JP2006224227A - Magnetic polishing method - Google Patents

Magnetic polishing method Download PDF

Info

Publication number
JP2006224227A
JP2006224227A JP2005039391A JP2005039391A JP2006224227A JP 2006224227 A JP2006224227 A JP 2006224227A JP 2005039391 A JP2005039391 A JP 2005039391A JP 2005039391 A JP2005039391 A JP 2005039391A JP 2006224227 A JP2006224227 A JP 2006224227A
Authority
JP
Japan
Prior art keywords
magnetic
workpiece
polishing
polishing tool
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005039391A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kitade
俊之 北出
Shinji Yokoyama
真司 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005039391A priority Critical patent/JP2006224227A/en
Publication of JP2006224227A publication Critical patent/JP2006224227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for a magnetic polishing having excellent machining precision and high efficiency. <P>SOLUTION: A magnetic fluid 11 composing of abrasive grains, magnetic grains, and dispersion media is held on the tip end of a polishing tool 3 by a magnetic force, a polishing tool 3 and a workpiece W are relatively moved while keeping a gap of a constant distance between the tip end of the polishing tool 3 and the surface of the workpiece W, and the magnetic fluid 11 interposed in the gap is abutted to the surface of the workpiece W. The surface is polished by rotating the polishing tool 3 while keeping the positional relationship between the polishing tool 3 and the workpiece W so that the polishing tool 3 is always turned to the vertical direction with respect to the tangent of a machining point of the surface of the workpiece W. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は研磨技術に関し、特に、光学素子自身や光学素子の成形型の成形面等の高精度な加工に好適である、磁気研磨の技術に関する。   The present invention relates to a polishing technique, and more particularly to a magnetic polishing technique suitable for high-precision processing of an optical element itself or a molding surface of a molding die of the optical element.

磁性及び研磨性を有する磁性砥粒を磁気研磨ヘッドで保持して被研磨物の研磨を行う磁気研磨装置における磁気研磨ヘッドに関し、例えば特許文献1に開示されている技術が知られている。   For example, a technique disclosed in Patent Document 1 is known regarding a magnetic polishing head in a magnetic polishing apparatus that polishes an object to be polished by holding magnetic abrasive grains having magnetism and polishability with a magnetic polishing head.

この磁気研磨ヘッドを用いて行う従来の研磨の方法について、図6、図7、及び図8を用いて説明する。
図6はこの磁気研磨ヘッドを備えた研磨装置の構成を示している。同図において、磁気研磨工具101の先端には複数の毛状部材103が植設されている。毛状部材103は樹脂繊維、動物毛、金属繊維等であり、長さは1mm〜20mm、太さは10μm〜1mm、植設の間隔は0.2mm〜2mmとされている。
A conventional polishing method performed using this magnetic polishing head will be described with reference to FIGS. 6, 7, and 8. FIG.
FIG. 6 shows the configuration of a polishing apparatus provided with this magnetic polishing head. In the figure, a plurality of bristle members 103 are implanted at the tip of the magnetic polishing tool 101. The hair-like member 103 is resin fiber, animal hair, metal fiber or the like, and has a length of 1 mm to 20 mm, a thickness of 10 μm to 1 mm, and an implantation interval of 0.2 mm to 2 mm.

図7及び図8は磁気研磨工具101の先端部の構造の例を示したものである。図7に示す第一の例では、磁気研磨工具101の先端部に植設穴106が設けられており、この植設穴106に接着剤105を流し込んで毛状部材103を植設している。図8に示す第二の例では、磁気研磨工具101の先端に接着剤層107を設けておき、そこへ毛状部材103を刺して植設している。このいずれの例においても、毛状部材103は接着剤105若しくは接着剤層107を硬化させることによって磁気研磨工具101の先端に固定されている。   7 and 8 show examples of the structure of the tip of the magnetic polishing tool 101. FIG. In the first example shown in FIG. 7, the planting hole 106 is provided at the tip of the magnetic polishing tool 101, and the bristle member 103 is implanted by pouring the adhesive 105 into the planting hole 106. . In the second example shown in FIG. 8, the adhesive layer 107 is provided at the tip of the magnetic polishing tool 101, and the hair-like member 103 is pierced and implanted therein. In any of these examples, the bristle member 103 is fixed to the tip of the magnetic polishing tool 101 by curing the adhesive 105 or the adhesive layer 107.

この磁気研磨工具101を用いて磁性研磨加工を行うには、まず、磁化させた磁気研磨工具101の先端に磁性流体102を接触させて、磁気ブラシを形成する。この磁気ブラシは、磁力のみでは小さい復元力が毛状部材103によって強化されている。   In order to perform magnetic polishing using the magnetic polishing tool 101, first, the magnetic fluid 102 is brought into contact with the tip of the magnetized magnetic polishing tool 101 to form a magnetic brush. This magnetic brush is strengthened by the hair-like member 103 so that the restoring force is small only by the magnetic force.

この磁気研磨工具101を回転させながら、図6に示すように、磁気研磨工具101の先端に形成された磁気ブラシをワークWの加工面に直接接触させてワークWの加工を行う。毛状部材103は磁気研磨工具101の先端に植設されているので、磁気研磨工具101を回転させれば毛状部材103もそれに追随して回転する。このとき、磁性流体102は毛状部材103に追従してワークWの加工面上を動くので、磁気研磨工具101の回転数に応じた磁気ブラシの相対速度が確保される。
特開2001−198798号公報
While rotating the magnetic polishing tool 101, as shown in FIG. 6, the magnetic brush formed at the tip of the magnetic polishing tool 101 is brought into direct contact with the processing surface of the work W to process the work W. Since the hair-like member 103 is implanted at the tip of the magnetic polishing tool 101, if the magnetic polishing tool 101 is rotated, the hair-like member 103 will also follow and rotate. At this time, the magnetic fluid 102 follows the bristle member 103 and moves on the processing surface of the workpiece W, so that the relative speed of the magnetic brush according to the number of rotations of the magnetic polishing tool 101 is ensured.
JP 2001-198798 A

上述した従来の研磨方法は、磁性流体が磁化して形成される磁気ブラシを、複数の毛状部材を植設した磁気研磨工具の先端に形成させることで、磁気ブラシの弱い復元力を強化して効率良く研磨加工を行うというものである。   The conventional polishing method described above enhances the weak restoring force of a magnetic brush by forming a magnetic brush formed by magnetizing a magnetic fluid at the tip of a magnetic polishing tool in which a plurality of bristle members are implanted. Thus, polishing is performed efficiently.

しかし、この研磨方法では、磁気ブラシが毛状部材にからまって形成されているため、加工中に砥粒の交換が行なわれ難く、一定の研磨能力を加工の終了まで維持することが難しい。   However, in this polishing method, since the magnetic brush is formed around the hair-like member, it is difficult to replace the abrasive grains during processing, and it is difficult to maintain a certain polishing ability until the end of processing.

また、ワーク加工面に毛状部材を接触させながら研磨を行うときに、ワーク加工面への毛状部材の当たり方にバラツキが生じると不均一な面になってしまうことが考えられる。
面に、工具先端に毛状部材を植設するため、工具の形状が制限されてしまう。例えば、微小なワークを加工する場合には工具先端を微小にする必要があるが、微小な工具先端に毛状部材を植設することは難しい。
Further, when polishing is performed while bringing the hair-like member into contact with the workpiece processing surface, it may be considered that the surface becomes non-uniform if variations occur in the manner in which the hair-like member contacts the workpiece processing surface.
Since a bristle member is implanted on the surface at the tip of the tool, the shape of the tool is limited. For example, when processing a minute workpiece, it is necessary to make the tool tip minute, but it is difficult to implant a hairy member at the minute tool tip.

本発明は上述した問題に鑑みてなされたものであり、その解決しようとする課題は、加工精度が良好で効率の高い磁気研磨の手法を提供することである。   The present invention has been made in view of the above-described problems, and a problem to be solved is to provide a magnetic polishing technique with good processing accuracy and high efficiency.

本発明の態様のひとつである磁気研磨方法は、研磨砥粒と磁性粒と分散媒とからなる磁性流体を磁力により回転軸の先端に保持させておき、当該回転軸の先端とワークの表面との間に一定の距離の隙間を保ちつつ両者を相対移動させ、当該隙間に介在する当該磁性流体を当該ワークの表面に当接させ、当該回転軸が当該ワークの表面の加工点の接線に対して常に垂直な方向となるように当該回転軸と当該ワークとの位置関係を維持しながら当該回転軸を回転させて当該表面を研磨する、ことを特徴とするものであり、この特徴によって前述した課題を解決する。   In one embodiment of the present invention, a magnetic polishing method comprises holding a magnetic fluid composed of abrasive grains, magnetic particles, and a dispersion medium at the tip of a rotating shaft by a magnetic force, and the tip of the rotating shaft and the surface of a workpiece. The magnetic fluid intervening in the gap is brought into contact with the surface of the workpiece, and the rotation axis is tangent to the processing point on the surface of the workpiece. The surface is polished by rotating the rotating shaft while maintaining the positional relationship between the rotating shaft and the workpiece so that the direction is always vertical. Solve the problem.

なお、上述した本発明に係る磁気研磨方法において、コイルに電力を印加して発生させた磁界で当該回転軸を磁化させることにより当該磁力を発生させ、当該研磨を行いながら当該電力の印加を断接する、ようにしてもよい。   In the magnetic polishing method according to the present invention described above, the magnetic force is generated by magnetizing the rotating shaft with a magnetic field generated by applying electric power to the coil, and the application of the electric power is interrupted while performing the polishing. You may make it touch.

また、前述した本発明に係る磁気研磨方法において、当該回転軸の先端とワークの表面との相対移動量に応じ、所定の移動量毎に当該電力の印加の断接を切り替えるようにしてもよい。   In the above-described magnetic polishing method according to the present invention, the application / disconnection of the power may be switched for each predetermined movement amount according to the relative movement amount between the tip of the rotating shaft and the surface of the workpiece. .

また、前述した本発明に係る磁気研磨方法において、当該回転軸の先端は、R形状若しくは針形状であってもよい。
また、前述した本発明に係る磁気研磨方法において、当該回転軸の側面を非磁性体で被覆するようにしてもよい。
In the magnetic polishing method according to the present invention described above, the tip of the rotating shaft may be R-shaped or needle-shaped.
In the magnetic polishing method according to the present invention described above, the side surface of the rotating shaft may be covered with a nonmagnetic material.

本発明は、以上のようにすることにより、加工精度が良好で効率の高い磁気研磨が行えるようになるという効果を奏する。   The present invention has an effect that magnetic polishing can be performed with good processing accuracy and high efficiency.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1、図2、及び図3を用いて実施例1を説明する。
図1は本実施例で使用する研磨装置の概略構成を示している。
図1において、研磨工具部30は、スピンドル1と、スピンドル1に連動するスピンドルモータ2と、スピンドル1にチャックされておりスピンドル1に対して着脱可能な研磨工具3とを有して構成されている。
Example 1 will be described with reference to FIGS. 1, 2, and 3.
FIG. 1 shows a schematic configuration of a polishing apparatus used in this embodiment.
In FIG. 1, the polishing tool unit 30 includes a spindle 1, a spindle motor 2 that is linked to the spindle 1, and a polishing tool 3 that is chucked by the spindle 1 and detachable from the spindle 1. Yes.

研磨工具3は先端がR形状(球形状)に形成されており、スピンドルモータ2の回転に連動して当該先端部を回転させることができる。
また、磁性体である研磨工具3にはコイル4が巻かれており、コイル4には電源装置5から電力を供給することができる。この電源装置5は不図示のワークの位置を制御する装置と連動して、電力供給のON/OFFを切り替える(断接する)ことができる。
The tip of the polishing tool 3 has an R shape (spherical shape), and the tip can be rotated in conjunction with the rotation of the spindle motor 2.
Further, a coil 4 is wound around the polishing tool 3 that is a magnetic body, and power can be supplied to the coil 4 from a power supply device 5. The power supply device 5 can switch on / off the power supply in conjunction with a device that controls the position of a workpiece (not shown).

ワーク部40は、移動テーブル6、ワークステージ7、ワークスピンドル8、ワーク軸モータ9、及び固定ネジ10を有して構成されている。
移動テーブル6は、図示しないモータにより、図1の紙面における左右方向であるX軸、図1の紙面における上下方向であるZ軸、及びX軸とZ軸とで張られる平面上での回転方向であるB軸の3軸方向の各々での移動制御が可能である。移動テーブル6上にはワークステージ7が取り付けられており、ワークステージ7はワークスピンドル8と繋がっている。ワークスピンドル8は、ワーク軸モータ9を回転させることにより回転させることができる。ワークWはワークステージ7上に着脱自在に取り付けることができ、固定ネジ10によりワークステージ7に固定される。
The work unit 40 includes a moving table 6, a work stage 7, a work spindle 8, a work shaft motor 9, and a fixing screw 10.
The moving table 6 is rotated by a motor (not shown) in the horizontal direction on the plane of FIG. 1, the Z axis which is the vertical direction on the plane of FIG. It is possible to control movement in each of the three B axis directions. A work stage 7 is mounted on the moving table 6, and the work stage 7 is connected to a work spindle 8. The work spindle 8 can be rotated by rotating the work shaft motor 9. The workpiece W can be detachably mounted on the workpiece stage 7 and is fixed to the workpiece stage 7 by a fixing screw 10.

上記構成の研磨装置を使用して行う研磨の方法について、図1及び図2を用いて説明する。
図1において、まず凹形状である超硬性のワークWをワークステージ7に取り付ける。このとき、ワークWを回転させてもワークWの加工面に振れが生じないように調整しながら固定ネジ7により固定する。続いて、ワークWの加工面にスラリ状(泥状)の磁性流体11を塗布する。
A polishing method performed using the polishing apparatus having the above configuration will be described with reference to FIGS.
In FIG. 1, first, a superhard workpiece W having a concave shape is attached to a workpiece stage 7. At this time, the workpiece W is fixed by the fixing screw 7 while adjusting so that the workpiece W does not shake even when the workpiece W is rotated. Subsequently, a slurry (mud) magnetic fluid 11 is applied to the processed surface of the workpiece W.

次に、スピンドルモータ2によりスピンドル1を50rpmで回転させて研磨工具3を回転させると共に、ワーク軸モータ9によりワークスピンドル8を100rpmで回転させてワークWを回転させる。そして、電源装置5をONにしてコイル4に2.5Aの電流を流して研磨工具3を磁化する。   Next, the spindle 1 is rotated at 50 rpm by the spindle motor 2 to rotate the polishing tool 3, and the workpiece spindle 8 is rotated at 100 rpm by the workpiece shaft motor 9 to rotate the workpiece W. Then, the power supply device 5 is turned on and a current of 2.5 A is passed through the coil 4 to magnetize the polishing tool 3.

図2はこの研磨装置によるワークWに対する研磨加工の様子を示している。
この研磨装置での研磨加工は、まず、図2(1)に示すように、研磨工具3がワークWの端面の加工開始位置の上方に位置するように移動テーブル6を移動させておく。続いて、ワークWと研磨工具3の先端との距離を0.2mmに設定し、この距離の隙間を保持しつつ、且つ研磨工具3の回転軸とワークWの加工面上の加工点の接線とが常に垂直に位置するように位置制御を行いながら移動テーブル6をB軸方向に移動して、図2(2)に示すようなワークWの中心部へと研磨工具3の先端を走査させる。その後も続けて移動テーブル6をB軸方向へ移動して図2(3)に示すようなワークWのもう一方の端面まで研磨工具3の先端を走査させる。そしてその後もワークWと研磨工具3の先端との隙間の距離と接触角度とを維持しながら移動テーブル6をB軸の逆方向へと移動して研磨工具3の先端の走査を続け、図2(1)の位置へと戻す。この走査動作を1サイクルとし、所望の鏡面形状が得られるまでこのサイクルを繰り返すことで研磨加工が行われる。
FIG. 2 shows a state of polishing processing on the workpiece W by this polishing apparatus.
In the polishing process by this polishing apparatus, first, the moving table 6 is moved so that the polishing tool 3 is positioned above the processing start position of the end face of the workpiece W as shown in FIG. Subsequently, the distance between the workpiece W and the tip of the polishing tool 3 is set to 0.2 mm, and the tangent line between the rotation axis of the polishing tool 3 and the processing point on the processing surface of the workpiece W is maintained while maintaining a gap of this distance. The moving table 6 is moved in the B-axis direction while performing position control so that and are always positioned vertically, and the tip of the polishing tool 3 is scanned to the center of the workpiece W as shown in FIG. . Subsequently, the moving table 6 is moved in the B-axis direction, and the tip of the polishing tool 3 is scanned to the other end surface of the workpiece W as shown in FIG. Then, while maintaining the distance and contact angle between the workpiece W and the tip of the polishing tool 3, the moving table 6 is moved in the direction opposite to the B axis to continue scanning the tip of the polishing tool 3. FIG. Return to position (1). This scanning operation is defined as one cycle, and polishing is performed by repeating this cycle until a desired mirror surface shape is obtained.

なお、この研磨加工中、電源装置5は、ワークWと研磨工具3との相対的な位置の制御を行う不図示の制御部により、ワークWの揺動角に連動して0.5deg毎に1秒間、電源装置5からの電力供給をOFFとする時間が設けられており、ワークWと研磨工具3との相対的な移動が所定量に達する度に電力供給のON/OFF(断接)が繰り返される。   During this polishing process, the power supply 5 is controlled every 0.5 deg in conjunction with the swing angle of the workpiece W by a control unit (not shown) that controls the relative position between the workpiece W and the polishing tool 3. A time for turning off the power supply from the power supply device 5 is provided for 1 second, and the power supply is turned on / off (connected / disconnected) every time the relative movement between the workpiece W and the polishing tool 3 reaches a predetermined amount. Is repeated.

次に、この研磨加工中の磁性流体11の挙動について、図3を用いて説明する。
図3では磁性流体11が模式的に示されている。磁性流体11は、ダイヤモンド砥粒12、磁性粒13、及び分散媒14からなる。
Next, the behavior of the magnetic fluid 11 during the polishing process will be described with reference to FIG.
FIG. 3 schematically shows the magnetic fluid 11. The magnetic fluid 11 includes diamond abrasive grains 12, magnetic grains 13, and a dispersion medium 14.

図3(1)は電源装置5によるコイル4への電力供給がONの状態における磁性流体11の状態を示しており、磁化されている研磨工具3の磁力により磁性流体11中の磁性粒13が研磨工具3側に引き寄せられることにより、その反力としてダイヤモンド砥粒12が回転軸3から離れる力を受け、その結果としてダイヤモンド砥粒12がワークWの加工面に作用している状態を示している。   FIG. 3A shows a state of the magnetic fluid 11 in a state where the power supply to the coil 4 by the power supply device 5 is ON, and the magnetic particles 13 in the magnetic fluid 11 are caused by the magnetic force of the magnetized polishing tool 3. By being drawn toward the polishing tool 3 side, the diamond abrasive grains 12 receive a force separating from the rotary shaft 3 as a reaction force, and as a result, the diamond abrasive grains 12 are acting on the processed surface of the workpiece W. Yes.

一方、図3(2)は電源装置5によるコイル4への電力供給がOFFの状態における磁性流体11の状態を示しており、磁力の消失により磁性粒13が研磨工具3から離れて、ワークWの加工面に作用していたダイヤモンド砥粒12やその他の砥粒と混じりあった状態を示している。   On the other hand, FIG. 3B shows a state of the magnetic fluid 11 in a state where the power supply to the coil 4 by the power supply device 5 is OFF. The magnetic particles 13 are separated from the polishing tool 3 due to the disappearance of the magnetic force, and the workpiece W This shows a state in which the diamond abrasive grains 12 and other abrasive grains acting on the processed surface are mixed.

このように、コイル4への電力供給のON/OFFを繰り返すことにより、ワークWの加工面に作用するダイヤモンド砥粒12が入れ替わるのである。
以上のように、本実施例によれば、磁化させた研磨工具3の先端に磁性流体11を配し、ワークWと研磨工具3とが直接接触しないように研磨工具3の先端とワークWの加工面との間の隙間の距離を0.2mmに保ちつつ相対移動して、ワークWの加工面と研磨工具3との間に磁性流体11を介在させて研磨を行うことにより、常にワークWと研磨工具3とが一定の距離で研磨加工されるので、どの加工面においても研磨砥粒であるダイヤモンド砥粒12が同じように作用する結果、面全体が均一に研磨される。
In this manner, the diamond abrasive grains 12 acting on the processed surface of the workpiece W are replaced by repeating ON / OFF of the power supply to the coil 4.
As described above, according to the present embodiment, the magnetic fluid 11 is disposed at the tip of the magnetized polishing tool 3, and the tip of the polishing tool 3 and the workpiece W are prevented from coming into direct contact with each other. The workpiece W is always moved by moving relative to the machining surface while maintaining a distance of 0.2 mm between the machining surface and the magnetic fluid 11 interposed between the machining surface of the workpiece W and the polishing tool 3. And the polishing tool 3 are polished at a constant distance, and as a result, the diamond abrasive grains 12 that are abrasive grains act in the same manner on any processed surface, so that the entire surface is uniformly polished.

また、研磨加工中にワークWの揺動角に連動させてコイル4への電力供給を所定時間OFFとすることにより、ワークWの加工面に作用する磁性流体11中の研磨砥粒であるダイヤモンド砥粒12が常に入れ替わるので、研磨加工中における研磨能力が一定に保たれる結果、効率良く研磨することができる。   In addition, diamond that is abrasive grains in the magnetic fluid 11 acting on the processed surface of the workpiece W is turned off for a predetermined time in conjunction with the swing angle of the workpiece W during the polishing process. Since the abrasive grains 12 are always replaced, the polishing ability during the polishing process is kept constant, so that the polishing can be efficiently performed.

図4及び図5を用いて実施例2を説明する。
図4は本実施例で使用する研磨装置の概略構成を示している。同図に示した研磨装置の構成は、研磨工具3の構成を除けば、図1に示した実施例1に係るものと同様であるので、詳細な説明は省略する。
A second embodiment will be described with reference to FIGS. 4 and 5.
FIG. 4 shows a schematic configuration of a polishing apparatus used in this embodiment. Since the configuration of the polishing apparatus shown in the figure is the same as that according to the first embodiment shown in FIG. 1 except for the configuration of the polishing tool 3, detailed description thereof will be omitted.

本実施例に使用される研磨工具3の構成は図5(1)に示されている。
図5(1)に示されている研磨工具3は、その先端が鋭利な針形状に成形されており、その側面はウレタン15により被覆されている。
The configuration of the polishing tool 3 used in this embodiment is shown in FIG.
The polishing tool 3 shown in FIG. 5 (1) is formed into a sharp needle shape at its tip, and its side surface is covered with urethane 15.

上記構成の研磨装置を使用して行う研磨の方法について、図4を用いて説明する。
図4において、まず凹形状である超硬性のワークWをワークステージ7に取り付ける。このとき、ワークWを回転させてもワークWの加工面に振れが生じないように調整しながら固定ネジ7により固定する。続いて、ワークWの加工面にスラリー状(泥状)の磁性流体11を塗布する。この磁性流体11も、実施例1と同様、ダイヤモンド砥粒、磁性粒、及び分散媒からなる。
A polishing method performed using the polishing apparatus having the above configuration will be described with reference to FIG.
In FIG. 4, first, a superhard workpiece W having a concave shape is attached to the workpiece stage 7. At this time, the workpiece W is fixed by the fixing screw 7 while adjusting so that the workpiece W does not shake even when the workpiece W is rotated. Subsequently, a slurry-like (mud-like) magnetic fluid 11 is applied to the processed surface of the workpiece W. This magnetic fluid 11 is also composed of diamond abrasive grains, magnetic grains, and a dispersion medium, as in the first embodiment.

次に、研磨工具3をスピンドル1に取り付ける。研磨工具3は、根元の径が0.7mmで先端角が20°に成形され、側面がウレタン15によって被覆されている。
次に、スピンドルモータ2によりスピンドル1を50rpmで回転させて研磨工具3を回転させると共に、ワーク軸モータ9によりワークスピンドル8を100rpmで回転させてワークWを回転させる。そして、電源装置5をONにしてコイル4に2.5Aの電流を流して研磨工具3を磁化する。
Next, the polishing tool 3 is attached to the spindle 1. The polishing tool 3 has a root diameter of 0.7 mm, a tip angle of 20 °, and a side surface covered with urethane 15.
Next, the spindle 1 is rotated at 50 rpm by the spindle motor 2 to rotate the polishing tool 3, and the workpiece spindle 8 is rotated at 100 rpm by the workpiece shaft motor 9 to rotate the workpiece W. Then, the power supply device 5 is turned on and a current of 2.5 A is passed through the coil 4 to magnetize the polishing tool 3.

この研磨装置でのワークWの研磨加工は、まず、研磨工具3がワークWの端面の加工開始位置の上方に位置するように移動テーブル6を移動させておく。続いて、ワークWと研磨工具3の先端との間の距離を0.2mmに設定し、この距離の隙間を保持しつつ、且つ研磨工具3の回転軸とワークWの加工面上の加工点の接線とが常に垂直に位置するように位置制御を行いながら移動テーブル6をB軸方向に移動し、ワークWの中心部を経てワークWのもう一方の端面まで研磨工具3の先端を走査させる。そしてその後もワークWと研磨工具3の先端との隙間の距離と接触角度とを維持しながら移動テーブル6をB軸の逆方向へと移動して研磨工具3の先端の走査を続けて元の位置へと戻す。この走査動作を1サイクルとし、所望の鏡面形状が得られるまでこのサイクルを繰り返すことで研磨加工が行われる。   In the polishing process of the workpiece W by this polishing apparatus, first, the moving table 6 is moved so that the polishing tool 3 is positioned above the processing start position of the end face of the workpiece W. Subsequently, the distance between the workpiece W and the tip of the polishing tool 3 is set to 0.2 mm, and a processing point on the processing surface of the rotating shaft of the polishing tool 3 and the workpiece W is maintained while maintaining a gap of this distance. The moving table 6 is moved in the B-axis direction while performing position control so that the tangent line is always vertically positioned, and the tip of the polishing tool 3 is scanned to the other end surface of the work W through the center of the work W. . Thereafter, while maintaining the distance and contact angle between the workpiece W and the tip of the polishing tool 3, the moving table 6 is moved in the direction opposite to the B axis to continue scanning the tip of the polishing tool 3. Return to position. This scanning operation is defined as one cycle, and polishing is performed by repeating this cycle until a desired mirror surface shape is obtained.

なお、この研磨加工中、電源装置5は、ワークWと研磨工具3との相対的な位置の制御を行う不図示の制御部により、ワークWの揺動角に連動して0.5deg毎に1秒間、電源装置5からの電力供給をOFFとする時間が設けられており、ワークWと研磨工具3との相対的な移動が所定量に達する度に電力供給のON/OFF(断接)が繰り返される。   During this polishing process, the power supply 5 is controlled every 0.5 deg in conjunction with the swing angle of the workpiece W by a control unit (not shown) that controls the relative position between the workpiece W and the polishing tool 3. A time for turning off the power supply from the power supply device 5 is provided for 1 second, and the power supply is turned on / off (connected / disconnected) every time the relative movement between the workpiece W and the polishing tool 3 reaches a predetermined amount. Is repeated.

次に、この研磨加工中の磁性流体11の挙動について、図5を用いて説明する。
図5(1)に示すように、本実施例で使用する研磨工具3は、側面がウレタン15により被覆されているので、その側面部分では磁力が弱められる。そのため、この側面部分では、磁性流体11の磁化によって形成される磁気チェーンが殆んど形成されない。一方、ウレタン15の被覆がされていない研磨工具3先端の針状の部分では、磁性流体11による磁気チェーンが形成されるので、この部分を微小な研磨工具と見ることができるのである。
Next, the behavior of the magnetic fluid 11 during the polishing process will be described with reference to FIG.
As shown in FIG. 5 (1), since the side surface of the polishing tool 3 used in this embodiment is covered with urethane 15, the magnetic force is weakened at the side surface portion. Therefore, the magnetic chain formed by the magnetization of the magnetic fluid 11 is hardly formed on this side surface portion. On the other hand, in the needle-like portion at the tip of the polishing tool 3 that is not covered with the urethane 15, a magnetic chain is formed by the magnetic fluid 11, and this portion can be regarded as a fine polishing tool.

これに対し、図5(2)に示すような、側面を被覆されていない研磨工具3では、研磨工具3全体に磁性流体11による磁気チェーンが形成されてしまうため、ワークWにおける研磨不要な部分までもが磁性流体11で研磨されてしまう。   On the other hand, in the polishing tool 3 whose side surface is not coated as shown in FIG. 5 (2), a magnetic chain made of the magnetic fluid 11 is formed on the entire polishing tool 3, so that the portion of the workpiece W that does not require polishing is formed. Will be polished by the magnetic fluid 11.

以上のように、本実施例によれば、先端を鋭利にした研磨工具3を使用して研磨工具3の先端の微小な範囲で磁性流体11を磁化させ、これで研磨加工を行うので、研磨範囲の狭い微小な形状のワークWを効率良く研磨することができる。   As described above, according to the present embodiment, the polishing tool 3 having a sharp tip is used to magnetize the magnetic fluid 11 in a minute range at the tip of the polishing tool 3, and the polishing process is performed with this. It is possible to efficiently polish a work W having a small shape with a narrow range.

更に、研磨工具3における磁化させたい部分以外をウレタン15等の非磁性体で被覆することにより、より微小な範囲で磁性流体11を磁化できるので、研磨範囲の狭い微小な形状のワークWの研磨が可能となり、より高精度な仕上げができるようになる。   Furthermore, since the magnetic fluid 11 can be magnetized in a finer range by coating a portion other than the portion to be magnetized in the polishing tool 3 with a non-magnetic material such as urethane 15, the work W having a fine shape with a narrow polishing range can be polished. This makes it possible to finish with higher accuracy.

その他、本発明は、上述した実施形態に限定されることなく、種々の改良・変更が可能である。   In addition, the present invention is not limited to the above-described embodiments, and various improvements and changes can be made.

本発明の実施に使用する研磨装置の第一の例を示す図である。It is a figure which shows the 1st example of the grinding | polishing apparatus used for implementation of this invention. 図1に示した研磨装置によるワークWに対する研磨加工の様子を示した図である。It is the figure which showed the mode of the grinding process with respect to the workpiece | work W by the grinding | polishing apparatus shown in FIG. 研磨加工中の磁性流体の挙動を説明する図である。It is a figure explaining the behavior of the magnetic fluid during polishing. 本発明の実施に使用する研磨装置の第二の例を示す図である。It is a figure which shows the 2nd example of the grinding | polishing apparatus used for implementation of this invention. 図4の研磨装置での磁性流体の挙動を説明する図である。It is a figure explaining the behavior of the magnetic fluid with the polisher of FIG. 従来の磁気研磨ヘッドを備えた研磨装置の構成を示す図である。It is a figure which shows the structure of the grinding | polishing apparatus provided with the conventional magnetic polishing head. 従来の磁気研磨工具の先端部の構造の第一の例を示す図である。It is a figure which shows the 1st example of the structure of the front-end | tip part of the conventional magnetic polishing tool. 従来の磁気研磨工具の先端部の構造の第二の例を示す図である。It is a figure which shows the 2nd example of the structure of the front-end | tip part of the conventional magnetic polishing tool.

符号の説明Explanation of symbols

1 スピンドル
2 スピンドルモータ
3 研磨工具
4 コイル
5 電源装置
6 移動テーブル
7 ワークステージ
8 ワークスピンドル
9 ワーク軸モータ
10 固定ネジ
11 磁性流体
12 ダイヤモンド砥粒
13 磁性粒
14 分散媒
15 ウレタン
30 研磨工具部
40 ワーク部
101 磁気研磨工具
102 磁性流体
103 毛状部材
105 接着剤
106 植設穴
107 接着剤層
W ワーク

DESCRIPTION OF SYMBOLS 1 Spindle 2 Spindle motor 3 Polishing tool 4 Coil 5 Power supply device 6 Moving table 7 Work stage 8 Work spindle 9 Work shaft motor 10 Fixing screw 11 Magnetic fluid 12 Diamond abrasive grain 13 Magnetic grain 14 Dispersion medium 15 Urethane 30 Polishing tool part 40 Workpiece Part 101 Magnetic polishing tool 102 Magnetic fluid 103 Hairy member 105 Adhesive 106 Planting hole 107 Adhesive layer W Workpiece

Claims (5)

研磨砥粒と磁性粒と分散媒とからなる磁性流体を磁力により回転軸の先端に保持させておき、
前記回転軸の先端とワークの表面との間に一定の距離の隙間を保ちつつ両者を相対移動させ、
前記隙間に介在する前記磁性流体を前記ワークの表面に当接させ、
前記回転軸が前記ワークの表面の加工点の接線に対して常に垂直な方向となるように当該回転軸と当該ワークとの位置関係を維持しながら当該回転軸を回転させて当該表面を研磨する、
ことを特徴とする磁気研磨方法。
A magnetic fluid composed of abrasive grains, magnetic grains, and a dispersion medium is held at the tip of the rotating shaft by a magnetic force,
While maintaining a gap of a certain distance between the tip of the rotating shaft and the surface of the work, both are relatively moved,
Contacting the magnetic fluid interposed in the gap with the surface of the workpiece;
The surface of the workpiece is polished by rotating the axis of rotation while maintaining the positional relationship between the axis of rotation and the workpiece so that the axis of rotation is always perpendicular to the tangent to the processing point on the surface of the workpiece. ,
A magnetic polishing method.
コイルに電力を印加して発生させた磁界で前記回転軸を磁化させることにより前記磁力を発生させ、
前記研磨を行いながら前記電力の印加を断接する、
ことを特徴とする請求項1に記載の磁気研磨方法。
Generating the magnetic force by magnetizing the rotating shaft with a magnetic field generated by applying electric power to the coil;
Connecting and disconnecting the application of the power while performing the polishing,
The magnetic polishing method according to claim 1.
前記回転軸の先端とワークの表面との相対移動量に応じ、所定の移動量毎に前記電力の印加の断接を切り替えることを特徴とする請求項2に記載の磁気研磨方法。   3. The magnetic polishing method according to claim 2, wherein connection / disconnection of application of the electric power is switched for each predetermined movement amount according to a relative movement amount between the tip of the rotating shaft and the surface of the workpiece. 前記回転軸の先端は、R形状若しくは針形状であることを特徴とする請求項1に記載の磁気研磨方法。   The magnetic polishing method according to claim 1, wherein the tip of the rotating shaft has an R shape or a needle shape. 前記回転軸の側面を非磁性体で被覆することを特徴とする請求項1に記載の磁気研磨方法。


The magnetic polishing method according to claim 1, wherein a side surface of the rotating shaft is covered with a nonmagnetic material.


JP2005039391A 2005-02-16 2005-02-16 Magnetic polishing method Pending JP2006224227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039391A JP2006224227A (en) 2005-02-16 2005-02-16 Magnetic polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039391A JP2006224227A (en) 2005-02-16 2005-02-16 Magnetic polishing method

Publications (1)

Publication Number Publication Date
JP2006224227A true JP2006224227A (en) 2006-08-31

Family

ID=36986027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039391A Pending JP2006224227A (en) 2005-02-16 2005-02-16 Magnetic polishing method

Country Status (1)

Country Link
JP (1) JP2006224227A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861775B1 (en) 2007-07-20 2008-10-08 중앙대학교 산학협력단 Circulation type polishing device using magneto-rheological fluid
KR100891176B1 (en) * 2007-07-20 2009-04-01 중앙대학교 산학협력단 Multi wheel type polishing device using magneto-rheological fluid
KR101176695B1 (en) 2009-01-19 2012-08-23 연세대학교 산학협력단 Curve grinding method by using magnetorheological fluid
JP2014018875A (en) * 2012-07-12 2014-02-03 Institute Of National Colleges Of Technology Japan Magnetic polishing method
CN107775516A (en) * 2017-12-01 2018-03-09 辽宁科技大学 The burnishing device of complicated ceramic workpiece
CN109551310A (en) * 2018-12-10 2019-04-02 上海理工大学 A kind of electromagnet type magnetic coupling fluid polishing device
JP2020116722A (en) * 2019-01-28 2020-08-06 独立行政法人国立高等専門学校機構 Fluid polishing device and fluid polishing method
CN115401530A (en) * 2022-08-30 2022-11-29 大连理工大学 Shape-controlled flexible polishing method for microarray mold
WO2023000414A1 (en) * 2021-07-23 2023-01-26 广东工业大学 Method and apparatus for curvature-adaptive cluster magnetorheological polishing of free curved surface
KR20230057750A (en) * 2021-10-22 2023-05-02 한양대학교 에리카산학협력단 Precision grinding apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861775B1 (en) 2007-07-20 2008-10-08 중앙대학교 산학협력단 Circulation type polishing device using magneto-rheological fluid
KR100891176B1 (en) * 2007-07-20 2009-04-01 중앙대학교 산학협력단 Multi wheel type polishing device using magneto-rheological fluid
KR101176695B1 (en) 2009-01-19 2012-08-23 연세대학교 산학협력단 Curve grinding method by using magnetorheological fluid
JP2014018875A (en) * 2012-07-12 2014-02-03 Institute Of National Colleges Of Technology Japan Magnetic polishing method
CN107775516A (en) * 2017-12-01 2018-03-09 辽宁科技大学 The burnishing device of complicated ceramic workpiece
CN109551310A (en) * 2018-12-10 2019-04-02 上海理工大学 A kind of electromagnet type magnetic coupling fluid polishing device
JP2020116722A (en) * 2019-01-28 2020-08-06 独立行政法人国立高等専門学校機構 Fluid polishing device and fluid polishing method
JP7203618B2 (en) 2019-01-28 2023-01-13 株式会社フェローテックマテリアルテクノロジーズ Fluid polishing apparatus and fluid polishing method
WO2023000414A1 (en) * 2021-07-23 2023-01-26 广东工业大学 Method and apparatus for curvature-adaptive cluster magnetorheological polishing of free curved surface
KR20230057750A (en) * 2021-10-22 2023-05-02 한양대학교 에리카산학협력단 Precision grinding apparatus
KR102618726B1 (en) 2021-10-22 2023-12-28 주식회사 대영파워펌프 Precision grinding apparatus
CN115401530A (en) * 2022-08-30 2022-11-29 大连理工大学 Shape-controlled flexible polishing method for microarray mold

Similar Documents

Publication Publication Date Title
JP2006224227A (en) Magnetic polishing method
US6506103B1 (en) ELID centerless grinding apparatus
JPH07314309A (en) Spherically finishing device and method
JP3344558B2 (en) Electric dressing grinding method and apparatus
JPH0343145A (en) Grinding device
JP4104199B2 (en) Molded mirror grinding machine
JP2007098541A (en) Polishing tool and polish method
JP2002263995A (en) Method and device for grinding spherical surface
JP2008194771A (en) Method and device for grinding lens sphere
JP2009107055A (en) Polishing tool and polishing device
JP2011083827A (en) Magnetic fluid polishing method and polishing device
JPH08192348A (en) Grinding and polishing method and device therefor
JP4341801B2 (en) ELID grinding machine for fine shape processing
JP2000246634A (en) Plasma discharge trueing device and fine machining method using this device
EP1078714B1 (en) Method and apparatus for grinding curved surfaces
JP5376647B2 (en) Concave spherical grinding apparatus and method
JP2008264920A (en) Grinding tool, magnetic grinding method, and magnetic grinding device
JP5025275B2 (en) Polishing tool
JP2006082213A (en) Method of cutting work and cutting work/mirror polishing device
KR100323065B1 (en) A poplshing apparatus based on the magnetic field forming principale of electromagnet
KR940006010Y1 (en) Grinding device
JP2006088283A (en) Method and device for polishing and coating mirror surface
JP2000052218A (en) Magnetic polishing device and magnetic polishing method
JPH06335853A (en) Grinding and device therefor
JP3671250B2 (en) Diamond grinding wheel and its truing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303