JP4471197B2 - Polishing method that does not require processing pressure control - Google Patents

Polishing method that does not require processing pressure control Download PDF

Info

Publication number
JP4471197B2
JP4471197B2 JP2004000382A JP2004000382A JP4471197B2 JP 4471197 B2 JP4471197 B2 JP 4471197B2 JP 2004000382 A JP2004000382 A JP 2004000382A JP 2004000382 A JP2004000382 A JP 2004000382A JP 4471197 B2 JP4471197 B2 JP 4471197B2
Authority
JP
Japan
Prior art keywords
polishing
magnetic
iron core
magnetic pole
pole iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004000382A
Other languages
Japanese (ja)
Other versions
JP2005193319A (en
Inventor
邦雄 島田
勇波 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004000382A priority Critical patent/JP4471197B2/en
Publication of JP2005193319A publication Critical patent/JP2005193319A/en
Application granted granted Critical
Publication of JP4471197B2 publication Critical patent/JP4471197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は加工圧制御が不要な研磨方法およびそれに用いる研磨剤に関する。   The present invention relates to a polishing method that does not require processing pressure control and an abrasive used therefor.

従来の金属材料等における、ラッピングと称されるラップを用いた研磨や、ポリッシングパッドを用いたポリシングと称される研磨では、ラップやポリッシングパッドを必要とするため、研磨される金属材料等の表面の形状に応じたラップやポリッシングパッドを用意しなければない。しかし、全ての形状に対応することは不可能であるので、限られた研磨面の形状をもつ研磨装置しか作成できず、また、人の手に頼らざるを得ない状況にある。   Polishing using lapping called lapping or polishing using polishing pad in conventional metal material, etc., requires lapping or polishing pad, so the surface of metal material etc. to be polished Wraps and polishing pads must be prepared according to the shape. However, since it is impossible to cope with all shapes, only a polishing apparatus having a limited shape of the polishing surface can be produced, and it is necessary to rely on human hands.

本発明者は、先に磁性流体に研磨砥粒やマグネタイトなどを混合した磁気混合流体(MCF:Magnetic Compound Fluid)を出願しているが、砥粒の保持性が十分でなくパッドを使わない研磨では研磨表面の粗さがパッドを使う場合に比して劣るとか、磁場の吸引力でワーク上に研磨液を留めておくことができないという問題があった(例えば、特許文献1参照)。   The present inventor has previously filed a magnetic compound fluid (MCF: Magnetic Compound Fluid) in which abrasive grains and magnetite are mixed with a magnetic fluid. However, there is a problem that the roughness of the polishing surface is inferior to that in the case of using a pad, or that the polishing liquid cannot be retained on the work by the attractive force of the magnetic field (see, for example, Patent Document 1).

特開2002−170791号公報JP 2002-170791 A

このように、従来の研磨方法ではラップやポリッシングパッドを必要とし、また、磁性混合流体を用いた研磨であってもパッドを使わないと、研磨表面の粗さが劣るとか、磁場の吸引力でワーク上に研磨液を留めおけないという問題があった。そこで、本発明は、α−セルロースを混合し、セルロース繊維に砥粒を固定させると共に、研磨液の粘性を高くして磁場の吸引力でワーク上に研磨液を十分に留め置くことを可能にして、パッドを使う場合よりも良好な研磨面を得ることができるようにした、任意の曲面の研磨面に応用できる加工圧制御が不要な研磨方法を提供することを目的とする。 As described above, the conventional polishing method requires a lapping and polishing pad, and even when polishing using a magnetic fluid mixture, if the pad is not used, the roughness of the polishing surface will be inferior or the magnetic field will be attracted. There was a problem that the polishing liquid could not be retained on the workpiece. Therefore, the present invention makes it possible to mix α-cellulose, fix abrasive grains to cellulose fibers, and increase the viscosity of the polishing liquid so that the polishing liquid can be sufficiently retained on the workpiece by a magnetic field attraction. Thus, an object of the present invention is to provide a polishing method which can be applied to an arbitrary curved polishing surface and which does not require a processing pressure control, so that a better polishing surface can be obtained than when a pad is used.

上記目的を達成するために、この発明の請求項1に係る加工圧制御が不要な研磨方法は、上部の電磁石コイル内の上部磁極鉄芯と、該上部磁極鉄芯と反対方向に回転する電磁石コイル内の下部磁極鉄芯と、該下部磁極鉄芯上に設置された試料ホルダーとからなり、動粘度0.01〜10mm2/sの水やケロシン等の分散媒中に、粒子径1〜10μmの強磁性粒子を10〜70wt%分散させた流体に対して、電気絶縁性を有する水やケロシン等を分散媒とする10nmの球形マグネタイト(Fe34)粒子が分散媒に一様分散した流体を20〜50wt%混合した複合流体に、粒子径0.01〜10μmの非磁性の砥 粒粒子を混合して磁気研磨液を形成し、この磁気研磨液に対し、αセルロースを〜50wt%混合してなる研磨剤を、上部磁極鉄芯と試料ホルダー上の研磨される試料との間に供給し、該磁気研磨剤には電磁石により時間的に定常的にあるいは変動的に磁場を印加しつつ、上部磁極鉄芯と下部磁極鉄芯を回転して試料を研磨するように構成した。 In order to achieve the above object, a polishing method according to claim 1 of the present invention that does not require machining pressure control includes an upper magnetic pole iron core in an upper electromagnet coil, and an electromagnet that rotates in a direction opposite to the upper magnetic pole iron core. and the lower magnetic pole iron core of the coil, consists of a the installed sample holder on the lower magnetic pole iron core, in a dispersion medium such as water or kerosene kinematic viscosity of 0.01 to 10 mm 2 / s, the particle diameter 1 10 nm spherical magnetite (Fe 3 O 4 ) particles using water or kerosene as the dispersion medium are uniformly dispersed in the fluid in which 10 to 70 wt% of 10 μm ferromagnetic particles are dispersed. A magnetic fluid is formed by mixing non-magnetic abrasive particles having a particle diameter of 0.01 to 10 μm with a composite fluid in which 20 to 50 wt% of the dispersed fluid is mixed, and 8 α-cellulose is added to the magnetic polishing fluid. ~ 50wt% mixed abrasive on top The magnetic pole is supplied between the magnetic pole iron core and the sample to be polished on the sample holder, and the magnetic abrasive is applied with a magnetic field constantly or variably in time by an electromagnet, while the upper magnetic pole iron core and the lower magnetic pole are applied. The sample was polished by rotating the iron core.

これにより、磁場を印加すると多数のマグネタイトと鉄粉からなるクラスターが形成され、クラスター中の砥粒が研磨面に押えつけられて研磨され、又はクラスターにより砥粒が研磨面に押えつけられて研磨されて、ラップやポリッシングパッドを用いた、限られた研磨面の形状をもつ研磨装置による研磨、又は人手による研磨では不可能な研磨を、加工圧制御不要で研磨することができるので、変化に富んだ形状の研磨面を精密に、かつ効率良く研磨できるので微細精密部品の加工法として利用できる。   As a result, when a magnetic field is applied, a cluster composed of a large number of magnetite and iron powder is formed, and the abrasive grains in the cluster are pressed against the polishing surface for polishing, or the clusters are pressed against the polishing surface for polishing. Since it is possible to polish polishing with a polishing device with a limited polishing surface shape using a lapping or polishing pad, or polishing that is not possible with manual polishing, without the need to control the processing pressure, it changes. It can be used as a processing method for fine precision parts because it can polish polished surfaces with abundant shapes precisely and efficiently.

以上のように、本発明の研磨方法により、従来の金属材料等における、ラップやポリッシングパッドを用いた、限られた研磨面の形状をもつ研磨装置による研磨、又は人手による研磨では不可能な研磨を、加工圧制御不要で研磨することができるので、変化に富んだ形状の研磨面を精密に、かつ効率良く研磨できるので微細精密部品の加工法として利用できる。その結果、ラッピングやポリッシングにおけるコストや手間を大幅に削減することができるので、工業的な面で非常に有用である。 As described above, according to the polishing method of the present invention, polishing using a lapping device having a limited polishing surface shape using a lapping or polishing pad in conventional metal materials or the like, which is impossible by manual polishing, is impossible. Can be polished without the need for controlling the processing pressure, and the polished surface having a variety of shapes can be polished precisely and efficiently, so that it can be used as a processing method for fine precision parts. As a result, costs and labor in lapping and polishing can be greatly reduced, which is very useful from an industrial viewpoint.

