylindrical body 40 and the diameter w1 of the permanent magnet 41,
1.0 ≦ w2 / w1 ≦ 3.0
It is set to.

また図3に示す構造は、円柱形状の永久磁石41を一つだけ円柱体40の中心に埋め込むとともに、バイト面を中心の永久磁石41に向けて窪ませてあり、円柱体40の直径w2,永久磁石41の直径w1,窪み部の深さh,窪み部の幅w3に関して、
w2/w1=3
w3/h=4
w3=(w2−w1)/2
1.0≦w2/w1≦3.0
0.1≦h/w3≦10.0
という設定にしている。
In the structure shown in FIG. 3, only one cylindrical permanent magnet 41 is embedded in the center of the cylindrical body 40, and the bite surface is recessed toward the permanent magnet 41 at the center. Regarding the diameter w1 of the permanent magnet 41, the depth h of the recess, and the width w3 of the recess,
w2 / w1 = 3
w3 / h = 4
w3 = (w2-w1) / 2
1.0 ≦ w2 / w1 ≦ 3.0
0.1 ≦ h / w3 ≦ 10.0
It is set to.

さらに、研磨バイト4は、図4(a),(b)に示すように、非磁性体からなる円柱体40に、環状の永久磁石41を同心に複数を埋め込み、磁性部位と非磁性部位とが同心に交互に繰り返す構成を採ることもよい。   Further, as shown in FIGS. 4A and 4B, the polishing tool 4 includes a cylindrical body 40 made of a non-magnetic material and a plurality of annular permanent magnets 41 concentrically embedded therein. It is also possible to adopt a configuration in which these are repeated concentrically and alternately.

駆動モータ5には、例えばボール盤,旋盤,NC旋盤,フライス盤などの回転駆動機構を用いることができ、出力軸に連結したチャック部11に研磨バイト4の軸を取り付けし、着脱が行える構成になっている。   As the drive motor 5, for example, a rotary drive mechanism such as a drilling machine, a lathe, an NC lathe, or a milling machine can be used, and the shaft of the polishing tool 4 is attached to the chuck portion 11 connected to the output shaft so that it can be attached and detached. ing.

振動台6は、図示しない駆動源を有し、研磨バイト4の回転軸と対立する平面について流動槽4を動かす構成を採る。振動動作には複数のモードを設定してあり、適宜に選択あるいは組み合わせるようになっている。つまり、振動台6の振動動作は、研磨バイト4の回転軸との対立面において、定点を中心とする単純な回転動作、あるいは8の字を描く回動動作、または当該平面における定方向で往復する振動動作など、複数の振動モードがあり、研磨作業の際はこれらを適宜に選択あるいは組み合わせることになる。   The vibration table 6 has a drive source (not shown) and adopts a configuration in which the fluid tank 4 is moved on a plane opposite to the rotation axis of the polishing tool 4. A plurality of modes are set for the vibration operation, and they are appropriately selected or combined. That is, the vibration operation of the vibration table 6 is a simple rotation operation centered on a fixed point, a rotation operation that draws a figure 8, or a reciprocation in a fixed direction on the plane in the plane opposite to the rotation axis of the polishing tool 4. There are a plurality of vibration modes such as a vibrating operation, and these are appropriately selected or combined in the polishing operation.

このような構成によれば、研磨バイト4と試料3との間には、図5に示すように、磁束が生じて磁気研磨液1において磁気クラスタ12が生成する。つまり、研磨バイト4には永久磁石41を埋め込んであるので磁場が作用し、永久磁石41と試料3との間で磁束が生じ、強磁性粒子(例えば鉄粒子),マグネタイト粒子が磁気吸引力により多数が凝集して磁気クラスタ12となる。磁気クラスタ12は、磁束に沿うので試料3に対立して針状に多数が立ち並ぶことになる。   According to such a configuration, as shown in FIG. 5, a magnetic flux is generated between the polishing tool 4 and the sample 3 to generate a magnetic cluster 12 in the magnetic polishing liquid 1. That is, since the permanent magnet 41 is embedded in the polishing tool 4, a magnetic field acts, a magnetic flux is generated between the permanent magnet 41 and the sample 3, and ferromagnetic particles (for example, iron particles) and magnetite particles are attracted by magnetic attraction. Many aggregate to form magnetic clusters 12. Since the magnetic cluster 12 is along the magnetic flux, many magnetic clusters 12 are arranged in a needle shape against the sample 3.

このとき、磁気研磨液1においては、増粘剤として加えたαセルロース13が磁気クラスタ12の相互間に織り込み状態に位置を占める。さらに磁気研磨液1には、非磁性の砥粒14を加えてあるので、これは磁気クラスタ12に絡み込まれるものもあるが、多くは試料3の表面に存在することになる。したがって、針状に立ち並ぶ磁気クラスタ12および織り込み状態のαセルロース13とによって、磁気研磨液1の中に存在する砥粒14が試料3の表面に押さえつけられる。また、磁気クラスタ12およびαセルロース13に絡み込まれた砥粒14もあるので、それらも試料3の表面に押えつけられる。   At this time, in the magnetic polishing liquid 1, α-cellulose 13 added as a thickener occupies a position in a woven state between the magnetic clusters 12. Further, since nonmagnetic abrasive grains 14 are added to the magnetic polishing liquid 1, some of them are entangled with the magnetic cluster 12, but many exist on the surface of the sample 3. Accordingly, the abrasive grains 14 present in the magnetic polishing liquid 1 are pressed against the surface of the sample 3 by the magnetic clusters 12 arranged in a needle shape and the α cellulose 13 in a woven state. Further, since there are abrasive grains 14 entangled with the magnetic clusters 12 and the α cellulose 13, they are also pressed against the surface of the sample 3.

こうした状態で研磨バイト4(永久磁石41)が回転動作することから試料3との間の相対運動によって砥粒14は試料3の表面を接触しつつ運動する。このため、試料3の表面の凸部を砥粒14が研削し、より平滑な表面が得られる。つまり、研磨対象にバリが生じていた場合には、係るバリが除去できるし、鏡面研磨も行なえる。   Since the polishing tool 4 (permanent magnet 41) rotates in such a state, the abrasive grains 14 move while contacting the surface of the sample 3 by relative movement with the sample 3. For this reason, the abrasive grain 14 grinds the convex part of the surface of the sample 3, and a smoother surface is obtained. In other words, when burrs are generated on the object to be polished, the burrs can be removed and mirror polishing can be performed.

磁場が定常的では、磁気クラスタ12は磁束に沿って整列して立ち並び、磁力により整列状態が保持されるので砥粒14が試料3の表面(研磨面)に適度に当たって研磨が行える。また、磁場が変動的では、磁気クラスタ12は動揺し、このときも砥粒14が研磨面に適度に当たり研磨が行える。このように、試料3に対して研磨バイト4を接触させずに所定に隔てた非接触の状態であっても、磁気クラスタ12およびαセルロース13の押さえ作用により研磨することができ、流体研磨が行える。   When the magnetic field is stationary, the magnetic clusters 12 are aligned along the magnetic flux, and the aligned state is maintained by the magnetic force, so that the abrasive grains 14 can be properly applied to the surface (polishing surface) of the sample 3 for polishing. In addition, when the magnetic field is variable, the magnetic cluster 12 is shaken, and at this time, the abrasive grains 14 strike the polishing surface appropriately and can be polished. Thus, even if the polishing tool 4 is not in contact with the sample 3 and is in a non-contact state, the polishing can be performed by the pressing action of the magnetic cluster 12 and the α cellulose 13, and fluid polishing can be performed. Yes.

また、流動槽2を動かすことで磁気研磨液1をかき混ぜることから、試料3の凹部でも磁気研磨液1が入れ替わり、磁気研磨液1の中で砥粒14が動き回るため研削の作用をし、研磨が進むことになる。   Further, since the magnetic polishing liquid 1 is agitated by moving the fluidizing tank 2, the magnetic polishing liquid 1 is also replaced in the concave portion of the sample 3, and the abrasive grains 14 move around in the magnetic polishing liquid 1, so that the polishing action is performed. Will go on.

ところで、磁気クラスタ12は、永久磁石41の磁場から飛び外れてしまうものもある。これらは磁気研磨液1の中に分散してやがて消失してしまうが、少しの間は形状を保持することから、磁気研磨液1の流動運動のため試料3の側部など各部位に回り込むことになる。すると、その回り込んだ磁気クラスタ12が当該部位に当たり研削の作用をし、あるいは当該部位で近辺に存在した砥粒14を動かす作用となる。その結果、研磨バイト4と対面しない側部でも研磨が進むことになる。もちろん、この浮遊した磁気クラスタ12は、試料3の凹部でも動き回り研削の作用をし、研磨が進むことになる。   By the way, the magnetic cluster 12 may be out of the magnetic field of the permanent magnet 41. These disperse in the magnetic polishing liquid 1 and eventually disappear, but since the shape is maintained for a while, the magnetic polishing liquid 1 flows around each part such as the side of the sample 3 due to the flow motion. become. As a result, the magnetic cluster 12 that wraps around hits the part and acts as a grinding, or moves the abrasive grains 14 existing in the vicinity at the part. As a result, polishing proceeds even on the side portion that does not face the polishing tool 4. Of course, the floating magnetic cluster 12 also moves around the concave portion of the sample 3 and acts as a grinding so that polishing proceeds.

すなわち、永久磁石41の磁場により凝集して生じた磁気クラスタ12の一部は、研磨バイト4の回転動作および流動槽2の振動動作に伴って磁束から離脱して流動し、試料3の凹部に入り込み、そして側部など研磨バイト4と対面しない部位に当たり、あるいは近辺の砥粒14を動かして当てるなど研削の作用をし、複雑形状の凹部や研磨バイト4と対面しない側部でも研磨することになる。   That is, a part of the magnetic cluster 12 generated by agglomeration due to the magnetic field of the permanent magnet 41 flows away from the magnetic flux along with the rotation operation of the polishing tool 4 and the vibration operation of the flow vessel 2, and flows into the concave portion of the sample 3. Intruding and hitting a part that does not face the polishing tool 4 such as a side part, or by moving the abrasive grains 14 in the vicinity so as to apply contact, and polishing even on a concave part having a complicated shape or a side part that does not face the polishing tool 4 Become.

また、磁気研磨液1には増粘剤としてαセルロース13を含むので、添加した増粘剤は磁気クラスタ12を保持するように作用する。その結果、多数の砥粒14が試料3の表面に接触する状況を促進でき、研磨を高効率に行えるようになる。   Moreover, since the magnetic polishing liquid 1 contains α-cellulose 13 as a thickener, the added thickener acts to hold the magnetic cluster 12. As a result, the situation where a large number of abrasive grains 14 come into contact with the surface of the sample 3 can be promoted, and polishing can be performed with high efficiency.

したがって、本発明に係る鏡面研磨によれば、磁気研磨液1において生成した磁気クラスタ12により、試料3(研磨対象)に対しては非接触の流体研磨を行うことができ、磁気研磨液1を攪拌手段によりかき混ぜるので、研磨の作用を促進できる。よって、研磨対象が溝などの凹凸を有する複雑形状体であっても表面の全域をムラなく鏡面に仕上げることができる。そして、非接触の流体研磨であるため、強度が弱い研磨対象でも応力なく研磨が行える。   Therefore, according to the mirror polishing according to the present invention, the magnetic cluster 12 generated in the magnetic polishing liquid 1 can perform non-contact fluid polishing on the sample 3 (polishing target). Since it is stirred by the stirring means, the action of polishing can be promoted. Therefore, even if the object to be polished is a complex shape having irregularities such as grooves, the entire surface can be mirror-finished without unevenness. And since it is non-contact fluid grinding | polishing, it can grind | polish without stress also with the grinding | polishing object with weak intensity | strength.

図1に示す鏡面研磨装置を用いて試料の研磨を行った。つまり、本発明の効果を実証するため、研磨の条件を替えて複数の試料を研磨し、それら各試料について表面粗さRa(算術平均粗さ)を評価した。   The sample was polished using the mirror polishing apparatus shown in FIG. That is, in order to demonstrate the effect of the present invention, a plurality of samples were polished under different polishing conditions, and the surface roughness Ra (arithmetic average roughness) was evaluated for each sample.

磁気研磨液としては表1に示す組成とし、第1評価試験には図6(a),(b)に示す形状寸法の試料を用いた。

Figure 2006030854
As the magnetic polishing liquid, the composition shown in Table 1 was used, and samples having the shape and dimensions shown in FIGS. 6A and 6B were used in the first evaluation test.
Figure 2006030854

つまり、磁気研磨液はその組成に、非磁性の砥粒として粒子径0.05μmのアルミナを含み、さらに増粘剤としてαセルロースを含むものとする。そして、第1評価試験では、試料は図6(a),(b)に示すように、外径12mm,厚さ5mmの円板形状で同心に環状の溝部を有し、表2に示す諸条件により研磨を行なった。その結果、同表に合わせて示すような表面粗さRaが得られた。

Figure 2006030854
In other words, the magnetic polishing liquid contains, in its composition, alumina having a particle diameter of 0.05 μm as non-magnetic abrasive grains and α-cellulose as a thickener. In the first evaluation test, as shown in FIGS. 6A and 6B, the sample has a disc shape with an outer diameter of 12 mm and a thickness of 5 mm and has a concentric annular groove, Polishing was performed according to conditions. As a result, a surface roughness Ra as shown in the table was obtained.
Figure 2006030854

このとき、試料は真鍮からなり、研磨バイトは図4(a),(b)に示したもの、環状の永久磁石を同心に有する構成であって、その回転数は915rpm、試料との間隔は1mm、研磨時間は1時間、振動台は研磨バイトの回転軸との対立面において8の字を描く回動動作を行い、その振幅は10mmで毎分20回の振動とした。   At this time, the sample is made of brass, and the polishing tool is as shown in FIGS. 4 (a) and 4 (b), and has a configuration in which an annular permanent magnet is concentric, the rotation speed is 915 rpm, and the distance from the sample is 1 mm, polishing time was 1 hour, and the vibration table was rotated in the shape of figure 8 on the surface opposite to the rotation axis of the polishing tool. The amplitude was 10 mm and the vibration was 20 times per minute.

その結果、表面粗さRaは環状の溝部(凹部)でも5.7nmが得られており、これは上方の表面(凸部)と同等な数nmオーダであることを確認した。すなわち、本発明に係る研磨によれば、複雑形状体についてその凹部も含む表面の全域を研磨(鏡面研磨)することができ、本発明の有用性が確認できた。   As a result, it was confirmed that the surface roughness Ra was 5.7 nm even in the annular groove portion (concave portion), and this was on the order of several nm equivalent to the upper surface (convex portion). That is, according to the polishing according to the present invention, it was possible to polish the entire surface of the complex shape body including the concave portion (mirror polishing), and the usefulness of the present invention could be confirmed.

次に、試料を平板形状のものとして第2評価試験を行った。つまり、試料は外径20mm,厚さ10mmの円板形状のものとし、表3に示す諸条件により研磨を行なった。その結果、同表に合わせて示すような表面粗さRaが得られた。

Figure 2006030854
Next, a second evaluation test was performed with the sample having a flat plate shape. In other words, the sample had a disk shape with an outer diameter of 20 mm and a thickness of 10 mm, and was polished under various conditions shown in Table 3. As a result, a surface roughness Ra as shown in the table was obtained.
Figure 2006030854

第2評価試験では、試料は真鍮,SUS304,アルミニウム,ジュラルミン,銅,Tiであり、研磨バイトは図2に示したものがバイトA,図3に示したものがバイトBであって、その回転数は515rpmあるいは915rpm、試料との間隔は2mmあるいは1mm、研磨時間は1時間あるいは30分、振動台は研磨バイトの回転軸との対立面において8の字を描く回動動作を行い、その振幅は10mmで毎分20回の振動とした。   In the second evaluation test, the samples are brass, SUS304, aluminum, duralumin, copper, and Ti, and the polishing tool is the tool A shown in FIG. 2 and the tool B shown in FIG. The number is 515 rpm or 915 rpm, the distance from the sample is 2 mm or 1 mm, the polishing time is 1 hour or 30 minutes, and the vibration table rotates in a shape of 8 in the face opposite to the rotation axis of the polishing tool. Was 10 mm and 20 vibrations per minute.

その結果、表面粗さRaは番号1〜番号9の試料の何れにおいても数nmオーダが得られており、このとき試料は上面だけでなく側面(周面)も鏡面研磨できていることを確認した。すなわち、本発明に係る鏡面研磨によれば、充分な表面粗さに鏡面研磨が行えるものであり、これは流動槽に固定した底面を除く表面の全域つまり磁気研磨液と接した表面の全域を研磨(鏡面研磨)することができ、本発明の有用性が確認できた。   As a result, the surface roughness Ra was in the order of several nanometers for any of the samples numbered 1 to 9, and at this time, it was confirmed that not only the top surface but also the side surface (circumferential surface) could be mirror-polished. did. That is, according to the mirror polishing according to the present invention, the mirror polishing can be performed with a sufficient surface roughness, and this covers the entire surface except the bottom surface fixed to the fluid tank, that is, the entire surface in contact with the magnetic polishing liquid. Polishing (mirror polishing) was possible, and the usefulness of the present invention was confirmed.

上述した実験結果は、いずれも、本発明が鏡面研磨に有効に機能することをことを証明するものである。本発明の効果は、上述した鏡面研磨に限るものではなく、研磨対象の形態にとらわれず、たとえ複雑形状体であっても研磨することができるものである。この研磨の一態様として、バリ取り(バレル研磨)がある。すなわち、たとえば図7に示すように、研磨対象45が、機械加工により表面に円弧状の凹溝45aを形成し、その機械加工の際にその凹溝45aの端部にバリ45bが形成されたものとする。また、図8に示すように、研磨対象46が、平板状の金属プレートに対してプレス加工などを行ない先端に細長な帯状板部46aを有する形状からなるものとする。そして、その帯状板部46aの側縁にバリ46bが残っていたとする。これらバリ45b,46bは、この例では、数μmから数10μm程度の寸法である。   The above experimental results prove that the present invention functions effectively for mirror polishing. The effect of the present invention is not limited to the above-described mirror polishing, and is not limited by the form of the object to be polished, and can be polished even if it is a complex shape. One aspect of this polishing is deburring (barrel polishing). That is, for example, as shown in FIG. 7, the polishing object 45 is formed with an arcuate groove 45a on the surface by machining, and a burr 45b is formed at the end of the groove 45a during the machining. Shall. Further, as shown in FIG. 8, it is assumed that the object to be polished 46 has a shape in which a flat metal plate is subjected to press working or the like and has an elongated strip-like plate portion 46a at the tip. And suppose that the burr | flash 46b remained in the side edge of the strip | belt-shaped board part 46a. In this example, the burrs 45b and 46b have dimensions of about several μm to several tens of μm.

磁気研磨液としては表4に示す組成とし、第3評価試験には図7(No.10),図8(No.11)に示す形状寸法の試料(バリ付き)を用いた。そして、各試料に対し、それぞれ表5に示す研磨実施条件の下で、研磨を行なった。研磨に用いた研磨バイトは、図1,図2に示す構造のものである。また、振動第6は、流動槽は2が円運動するように動作させた。その結果、何れの試料も、バリが綺麗に除去された。これにより、本発明の研磨は、バリの除去にも有効に機能することが確認できた。例えば、図8に示すように、複雑形状であり、しかも、非常に微小で強度の弱い部材の場合、通常の方法でバリを除去しようとすると、帯状板部46aが曲がったり、破損したりするおそれがあるが、本発明によれば、帯状板部46aに対する損傷はなく、バリのみを除去することができる。

Figure 2006030854
Figure 2006030854
As the magnetic polishing liquid, the composition shown in Table 4 was used, and in the third evaluation test, samples (with burrs) having the shape and dimensions shown in FIGS. 7 (No. 10) and 8 (No. 11) were used. Each sample was polished under the polishing conditions shown in Table 5. The polishing tool used for polishing has the structure shown in FIGS. Further, in the sixth vibration, the fluid tank was operated so that 2 moved circularly. As a result, the burrs were clearly removed from all the samples. Thus, it was confirmed that the polishing of the present invention also functions effectively for removing burrs. For example, as shown in FIG. 8, in the case of a member having a complicated shape and a very small and weak strength, the strip-shaped plate portion 46a is bent or damaged when an attempt is made to remove burrs by a normal method. Although there is a possibility, according to this invention, there is no damage with respect to the strip | belt-shaped board part 46a, and only a burr | flash can be removed.
Figure 2006030854
Figure 2006030854

なお、鏡面研磨やバリ除去を行なう場合の研磨時間や、上部回転数・下部回転数などの研磨条件は、材質,寸法形状その他の要因に基づき、適宜に設定する。   The polishing time for mirror polishing and burr removal, and polishing conditions such as the upper rotation speed and the lower rotation speed are appropriately set based on the material, dimensions, and other factors.

本発明に係る鏡面研磨装置の好適な一実施の形態を示す構成図である。1 is a configuration diagram showing a preferred embodiment of a mirror polishing apparatus according to the present invention. 研磨バイトの好適な例1を示す断面図である。It is sectional drawing which shows the suitable example 1 of a grinding | polishing tool. 研磨バイトの好適な例2を示す断面図である。It is sectional drawing which shows the suitable example 2 of a grinding | polishing tool. 研磨バイトの好適な例3を示し、(a)が断面図、(b)がそのバイト面を示す平面図である。A preferred example 3 of the polishing tool is shown, (a) is a sectional view, and (b) is a plan view showing the tool surface. 磁気クラスタによる流体研磨を示す説明図である。It is explanatory drawing which shows the fluid grinding | polishing by a magnetic cluster. 研磨試験の試料とした複雑形状体の形状寸法を示す斜視図(a)および断面図(b)である。It is the perspective view (a) and sectional drawing (b) which show the geometric dimension of the complex shape body used as the sample of the grinding | polishing test. 研磨対象の試料とした複雑形状体の一例を示す図である。It is a figure which shows an example of the complex shape body used as the sample of grinding | polishing object. 研磨対象の試料とした複雑形状体の一例を示す図である。It is a figure which shows an example of the complex shape body used as the sample of grinding | polishing object.

