JP2014018875A - Magnetic polishing method - Google Patents

Magnetic polishing method Download PDF

Info

Publication number
JP2014018875A
JP2014018875A JP2012156642A JP2012156642A JP2014018875A JP 2014018875 A JP2014018875 A JP 2014018875A JP 2012156642 A JP2012156642 A JP 2012156642A JP 2012156642 A JP2012156642 A JP 2012156642A JP 2014018875 A JP2014018875 A JP 2014018875A
Authority
JP
Japan
Prior art keywords
polishing
polished
magnetic
polishing tool
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012156642A
Other languages
Japanese (ja)
Other versions
JP5967759B2 (en
Inventor
Hitoshi Nishida
均 西田
Kunio Shimada
邦雄 島田
Yasushi Imon
康司 井門
Makoto Yabutani
誠 薮谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Nagoya Institute of Technology NUC
Institute of National Colleges of Technologies Japan
Original Assignee
Nachi Fujikoshi Corp
Nagoya Institute of Technology NUC
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Nagoya Institute of Technology NUC, Institute of National Colleges of Technologies Japan filed Critical Nachi Fujikoshi Corp
Priority to JP2012156642A priority Critical patent/JP5967759B2/en
Publication of JP2014018875A publication Critical patent/JP2014018875A/en
Application granted granted Critical
Publication of JP5967759B2 publication Critical patent/JP5967759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic polishing method capable of performing mirror polishing to the whole surface including a concave surface evenly without moving a polishing tool along a surface of a workpiece (mainly upward and downward movement from planar surface to concave surface) even if the workpiece has the concave surface.SOLUTION: The magnetic polishing method for the workpiece W having the concave surface uses a polishing device 1 that includes: a polishing fluid containing a magnetic particle, a non-magnetic abrasive grain and a magnetic fluid; a polishing tool 3 formed of a magnetic material; and a coil 2 having a through-hole in an axial direction thereof, where the polishing tool 3 is inserted through the through-hole of the coil 2. The magnetic polishing method performs mirror polishing by maintaining a clearance between the polishing tool 3 and the workpiece W at 1.0-1.5 mm while rotating the polishing tool 3 in a state where the coil 2 is energized with a pulse voltage.

Description

本発明は、研磨工具を用いて被研磨物の凹面を鏡面研磨する磁気研磨方法に関する。   The present invention relates to a magnetic polishing method in which a concave surface of an object to be polished is mirror-polished using a polishing tool.

近年、携帯電話に搭載されるカメラ用レンズの成形用金型に代表される極小金型の表面研磨は、高精度に鏡面研磨することが必要とされている。また、半導体や磁気記録装置への表面研磨は、優れた表面粗さと平坦度になる研磨技術が求められている。このような製品(被研磨物)に対する研磨に関しては、従来から様々な磁気研磨方法が提案されていた。 In recent years, surface polishing of a miniature mold represented by a molding lens for a camera lens mounted on a mobile phone has been required to be mirror-polished with high accuracy. Further, for surface polishing of semiconductors and magnetic recording devices, a polishing technique that provides excellent surface roughness and flatness is required. Various types of magnetic polishing methods have been conventionally proposed for polishing such products (objects to be polished).

例えば、特許文献1ではコイルが巻かれた、磁性体である研磨工具に、非磁性砥粒と磁性粒子と分散媒体とを含む磁性流体(研磨加工液)を塗布して、研磨工具を回転させるとともに、凹形状の被研磨物も回転させながら、研磨工具と被研磨物との間隔を一定に保ちつつ被研磨物を研磨する磁気研磨方法が開示されている。また、コイルに印加する電圧を被研磨物の位置に連動して、ON(入)とOFF(切)とを切り替えることができる。この磁気研磨方法を用いることにより高精度の研磨面を得ることができる。 For example, in Patent Document 1, a magnetic fluid (polishing liquid) containing nonmagnetic abrasive grains, magnetic particles, and a dispersion medium is applied to a magnetic polishing tool wound with a coil, and the polishing tool is rotated. At the same time, a magnetic polishing method is disclosed in which the object to be polished is polished while rotating the concave object to be polished while keeping the distance between the polishing tool and the object to be polished constant. Further, the voltage applied to the coil can be switched between ON (ON) and OFF (OFF) in conjunction with the position of the object to be polished. By using this magnetic polishing method, a highly accurate polished surface can be obtained.

また、特許文献2では非磁性砥粒と磁性粒子と界面活性剤を含む研磨加工液の存在下にて、コイルが巻かれた研磨工具(磁気鉄芯)を有する研磨装置を用いて、研磨工具(磁気鉄芯)を回転させながら、研磨工具と被研磨物との加工間隙を0.7mmに保持しつつ被研磨物を研磨する磁気研磨方法が開示されている。また、コイルに印加する電圧を直流電圧(DC)にすることもできる。この磁気研磨方法を用いることで、極めて高い研磨面(Rmax=0.1μm)を得ることができる。 Further, in Patent Document 2, a polishing tool having a polishing tool (magnetic iron core) wound with a coil in the presence of a polishing liquid containing nonmagnetic abrasive grains, magnetic particles, and a surfactant is used. A magnetic polishing method is disclosed in which a workpiece is polished while rotating a (magnetic iron core) while maintaining a processing gap between the polishing tool and the workpiece to be 0.7 mm. In addition, the voltage applied to the coil can be a direct voltage (DC). By using this magnetic polishing method, an extremely high polished surface (R max = 0.1 μm) can be obtained.

さらに、特許文献3では、永久磁石など磁場を発生する磁場発生源を備えた研磨工具を有する研磨装置を用いて、アルミナ等の非磁性砥粒と鉄粉などの磁性粒子とケロシン等の分散媒体とを含む磁性流体(研磨加工液)を塗布した状態で、研磨工具を回転させつつ研磨工具と被研磨物を相対的に移動させながら研磨する磁気研磨方法が開示されている。この磁気研磨方法を用いることで、同心状の削り加工と鏡面研磨を同時に行うことができる。 Furthermore, in Patent Document 3, using a polishing apparatus having a polishing tool having a magnetic field generating source such as a permanent magnet, a non-magnetic abrasive such as alumina, a magnetic particle such as iron powder, and a dispersion medium such as kerosene A magnetic polishing method is disclosed in which a polishing tool and a workpiece are moved relatively while rotating a polishing tool in a state where a magnetic fluid (polishing processing liquid) containing is applied. By using this magnetic polishing method, concentric cutting and mirror polishing can be performed simultaneously.

また、本発明者らは、磁気を利用した磁気研磨方法について、コイルの中央部を貫通する研磨工具を備えた研磨装置を用いて、回転している研磨工具に0.1Hzのパルス電圧を印加することで磁場(パルス磁場)を発生させた状態で、被研磨物にアルミナ(非磁性砥粒)と鉄粉(磁性粒子)とケロシン(分散媒体)とを含む磁性流体を塗布しながら、被研磨物表面を研磨することで一定の研磨効果があることを発表している(非特許文献1および2参照)。 Further, the inventors applied a pulse voltage of 0.1 Hz to a rotating polishing tool using a polishing apparatus equipped with a polishing tool that penetrates the central portion of the coil in a magnetic polishing method using magnetism. In this state, a magnetic fluid containing alumina (nonmagnetic abrasive grains), iron powder (magnetic particles), and kerosene (dispersion medium) is applied to the object to be polished while a magnetic field (pulse magnetic field) is generated. It has been announced that there is a certain polishing effect by polishing the surface of the polished product (see Non-Patent Documents 1 and 2).

特開2006−224227号公報JP 2006-224227 A 特開平5−8169号公報Japanese Patent Laid-Open No. 5-8169 特開2006−82213号公報JP 2006-82213 A 西田均、島田邦雄、井門康司、「磁気機能性流体を用いた平面研磨におけるパルス磁場の効果」、2010年度精密工学会春季大会学術講演会、2010年3月17日Hitoshi Nishida, Kunio Shimada, Koji Imon, "Effect of pulsed magnetic field on surface polishing using magnetic functional fluid", 2010 JSPE Spring Conference, March 17, 2010 西田均、島田邦雄、井門康司、「磁気機能性流体を用いた研磨に及ぼす磁気クラスターの影響」、第22回電磁力関連のダイナミクスシンポジウム、2010年5月20日、P.374〜375Hitoshi Nishida, Kunio Shimada, Koji Imon, “Effects of Magnetic Clusters on Polishing Using Magnetic Functional Fluid”, 22nd Electromagnetic Force-Related Dynamics Symposium, May 20, 2010, p. 374-375

しかし、特許文献1に記載された磁気研磨方法では、凹面を有する被研磨物を研磨する際に、研磨工具と被研磨物とが一定の間隔を保ちながら研磨工具の先端部を被研磨物の凹面に沿って被研磨物を傾斜させる必要がある。すなわち、研磨工具は回転のみであっても被研磨物を(研磨工具に対して)三次元的に相対移動させる必要があり、被研磨物を固定する装置が複雑な構造になるという問題があった。 However, in the magnetic polishing method described in Patent Document 1, when polishing an object to be polished having a concave surface, the tip of the polishing tool is placed on the object to be polished while maintaining a constant distance between the polishing tool and the object to be polished. It is necessary to incline the object to be polished along the concave surface. That is, even if the polishing tool is only rotated, it is necessary to move the object to be polished three-dimensionally (relative to the polishing tool), and the apparatus for fixing the object to be polished has a complicated structure. It was.

また、特許文献2に記載された磁気研磨方法では、研磨工具を回転させながら、被研磨物は移動させずに固定した状態で研磨を行っているので、凹面を有する被研磨物を研磨する場合には凹面全体を均一に研磨することは困難であるという問題があった。 Further, in the magnetic polishing method described in Patent Document 2, polishing is performed in a state where the object to be polished is fixed without moving while rotating the polishing tool, so that the object to be polished having a concave surface is polished. However, there is a problem that it is difficult to uniformly polish the entire concave surface.

さらに、特許文献3に記載された磁気研磨方法では、研磨工具への磁場発生源が永久磁石の場合には、磁場の変化が生じないので研磨工具の先端部には不均一な状態で磁性流体(磁気研磨液)が留まっている。そのため凹面を有する被研磨物の研磨精度が確保され難いという問題があった。 Furthermore, in the magnetic polishing method described in Patent Document 3, when the magnetic field generation source for the polishing tool is a permanent magnet, the magnetic field does not change, and therefore the magnetic fluid is not uniformly distributed at the tip of the polishing tool. (Magnetic polishing liquid) remains. Therefore, there is a problem that it is difficult to ensure the polishing accuracy of the object to be polished having a concave surface.

そこで、本発明においては、被研磨物の表面に沿って研磨工具を移動(主に平面から凹面の深さ方向への上下移動)させることなく凹面を有する被研磨物であっても凹面およびそれに連続した平面全体を均一に鏡面研磨できる磁気研磨方法を提供することを課題とする。 Therefore, in the present invention, even an object having a concave surface without moving the polishing tool along the surface of the object to be polished (mainly moving up and down from the flat surface in the depth direction of the concave surface) It is an object of the present invention to provide a magnetic polishing method capable of uniformly polishing the entire continuous plane.

前述した課題を解決するため、本発明においては、磁性粒子、非磁性砥粒および磁性流体を含む研磨加工液と、磁性材料で製作された研磨工具と、軸方向に貫通孔を備えたコイルと、を有しており、研磨工具がコイルの貫通孔に挿通されている研磨装置を用いた、凹面を有する被研磨物の磁気研磨方法であって、コイルにパルス電圧を印加させた状態で研磨工具を回転させながら、研磨工具と被研磨物との間隔を1.0mm〜1.5mmに保持させて凹面を鏡面研磨する磁気研磨方法とした。   In order to solve the above-described problem, in the present invention, a polishing liquid containing magnetic particles, nonmagnetic abrasive grains and a magnetic fluid, a polishing tool made of a magnetic material, and a coil having a through hole in the axial direction, A method for magnetically polishing an object having a concave surface using a polishing apparatus in which a polishing tool is inserted into a through-hole of a coil, and polishing with a pulse voltage applied to the coil While rotating the tool, the distance between the polishing tool and the object to be polished was maintained at 1.0 mm to 1.5 mm, and the concave surface was mirror polished.

この方法により、一定の周波数を有したパルス電圧をコイルへ印加することで、研磨工具が磁化されて、磁性粒子と非磁性砥粒を含んだ研磨加工液が磁気クラスタを形成する。この磁気クラスタは、パルス電圧の周波数に応じて、短時間の間に「形成(磁力線に沿って磁気クラスタが生まれること)」と「崩壊(磁場の消滅によって磁気クラスタが崩れること)」を何度も繰り返し、その度に磁気クラスタに付着したり、保持される非磁性砥粒が入れ替わることで研磨面(凹面)を研磨することになる。 By applying a pulse voltage having a constant frequency to the coil by this method, the polishing tool is magnetized, and the polishing liquid containing magnetic particles and nonmagnetic abrasive grains forms a magnetic cluster. Depending on the frequency of the pulse voltage, the magnetic cluster undergoes “formation (a magnetic cluster is born along the lines of magnetic force)” and “decay (a magnetic cluster is destroyed by the disappearance of the magnetic field)” in a short time. Repeatedly, the polishing surface (concave surface) is polished by adhering to the magnetic cluster each time or by replacing the held nonmagnetic abrasive grains.

また、請求項2に係る発明はコイルに印加するパルス電圧の周波数を0.1Hz〜0.5Hzとした状態で被研磨物を研磨する磁気研磨方法とした。この方法により、磁気クラスタの形成と崩壊の間隔(タイミング)を最適化することができる。   The invention according to claim 2 is a magnetic polishing method for polishing an object to be polished in a state where the frequency of the pulse voltage applied to the coil is 0.1 Hz to 0.5 Hz. By this method, the interval (timing) between formation and decay of the magnetic cluster can be optimized.

本発明に係る磁気研磨方法は、研磨工具と、軸方向に貫通孔を備えたコイルと、を有しており、研磨工具がコイルの貫通孔に挿通されている研磨装置を用いた、凹面を有する被研磨物の磁気研磨方法であって、コイルにパルス電圧を印加させた状態で、研磨工具を回転しながら、研磨工具と被研磨物の凹面とを1mm〜1.5mmの間隔に保持することにより、パルス電圧の周波数に応じて磁気クラスタが形成と崩壊を何度も繰り返して、その度に磁気クラスタに付着したり、保持される非磁性砥粒が入れ替わり、研磨面(凹面)を研磨するので、被研磨物の表面に沿って研磨工具を移動(主に平面から凹面の深さ方向への上下移動)させることなく(研磨工具と被研磨物との間隔を制御することなく)凹面を有する被研磨物であっても凹面およびそれに連続する平面全体を均一に鏡面研磨できるという効果を奏する。 The magnetic polishing method according to the present invention includes a polishing tool and a coil having a through hole in the axial direction, and a concave surface using a polishing apparatus in which the polishing tool is inserted into the through hole of the coil. A method for magnetically polishing an object to be polished, wherein the polishing tool and a concave surface of the object to be polished are held at an interval of 1 mm to 1.5 mm while rotating the polishing tool with a pulse voltage applied to the coil. As a result, the magnetic cluster repeatedly forms and collapses according to the frequency of the pulse voltage, and adheres to the magnetic cluster each time, or the held nonmagnetic abrasive grains are replaced, and the polished surface (concave surface) is polished. Therefore, without moving the polishing tool along the surface of the object to be polished (mainly moving up and down from the flat surface in the depth direction of the concave surface) (without controlling the distance between the polishing tool and the object to be polished) Even a polished object having a concave surface And an effect that the overall plan for continuous thereto can be uniformly mirror-polished.

本発明に係る磁気研磨方法に用いる研磨装置1の模式図である。1 is a schematic diagram of a polishing apparatus 1 used in a magnetic polishing method according to the present invention. 図1の研磨装置1における研磨工具3先端部分の拡大模式図である。FIG. 2 is an enlarged schematic view of a tip portion of a polishing tool 3 in the polishing apparatus 1 of FIG. 1. 研磨工具と被研磨物との間における磁性流体中の磁性粒子および非磁性砥粒の分布状態を表す模式図である。It is a schematic diagram showing the distribution state of the magnetic particle and nonmagnetic abrasive grain in a magnetic fluid between a polishing tool and a to-be-polished object. 研磨装置のコイルにパルス電圧を印加した場合の被研磨物の研磨前後における表面状態のグラフである。It is a graph of the surface state before and behind grinding | polishing of a to-be-polished object at the time of applying a pulse voltage to the coil of a grinding | polishing apparatus. 研磨装置のコイルに直流電圧を印加した場合の被研磨物の研磨前後における表面状態のグラフである。It is a graph of the surface state before and behind grinding | polishing of a to-be-polished object when a DC voltage is applied to the coil of a grinding | polishing apparatus. 研磨装置のコイルにパルス電圧を印加した場合の研磨工具先端部と被研磨物表面との距離を0.5mmとした場合の研磨前後における被研磨物の表面状態のグラフである。It is a graph of the surface state of the to-be-polished object before and after grinding | polishing when the distance of the grinding | polishing tool front-end | tip part and the to-be-polished object surface at the time of applying a pulse voltage to the coil of a grinding | polishing apparatus is 0.5 mm. 研磨装置のコイルにパルス電圧を印加した場合の研磨工具先端部と被研磨物表面との距離を1.0mmとした場合の研磨前後における被研磨物の表面状態のグラフである。It is a graph of the surface state of the to-be-polished object before and after grinding | polishing when the distance of the polishing tool front-end | tip part and the to-be-polished object surface at the time of applying a pulse voltage to the coil of a grinding | polishing apparatus is 1.0 mm. 研磨装置のコイルにパルス電圧を印加した場合の研磨工具先端部と被研磨物表面との距離を1.5mmとした場合の研磨前後における被研磨物の表面状態のグラフである。It is a graph of the surface state of the to-be-polished object before and after grinding | polishing when the distance of the polishing tool front-end | tip part and the to-be-polished object surface at the time of applying a pulse voltage to the coil of a grinding | polishing apparatus is 1.5 mm. 研磨装置のコイルにパルス電圧を印加した場合の研磨工具先端部と被研磨物表面との距離を2.0mmとした場合の研磨前後における被研磨物の表面状態のグラフである。It is a graph of the surface state of the to-be-polished object before and after grinding | polishing when the distance of the polishing tool front-end | tip part and the to-be-polished object surface at the time of applying a pulse voltage to the coil of a grinding | polishing apparatus is 2.0 mm.