本発明は、動粘度0.01〜10mm2/s程度の水やケロシン等の分散媒中に、粒子径1〜10μmの強磁性粒子を10〜70wt%分散させた流体に対して、電気絶縁性を有する水やケロシン等を分散媒とする10nmの球形マグネタイト(Fe34)粒子が分散媒に一様分散した流体を20〜50wt%混合した複合流体に、粒子径0.01〜10μmの非磁性の砥粒粒子を混合して磁気研磨液を形成し、この磁気研磨液に対し、環境に優しいα(アルファ)ーセルロースを〜50wt%混ぜて新しい研磨液を作成した。また、ラップを用いないラッピングやポリッシャーパッドを用いないポリシングにおいて、この磁気研磨液を磁界中で使用して研磨試料を研磨する。 The present invention electrically insulates a fluid in which 10 to 70 wt% of ferromagnetic particles having a particle diameter of 1 to 10 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 10 mm 2 / s. Particles having a particle diameter of 0.01 to 10 μm are mixed with a composite fluid in which 20 to 50 wt% of a fluid in which 10 nm spherical magnetite (Fe 3 O 4 ) particles using water or kerosene as a dispersion medium is uniformly dispersed in the dispersion medium is mixed. of a mixture of abrasive particles of magnetic forms a magnetic polishing liquid, to the magnetic polishing solution was prepared environmentally friendly α (alpha) over cellulose mix 8 50 wt% new polishing solution. Further, in lapping without wrapping or polishing without using a polisher pad, the polishing sample is polished using this magnetic polishing liquid in a magnetic field.

次に、本発明実施形態を図面に基づいて説明する。図1は本発明の加工圧制御が不要な研磨方法を適用する研磨装置構成図である。図において、1は研磨試料、2は研磨試料1が設置される試料ホルダー(図示せず)を有する下部磁極鉄芯、3は上部磁極鉄芯、4は本発明の磁気研磨液でなる研磨剤、5は下部磁極鉄芯2を励磁する電磁石、6はカップリング、7はACサーボモータ、8は速度計、9は位置調整器、10は上部磁極鉄芯3を励磁する電磁石、11はカップリング、12はACサーボモータ、13は速度計、14は電磁石用電源、15,16は外枠に固定するベアリング軸承、17は冷却水タンク、18は電磁石に冷却水を供給するポンプである。尚、19はポリッシャーパッドであり、本発明の新規な研磨方法では必要ないが、本発明の実施例と比較する際に上部磁極鉄芯3に取り付けられるものである。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a polishing apparatus to which a polishing method that does not require processing pressure control according to the present invention is applied. In the figure, 1 is a polishing sample, 2 is a lower magnetic pole iron core having a sample holder (not shown) on which the polishing sample 1 is installed, 3 is an upper magnetic pole iron core, and 4 is an abrasive comprising the magnetic polishing liquid of the present invention. 5 is an electromagnet that excites the lower magnetic pole core 2, 6 is a coupling, 7 is an AC servo motor, 8 is a speedometer, 9 is a position adjuster, 10 is an electromagnet that excites the upper magnetic pole iron core 3, and 11 is a cup. A ring, 12 is an AC servo motor, 13 is a speedometer, 14 is an electromagnet power supply, 15 and 16 are bearing bearings fixed to the outer frame, 17 is a cooling water tank, and 18 is a pump for supplying cooling water to the electromagnet. Reference numeral 19 denotes a polisher pad, which is not necessary for the novel polishing method of the present invention, but is attached to the upper magnetic pole iron core 3 when compared with the embodiment of the present invention.

図2に、研磨試料2と研磨試料1を固定する下部磁極鉄芯2、上部磁極鉄芯3と研磨剤4との位置関係の拡大図を示す。同図(A)は上部方磁極鉄芯3にポリッシングパッド19を取り付けた状態図である。同図(B)はポリッシングパッド19を必要としない本発明の研磨状態図である。ここで、xは上部磁極鉄芯3と研磨試料1間の距離である。   FIG. 2 shows an enlarged view of the positional relationship between the polishing sample 2 and the lower magnetic pole iron core 2 that fixes the polishing sample 1, and the upper magnetic pole iron core 3 and the abrasive 4. FIG. 2A is a state diagram in which the polishing pad 19 is attached to the upper-side magnetic pole iron core 3. FIG. 5B is a polishing state diagram of the present invention that does not require the polishing pad 19. Here, x is the distance between the upper magnetic pole core 3 and the polished sample 1.

図1の研磨装置における研磨動作は次の通りで有る。下部磁極鉄芯2と上部磁極鉄芯3は、電源14に接続された、夫々の電磁石(コイル)5,10により励磁される。下部磁極鉄芯2の上に研磨試料1を固定して、上部磁極鉄芯3との間に新しく開発した磁気研磨液でなる研磨剤4を介在させる。   The polishing operation in the polishing apparatus of FIG. 1 is as follows. The lower magnetic pole iron core 2 and the upper magnetic pole iron core 3 are excited by respective electromagnets (coils) 5 and 10 connected to a power source 14. The polishing sample 1 is fixed on the lower magnetic pole iron core 2, and an abrasive 4 made of a newly developed magnetic polishing liquid is interposed between the lower magnetic pole iron core 3 and the upper magnetic pole iron core 3.

下部磁極鉄芯2はACサーボモータ7によりカップリング6を介して駆動回転される。同様に、上部磁極鉄芯3はACサーボモータ10によりカップリング11を介して、下部磁極鉄芯2の回転方向と反対方向に駆動回転される。ACサーボモータ7,10は夫々の速度計8,13により回転速度が検出され、速度制御装置(図示なし)により所定の回転数に制御される。   The lower magnetic pole iron core 2 is driven and rotated through a coupling 6 by an AC servo motor 7. Similarly, the upper magnetic pole iron core 3 is driven and rotated in the direction opposite to the rotation direction of the lower magnetic pole iron core 2 through the coupling 11 by the AC servo motor 10. The AC servomotors 7 and 10 have their rotational speeds detected by the respective speedometers 8 and 13, and are controlled to a predetermined rotational speed by a speed control device (not shown).

電磁石により、時間的に定常的な或いは変動的な磁場を印加することにより、磁気研磨液に磁場が印加される。また、電磁石5,10は冷却水タンク17から冷却水をポンプ18により供給されて過熱を防止される。そして、研磨試料1を含む上下の磁極鉄芯2,3間の距離の位置合わせは位置調整器9により行なわれる。   A magnetic field is applied to the magnetic polishing liquid by applying a stationary or fluctuating magnetic field with time using an electromagnet. Further, the electromagnets 5 and 10 are supplied with cooling water from the cooling water tank 17 by the pump 18 to prevent overheating. Then, the position adjuster 9 aligns the distance between the upper and lower magnetic pole iron cores 2 and 3 including the polishing sample 1.

水やケロシン等の分散媒中に強磁性粒子を分離させた流体に対し、電機絶縁性を有する水やケロシン等を分散媒とするマグネタイト微粒子(Fe34)が一様分散した流体を混合した複合流体に、非磁性の砥粒粒子(Al23,Cr23など)とαセルロースを混合することによって構成される。 Mixing a fluid in which ferromagnetic particles are separated in a dispersion medium such as water or kerosene with a fluid in which magnetite fine particles (Fe 3 O 4 ) with water or kerosene as the dispersion medium are dispersed uniformly. The composite fluid is mixed with non-magnetic abrasive grains (Al 2 O 3 , Cr 2 O 3 etc.) and α-cellulose.

より詳細に示すと、動粘度0.01〜10mm2/s程度の水やケロシン等の分散媒中に、粒子径1〜10μmの強磁性粒子を10〜70wt%分散させた流体に対して、電気絶縁性を有する水やケロシン等を分散媒とする10nmの球形マグネタイト(Fe34)粒子が分散媒に一様分散した流体を20〜50wt%混合した複合流体に、粒子径0.01〜10μmの非磁性の砥粒粒子を混合して磁気研磨液を形成し、この磁気研磨液に対し、αセルロースを〜50wt%混ぜて構成される。 More specifically, for a fluid in which 10 to 70 wt% of ferromagnetic particles having a particle diameter of 1 to 10 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 10 mm 2 / s, A composite fluid obtained by mixing 20 to 50 wt% of a fluid in which 10 nm spherical magnetite (Fe 3 O 4 ) particles having electrically insulating water or kerosene as a dispersion medium is uniformly dispersed in the dispersion medium is mixed with a particle diameter of 0.01. by mixing the abrasive particles of non-magnetic ~10μm forms a magnetic polishing liquid, to the magnetic grinding fluid, constituted by mixing α cellulose 8 50 wt%.

本発明の新規な磁気研磨液による研磨のメカニズムを図3に示す。まず、磁場を印加すると、多数のマグネタイト(Fe34)と鉄粉(Fe)からなるクラスターが形成される。この時、同図(A)のように、クラスター中に砥粒(Al23)が包含された場合と、同図(B)のように、クラスターの外側に砥粒(Al23)が存在する場合が生じる。図3(A)の様相について、クラスター中に砥粒(Al23)が包含されることは、図4に示すように、SEMにより観察し、X線分析して確認された。 The polishing mechanism using the novel magnetic polishing liquid of the present invention is shown in FIG. First, when a magnetic field is applied, clusters composed of a large number of magnetites (Fe 3 O 4 ) and iron powder (Fe) are formed. At this time, as shown in FIG (A), the case where the abrasive grains (Al 2 O 3) is being included in a cluster, as shown in FIG. (B), the abrasive grains on the outside of the cluster (Al 2 O 3 ) May exist. In the aspect of FIG. 3A, the inclusion of abrasive grains (Al 2 O 3 ) in the cluster was observed by SEM and confirmed by X-ray analysis as shown in FIG.