1 磁気研磨液
2 流動槽
3 試料(研磨対象)
4 研磨バイト
5 駆動モータ
6 振動台
7 スプリングネジ
8 トラバース装置
9 基台
10 ロードセル
11 チャック部
12 磁気クラスタ
13 αセルロース
14 砥粒
40 円柱体
41 永久磁石
45 研磨対象
45a 凹溝
45b バリ
46 研磨対象
46a 帯状板部
46b バリ
1 Magnetic polishing liquid 2 Fluid tank 3 Sample (polishing object)
4 Polishing tool 5 Drive motor 6 Shaking table 7 Spring screw 8 Traverse device 9 Base 10 Load cell 11 Chuck part 12 Magnetic cluster 13 α cellulose 14 Abrasive grain 40 Cylindrical body 41 Permanent magnet 45 Polishing object 45a Concave groove 45b Burr 46 Polishing object 46a Strip plate 46b burr

Claims (8)

複雑形状体である研磨対象に対して研磨バイトを非接触に対面させるとともに、これらの周辺に磁気研磨液を存在させて流体研磨を行う複雑形状体の鏡面研磨方法あって、
前記研磨バイトは、磁場を発生する磁場発生源を設けて回転手段により回転動作させ、当該研磨バイトに対面させて前記研磨対象を支持するとともに、これら両者が浸かる状態に周辺に磁気研磨液を満たし、前記磁気研磨液には非磁性の砥粒を混合しておき、
その状態で前記研磨バイトを回転動作するとともに前記磁場発生源により前記磁気研磨液に時間的に定常的あるいは変動的な磁場を加え、そして当該磁気研磨液を攪拌手段によりかき混ぜて非接触の状態で流体研磨を行うことを特徴とする複雑形状体の研磨方法。
There is a method of mirror polishing of a complex shape body in which a polishing bite is faced in a non-contact manner with respect to an object to be polished which is a complex shape body, and fluid polishing is performed by causing a magnetic polishing liquid to exist around these objects
The polishing tool is provided with a magnetic field generating source for generating a magnetic field, and is rotated by a rotating means. The polishing tool faces the polishing tool to support the object to be polished, and the periphery is filled with a magnetic polishing liquid so that both are immersed. The magnetic polishing liquid is mixed with nonmagnetic abrasive grains,
In this state, the polishing tool is rotated, a magnetic field is applied to the magnetic polishing liquid by the magnetic field generation source, and the magnetic polishing liquid is stirred by a stirring means in a non-contact state. A polishing method for a complex-shaped body characterized by performing fluid polishing.
前記磁気研磨液は、
動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を5〜90wt%混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはポリビニルアルコール等の樹脂を混合することを特徴とする請求項1に記載の複雑形状体の研磨方法。
The magnetic polishing liquid is
Spherical magnetite particles having a particle diameter of 10 to 50 nm are obtained with respect to a fluid in which ferromagnetic particles having a particle diameter of 1 to 80 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. Mix non-magnetic abrasive grains with a particle size of 0.01-100 μm in a composite fluid in which 5-90 wt% of a fluid uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulating properties is mixed, and further increase the viscosity. The method for polishing a complex shaped body according to claim 1, wherein a fibrous substance such as α-cellulose or a resin such as polyvinyl alcohol is mixed as an agent.
出力軸が回転する回転手段と、永久磁石や電磁コイルなど磁場を発生する磁場発生源を有しており前記出力軸の先端に着脱可能に取り付ける研磨バイトと、前記研磨バイトと対面させて研磨対象を支持して当該両者が浸かる状態に磁気研磨液を満たす流動槽と、前記流動槽に連係して適宜な動作の振動を与える振動手段とを備えて、
前記磁気研磨液は非磁性の砥粒を混合し、前記研磨バイトは前記研磨対象と接触させずに所定の間隔を隔てて回転動作するとともに前記磁場発生源により前記磁気研磨液に時間的に定常的あるいは変動的な磁場を加え、そして前記流動槽を振動させて当該槽内の磁気研磨液をかき混ぜることを特徴とする複雑形状体の研磨装置。
A polishing tool that has a rotating means for rotating the output shaft, a magnetic field generating source for generating a magnetic field such as a permanent magnet or an electromagnetic coil, and is detachably attached to the tip of the output shaft, and a polishing object facing the polishing tool And a fluid tank that fills the magnetic polishing liquid in a state in which both of them are immersed, and a vibration means that provides vibrations of appropriate operation in conjunction with the fluid tank,
The magnetic polishing liquid is mixed with non-magnetic abrasive grains, and the polishing tool rotates at a predetermined interval without being in contact with the object to be polished, and is constantly in time with the magnetic polishing liquid by the magnetic field generation source. A polishing apparatus for complex shapes, characterized by applying a magnetic field or a variable magnetic field and vibrating the fluid tank to stir the magnetic polishing liquid in the tank.
前記研磨バイトは、非磁性体からなる円柱体に同心に永久磁石を埋め込み、当該永久磁石により磁場を発生することを特徴とする請求項3に記載の複雑形状体の研磨装置。   4. The polishing apparatus for a complex shaped body according to claim 3, wherein the polishing tool embeds a permanent magnet concentrically in a cylindrical body made of a non-magnetic material, and generates a magnetic field by the permanent magnet. 前記研磨バイトは、非磁性体からなる円柱体に対して環状の永久磁石を同心に複数を埋め込み、磁性部位と非磁性部位とが同心に交互に繰り返す構成とすることを特徴とする請求項3に記載の複雑形状体の研磨装置。   4. The polishing tool is configured such that a plurality of annular permanent magnets are concentrically embedded in a cylindrical body made of a non-magnetic material, and a magnetic portion and a non-magnetic portion are alternately and concentrically repeated. Polishing apparatus for complex shapes as described in 1. 前記磁気研磨液は、
動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはポリビニルアルコール等の樹脂を混合することを特徴とする請求項3のいずれか1項に記載の複雑形状体の鏡面研磨装置。
The magnetic polishing liquid is
Spherical magnetite particles having a particle diameter of 10 to 50 nm are obtained with respect to a fluid in which ferromagnetic particles having a particle diameter of 1 to 80 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. Non-magnetic abrasive grains having a particle diameter of 0.01 to 100 μm are mixed in a composite fluid obtained by mixing a fluid uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties, and α-cellulose as a thickener. 4. The mirror polishing apparatus for complex shapes according to claim 3, wherein a fibrous material such as polyvinyl alcohol or a resin such as polyvinyl alcohol is mixed.
前記磁気研磨液は、
動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはポリビニルアルコール等の樹脂を混合することを特徴とする請求項4に記載の複雑形状体の鏡面研磨装置。
The magnetic polishing liquid is
Spherical magnetite particles having a particle diameter of 10 to 50 nm are obtained with respect to a fluid in which ferromagnetic particles having a particle diameter of 1 to 80 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. Non-magnetic abrasive grains having a particle diameter of 0.01 to 100 μm are mixed in a composite fluid obtained by mixing a fluid uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties, and α-cellulose as a thickener. 5. A mirror polishing apparatus for complex shaped bodies according to claim 4, wherein a fibrous substance such as polyvinyl alcohol or a resin such as polyvinyl alcohol is mixed.
前記磁気研磨液は、
動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはポリビニルアルコール等の樹脂を混合することを特徴とする請求項5に記載の複雑形状体の鏡面研磨装置
The magnetic polishing liquid is
Spherical magnetite particles having a particle diameter of 10 to 50 nm are obtained with respect to a fluid in which ferromagnetic particles having a particle diameter of 1 to 80 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. Non-magnetic abrasive grains having a particle diameter of 0.01 to 100 μm are mixed in a composite fluid obtained by mixing a fluid uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties, and α-cellulose as a thickener. 6. A mirror polishing apparatus for complex-shaped bodies according to claim 5, wherein a fibrous substance such as polyvinyl alcohol or a resin such as polyvinyl alcohol is mixed.
JP2006535197A 2004-09-17 2005-09-15 Polishing method and polishing apparatus for complex shapes Pending JPWO2006030854A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004272607 2004-09-17
JP2004272607 2004-09-17
PCT/JP2005/017030 WO2006030854A1 (en) 2004-09-17 2005-09-15 Complex profile body polishing method and polishing apparatus

Publications (1)

Publication Number Publication Date
JPWO2006030854A1 true JPWO2006030854A1 (en) 2008-05-15

Family

ID=36060104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006535197A Pending JPWO2006030854A1 (en) 2004-09-17 2005-09-15 Polishing method and polishing apparatus for complex shapes

Country Status (2)

Country Link
JP (1) JPWO2006030854A1 (en)
WO (1) WO2006030854A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112757149A (en) * 2021-03-04 2021-05-07 上海理工大学 H-shaped magnetic composite fluid polishing head

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317052B2 (en) * 2008-10-14 2013-10-16 国立大学法人長岡技術科学大学 Wrapping terminal manufacturing method, wrapping terminal and lapping apparatus
JP5827653B2 (en) * 2013-09-18 2015-12-02 安田工業株式会社 Tool cleaning method and tool cleaning apparatus for machine tools
CN108237464B (en) * 2016-12-27 2020-12-29 上海崇明机床厂 Horizontal steel ball grinding machine
US20220389277A1 (en) * 2019-10-28 2022-12-08 3M Innovative Properties Company System and methods of finishing a metallic surface
CN112676922B (en) * 2020-12-23 2022-06-17 南京航太机电有限公司 Magnetic grinding device and method for vibrating composite elliptical motion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058169A (en) * 1991-07-02 1993-01-19 Daido Steel Co Ltd Wet type magnetic polishing method and device
JPH0852650A (en) * 1994-08-12 1996-02-27 Imahashi Seisakusho:Kk Surface polishing device
JPH0911114A (en) * 1995-06-23 1997-01-14 Fujikura Ltd Surface finish process method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201869A (en) * 1984-03-26 1985-10-12 インスチツ−ト,スベルフトベルドウイフ,マテリアロフ,アカデミ−,ナウク,ウクラインスコイ,エスエスエル Magnetism utilizing grinding machining device
JPH1015789A (en) * 1996-06-28 1998-01-20 Tokyo Seimitsu Co Ltd Method and apparatus for polishing semiconductor wafer
JP3595219B2 (en) * 1999-03-29 2004-12-02 秋田県 Processing method using particle-dispersed dielectric fluid
JP4141634B2 (en) * 2000-12-04 2008-08-27 秋田県 Particle dispersed mixed functional fluid and processing method using the same
JP3874340B2 (en) * 2001-10-05 2007-01-31 秋田県 Polishing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058169A (en) * 1991-07-02 1993-01-19 Daido Steel Co Ltd Wet type magnetic polishing method and device
JPH0852650A (en) * 1994-08-12 1996-02-27 Imahashi Seisakusho:Kk Surface polishing device
JPH0911114A (en) * 1995-06-23 1997-01-14 Fujikura Ltd Surface finish process method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112757149A (en) * 2021-03-04 2021-05-07 上海理工大学 H-shaped magnetic composite fluid polishing head
CN112757149B (en) * 2021-03-04 2022-12-27 上海理工大学 H-shaped magnetic composite fluid polishing head

Also Published As

Publication number Publication date
WO2006030854A1 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
CN201120584Y (en) Magnet swinging polisher
JP2007167968A (en) Mirror finished surface polishing method and mirror finished surface polishing device
JPWO2006030854A1 (en) Polishing method and polishing apparatus for complex shapes
JP2007021661A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
Wu et al. Study on finishing characteristics of magnetic abrasive finishing process using low-frequency alternating magnetic field
JP2006224227A (en) Magnetic polishing method
JP2007296598A (en) Magnetic polishing method and wafer polishing device
Deepak et al. Effect of rotational motion on the flat work piece magnetic abrasive finishing
JP2007167969A (en) Scratch machining method and machining device
JP2006082213A (en) Method of cutting work and cutting work/mirror polishing device
JP2004345073A (en) Manufacturing method and using method of lapping plate
JP4141634B2 (en) Particle dispersed mixed functional fluid and processing method using the same
JP4471197B2 (en) Polishing method that does not require processing pressure control
JP2006088283A (en) Method and device for polishing and coating mirror surface
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
JP4263673B2 (en) Magnetic inner surface polishing method and apparatus
KR102116179B1 (en) Apparatus for polishing an object and method of polishing an object
JP2003062747A (en) Processing method using magnetic fluid and device therefor
JP5129902B2 (en) Surface polishing method and apparatus for substrate mounting plate for substrate mounting apparatus
JPS6239172A (en) Magnetic polishing machine
JPS5877447A (en) Surface grinding method and device
JP3595219B2 (en) Processing method using particle-dispersed dielectric fluid
JP2016137553A (en) Polishing apparatus and polishing method
JP2007313634A (en) Polishing tool and mirror surface polishing method using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111207