本発明に係る磁気研磨方法の実施の形態について、図面を参照して説明する。図1は本発明に係る磁気研磨方法に用いる研磨装置1の模式図、図2は図1の研磨装置1における研磨工具3先端部分の拡大模式図である。図1に示すように、本発明に係る磁気研磨方法に用いる研磨装置1は、図示しないパルス電源よりパルス電圧が印加されるコイル2と、コイル2の中央部に軸方向に設けられた貫通穴に挿通されている研磨工具3と、被研磨物Wを設置するベース(架台)4と、ベース4内で被研磨物Wを固定するOリング5と、研磨時に被研磨物Wの回転数を制御するモータの主軸6およびモータ7と、から構成されている。また、図2に示すように被研磨物Wは平面Fから深さdの凹面(凹部)を有しており、研磨工具3の先端表面と被研磨物Wの平面Fとの間隔δを保持した状態で凹面およびそれに連続する平面Fの研磨を行う。 An embodiment of a magnetic polishing method according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a polishing apparatus 1 used in a magnetic polishing method according to the present invention, and FIG. 2 is an enlarged schematic view of a tip portion of a polishing tool 3 in the polishing apparatus 1 of FIG. As shown in FIG. 1, a polishing apparatus 1 used in a magnetic polishing method according to the present invention includes a coil 2 to which a pulse voltage is applied from a pulse power source (not shown), and a through hole provided in the central portion of the coil 2 in the axial direction. A polishing tool 3 inserted through the base, a base (base) 4 on which the object to be polished W is installed, an O-ring 5 for fixing the object to be polished W in the base 4, and the number of rotations of the object to be polished W during polishing. The main shaft 6 and the motor 7 of the motor to be controlled are configured. Further, as shown in FIG. 2, the workpiece W has a concave surface (concave portion) having a depth d from the plane F, and maintains a distance δ between the tip surface of the polishing tool 3 and the plane F of the workpiece W. In this state, the concave surface and the flat surface F continuous thereto are polished.

次に、研磨装置1を用いた磁気研磨方法について説明する。凹面を有する被研磨物WをOリング5とねじ止めによりモータの主軸6と固定した後、被研磨物Wの表面に磁性粒子、非磁性砥粒および磁性流体を含む研磨加工液を適量滴下して、コイル2にパルス電圧を印加する。コイル2にパルス電圧が印加されると、研磨工具3に磁場(パルス磁場)が発生して、研磨工具3先端に接している研磨加工液中の磁性粒子により図3に示す鎖状の磁気クラスタが発生する。 Next, a magnetic polishing method using the polishing apparatus 1 will be described. After fixing the object to be polished W having a concave surface to the main shaft 6 of the motor by screwing with an O-ring 5, an appropriate amount of polishing liquid containing magnetic particles, nonmagnetic abrasive grains and magnetic fluid is dropped on the surface of the object to be polished W. Then, a pulse voltage is applied to the coil 2. When a pulse voltage is applied to the coil 2, a magnetic field (pulse magnetic field) is generated in the polishing tool 3, and the chain-like magnetic cluster shown in FIG. 3 is formed by the magnetic particles in the polishing liquid in contact with the tip of the polishing tool 3. Will occur.

磁気クラスタは、図3に示すように研磨工具先端の表面と被研磨物の表面との間に形成されて、磁性粒子は磁力線に沿って分布しており、非磁性砥粒は主に被研磨物の表面側に多く集合する。磁気クラスタは鎖状を呈しており、磁性粒子と非磁性砥粒との間の磁性流体の分散粒子やαセルロースによって、細長く弾力性のあるものである。その後、研磨工具を所定の回転数で回転し、同時に被研磨物も回転した状態で被研磨物の表面に対する研磨を開始する。すなわち、研磨工具と被研磨物とを相対的に移動させることで被研磨物表面の研磨を行う。なお、研磨工具と被研磨物との相対的な移動形態については、研磨工具のみ回転した状態で被研磨物を回転させずに研磨工具を被研磨物の表面と平行に移動させる、もしくは研磨工具を固定した状態で被研磨物を水平方向に移動させる等の形態があり、研磨工具および被研磨物を共に回転した状態で研磨を行った場合と同様の効果を得ることができる。 As shown in FIG. 3, the magnetic cluster is formed between the surface of the tip of the polishing tool and the surface of the object to be polished, the magnetic particles are distributed along the lines of magnetic force, and the non-magnetic abrasive grains are mainly polished. Many gather on the surface side of things. The magnetic cluster has a chain shape, and is elongated and elastic due to dispersed particles of magnetic fluid and α-cellulose between the magnetic particles and the nonmagnetic abrasive grains. Thereafter, the polishing tool is rotated at a predetermined number of revolutions, and at the same time, the polishing of the surface of the object to be polished is started while the object to be polished is also rotated. That is, the surface of the object to be polished is polished by relatively moving the polishing tool and the object to be polished. As for the relative movement mode between the polishing tool and the object to be polished, the polishing tool is moved in parallel with the surface of the object to be polished without rotating the object to be polished while only the polishing tool is rotated, or the polishing tool. There is a form in which the object to be polished is moved in the horizontal direction in a state in which is fixed, and the same effect as when polishing is performed with both the polishing tool and the object to be rotated can be obtained.

図1に示す研磨装置を用いて、コイルに直流電圧(DC)とパルス電圧(周波数0.1Hz)をそれぞれ印加した状態で凹面を有する被研磨物の凹面を研磨する研磨試験を行った。その試験結果について図4および図5を用いて説明する。研磨試験は、研磨工具を500rpmの回転数で回転しながら、黄銅製の被研磨物(直径30mm、厚さ10mm、凹面直径8mm、凹面深さ0.5mm)を、200rpmの回転数で回転しながら、研磨工具の先端と被研磨物の平面との距離を1.0mmに保って行った。さらに、研磨工具の中心軸と被研磨物の中心との距離(オフセット距離)を5mmに保ち、被研磨物を毎分40mmの速度で8mmの幅を移動(揺動)しながら、研磨を行った。なお、被研磨物と研磨工具の回転の向き(回転方向)は図1に示すように互いに逆回転の関係となるように行い、研磨時間は80分間とした。 Using the polishing apparatus shown in FIG. 1, a polishing test was performed to polish a concave surface of an object having a concave surface in a state where a direct voltage (DC) and a pulse voltage (frequency 0.1 Hz) were applied to the coil. The test results will be described with reference to FIGS. The polishing test was performed by rotating a brass workpiece (diameter 30 mm, thickness 10 mm, concave surface diameter 8 mm, concave surface depth 0.5 mm) at a rotational speed of 200 rpm while rotating the polishing tool at a rotational speed of 500 rpm. However, the distance between the tip of the polishing tool and the plane of the object to be polished was maintained at 1.0 mm. Further, the distance (offset distance) between the center axis of the polishing tool and the center of the object to be polished is maintained at 5 mm, and the object to be polished is moved (oscillated) at a speed of 40 mm per minute while moving (oscillating) a width of 8 mm. It was. In addition, the rotation direction (rotation direction) of the object to be polished and the polishing tool was set so as to be in a reverse rotation relationship as shown in FIG. 1, and the polishing time was 80 minutes.

図4は研磨装置のコイルにパルス電圧を印加した場合の被研磨物の研磨前後における表面状態のグラフ、図5は研磨装置のコイルに直流電圧を印加した場合の被研磨物の研磨前後における表面状態のグラフである。被研磨物の表面状態の図4および図5の両グラフは、凹面中心位置から左右約14mm(測定総距離:28mm)の範囲において、被研磨物の表面状態を表面プロファイル測定装置により測定したグラフである。また、両グラフともに、研磨前後のグラフを測定開始位置(直径方向の測定距離:0mm)と測定終了位置(直径方向の測定距離:28mm)の箇所で互いに重ね合わせたものとした。 FIG. 4 is a graph of the surface state before and after polishing of the object to be polished when a pulse voltage is applied to the coil of the polishing apparatus, and FIG. 5 is a surface of the object to be polished before and after polishing when a DC voltage is applied to the coil of the polishing apparatus. It is a graph of a state. 4 and 5 of the surface state of the object to be polished are graphs in which the surface state of the object to be polished is measured by a surface profile measuring device in the range of about 14 mm (total measurement distance: 28 mm) from the center of the concave surface to the left and right. It is. In both graphs, the graphs before and after polishing were superimposed on each other at a measurement start position (diameter direction measurement distance: 0 mm) and a measurement end position (diameter direction measurement distance: 28 mm).

研磨装置のコイルにパルス電圧を印加した場合には、80分の研磨後の形状は図4に示すように、平面と凹面との境界部分、凹面を形成する傾斜部分、および凹面の底面部分の各々において研磨前の形状との差異がほとんど見られていない。また、凹面部と平面部の表面はともに鏡面状態である。 When a pulse voltage is applied to the coil of the polishing apparatus, as shown in FIG. 4, the shape after polishing for 80 minutes is the boundary portion between the flat surface and the concave surface, the inclined portion that forms the concave surface, and the bottom surface portion of the concave surface. There is almost no difference from the shape before polishing. Moreover, both the concave part and the surface of the flat part are in a mirror state.

これに対して、研磨装置のコイルに直流電圧を印加した場合には、図5に示すように80分の研磨後の形状は平面と凹面との境界部分、凹面を形成する傾斜部分、および凹面の底面部分の全ての箇所において研磨前の形状との差異が生じた。具体的には、研磨後の形状は、被研磨物の平面が凹面側へ近づくほど傾斜した形状を呈して、凹面を形成する傾斜部においては底面部へ近づくほどより深く研磨して、凹面の底面部にいたっては平滑面からの距離が約10μm深さ方向に大きくなった。なお、研磨表面は凹面部と平面部ともに鏡面状態である。 On the other hand, when a DC voltage is applied to the coil of the polishing apparatus, as shown in FIG. 5, the shape after polishing for 80 minutes is the boundary portion between the flat surface and the concave surface, the inclined portion forming the concave surface, and the concave surface Differences from the shape before polishing occurred at all locations on the bottom surface of the substrate. Specifically, the shape after polishing exhibits a shape that is inclined as the plane of the object to be polished approaches the concave surface side, and in the inclined portion that forms the concave surface, the surface is polished deeper as it approaches the bottom surface portion. At the bottom surface, the distance from the smooth surface increased in the depth direction by about 10 μm. The polished surface is in a mirror state on both the concave and flat surfaces.

以上の結果より、本発明に係る磁気研磨方法は、凹面を有する被研磨物であっても被研磨物の表面に沿って研磨工具を移動(平面から凹面方向への上下移動)させることなく、表面全体の形状(形状精度)を保ったまま均一に鏡面研磨できた。 From the above results, the magnetic polishing method according to the present invention moves the polishing tool along the surface of the object to be polished even when the object has a concave surface (up and down movement from the plane to the concave direction), The mirror surface could be uniformly polished while maintaining the shape of the entire surface (shape accuracy).

次に、研磨に及ぼす間隔の影響を明らかにするためにコイルにパルス電圧を印加した状態(周波数=0.1Hz)で、研磨工具の先端と被研磨物の平面との距離(図2中のδ)を変えて研磨試験を行った。その試験結果について図6ないし図9を用いて説明する。当該研磨試験は実施例1と同一の研磨装置を用いて行ったが、被研磨物は凹面を有しない平面だけのものを使用して、研磨中における被研磨物の回転は行わずに固定した状態で研磨試験を行った。また、研磨工具については実施例1と同様に500rpmの回転数で回転しながら、研磨工具の中心軸と被研磨物の中心とを同じにして、被研磨物の移動なしに被研磨物の研磨を行った(研磨時間:80分間)。 Next, in order to clarify the influence of the interval on polishing, the distance between the tip of the polishing tool and the plane of the object to be polished (frequency in FIG. 2) with a pulse voltage applied to the coil (frequency = 0.1 Hz). A polishing test was conducted while changing δ). The test results will be described with reference to FIGS. The polishing test was performed using the same polishing apparatus as in Example 1, but the object to be polished was only a flat surface having no concave surface, and the object to be polished was fixed without rotating during polishing. A polishing test was performed in the state. Further, the polishing tool is rotated at a rotation speed of 500 rpm as in the first embodiment, and the center axis of the polishing tool and the center of the object to be polished are made the same to polish the object to be polished without moving the object to be polished. (Polishing time: 80 minutes).

図6は研磨工具の先端と被研磨物の平面との距離を0.5mmとした場合の研磨前後における被研磨物の表面状態、図7は研磨工具の先端と被研磨物の平面との距離を1.0mmとした場合の研磨前後における被研磨物の表面状態、図8は研磨工具の先端と被研磨物の平面との距離を1.5mmとした場合の研磨前後における被研磨物の表面状態、図9は研磨工具の先端と被研磨物の平面との距離を2.0mmとした場合の研磨前後における被研磨物の表面状態をそれぞれ示す。また、図6ないし図9における一点鎖線は研磨中心位置を表す。 FIG. 6 shows the surface state of the workpiece before and after polishing when the distance between the tip of the polishing tool and the plane of the workpiece is 0.5 mm, and FIG. 7 shows the distance between the tip of the polishing tool and the plane of the workpiece. FIG. 8 shows the surface state of the object before and after polishing when the distance between the tip of the polishing tool and the plane of the object is 1.5 mm. FIG. 9 shows the surface state of the object before and after polishing when the distance between the tip of the polishing tool and the plane of the object is 2.0 mm. 6 to 9, the alternate long and short dash line represents the polishing center position.

図6ないし図9の各グラフは、研磨中心位置から左右14mm(測定総距離:28mm)の範囲において、被研磨物の表面状態を表面プロファイル測定装置により測定したグラフである。また、図6ないし図9の各グラフは研磨前後のグラフを測定開始位置(直径方向の測定距離:1mm)と測定終了位置(直径方向の測定距離:29mm)の箇所で互いに重ね合わせて表示した。 Each of the graphs in FIGS. 6 to 9 is a graph in which the surface state of an object to be polished is measured by a surface profile measuring device within a range of 14 mm (total measurement distance: 28 mm) from the polishing center position. In addition, the graphs of FIGS. 6 to 9 are displayed by superimposing the graphs before and after polishing on the measurement start position (measurement distance in the diameter direction: 1 mm) and the measurement end position (measurement distance in the diameter direction: 29 mm). .

研磨工具の先端と被研磨物の平面との距離を0.5mmとした場合の研磨前後における被研磨物の表面状態は、図6に示すように直径方向の研磨中心(同図の15mmの位置)から2mmまでの範囲では、研磨工具の回転中心に近いために研磨前後で深さ方向に変化は見られなかった。ところが研磨中心(研磨工具の回転中心)から2mm〜5mmまでの範囲では深さ方向で最深3.5μmの深さまで研磨されており、研磨中心から5mm〜12mmまでの範囲では0.8μm前後の深さまで研磨されていた。すなわち直径方向における測定箇所によって深さ方向の研磨量にバラつきが生じた。 When the distance between the tip of the polishing tool and the plane of the object to be polished is 0.5 mm, the surface state of the object before and after polishing is as shown in FIG. ) To 2 mm, no change was observed in the depth direction before and after polishing because it was close to the center of rotation of the polishing tool. However, in the range from 2 mm to 5 mm from the polishing center (rotation center of the polishing tool), the depth is polished to the maximum depth of 3.5 μm, and in the range from 5 mm to 12 mm from the polishing center, the depth is about 0.8 μm. It was polished. That is, the amount of polishing in the depth direction varies depending on the measurement location in the diameter direction.

また、研磨工具の先端と被研磨物の平面との距離を2.0mmとした場合の研磨前後における被研磨物の表面状態は、図9に示すように直径方向の研磨中心(同図の15mmの位置)から4mmまでの範囲では研磨前後で深さ方向に変化は見られなかった。ところが研磨中心から4mm〜12mmの範囲では加工深さにバラつきが生じた。 Further, the surface state of the object before and after polishing when the distance between the tip of the polishing tool and the plane of the object to be polished is 2.0 mm, the polishing center in the diametrical direction (15 mm in the figure) is shown in FIG. No change was observed in the depth direction before and after polishing in the range from 4 to 4 mm. However, in the range of 4 mm to 12 mm from the polishing center, the processing depth varied.

これらに対して、研磨工具の先端と被研磨物の平面との距離を1.0mmとした場合の研磨前後における被研磨物の表面状態は、図7に示すように直径方向の研磨中心(同図の15mmの位置)から2mmまでの範囲では、図6に示す研磨工具の先端と被研磨物の平面との距離が0.5mmの場合と同様に、研磨前後で深さ方向に変化は見られなかった。しかし、研磨中心から2mm〜12mmの範囲では研磨量は0.7μm程度で変化は少なく、この範囲においてはほぼ均一に研磨されていた。 On the other hand, the surface state of the object before and after polishing when the distance between the tip of the polishing tool and the plane of the object to be polished is 1.0 mm is shown in FIG. In the range from the 15 mm position in the figure to 2 mm, there is no change in the depth direction before and after polishing, as in the case where the distance between the tip of the polishing tool and the plane of the workpiece shown in FIG. 6 is 0.5 mm. I couldn't. However, in the range of 2 mm to 12 mm from the center of polishing, the polishing amount was about 0.7 μm and there was little change, and in this range, polishing was almost uniform.

また、研磨工具の先端と被研磨物の平面との距離を1.5mmとした場合の研磨前後における被研磨物の表面状態は、図8に示すように直径方向の研磨中心(同図の15mmの位置)から2mmまでの範囲では、図6および図7に示す研磨工具の先端と被研磨物の平面との距離が0.5mmおよび1.0mmの場合と同様に、研磨前後で深さ方向に変化は見られなかった。しかし、研磨中心から2mm〜12mmまでの範囲での研磨量は約0.8μmであり、この範囲においてはほぼ均一に研磨されていた。 The surface state of the object before and after polishing when the distance between the tip of the polishing tool and the flat surface of the object to be polished is 1.5 mm is shown in FIG. In the range from 2 mm to 2 mm, the depth direction before and after polishing is the same as in the case where the distance between the tip of the polishing tool and the plane of the object to be polished shown in FIGS. 6 and 7 is 0.5 mm and 1.0 mm. There was no change. However, the polishing amount in the range from 2 mm to 12 mm from the polishing center was about 0.8 μm, and in this range, the polishing was almost uniform.

以上の結果より、コイルにパルス電圧を印加した状態で研磨工具を回転しながら、研磨工具の先端部と被研磨物の平面との間隔が1.0mm〜1.5mmの範囲の磁気研磨方法は、同等の広い研磨領域において同等の表面性状を有することがわかった。すなわち、本発明に係る磁気研磨方法を用いることで研磨工具と加工表面の間隔が1.0mm〜1.5mmの範囲で変化する凹面を有する被研磨物を、細長く弾力性のある磁気クラスタの特性によって研磨工具の深さ方向の上下移動をさせることなく研磨できる。また、本発明に係る磁気研磨方法を用いることで平面からの距離が0.5mm(500μm)以下の凹面を有する被研磨物であれば、凹面とそれに続く平面を広範囲かつ均一に形状精度を保持したまま研磨できる。なお、本実施例は凹面を有した被研磨物を対象として研磨試験を行ったが、ミクロン単位の溝形状や孔形状などの微細な複雑形状の表面を有する被研磨物であっても同様の効果を得ることができることは言うまでもない。   From the above results, the magnetic polishing method in which the distance between the tip of the polishing tool and the plane of the object to be polished is 1.0 mm to 1.5 mm while rotating the polishing tool with a pulse voltage applied to the coil is as follows. It was found that the same surface properties were obtained in an equivalent wide polishing region. That is, by using the magnetic polishing method according to the present invention, an object to be polished having a concave surface in which the distance between the polishing tool and the processing surface changes in the range of 1.0 mm to 1.5 mm can be obtained by the characteristics of a long and elastic magnetic cluster. Thus, polishing can be performed without moving the polishing tool up and down in the depth direction. In addition, if the object to be polished has a concave surface whose distance from the plane is 0.5 mm (500 μm) or less by using the magnetic polishing method according to the present invention, the concave surface and the subsequent plane are maintained in a wide range and uniform shape accuracy. Can be polished. In addition, although the present Example performed the grinding | polishing test for the to-be-polished object which has a concave surface, even if it is the to-be-polished object which has the surface of fine complicated shapes, such as a groove shape and a hole shape of a micron unit, Needless to say, an effect can be obtained.

1 研磨装置
2 コイル
3 研磨工具
10 磁性粒子
11 非磁性砥粒
12 磁性流体
W 被研磨物
δ 研磨工具と被研磨物との間隔
1 Polishing device 2 Coil 3 Polishing tool
DESCRIPTION OF SYMBOLS 10 Magnetic particle 11 Nonmagnetic abrasive grain 12 Magnetic fluid W To-be-polished object (delta) Interval of polishing tool and to-be-polished object

Claims (2)

磁性粒子、非磁性砥粒および磁性流体を含む研磨加工液と、磁性材料で製作された研磨工具と、軸方向に貫通孔を備えたコイルと、を有しており、前記研磨工具が前記コイルの貫通孔に挿通されている研磨装置を用いた、凹面を有する被研磨物の磁気研磨方法であって、前記コイルにパルス電圧を印加させた状態で前記研磨工具を回転させながら、前記研磨工具と前記被研磨物との間隔を1.0mm〜1.5mmに保持させて前記被研磨物の凹面を鏡面研磨することを特徴とする磁気研磨方法。 A polishing liquid containing magnetic particles, non-magnetic abrasive grains and a magnetic fluid, a polishing tool made of a magnetic material, and a coil having a through hole in the axial direction, the polishing tool being the coil A method for magnetically polishing an object to be polished having a concave surface using a polishing apparatus inserted through a through-hole, wherein the polishing tool is rotated while a pulse voltage is applied to the coil. And polishing the concave surface of the object to be polished while maintaining the distance between the object and the object to be polished at 1.0 mm to 1.5 mm. 前記パルス電圧の周波数を、0.1Hz〜0.5Hzとした状態で前記被研磨物の凹面を研磨することを特徴とする請求項1に記載の磁気研磨方法。 The magnetic polishing method according to claim 1, wherein the concave surface of the object to be polished is polished in a state where the frequency of the pulse voltage is 0.1 Hz to 0.5 Hz.
JP2012156642A 2012-07-12 2012-07-12 Magnetic polishing method Active JP5967759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012156642A JP5967759B2 (en) 2012-07-12 2012-07-12 Magnetic polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156642A JP5967759B2 (en) 2012-07-12 2012-07-12 Magnetic polishing method

Publications (2)

Publication Number Publication Date
JP2014018875A true JP2014018875A (en) 2014-02-03
JP5967759B2 JP5967759B2 (en) 2016-08-10

Family

ID=50194354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156642A Active JP5967759B2 (en) 2012-07-12 2012-07-12 Magnetic polishing method

Country Status (1)

Country Link
JP (1) JP5967759B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190021886A (en) * 2017-08-24 2019-03-06 인하대학교 산학협력단 Apparatus for grinding
JP2020116722A (en) * 2019-01-28 2020-08-06 独立行政法人国立高等専門学校機構 Fluid polishing device and fluid polishing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425369A (en) * 1990-05-18 1992-01-29 Kiyoshi Suzuki Magnetic polishing method and magnetic abrasive used therein
JP2002170791A (en) * 2000-12-04 2002-06-14 Akita Prefecture Particle diffusion type mixedly functional fluid and machining method using the same
JP2006082213A (en) * 2004-09-17 2006-03-30 Fdk Corp Method of cutting work and cutting work/mirror polishing device
JP2006088283A (en) * 2004-09-24 2006-04-06 Fdk Corp Method and device for polishing and coating mirror surface
JP2006224227A (en) * 2005-02-16 2006-08-31 Olympus Corp Magnetic polishing method
JP2007136637A (en) * 2005-11-22 2007-06-07 Utsunomiya Univ Magnetic field assisted micropolishing device and magnetic field assisted micropolishing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425369A (en) * 1990-05-18 1992-01-29 Kiyoshi Suzuki Magnetic polishing method and magnetic abrasive used therein
JP2002170791A (en) * 2000-12-04 2002-06-14 Akita Prefecture Particle diffusion type mixedly functional fluid and machining method using the same
JP2006082213A (en) * 2004-09-17 2006-03-30 Fdk Corp Method of cutting work and cutting work/mirror polishing device
JP2006088283A (en) * 2004-09-24 2006-04-06 Fdk Corp Method and device for polishing and coating mirror surface
JP2006224227A (en) * 2005-02-16 2006-08-31 Olympus Corp Magnetic polishing method
JP2007136637A (en) * 2005-11-22 2007-06-07 Utsunomiya Univ Magnetic field assisted micropolishing device and magnetic field assisted micropolishing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190021886A (en) * 2017-08-24 2019-03-06 인하대학교 산학협력단 Apparatus for grinding
KR101970402B1 (en) * 2017-08-24 2019-04-18 인하대학교 산학협력단 Apparatus for grinding
JP2020116722A (en) * 2019-01-28 2020-08-06 独立行政法人国立高等専門学校機構 Fluid polishing device and fluid polishing method
JP7203618B2 (en) 2019-01-28 2023-01-13 株式会社フェローテックマテリアルテクノロジーズ Fluid polishing apparatus and fluid polishing method

Also Published As

Publication number Publication date
JP5967759B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
Zou et al. Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field
Wang et al. A novel magnetic field-assisted mass polishing of freeform surfaces
CN103273385B (en) Surface contact magneto-rheological flat polishing device and method with uniform magnetic field
Wu et al. Study on ultra-precision magnetic abrasive finishing process using low frequency alternating magnetic field
JP4741212B2 (en) Magnetorheological polishing apparatus and method
JP4185987B2 (en) Magnetic-assisted fine polishing apparatus and magnetic-assisted fine polishing method
JP2010115779A (en) Uniform thin film produced by magnetorheological finishing
JP2007253303A (en) Method, device, and tool of vibration magnetic polishing
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
JP5967759B2 (en) Magnetic polishing method
JPH04336954A (en) Minute grinding method and minute grinding tool
Sun et al. Investigation on magnetorheological shear thickening finishing (MSTF) with radially slotted magnetic pole for free-form surface
JP2007021661A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
JP2007296598A (en) Magnetic polishing method and wafer polishing device
Saraswathamma Magnetorheological finishing: a review
Wu et al. Nano-precision polishing of CVD SiC using MCF (magnetic compound fluid) slurry
JPWO2006030854A1 (en) Polishing method and polishing apparatus for complex shapes
Aravind et al. Physical insights about magnetic flux distribution and its effect on surface roughness in MR fluid based finishing process
Nomura et al. Development of ultrasonic vibration-assisted magnetic compound fluid (MCF) polishing technology
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
JP2003062747A (en) Processing method using magnetic fluid and device therefor
KR101211826B1 (en) Apparatus and method for polishing workpiece using magnetorheological fluid)
JP2008254140A (en) Dressing device for thin blade grinding wheel, dressing method, manufacturing method of semiconductor and manufacturing method of precision part
JP3846052B2 (en) Magnetic polishing apparatus and magnetic polishing method
JP2016137553A (en) Polishing apparatus and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150529

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160701

R150 Certificate of patent or registration of utility model

Ref document number: 5967759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350