図3(A)の場合には、クラスター中の砥粒が研磨面に押えつけられて研磨される。図3(B)の場合には、クラスターにより砥粒が研磨面に押えつけられて研磨される。定常的な磁場の印加により、磁気クラスターが印加磁場の磁力線に沿って整列され、磁力によりそれが保持されるので、砥粒が研磨面に適度に当たって研磨できる。また、変動的な磁場の印加により、磁気クラスターが回転揺動して砥粒が研磨面に適度に当たって研磨できる。このようにクラスターが作用するため、ポリッシングパッドやラップを用いる研磨方法のように、加工圧を加えて研磨する試料の表面を押えつけて研磨を実行しなくとも、加工圧制御不要で研磨することができる。   In the case of FIG. 3A, the abrasive grains in the cluster are pressed against the polishing surface and polished. In the case of FIG. 3B, the abrasive is pressed against the polishing surface by the cluster and polished. By applying a steady magnetic field, the magnetic clusters are aligned along the magnetic field lines of the applied magnetic field, and are held by the magnetic force, so that the abrasive grains can hit the polishing surface appropriately and be polished. Further, by applying a variable magnetic field, the magnetic cluster rotates and swings, so that the abrasive grains can hit the polishing surface appropriately and can be polished. Since the cluster acts in this way, polishing is performed without controlling the processing pressure without pressing the surface of the sample to be polished by applying processing pressure, as in the polishing method using a polishing pad or lap. Can do.

本発明の研磨効果を実証するために、図5の表に示す諸元を有する、本発明の磁気研磨剤であるα−セルロースを添加した磁気研磨液(a)と、比較磁気研磨液であるα−セルロースを無添加の磁気研磨液(b)の2種類を用意した。
磁気研磨液(a)及び磁気研磨液(b)における分散媒1(磁性流体)は、通常、その比重は約1.3である。このことは当該技術分野では広く知られている。従って、図5を 参照して計算すると、分散媒1(磁性流体)の重量は、15ml×1.3=19.5gである。ここで、分散媒1はマグネタイトとケロシンで構成されていて、図5に記されているように、濃度は50wt%であるから、マグネタイト9.75gとケロシン9.75gとなる。
磁気研磨液(a)の全重量は53.99g、磁気研磨液(b)の全重量は49.5gであるから、次に各磁気研磨液の配合比(重量)を求める。
磁気研磨液(a)の配合比は、
分散媒1は19.5gであるから、36.1wt%、分散媒2は12gであるから、22. 2wt%(ここで、分散媒1にもケロシンが含まれているので、,ケロシンの総量は磁性流体中のケロシンをあわせて21.75gとなるが、分散媒2は独自の値12gとして扱 う。)、分散粒子1(鉄粉)15gであるから、配合比(重量)は27.8wt%、分散 粒子2(砥粒)は3gであるから、5.6wt%、添加剤(αセルロース)4.49gであるから、8.3wt%となる。
また、磁気研磨液(b)の配合比は、
分散媒1はx19.5gであるから、39.4wt%、分散媒2は12gであるから、24.2wt%(ここで、分散媒1にもケロシンが含まれているので、,ケロシンの総量は磁性流体中のケロシンをあわせて21.75gとなるが、分散媒2は独自の値12gとして扱 う。)、分散粒子1(鉄粉)15gであるから、配合比(重量)は30.3wt%、分散 粒子2(砥粒)は3gであるから、6.1wt%となる。
In order to demonstrate the polishing effect of the present invention, the magnetic polishing liquid (a) having the specifications shown in the table of FIG. 5 and added with α-cellulose, which is the magnetic polishing agent of the present invention, is a comparative magnetic polishing liquid. Two types of magnetic polishing liquid (b) to which α-cellulose was not added were prepared.
The dispersion medium 1 (magnetic fluid) in the magnetic polishing liquid (a) and the magnetic polishing liquid (b) usually has a specific gravity of about 1.3. This is well known in the art. Therefore, when calculated with reference to FIG. 5, the weight of the dispersion medium 1 (magnetic fluid) is 15 ml × 1.3 = 19.5 g. Here, since the dispersion medium 1 is composed of magnetite and kerosene, and the concentration is 50 wt% as shown in FIG. 5, it becomes 9.75 g of magnetite and 9.75 g of kerosene.
Since the total weight of the magnetic polishing liquid (a) is 53.9 g and the total weight of the magnetic polishing liquid (b) is 49.5 g, the blending ratio (weight) of each magnetic polishing liquid is next determined.
The blending ratio of the magnetic polishing liquid (a) is
Since the dispersion medium 1 is 19.5 g, 36.1 wt% and the dispersion medium 2 is 12 g, 22.2 wt% (Here, since the dispersion medium 1 also contains kerosene, the total amount of kerosene The total amount of kerosene in the magnetic fluid is 21.75 g, but the dispersion medium 2 is treated as a unique value of 12 g.) Since the dispersion particle 1 (iron powder) is 15 g, the blending ratio (weight) is 27. Since 8 wt% and dispersed particles 2 (abrasive grains) are 3 g, 5.6 wt% and additive (α cellulose) are 4.49 g, so that 8.3 wt%.
The blending ratio of the magnetic polishing liquid (b) is as follows:
Since the dispersion medium 1 is x19.5 g, 39.4 wt%, and the dispersion medium 2 is 12 g, so 24.2 wt% (here, since the dispersion medium 1 also contains kerosene, the total amount of kerosene The total amount of kerosene in the magnetic fluid is 21.75 g, but the dispersion medium 2 is treated as a unique value of 12 g.) Since the dispersion particle 1 (iron powder) is 15 g, the blending ratio (weight) is 30. 3 wt% and dispersed particles 2 (abrasive grains) are 3 g, so that it is 6.1 wt%.

磁気研磨液(b)は、動粘度0.03mm2/s程度のケロシンの分散媒中に、平均粒子径1.2μmの強磁性粒子(Fe)を分散させた流体に対して、動粘度0.05mm2/s程度のケロシンを分散媒とする10nmの球形マグネタイト(Fe34)粒子が分散媒に一様分散した流体を50wt%に混合した複合流体に、粒子径3μmの非磁性の砥粒粒子(Al23)を混合して形成した磁気研磨液出ある。これに対し、本発明の研磨剤である磁気研磨液(a)は、上記成分の磁気研磨液(b)に、αセルロースを添加材として〜50wt%混ぜてなる研磨剤である。αセルロースを添加することにより、粘性を高めると共に、砥粒を保持させる効果がある。 The magnetic polishing liquid (b) has a kinematic viscosity of 0 for a fluid in which ferromagnetic particles (Fe) having an average particle diameter of 1.2 μm are dispersed in a kerosene dispersion medium having a kinematic viscosity of about 0.03 mm 2 / s. A non-magnetic particle having a particle diameter of 3 μm is mixed with a composite fluid in which a fluid in which 10 nm spherical magnetite (Fe 3 O 4 ) particles having kerosene of about 0.05 mm 2 / s as a dispersion medium are uniformly dispersed in the dispersion medium is mixed to 50 wt%. There is a magnetic polishing liquid formed by mixing abrasive grains (Al 2 O 3 ). In contrast, magnetic polishing liquid is a polishing agent of the present invention (a) is a magnetic polishing liquid (b) of the above components, a polishing agent comprising mixing 8 50 wt% of α cellulose as an additive material. Addition of α-cellulose has the effect of increasing the viscosity and holding the abrasive grains.

このように形成されてた磁気研磨液(a)と磁気研磨液(b)を使用して、図6の表に示す諸元を有する研磨の実施条件、即ち、下部磁極鉄芯2を300rpm、上部磁極鉄芯3を800rpmの回転数で互いに反対方向に回転し、上部磁極鉄芯3と研磨試料1間の距離を0.1mm、加工時間0〜90分の研磨条件で磁場強度300、1800ガウス(Gauss)の2通りの試験を行った。   Using the magnetic polishing liquid (a) and the magnetic polishing liquid (b) formed in this way, polishing conditions having the specifications shown in the table of FIG. 6, that is, lower magnetic pole core 2 is 300 rpm, The upper magnetic pole core 3 is rotated in the opposite direction at a rotational speed of 800 rpm, the distance between the upper magnetic pole iron core 3 and the polishing sample 1 is 0.1 mm, and the magnetic field strength is 300 and 1800 under the polishing conditions of 0 to 90 minutes. Two tests of Gauss were performed.

その結果、磁場強度300ガウスでの試験結果は図7に示すものとなり、磁場強度1800ガウスでの試験結果は図8に示すものとなった。また、従来のラッピングによる研磨効果と比較するため、回転する上部磁極鉄芯3の下面にラップ(ポリッシングパッド)を設置したラッピングも行った。   As a result, the test result at a magnetic field strength of 300 gauss was as shown in FIG. 7, and the test result at a magnetic field strength of 1800 gauss was as shown in FIG. Further, in order to compare with the polishing effect by the conventional lapping, lapping in which a lapping (polishing pad) was installed on the lower surface of the rotating upper magnetic pole iron core 3 was also performed.

図7、図8において、「パッド付の研磨」を行ったもの、「パッドなしの研磨」を行ったもの、「パッドなし、含添加材磁気研磨液での研磨」を行ったものと表示して夫々を示している。ここで、表面粗さの表示において、Raは算術平均粗さであり、Ryは最大粗さを示し、通常、Ry×1/8はほぼRaの関係がある。   In FIG. 7 and FIG. 8, it is indicated that “polishing with pad”, “polishing without pad”, and “polishing without pad, additive-containing magnetic polishing liquid” were performed. Show each. Here, in the display of the surface roughness, Ra is the arithmetic average roughness, Ry indicates the maximum roughness, and usually Ry × 1/8 has a relationship of approximately Ra.

この結果から明らかなように、磁場強度が小さくても大きくても、ポリッシングパッドなしで添加材としてα−セルロースを含有する磁気研磨液を使った方が、ポリンシングパッド付きや、α−セルロースを含まない磁気研磨液を使った研磨よりも、研磨効果が大きく、研磨時間が短縮できた。   As is clear from this result, whether the magnetic polishing solution containing α-cellulose as an additive without using a polishing pad is used, whether with a polishing pad or α-cellulose. The polishing effect was greater than the polishing using the magnetic polishing liquid not containing, and the polishing time could be shortened.

従来の金属材料等における、ラップやポリッシングパッドを用いた、限られた研磨面の形状をもつ研磨装置による研磨、又は人手による研磨では不可能な研磨を、本発明は加工圧制御不要で研磨することができるので、変化に富んだ形状の研磨面を精密に、かつ効率良く研磨できるので微細精密部品の加工法として利用できる。   In the present invention, polishing using a polishing apparatus having a limited polishing surface shape using a lapping or polishing pad or a polishing that cannot be performed manually is performed without using a processing pressure control. Therefore, the polished surface having various shapes can be polished precisely and efficiently, so that it can be used as a processing method for fine precision parts.

本発明の加工圧制御が不要な研磨方法を適用する研磨装置構成図。1 is a configuration diagram of a polishing apparatus to which a polishing method that does not require processing pressure control according to the present invention is applied. 本発明の研磨試料と下部磁極鉄芯と上部磁極鉄芯3の関係拡大図。FIG. 4 is an enlarged view of the relationship between the polishing sample of the present invention, a lower magnetic pole iron core, and an upper magnetic pole iron core 3. 磁気研磨液による研磨のメカニズム図。FIG. 3 is a mechanism diagram of polishing with a magnetic polishing liquid. 磁気研磨液の様相のSEMによる観察図。The observation figure by the SEM of the aspect of magnetic polishing liquid. 実験用の磁気研磨液の成分を示す諸元表。The specification table | surface which shows the component of the magnetic polishing liquid for experiment. 研磨の実験実施条件を示す諸元表。Specification table showing conditions for conducting polishing experiments. 磁場強度300ガウスでの試験結果。Test results at a magnetic field strength of 300 gauss. 磁場強度1800ガウスでの試験結果。Test results at a magnetic field strength of 1800 gauss.

符号の説明Explanation of symbols

1 研磨試料
2 下部磁極鉄芯
3 上部磁極鉄芯
4 研磨剤
5,10 電磁石
6,11 カップリング
7,12 ACサーボモータ
8,13 速度計
9 位置調整器
14 電磁石用電源
15,16 ベアリング軸承
17 冷却水タンク
18 ポンプ
19 ポリッシャーパッド
DESCRIPTION OF SYMBOLS 1 Polishing sample 2 Lower magnetic pole iron core 3 Upper magnetic pole iron core 4 Abrasive agent 5,10 Electromagnet 6,11 Coupling 7,12 AC servomotor 8,13 Speedometer 9 Position adjuster 14 Electromagnet power supply 15,16 Bearing bearing 17 Cooling water tank 18 Pump 19 Polisher pad

Claims (1)

上部の電磁石コイル内の上部磁極鉄芯と、該上部磁極鉄芯と反対方向に回転する電磁石コイル内の下部磁極鉄芯と、該下部磁極鉄芯上に設置された試料ホルダーとからなり、動粘度0.01〜10mm2/sの水やケロシン等の分散媒中に、粒子径1〜10μmの強磁性粒子を10〜70wt%分散させた流体に対して、電気絶縁性を有する水やケロシン等を分散媒とする10nmの球形マグネタイト(Fe34)粒子が分散媒に一様分散した流体を20〜50wt%混合した複合流体に、粒子径0.01〜10μmの非磁性の砥 粒粒子を混合して磁気研磨液を形成し、この磁気研磨液に対し、αセルロースを〜50wt%混合してなる研磨剤を、上部磁極鉄芯と試料ホルダー上の研磨される試料との間に供給し、該磁気研磨剤には電磁石により時間的に定常的にあるいは変動的に磁場を印加しつつ、上部磁極鉄芯と下部磁極鉄芯を回転して試料を研磨することを特徴とする加工圧制御が不要な研磨方法。 The upper magnetic pole iron core in the upper electromagnet coil, the lower magnetic pole iron core in the electromagnet coil rotating in the direction opposite to the upper magnetic pole iron core, and the sample holder installed on the lower magnetic pole iron core, Water or kerosene having electrical insulation properties with respect to a fluid in which 10 to 70 wt% of ferromagnetic particles having a particle diameter of 1 to 10 μm are dispersed in a dispersion medium such as water or kerosene having a viscosity of 0.01 to 10 mm 2 / s. Non-magnetic abrasive grains having a particle diameter of 0.01 to 10 μm in a composite fluid obtained by mixing 20 to 50 wt% of a fluid in which 10 nm spherical magnetite (Fe 3 O 4 ) particles uniformly dispersed in a dispersion medium are mixed in a dispersion medium. by mixing the particles to form a magnetic polishing liquid during relative magnetic polishing liquid, the polishing agent comprising a mixture of α cellulose 8 50 wt%, the sample to be polished on the upper magnetic pole iron core and the sample holder The magnetic abrasive is applied to the electromagnet A polishing method that does not require processing pressure control, wherein the sample is polished by rotating the upper magnetic pole iron core and the lower magnetic pole iron core while applying a magnetic field more regularly or variably in time.
JP2004000382A 2004-01-05 2004-01-05 Polishing method that does not require processing pressure control Expired - Fee Related JP4471197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000382A JP4471197B2 (en) 2004-01-05 2004-01-05 Polishing method that does not require processing pressure control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000382A JP4471197B2 (en) 2004-01-05 2004-01-05 Polishing method that does not require processing pressure control

Publications (2)

Publication Number Publication Date
JP2005193319A JP2005193319A (en) 2005-07-21
JP4471197B2 true JP4471197B2 (en) 2010-06-02

Family

ID=34816239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000382A Expired - Fee Related JP4471197B2 (en) 2004-01-05 2004-01-05 Polishing method that does not require processing pressure control

Country Status (1)

Country Link
JP (1) JP4471197B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394936B (en) * 2006-03-08 2011-05-11 富士胶片株式会社 Coating apparatus
KR101211826B1 (en) * 2010-06-14 2012-12-18 연세대학교 산학협력단 Apparatus and method for polishing workpiece using magnetorheological fluid)
JP6601909B2 (en) * 2015-12-08 2019-11-06 国立大学法人宇都宮大学 Magnetic polishing apparatus and magnetic polishing method
CN108161603B (en) * 2018-02-06 2023-08-29 华侨大学 Magnetic field auxiliary plane grinding equipment

Also Published As

Publication number Publication date
JP2005193319A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
CN106312796B (en) Two-sided planarization system of processing
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
TWI328486B (en)
JP2007167968A (en) Mirror finished surface polishing method and mirror finished surface polishing device
JPH04336954A (en) Minute grinding method and minute grinding tool
JP2000107996A (en) Surface processing method using magnetic anisotropic tool and its device
JP2006224227A (en) Magnetic polishing method
JP2007021661A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
WO2006030854A1 (en) Complex profile body polishing method and polishing apparatus
JP4471197B2 (en) Polishing method that does not require processing pressure control
KR101391810B1 (en) Polishing system using of mr fluid
Deepak et al. Effect of rotational motion on the flat work piece magnetic abrasive finishing
JP2007296598A (en) Magnetic polishing method and wafer polishing device
JP2008105169A (en) Paste material
CN100384590C (en) Liquid magnetic grinding and it preparation method
JP2007167969A (en) Scratch machining method and machining device
JP2007045878A (en) Magnetic abrasive grain
JP4263673B2 (en) Magnetic inner surface polishing method and apparatus
JP2008254106A (en) Paste material
JP2006088283A (en) Method and device for polishing and coating mirror surface
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
JPS6239172A (en) Magnetic polishing machine
JPH0248391B2 (en)
JP2016137553A (en) Polishing apparatus and polishing method
KR100323065B1 (en) A poplshing apparatus based on the magnetic field forming principale of electromagnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080521

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees