JP3846052B2 - Magnetic polishing apparatus and magnetic polishing method - Google Patents

Magnetic polishing apparatus and magnetic polishing method Download PDF

Info

Publication number
JP3846052B2
JP3846052B2 JP22348098A JP22348098A JP3846052B2 JP 3846052 B2 JP3846052 B2 JP 3846052B2 JP 22348098 A JP22348098 A JP 22348098A JP 22348098 A JP22348098 A JP 22348098A JP 3846052 B2 JP3846052 B2 JP 3846052B2
Authority
JP
Japan
Prior art keywords
magnetic
workpiece
polishing
magnetic pole
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22348098A
Other languages
Japanese (ja)
Other versions
JP2000052218A (en
Inventor
信 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22348098A priority Critical patent/JP3846052B2/en
Publication of JP2000052218A publication Critical patent/JP2000052218A/en
Application granted granted Critical
Publication of JP3846052B2 publication Critical patent/JP3846052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はNC工作機械等に切削工具の代わりに磁気研磨ツールを取り付けた研磨装置により、プラスチック製またはガラス製の光学レンズや眼鏡レンズ、あるいは金属製やセラミック製の成型用金型等を高精度かつ効率的に鏡面化するために好適な磁気研磨装置及び磁気研磨方法に関する。
【0002】
【従来の技術】
従来は、図7に示すごとく数100μmの粒径の強磁性材粒子21の表面に粒径数μmの酸化アルミニウム等の研磨砥粒22を金属結合状態で付着させ、研磨砥粒22と強磁性材粒子21が一体となった磁性研磨材粒子を用いて、図6に示す一般的な構成による磁気研磨装置により磁気研磨を行っていた。
【0003】
【発明が解決しようとする課題】
しかしながら、前記の従来技術に示した磁気研磨装置、および磁気研磨方法では第一に、強磁性材粒子の表面に粒径数μmの酸化アルミニウム等の研磨砥粒を金属結合状態で付着させただけの磁性研磨材粒子では加工可能なワーク材料が特定の材質のものに限定されてしまう。第二に、強磁性材粒子の表面に粒径数μmの酸化アルミニウム等の研磨砥粒を金属結合状態で付着させただけの磁性研磨材粒子では研磨による加工熱を十分に放熱することができないため、研磨時間の長さや研磨仕上がり面の品質といった研磨性能に大きな影響を及ぼす。第三に、強磁性材粒子の表面に付着している研磨砥粒はワークと磁性研磨材粒子との摩擦により脱落してしまうと、磁力による拘束力がなくなるため研磨に全く作用しなくなる。さらに第四として、ワーク形状によっては、所望の形状精度を得ることが非常に困難である。例えば球面を含む自由曲面などを従来技術の構成の磁気研磨装置により研磨すると、加工範囲の外側では研磨による除去量が少なく、中心部ほど除去量が多くなる。また、第五に磁極とワークの形状、具体的には非磁性材料のワークの場合、ワークの厚みによって磁束密度が変化するため加工可能なワーク形状が限定されてしまう等、数々の問題点があった。
【0004】
そこで本発明はこのような問題点を除去するためになされたものであり、ワークの材質や形状に制限を設けることなく短時間で高い形状精度と外観品質を得ることが可能な磁気研磨装置、および磁気研磨方法を提供できることにある。
【0005】
【課題を解決するための手段】
本発明は前記目的を達成するもので、ヨーク、励磁コイル、電源、ワークと対面する磁極、強磁性材粒子より構成され、励磁コイルに電圧を印加しワークと対面する磁極間に磁界を発生させながら、ワークと磁極とを相対的に回転あるいは揺動させる磁気研磨装置において、AlやCeO等を砥材とするスラリー状の研磨液をワークと強磁性材粒子との間隙に供給しながら磁気研磨を行うことを特徴とする。
【0006】
また、前記強磁性材粒子に代えて、強磁性材粒子を綿、絹、レーヨン、ナイロン等の繊維を材料とする起毛で被覆した磁性研磨材粒子を用いることを特徴とする。
【0007】
また、前記いずれかの磁気研磨装置において、ワーク形状に合わせてワークと磁極との相対位置決めを行う際に、加工点における法線が磁力線の方向とほぼ一致するように法線制御を行うことを特徴とする。
【0008】
また、前記いずれかの磁気研磨装置において、加工点近傍で測定された磁束密度が一定に保持される制御機能を有することを特徴とする。
【0009】
また、本発明の磁気研磨方法は、ヨーク、励磁コイル、電源、ワークと対面する磁極、強磁性材粒子より構成され、励磁コイルに電圧を印加しワークと対面する磁極間に磁界を発生させながら、ワークと磁極とを相対的に回転あるいは揺動させる磁気研磨方法において、AlやCeO等を砥材とするスラリー状の研磨液をワークと強磁性材粒子との間隙に供給しながら磁気研磨を行うことを特徴とする。
【0010】
また、前記強磁性材粒子に代えて、強磁性材粒子を綿、絹、レーヨン、ナイロン等の繊維を材料とする起毛で被覆した磁性研磨材粒子を用いることを特徴とする。
【0011】
また、前記いずれかの磁気研磨方法において、ワーク形状に合わせてワークと磁極との相対位置決めを行う際に、加工点における法線が磁力線の方向とほぼ一致するように法線制御を行うことを特徴とする。
【0012】
また、前記いずれかの磁気研磨方法において、加工点近傍で測定された磁束密度が一定に保持される制御機能を有することを特徴とする。
【0013】
本発明の上記の構成によれば、AlやCeO等を砥材とするスラリー状の研磨液をワークと強磁性材粒子との間隙に供給しながら磁気研磨を行うことで、研磨液が加工熱を十分に吸収してくれるばかりでなく、研磨加工中に研磨液を供給することで前記砥材が常に加工面に行き渡る、また磁性研磨材粒子として繊維を材料とする起毛により被覆された強磁性材粒子を用いることで、図3に示すように起毛間に前記の砥材が保持されるため、研磨時間、外観品質といった研磨性能が大幅に向上するばかりでなく安定する。
【0014】
さらには、加工点における法線が磁力線の方向とほぼ一致するように法線制御を行い、加工点近傍で測定された磁束密度が一定に保持される制御機能を付加することで、加工部位あるいは加工範囲によらず高い形状精度を得ることが可能となる等、従来技術では得ることのできなかった高能率、高精度、さらには高い外観品質を実現する磁気研磨装置、および磁気研磨方法を提供できることにある。
【0015】
【発明の実施の形態】
以下図面に基づいて実施例を説明するが、本発明はこの実施例のみに限定されるものではない。
【0016】
(実施例1)
本実施例は、スラリー状の研磨液をワークと強磁性材粒子との間隙に供給しながら磁気研磨を行う実施例であり、図1に基づき説明する。
【0017】
まず、フェライト製で粒径10μm〜500μmの強磁性材粒子8を磁極24とワーク1の間隙3mmの間に充填し、ヨーク3に磁界をかける。なお、フェライト製の強磁性材粒子8の粒径は、ワークの材質や研磨の前加工の仕上がり面粗度の程度により適正値を選択する。続いて、直線位置決め手段6とワーク回転手段10により磁極24とワーク1との相対運動を行うとともに、スピンドル2を回転させる。それと同時に、予め準備しておいたワーク1の研磨に適した砥材と水、界面活性剤、消泡剤等を混合させたスラリー状の研磨液9を図示しない供給ポンプでワーク1と強磁性材粒子8との間に常時もしくは断続的に供給する。
【0018】
なお、ワークの材質がプラスチックの場合はAlが、またガラスの場合にはCeOが最も適した砥材として挙げられるが、これらに限定されるものではなく前にも述べた通りそれぞれのワークの素材に適した砥材を選定すれば良い。
【0019】
このようにすることで、加工中にワーク1の表面と強磁性材粒子8との間に常に研磨液中の砥材を供給することができるばかりでなく、加工による摩擦熱を研磨液が吸収してくれるため、短時間で所望の面粗度もしくは外観精度を得ることが容易に実現できた。
【0020】
(実施例2)
本実施例は、磁性研磨材粒子として、繊維を材料とする起毛により被覆された強磁性材粒子を用い、スラリー状の研磨液をワークと前記強磁性材粒子との間隙に供給しながら磁気研磨を行う実施例であり、図2に基づき説明する。
【0021】
まず、磁性研磨材粒子11を下記の手順で作成した。フェライト製で粒径10μm〜500μmの強磁性材粒子12の表面を接着層25で覆い、接着層25の表面に繊維製の起毛13を付着させ、前記の磁性研磨材粒子11を得る。こうして得られた磁性研磨材粒子11を磁極24とワーク1の間隙3mmの間に充填し、ヨーク3に磁界をかける。なお、フェライト製の強磁性材粒子12の粒径は、ワークの材質や研磨の前加工の仕上がり面粗度の程度により適正値を選択すれば良い。続いて、直線位置決め手段6とワーク回転手段10により磁極24とワーク1との相対運動を行うとともに、スピンドル2を回転させる。それと同時に予め準備しておいたワーク1の研磨に適した砥材と水、界面活性剤、消泡剤等を混合させたスラリー状の研磨液9を加工中に図示しない供給ポンプでワーク1と磁性研磨材粒子11との間に常時もしくは断続的に供給する。このようにすることで、加工中にワーク1の表面と磁性研磨材粒子11との間に常に研磨液中の砥材を供給することができるばかりでなく、図3に示されるように、強磁性材粒子単体の時に比べ起毛と起毛の間に研磨砥粒14が多量に保持される。従って研磨砥粒14がワーク1の表面に接触する機会が増えることで研磨能率がより一層向上し、短時間に所望の面粗度もしくは外観品質を得ることができた。
【0022】
(実施例3)
本実施例は、加工点における法線が磁力線の方向とほぼ一致するようにワークの法線制御を行いながら磁気研磨を行う実施例であり、図4に基づき説明する。
【0023】
強磁性材粒子や研磨液については実施例1、実施例2で説明したもの、あるいはワークの材質や前加工の面粗度に合わせたものを使用し、なおかつ図1あるいは図2に示す装置構成に加えて図4に示すようにワーク1を旋回中心19を中心に旋回させ、研磨の際の接触点、すなわち任意の加工点Pnに立てた法線17が磁力線の方向15とほぼ一致するようにワークの法線制御を行うためのワーク旋回手段を付加する。前記の装置構成によりワークの法線制御を行うことで、例えば球面を含む自由曲面形状を有するワークにおいても、加工点、正確には加工範囲が常に磁極24の中心部となるため、加工部位によらず研磨による除去量がほぼ一定となる。よって、非磁性材料でなおかつ複雑な自由曲面形状を有するワークであっても所望の形状精度を容易に得ることが可能となった。
【0024】
(実施例4)
本実施例は、加工点近傍で測定された磁束密度が一定に保持される制御機能を有する磁気研磨装置を用いた磁気研磨の実施例であり、図5に基づき説明する。
【0025】
実施例3の装置構成と制御方法に加え、図5の20に示される磁束密度測定センサーにより加工点近傍における加工中の磁束密度の大小を監視するとともに、前記の磁束密度が常に一定となるように、図示はしないが磁束密度にフィードバックがかけられる閉ループ電流制御回路を構成する。このような構成とすることで、加工点における厚みの変化が生じる、例えば球面を含む自由曲面形状を有するワークの場合であっても磁束密度が一定にコントロールされるため、強磁性材粒子の結合力すなわち研磨圧を一定に保つことが可能となる。よって、従来は所望の形状精度を得ることが非常に困難とされていた複雑な自由曲面形状を有する非磁性材料ワークであっても所望の形状精度を容易に得ることが可能となった。
【0026】
【発明の効果】
以上説明したように本発明によれば、加工中にスラリー状の研磨液をワークと強磁性材粒子との間隙に供給し、また磁性研磨材粒子として繊維を材料とする起毛により被覆された強磁性材粒子を用いることで、ワークの材質を選ばずに研磨時間短縮、面粗度改善、外観品質向上といった研磨性能を大幅に向上させることが可能となる。さらには、加工点における法線が磁力線の方向とほぼ一致するように法線制御を行い、加工点近傍で測定された磁束密度が一定に保持される制御機能を付加することで、加工部位あるいは加工範囲によらず高い形状精度を得ることが可能となる。従って従来技術では得ることのできなかった高能率、高精度、さらには面粗度向上や高い外観品質を実現する磁気研磨装置、および磁気研磨方法を提供できる。
【図面の簡単な説明】
【図1】実施例1で用いた磁気研磨装置の構成を示す図
【図2】実施例2で用いた磁気研磨装置の構成を示す図
【図3】実施例2で用いた磁性材研磨粒子の断面図
【図4】実施例3で用いた磁気研磨装置の構成を示す図
【図5】実施例4で用いた磁気研磨装置の構成を示す図
【図6】従来技術の磁気研磨装置の構成を示す図
【図7】従来の磁気研磨方法で用いられる磁性研磨材粒子の断面図
【符号の説明】
1 ワーク
2 スピンドル
3 ヨーク
4 励磁コイル
5 電源
6 直線位置決め手段
7 直線位置決め手段駆動用モーター
8 強磁性材粒子
9 スラリー状の研磨液
10 ワーク回転手段
11 磁性研磨材粒子
12 強磁性材粒子
13 起毛
14 研磨砥粒
15 磁力線の方向
16 強磁性材粒子
17 法線制御を行った状態における任意の加工点Pnに立てた法線
18 ワークが水平状態における任意の加工点Pnに立てた法線
19 ワークの旋回中心
20 磁束密度測定センサー
21 強磁性材粒子
22 研磨砥粒
23 従来技術の磁性研磨材粒子
24 磁極
25 接着層
[0001]
BACKGROUND OF THE INVENTION
The present invention uses a polishing device in which a magnetic polishing tool is attached to an NC machine tool or the like in place of a cutting tool, so that a plastic or glass optical lens or spectacle lens, or a metal or ceramic molding die can be used with high accuracy. In addition, the present invention relates to a magnetic polishing apparatus and a magnetic polishing method suitable for efficiently mirror-finishing.
[0002]
[Prior art]
Conventionally, as shown in FIG. 7, polishing abrasive grains 22 such as aluminum oxide having a particle diameter of several μm are attached to the surface of a ferromagnetic material particle 21 having a particle diameter of several hundreds μm in a metal-bonded state. Magnetic polishing was performed by a magnetic polishing apparatus having a general configuration shown in FIG. 6 using magnetic abrasive particles in which the material particles 21 were integrated.
[0003]
[Problems to be solved by the invention]
However, in the magnetic polishing apparatus and the magnetic polishing method shown in the above prior art, firstly, abrasive grains such as aluminum oxide having a particle diameter of several μm are adhered to the surface of the ferromagnetic material particles in a metal bonded state. In the magnetic abrasive particles, the work material that can be processed is limited to a specific material. Second, magnetic abrasive particles in which abrasive grains such as aluminum oxide having a particle size of several μm are attached to the surface of the ferromagnetic particles in a metal bonded state cannot sufficiently dissipate the processing heat due to polishing. Therefore, it greatly affects the polishing performance such as the length of the polishing time and the quality of the polished surface. Third, if the abrasive grains adhering to the surface of the ferromagnetic material particles fall off due to the friction between the workpiece and the magnetic abrasive particles, there will be no binding force due to the magnetic force, and there will be no effect on the polishing. Fourth, it is very difficult to obtain a desired shape accuracy depending on the workpiece shape. For example, when a free-form surface including a spherical surface is polished by a magnetic polishing apparatus having a conventional structure, the removal amount by polishing is small outside the processing range, and the removal amount is large at the center. Fifth, the shape of the magnetic pole and the workpiece, specifically, in the case of a workpiece made of a non-magnetic material, the magnetic flux density changes depending on the thickness of the workpiece. there were.
[0004]
Therefore, the present invention was made to eliminate such problems, and a magnetic polishing apparatus capable of obtaining high shape accuracy and appearance quality in a short time without limiting the material and shape of the workpiece, And providing a magnetic polishing method.
[0005]
[Means for Solving the Problems]
The present invention achieves the above-mentioned object, and is composed of a yoke, an exciting coil, a power source, a magnetic pole facing the workpiece, and ferromagnetic material particles. A voltage is applied to the exciting coil to generate a magnetic field between the magnetic pole facing the workpiece. However, in a magnetic polishing apparatus that relatively rotates or swings the workpiece and the magnetic pole, a slurry-like polishing liquid using Al 2 O 3 or CeO 2 as an abrasive is supplied to the gap between the workpiece and the ferromagnetic particles. It is characterized by performing magnetic polishing.
[0006]
Further, instead of the ferromagnetic material particles, magnetic abrasive particles coated with brushed materials made of fibers such as cotton, silk, rayon, nylon, etc. are used.
[0007]
Further, in any one of the magnetic polishing apparatuses, when performing relative positioning of the workpiece and the magnetic pole in accordance with the workpiece shape, the normal control is performed so that the normal line at the processing point substantially coincides with the direction of the magnetic force line. Features.
[0008]
Also, any one of the above-described magnetic polishing apparatuses has a control function of maintaining a constant magnetic flux density measured in the vicinity of the processing point.
[0009]
The magnetic polishing method of the present invention is composed of a yoke, an exciting coil, a power source, a magnetic pole facing the workpiece, and ferromagnetic material particles, while applying a voltage to the exciting coil to generate a magnetic field between the magnetic pole facing the workpiece. In a magnetic polishing method in which a workpiece and a magnetic pole are relatively rotated or oscillated, a slurry-like polishing liquid using Al 2 O 3 or CeO 2 as an abrasive is supplied to the gap between the workpiece and the ferromagnetic particles. However, the magnetic polishing is performed.
[0010]
Further, instead of the ferromagnetic material particles, magnetic abrasive particles coated with brushed materials made of fibers such as cotton, silk, rayon, nylon, etc. are used.
[0011]
Further, in any one of the magnetic polishing methods, when performing relative positioning of the workpiece and the magnetic pole according to the workpiece shape, the normal control is performed so that the normal line at the processing point substantially coincides with the direction of the magnetic force line. Features.
[0012]
Further, any one of the magnetic polishing methods has a control function of maintaining a constant magnetic flux density measured in the vicinity of the processing point.
[0013]
According to the above configuration of the present invention, polishing is performed by performing magnetic polishing while supplying a slurry-like polishing liquid containing Al 2 O 3 or CeO 2 or the like to the gap between the workpiece and the ferromagnetic particles. The liquid not only fully absorbs the processing heat, but also supplies the polishing liquid during the polishing process, so that the abrasive material always spreads over the processing surface, and is covered with raised fibers made of fibers as magnetic abrasive particles By using the formed ferromagnetic material particles, the abrasive is held between the raised hairs as shown in FIG. 3, so that the polishing performance such as polishing time and appearance quality is not only greatly improved but also stabilized.
[0014]
Furthermore, the normal line control is performed so that the normal line at the machining point substantially coincides with the direction of the magnetic field line, and a control function for keeping the magnetic flux density measured near the machining point constant is added. Provided a magnetic polishing device and a magnetic polishing method that achieve high efficiency, high accuracy, and high appearance quality that could not be obtained by conventional technology, such as high shape accuracy that can be obtained regardless of the processing range. There is something you can do.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments will be described with reference to the drawings. However, the present invention is not limited to the embodiments.
[0016]
Example 1
This embodiment is an embodiment in which magnetic polishing is performed while supplying a slurry-like polishing liquid to the gap between the workpiece and the ferromagnetic material particles, and will be described with reference to FIG.
[0017]
First, ferromagnetic material particles 8 made of ferrite and having a particle diameter of 10 μm to 500 μm are filled in a gap 3 mm between the magnetic pole 24 and the work 1, and a magnetic field is applied to the yoke 3. In addition, the particle size of the ferromagnetic material particles 8 made of ferrite is selected appropriately depending on the material of the workpiece and the degree of the finished surface roughness of the pre-processing of polishing. Subsequently, relative movement between the magnetic pole 24 and the work 1 is performed by the linear positioning means 6 and the work rotating means 10, and the spindle 2 is rotated. At the same time, an abrasive suitable for polishing the workpiece 1 prepared in advance and a slurry-like polishing liquid 9 in which water, a surfactant, an antifoaming agent, etc. are mixed are ferromagnetically bonded to the workpiece 1 by a supply pump (not shown). It is constantly or intermittently supplied between the material particles 8.
[0018]
In addition, when the material of the workpiece is plastic, Al 2 O 3 is cited as the most suitable abrasive material, and when the workpiece is glass, CeO 2 is cited as the most suitable abrasive material. Abrasive material suitable for the workpiece material should be selected.
[0019]
By doing so, not only can the abrasive material in the polishing liquid be always supplied between the surface of the workpiece 1 and the ferromagnetic material particles 8 during processing, but the polishing liquid also absorbs frictional heat from the processing. Therefore, it was possible to easily achieve the desired surface roughness or appearance accuracy in a short time.
[0020]
(Example 2)
In this example, ferromagnetic abrasive particles coated with raised fibers made of fibers are used as magnetic abrasive particles, and magnetic polishing is performed while supplying a slurry-like polishing liquid to the gap between the workpiece and the ferromagnetic particles. This will be described with reference to FIG.
[0021]
First, magnetic abrasive particles 11 were prepared by the following procedure. The surface of the ferromagnetic material particles 12 made of ferrite and having a particle size of 10 μm to 500 μm is covered with an adhesive layer 25, and fiber raised parts 13 are attached to the surface of the adhesive layer 25 to obtain the magnetic abrasive particles 11. The magnetic abrasive particles 11 thus obtained are filled in a gap of 3 mm between the magnetic pole 24 and the work 1, and a magnetic field is applied to the yoke 3. In addition, what is necessary is just to select an appropriate value for the particle size of the ferromagnetic material particles 12 made of ferrite depending on the material of the workpiece and the degree of the finished surface roughness of the pre-processing of polishing. Subsequently, relative movement between the magnetic pole 24 and the work 1 is performed by the linear positioning means 6 and the work rotating means 10, and the spindle 2 is rotated. At the same time, a slurry-like polishing liquid 9 in which an abrasive suitable for polishing the work 1 prepared in advance and water, a surfactant, an antifoaming agent, etc. are mixed is processed with the work 1 by a supply pump (not shown). It is constantly or intermittently supplied between the magnetic abrasive particles 11. By doing so, not only can the abrasive in the polishing liquid be always supplied between the surface of the workpiece 1 and the magnetic abrasive particles 11 during processing, but also strong as shown in FIG. Compared to the case of the magnetic material particles alone, a large amount of abrasive grains 14 are held between the raised hairs. Therefore, the opportunity for the abrasive grains 14 to come into contact with the surface of the work 1 is increased, whereby the polishing efficiency is further improved, and the desired surface roughness or appearance quality can be obtained in a short time.
[0022]
Example 3
The present embodiment is an embodiment in which magnetic polishing is performed while controlling the normal of the workpiece so that the normal at the machining point substantially coincides with the direction of the magnetic force line, and will be described with reference to FIG.
[0023]
As the ferromagnetic material particles and the polishing liquid, those described in the first and second embodiments, or those suitable for the work material and the surface roughness of the pre-processing are used, and the apparatus configuration shown in FIG. 1 or FIG. In addition, as shown in FIG. 4, the work 1 is swung around the swivel center 19 so that the contact point at the time of polishing, that is, the normal line 17 set at an arbitrary processing point Pn substantially coincides with the direction 15 of the magnetic force line. A workpiece turning means for controlling the workpiece normal is added. By controlling the normal of the workpiece with the above apparatus configuration, for example, even in a workpiece having a free-form surface including a spherical surface, the machining point, precisely the machining range, is always the center of the magnetic pole 24. However, the removal amount by polishing becomes almost constant. Therefore, it is possible to easily obtain a desired shape accuracy even for a work made of a nonmagnetic material and having a complicated free-form surface shape.
[0024]
Example 4
The present embodiment is an embodiment of magnetic polishing using a magnetic polishing apparatus having a control function that keeps the magnetic flux density measured near the processing point constant, and will be described with reference to FIG.
[0025]
In addition to the apparatus configuration and control method of the third embodiment, the magnetic flux density measuring sensor 20 shown in FIG. 5 monitors the magnitude of the magnetic flux density during machining near the machining point so that the magnetic flux density is always constant. In addition, although not shown, a closed loop current control circuit in which feedback is applied to the magnetic flux density is configured. By adopting such a configuration, the magnetic flux density is controlled to be constant even in the case of a workpiece having a free-form surface shape including, for example, a spherical surface. The force, that is, the polishing pressure can be kept constant. Therefore, it has become possible to easily obtain a desired shape accuracy even for a non-magnetic material workpiece having a complicated free-form surface shape, which has heretofore been extremely difficult to obtain a desired shape accuracy.
[0026]
【The invention's effect】
As described above, according to the present invention, the slurry-like polishing liquid is supplied to the gap between the workpiece and the ferromagnetic material particles during processing, and the magnetic abrasive particles are coated with the nappings made of fibers. By using magnetic material particles, it is possible to greatly improve the polishing performance such as shortening the polishing time, improving the surface roughness, and improving the appearance quality, regardless of the material of the workpiece. Furthermore, the normal line control is performed so that the normal line at the machining point substantially coincides with the direction of the magnetic field line, and a control function for keeping the magnetic flux density measured near the machining point constant is added. High shape accuracy can be obtained regardless of the processing range. Therefore, it is possible to provide a magnetic polishing apparatus and a magnetic polishing method that realize high efficiency, high accuracy, improvement in surface roughness and high appearance quality, which could not be obtained with the prior art.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a magnetic polishing apparatus used in Example 1. FIG. 2 is a diagram showing a configuration of a magnetic polishing apparatus used in Example 2. FIG. 3 is a magnetic material abrasive particle used in Example 2. FIG. 4 is a diagram showing a configuration of a magnetic polishing apparatus used in Example 3. FIG. 5 is a diagram showing a configuration of a magnetic polishing apparatus used in Example 4. FIG. 6 is a diagram of a conventional magnetic polishing apparatus. FIG. 7 is a sectional view of magnetic abrasive particles used in a conventional magnetic polishing method.
DESCRIPTION OF SYMBOLS 1 Work 2 Spindle 3 Yoke 4 Excitation coil 5 Power supply 6 Linear positioning means 7 Linear positioning means drive motor 8 Ferromagnetic material particles 9 Slurry polishing liquid 10 Work rotating means 11 Magnetic abrasive particles 12 Ferromagnetic material particles 13 Brushed 14 Abrasive grain 15 Direction of magnetic force line 16 Ferromagnetic material particle 17 Normal line 18 set at an arbitrary processing point Pn in a state where normal control is performed A normal line 19 set at an arbitrary processing point Pn in a horizontal state 19 Rotating center 20 Magnetic flux density measurement sensor 21 Ferromagnetic material particle 22 Abrasive grain 23 Conventional magnetic abrasive particle 24 Magnetic pole 25 Adhesive layer

Claims (4)

ヨーク、励磁コイル、電源、ワークと対面する磁極、強磁性材粒子より構成され、励磁コイルに電圧を印加しワークと対面する磁極間に磁界を発生させながら、ワークと磁極とを相対的に回転あるいは揺動させる磁気研磨装置において、Al23やCeO2等を砥材とするスラリー状の研磨液をワークと綿、絹、レーヨン、ナイロン等の繊維を材料とする起毛で被覆した強磁性材粒子との間隙に供給しながら磁気研磨を行うことを特徴とする磁気研磨装置。It consists of a yoke, an excitation coil, a power supply, a magnetic pole facing the workpiece, and ferromagnetic particles. A voltage is applied to the excitation coil and a magnetic field is generated between the magnetic pole facing the workpiece and the workpiece and the magnetic pole rotate relatively. Alternatively, in a magnetic polishing apparatus to be oscillated, a ferromagnetic polishing material in which a slurry-like polishing liquid using Al 2 O 3 or CeO 2 or the like as an abrasive is covered with a brushed material made of a material such as cotton, silk, rayon, or nylon. A magnetic polishing apparatus that performs magnetic polishing while supplying it to a gap with a material particle. 請求項1の磁気研磨装置において、ワーク形状に合わせてワークと磁極との相対位置決めを行う際に、加工点における法線が磁力線の方向とほぼ一致するように法線制御を行うことを特徴とする磁気研磨装置。2. The magnetic polishing apparatus according to claim 1, wherein when the relative positioning of the workpiece and the magnetic pole is performed in accordance with the workpiece shape, the normal control is performed so that the normal line at the processing point substantially coincides with the direction of the magnetic force line. Magnetic polishing device. ヨーク、励磁コイル、電源、ワークと対面する磁極、強磁性材粒子より構成され、励磁コイルに電圧を印加しワークと対面する磁極間に磁界を発生させながら、ワークと磁極とを相対的に回転あるいは揺動させる磁気研磨方法において、Al23やCeO2等を砥材とするスラリー状の研磨液をワークと綿、絹、レーヨン、ナイロン等の繊維を材料とする起毛で被覆した強磁性材粒子との間隙に供給しながら磁気研磨を行うことを特徴とする磁気研磨方法。It consists of a yoke, an excitation coil, a power supply, a magnetic pole facing the workpiece, and ferromagnetic particles. A voltage is applied to the excitation coil and a magnetic field is generated between the magnetic pole facing the workpiece and the workpiece and the magnetic pole rotate relatively. Alternatively, in a magnetic polishing method that swings, a ferromagnetism in which a slurry-like polishing liquid using Al 2 O 3 , CeO 2 or the like as an abrasive is coated with a brushed material made of a material such as cotton, silk, rayon, or nylon. A magnetic polishing method, wherein magnetic polishing is performed while supplying the gap to the material particles. 請求項3記載の磁気研磨方法において、ワーク形状に合わせてワークと磁極との相対位置決めを行う際に、加工点における法線が磁力線の方向とほぼ一致するように法線制御を行うことを特徴とする磁気研磨方法。4. The magnetic polishing method according to claim 3, wherein when the relative positioning of the workpiece and the magnetic pole is performed in accordance with the workpiece shape, the normal control is performed so that the normal line at the processing point substantially coincides with the direction of the magnetic force line. Magnetic polishing method.
JP22348098A 1998-08-06 1998-08-06 Magnetic polishing apparatus and magnetic polishing method Expired - Fee Related JP3846052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22348098A JP3846052B2 (en) 1998-08-06 1998-08-06 Magnetic polishing apparatus and magnetic polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22348098A JP3846052B2 (en) 1998-08-06 1998-08-06 Magnetic polishing apparatus and magnetic polishing method

Publications (2)

Publication Number Publication Date
JP2000052218A JP2000052218A (en) 2000-02-22
JP3846052B2 true JP3846052B2 (en) 2006-11-15

Family

ID=16798801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22348098A Expired - Fee Related JP3846052B2 (en) 1998-08-06 1998-08-06 Magnetic polishing apparatus and magnetic polishing method

Country Status (1)

Country Link
JP (1) JP3846052B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108527014A (en) * 2018-06-05 2018-09-14 辽宁科技大学 A kind of non-contact type magnetic transmission magnetic abrasive finishing device and application method
CN108714824B (en) * 2018-06-08 2023-06-02 辽宁科技大学 Portable magnetic rust removal polishing machine and use method
CN112895568B (en) * 2021-01-19 2023-04-11 河南中杰药业有限公司 Many punching press of rotation type piece device for tablet production
CN114367377A (en) * 2021-12-15 2022-04-19 中国核工业电机运行技术开发有限公司 Magnetic field generating assembly for orderly separating and obtaining particles and separating method thereof
CN117697573B (en) * 2024-02-05 2024-04-30 四川炬科光学科技有限公司 Processing equipment for optical lens

Also Published As

Publication number Publication date
JP2000052218A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
JP4139906B2 (en) Polishing method and magnetic polishing apparatus for thin plate with opening pattern
Alam et al. MR fluid-based novel finishing process for nonplanar copper mirrors
JP2007268689A (en) Magnetic abrasive finishing device, method therefor, and machining tool used therefor
JP4185987B2 (en) Magnetic-assisted fine polishing apparatus and magnetic-assisted fine polishing method
JP2006224227A (en) Magnetic polishing method
JP3846052B2 (en) Magnetic polishing apparatus and magnetic polishing method
KR20190116923A (en) POLISHING METHOD OF SiC SUBSTRATE
KR100408932B1 (en) Abrading method for semiconductor device
JP3052201B2 (en) Precision plane processing machine
JP2007098541A (en) Polishing tool and polish method
WO2021238792A1 (en) Magnetic grinding apparatus and magnetic grinding control method
JP2005001027A (en) Probe needle grinding device
JP2007296598A (en) Magnetic polishing method and wafer polishing device
JP2005153106A (en) Polishing tool, polishing tool manufacturing method, polishing method, and polishing device
JP2006082213A (en) Method of cutting work and cutting work/mirror polishing device
JP2000061810A (en) Magnetic grinding method and magnetic grinding device
JP2000225555A (en) Jig tool for polishing and polishing method
JP2008254140A (en) Dressing device for thin blade grinding wheel, dressing method, manufacturing method of semiconductor and manufacturing method of precision part
JP4471197B2 (en) Polishing method that does not require processing pressure control
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
JP2005186239A (en) Grinding method using magnetic abrasive grain, and grinder
JP2008055589A (en) Grinding wheel used for polishing machine
JPH09180389A (en) Magnetic head slider production device and magnetic head slider production
JPH0550377A (en) Magnetogrinding method
JP2891681B2 (en) Method and apparatus for polishing inner surface of non-magnetic cylinder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees