JP2005153106A - Polishing tool, polishing tool manufacturing method, polishing method, and polishing device - Google Patents

Polishing tool, polishing tool manufacturing method, polishing method, and polishing device Download PDF

Info

Publication number
JP2005153106A
JP2005153106A JP2003398000A JP2003398000A JP2005153106A JP 2005153106 A JP2005153106 A JP 2005153106A JP 2003398000 A JP2003398000 A JP 2003398000A JP 2003398000 A JP2003398000 A JP 2003398000A JP 2005153106 A JP2005153106 A JP 2005153106A
Authority
JP
Japan
Prior art keywords
polishing
abrasive grains
polishing tool
polishing layer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003398000A
Other languages
Japanese (ja)
Inventor
Susumu Cho
軍 張
Hiroyuki Endo
弘之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003398000A priority Critical patent/JP2005153106A/en
Publication of JP2005153106A publication Critical patent/JP2005153106A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of a polishing tool, including increased machining resistance, abrasive slipout, and clogging with chips, occurring in polishing a component part such as a silicon wafer. <P>SOLUTION: The polishing tool has a base material, and a polishing layer fixed to the base material by means of a binder and having abrasive grains and magnetic grains, or abrasive grains formed of a magnetic material. Then a magnetic field is applied to the polishing tool from outside to oscillate the polishing layer in a direction perpendicular to a surface to be machined. Thus a time period for which the abrasive grains make contact with the surface to be machined is shortened, and therefore incision in the surface to be machined by the abrasive grains can be made fine, leading to reduction in damage on the surface to be machined. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、研磨加工における研磨具、研磨具製造方法、研磨方法及び研磨装置に関する。   The present invention relates to a polishing tool, a polishing tool manufacturing method, a polishing method, and a polishing apparatus in polishing processing.

シリコンウェーハやガラスディスクをはじめ、各種硬脆材料や金属材料からなる部品の最終仕上げには、遊離砥粒を用いた研磨加工仕上げ相当の優れた仕上げ面粗さを得ることのできる固定砥粒加工工具の開発が各方面で活発に行われている。砥粒加工において良好な加工面粗さを得るには、通常、微細な砥粒を使用することが有利であり、固定砥粒加工工具においても、それは同様である。しかし、鏡面といった優れた加工面を得るために、固定砥粒加工工具において粒径数μm以下の砥粒を使用すると、加工時に砥粒結合材と工作物との接触が生じやすく、その結果、加工抵抗の急増、砥粒の脱落等が生じ、最悪の場合には加工不可の状態に陥ってしまう。また切りくずなどによる目詰まりは、加工能率を低下させてしまうだけではなく、せっかく得られた鏡面に再びスクラッチ、傷などを与えてしまうといった問題点がある。   Fixed abrasive processing that can provide excellent finished surface roughness equivalent to polishing finish using loose abrasive for final finishing of parts made of various hard and brittle materials and metal materials such as silicon wafer and glass disk Tools are actively being developed in various directions. In order to obtain a good surface roughness in abrasive processing, it is usually advantageous to use fine abrasive grains, and the same applies to fixed abrasive processing tools. However, in order to obtain an excellent processed surface such as a mirror surface, when using abrasive grains having a particle size of several μm or less in a fixed abrasive processing tool, contact between the abrasive binder and the workpiece is likely to occur during processing. A sharp increase in processing resistance, dropping of abrasive grains, and the like occur, and in the worst case, the processing becomes impossible. Further, clogging due to chips or the like not only lowers the processing efficiency but also causes a problem that scratches and scratches are again given to the mirror surface obtained.

これらの問題を解決するものとして、微細な砥粒を造粒し、凝集した状態の粉末を砥粒として使用する固定砥粒加工工具があり、特許文献1、特許文献2等は凝集砥粒を基材上にバインダ樹脂で固定化した研磨具に関する発明がなされている。これらの固定砥粒加工工具においては、微細な砥粒の作用により優れた加工面粗さが得られ、同時に凝集した砥粒による高い加工能率の達成等が実現される。また、特許文献3においては、微細な一次粒子同士の結合状態に注目し、開示した発明により作製された砥粒においては砥粒摩耗が徐々に進行することができ、切りくずも砥粒磨耗と同時に排出され、目詰まりを回避できると同時に、高加工面品位を高加工能率で達成しようとしている。   As a solution to these problems, there is a fixed abrasive machining tool that uses finely divided abrasive grains and uses agglomerated powder as abrasive grains. Patent Document 1, Patent Document 2 and the like describe agglomerated abrasive grains. An invention relating to a polishing tool fixed on a base material with a binder resin has been made. In these fixed abrasive processing tools, excellent surface roughness is obtained by the action of fine abrasive grains, and at the same time, achievement of high processing efficiency is realized by the aggregated abrasive grains. Further, in Patent Document 3, attention is paid to the bonding state of fine primary particles, and abrasive wear can be gradually progressed in abrasive grains produced by the disclosed invention, and chips are also worn away by abrasive grains. At the same time, they are discharged and can avoid clogging, while at the same time trying to achieve high machining surface quality with high machining efficiency.

図5は、特許文献1、特許文献2及び特許文献3に開示された作製方法で作製された研磨具の拡大断面図であり、この研磨具は、基材12上にバインダ11によって砥粒2を固定した構成を備え、砥粒2を確実に基材12上に固定し、なおかつバインダ11からの突き出し量を保証している。また、砥粒周りのバインダの部分は,排出された切りくず21や磨耗した砥粒2の蓄積場所となる。しかし、上記発明において、砥粒は大粒径のものを使用しており、加工進行に伴い、砥粒が平坦化磨耗し、切りくずも砥粒磨耗と同時に排出されるが、すべての砥粒がこのようにスムーズに作用するとは限らない、スクラッチの完全抑制にはまだ不十分である。具体的にいえば、ワークの加工面と接触する作用砥粒数は沢山あり、その中に一個の砥粒でも他のものと比べて、内部の微細粒子の結合が強すぎて(砥粒が硬すぎて)スクラッチが容易に発生してしまうケースがある。特に、加工対象物が大口径になれば、加工に同時に参加する砥粒が多いため、この悪影響はより顕著に出てくる恐れがある。   FIG. 5 is an enlarged cross-sectional view of a polishing tool manufactured by the manufacturing methods disclosed in Patent Document 1, Patent Document 2 and Patent Document 3, and this polishing tool is made of abrasive grains 2 by a binder 11 on a substrate 12. The abrasive grains 2 are securely fixed on the base material 12 and the protruding amount from the binder 11 is guaranteed. Further, the binder portion around the abrasive grains serves as an accumulation place for the discharged chips 21 and the worn abrasive grains 2. However, in the above invention, abrasive grains having a large particle size are used, and as the processing proceeds, the abrasive grains are flattened and worn, and chips are discharged simultaneously with the abrasive wear. However, this does not always work smoothly, and is still insufficient for complete suppression of scratches. Specifically, there are a large number of working abrasive grains that come into contact with the work surface of the workpiece. Among them, even one abrasive grain has too much internal fine particle bonding (the abrasive grains are There are cases where scratches easily occur (too hard). In particular, if the object to be processed has a large diameter, since many abrasive grains participate in the processing at the same time, this adverse effect may be more noticeable.

この課題に対し、微小振動を利用した従来加工技術がある。特に超音波を利用した研削などは盛んに研究されていた。例として、特許文献4や特許文献5などがある。特許文献4においては、砥石に積層型圧電アクチュエータを取り付け、加工時に超音波振動を用いて、加工進行を促進させ、より高能率を目的とした発明である。しかし、このような技術では、超音波の振幅は大きく、加工進行を促進するには効果があるものの、スクラッチを抑制するという課題を解決する前に、通常光学鏡面と呼ばれる優れた加工面を得ること自体が非常に困難と考えられる。   In order to solve this problem, there is a conventional processing technique using minute vibration. Especially, grinding using ultrasonic waves has been actively studied. Examples include Patent Document 4 and Patent Document 5. In Patent Document 4, a laminated piezoelectric actuator is attached to a grindstone, and ultrasonic processing is used at the time of processing to promote the progress of the processing, and the invention aims at higher efficiency. However, with such a technique, the amplitude of the ultrasonic wave is large and effective in promoting the progress of processing, but before solving the problem of suppressing scratches, an excellent processing surface, usually called an optical mirror surface, is obtained. This is considered very difficult.

これらの問題に対し、本発明者らがさらに鋭意研究を重ねた結果、基材の上にバインダで固定化した研磨層に、砥粒以外に磁性粒子からなる第2の粒子を導入し、あるいは砥粒自身が磁性粒子であり、加工時に外部磁界を変化させ、研磨層、あるいはすくなくとも砥粒をワークの加工面に対し、垂直方向に微小な振動をさせ、砥粒とワーク加工面との接触時間を短縮し、砥粒によるワーク表面への切り込みを微小化し、短時間化することによって、砥粒の粒径や硬さのばらつきによるスクラッチなどの加工による突発的な応力集中を回避し、加工による新たな加工ダメージを抑制することができ、高加工能率を犠牲することがなく、より確実に高加工面品位が得るには極めて効果があったことを判明した。
特開2000−190228号公報 特開2000−237962号公報 特開2003−105324号公報 特開平5−200659号公報 特開平9−207072号公報
As a result of further diligent research on these problems, the present inventors introduced second particles made of magnetic particles in addition to abrasive grains into the polishing layer fixed on the base material with a binder, or The abrasive grains themselves are magnetic particles, and the external magnetic field is changed during processing, and the abrasive layer, or at least the abrasive grains, vibrate in the vertical direction with respect to the work surface of the workpiece, and contact between the abrasive grains and the work surface of the work By shortening the time, minimizing the incision on the workpiece surface by the abrasive grains and shortening the time, it avoids sudden stress concentration due to processing such as scratches due to variations in the grain size and hardness of the abrasive grains. It has been found that new processing damage due to can be suppressed, high processing efficiency is not sacrificed, and it is extremely effective to obtain high processing surface quality more reliably.
JP 2000-190228 A Japanese Patent Laid-Open No. 2000-237962 JP 2003-105324 A Japanese Patent Laid-Open No. 5-200659 Japanese Patent Laid-Open No. 9-207072

この発明の課題は、基材の上にバインダで砥粒を固定化した研磨層による加工物の加工面を研磨加工時に、該研磨層に存在する砥粒の粒径や砥粒突き出し量や硬さなどのばらつきによるスクラッチの発生を抑制し、高加工面品位を保証する研磨具の研磨特性に着目してなされたもので、研磨層、少なくとも研磨層に固定されている砥粒を加工面に対し垂直方向で微小な振動をさせることで、砥粒とワーク加工面との接触時間を短縮し、砥粒によるワーク表面への切り込みを微小化することによって、砥粒の粒径や硬さのばらつきによる突発的な応力集中を回避し、加工によるスクラッチなどの新たな加工ダメージを抑制することができ、高加工能率を犠牲することなく、確実に高加工面品位が得ることができると同時に、安価かつ簡単に製造できる研磨具およびそれを用いた加工装置、加工方法を提供することにある。   An object of the present invention is to polish the grain size of abrasive grains existing in the polishing layer, the amount of protrusion of the abrasive grains, and the hardness of the processed surface of the workpiece by the polishing layer in which the abrasive grains are fixed on the base material with a binder. Suppression of scratches due to variations in thickness, etc., and focusing on the polishing characteristics of the polishing tool that guarantees high processing surface quality. The polishing layer, at least abrasive grains fixed to the polishing layer, is used as the processing surface. On the other hand, by making minute vibrations in the vertical direction, the contact time between the abrasive grains and the work surface of the workpiece is shortened, and the cutting of the abrasive grains into the workpiece surface is miniaturized, thereby reducing the grain size and hardness of the abrasive grains. Abrupt stress concentration due to variation can be avoided, new processing damage such as scratches due to processing can be suppressed, and high processing surface quality can be reliably obtained without sacrificing high processing efficiency, Cheap and easy to manufacture Kill polishing tool and processing apparatus using the same, it is to provide a machining method.

上記課題を解決するため、本発明は、基材の上にバインダで砥粒を固定化した研磨層を加工物の加工面と摺動し研磨加工中に、上記研磨層を上記加工面に対し、垂直な方向で微小な振動をさせる手段を設けることを特徴とする。   In order to solve the above-described problems, the present invention provides a polishing layer that is fixed on a base material with a binder by sliding a polishing layer against a processed surface of a workpiece and polishing the polishing layer with respect to the processed surface. , And means for causing minute vibrations in a vertical direction.

また本発明は、上記研磨層に砥粒以外に磁性体粒子からなる第2の粒子が含まれ、外部磁界を変化させることによって、上記研磨層を上記加工面に対し、垂直な方向に微小な振動をさせることを特徴とする。   According to the present invention, the polishing layer includes second particles made of magnetic particles in addition to the abrasive grains. By changing the external magnetic field, the polishing layer is made minute in a direction perpendicular to the processed surface. It is characterized by causing vibration.

また本発明は、前記研磨層に磁性体粒子からなる砥粒が含まれ、外部磁界を変化させることによって、上記研磨層を上記加工面に対して垂直な方向に微小な振動をさせることを特徴とする。   According to the present invention, the polishing layer includes abrasive grains made of magnetic particles, and the external magnetic field is changed to cause the polishing layer to vibrate in a direction perpendicular to the processing surface. And

また本発明は、研磨具の研磨層において、上記磁性体粒子からなる第2の粒子の粒径が上記砥粒の粒径より小さいことを特徴とする。   According to the present invention, in the polishing layer of the polishing tool, the particle size of the second particles made of the magnetic particles is smaller than the particle size of the abrasive particles.

また本発明は、研磨具の研磨層において、磁性体粒子からなる第2の粒子が上記砥粒を基材の表面に固定するバインダに含まれ、上記砥粒を基材の表面に固定するバインダの厚みが上記砥粒の最大直径よりも小さいことを特徴とする。   According to the present invention, in the polishing layer of the polishing tool, the second particles made of magnetic particles are included in a binder that fixes the abrasive grains to the surface of the substrate, and the binder that fixes the abrasive grains to the surface of the substrate. The thickness of is smaller than the maximum diameter of the abrasive grains.

また本発明は、研磨具の研磨層において、上記砥粒の含有率が10体積%以上90体積%以下であることを特徴とする。   In the polishing layer of the polishing tool, the content of the abrasive grains is 10% by volume or more and 90% by volume or less.

また本発明は、研磨具の下に、一定の間隔で多数の一定の形状を有するパターン化された強磁性体が埋設され、さらに該強磁性体の下には電磁石が配置されて、上記磁界が、上記電磁石によって生じさせられることを特徴とする。   In the present invention, a patterned ferromagnetic material having a large number of constant shapes is embedded under a polishing tool, and an electromagnet is disposed under the ferromagnetic material. Is generated by the electromagnet.

また本発明は、研磨具の下に埋設されている強磁性体が軟磁性であり、飽和磁化が0.8テスラ以上であることを特徴とする。   The present invention is also characterized in that the ferromagnetic material buried under the polishing tool is soft magnetic and has a saturation magnetization of 0.8 Tesla or more.

また本発明は、上記砥粒に上記磁性体第2粒子を混合する混合工程と、さらにバインダを加えて混合した塗布液を作製する工程と、あらかじめ基材の表面と直交する方向に磁界を生じさせ、磁界が存在する環境で上記塗布液を基材上に塗布する工程を有することを特徴とする。   The present invention also includes a mixing step of mixing the second magnetic particles with the abrasive grains, a step of preparing a coating solution by adding a binder, and a magnetic field in a direction perpendicular to the surface of the substrate in advance. And the step of applying the coating solution onto the substrate in an environment where a magnetic field exists.

また本発明は、上記研磨具および上記研磨方法を用いた研磨装置であることを特徴とする。   Further, the present invention is a polishing apparatus using the polishing tool and the polishing method.

本発明によれば、基材の上にバインダで砥粒を固定化した研磨層を加工物の加工面と摺動し研磨加工中に、研磨層を加工面に対し、垂直な方向に微小な振動をさせる手段も用い、研磨加工時に、砥粒とワーク加工面との接触時間を短縮し、砥粒によるワーク表面への切り込みを微小化することによって、砥粒の粒径や硬さのばらつきによるスクラッチなどの加工による突発的な応力集中を回避し、加工による新たな加工ダメージを抑制することができ、高加工能率を犠牲することがなく、確実に高加工面品位が得ることができる。   According to the present invention, a polishing layer in which abrasive grains are fixed on a substrate with a binder is slid with a processing surface of a workpiece and the polishing layer is minute in a direction perpendicular to the processing surface during polishing processing. By using a means to vibrate, during polishing, the contact time between the abrasive grains and the work surface is shortened, and the cutting of the abrasive grains into the workpiece surface is miniaturized, resulting in variations in the grain size and hardness of the abrasive grains. Therefore, sudden stress concentration due to machining such as scratching can be avoided, new machining damage caused by machining can be suppressed, and high machining surface quality can be reliably obtained without sacrificing high machining efficiency.

また本発明によれば、研磨層に砥粒以外に磁性体粒子からなる第2の粒子、又は磁性体である砥粒が含まれ、外部磁界を変化させることより確実に研磨層を加工面に対し、垂直な方向に微小な振動をさせることができる。例えば、研磨加工時にある一定な周波数で外部磁界をオン/オフする場合、オンの時に磁性粒子は磁界方向に吸引され、磁界がオフの時に、磁性粒子は磁界による吸引から開放され、バインダの弾性によりもとの位置に戻される。従って、この運動を繰り返させれば、加工面の垂直方向に研磨層、あるいは砥粒に微小な振動をもたらし、砥粒とワーク加工面との接触時間を短縮し、砥粒によるワーク表面への切り込みを微小化することによって、砥粒の粒径や硬さのばらつきによるスクラッチなどの加工による突発的な応力集中を回避し、加工による新たな加工ダメージを抑制することができる。   Further, according to the present invention, the polishing layer contains second particles made of magnetic particles in addition to the abrasive grains, or abrasive grains that are magnetic bodies, and the polishing layer is more reliably formed on the processed surface by changing the external magnetic field. On the other hand, minute vibrations can be caused in the vertical direction. For example, when an external magnetic field is turned on / off at a certain frequency during polishing, magnetic particles are attracted in the direction of the magnetic field when turned on, and when the magnetic field is turned off, the magnetic particles are released from attraction by the magnetic field, and the elasticity of the binder To return to the original position. Therefore, if this motion is repeated, the polishing layer or abrasive grains in the vertical direction of the machined surface are subjected to minute vibrations, the contact time between the abrasive grains and the workpiece machining surface is shortened, and the workpiece surface is cut by the abrasive grains. By miniaturizing, it is possible to avoid sudden stress concentration due to processing such as scratches due to variations in the grain size and hardness of the abrasive grains, and to suppress new processing damage due to processing.

また本発明によれば、磁性体粒子からなる第2の粒子の粒径は砥粒の粒径より小さいため、より確実に磁性体粒子を研磨層のバインダの中に含ませることができ、研磨加工時に、研磨層あるいは砥粒の振動を起こす役割を果たし、この第2の粒子が加工面に露出することによる悪影響を抑制することができる。   Further, according to the present invention, since the particle size of the second particles made of magnetic particles is smaller than the particle size of the abrasive particles, the magnetic particles can be more reliably contained in the binder of the polishing layer, It plays the role which raise | generates the vibration of a grinding | polishing layer or an abrasive grain at the time of a process, and can suppress the bad influence by this 2nd particle | grains being exposed to a processing surface.

また本発明によれば、磁性体粒子からなる第2の粒子は砥粒を基材の表面に固定するバインダに含まれ、砥粒を基材の表面に固定するバインダの厚みは砥粒の最大直径よりも小さいことにより、研磨加工時に、砥粒がバインダよりも突き出した状態が維持され、より確実かつ安定に、工作物を高能率、高精度に仕上げ加工することができる。   According to the present invention, the second particles made of magnetic particles are included in the binder that fixes the abrasive grains to the surface of the substrate, and the thickness of the binder that fixes the abrasive grains to the surface of the substrate is the maximum of the abrasive grains. By being smaller than the diameter, the state in which the abrasive grains protrude from the binder is maintained during polishing, and the workpiece can be finished with high efficiency and high accuracy more reliably and stably.

また本発明によれば、砥粒の含有率が10体積%以上90体積%以下であることにより、高能率で、かつ、高品位な加工面を得ることが特に効果的に達成可能となる。複合粒子の添加率が10体積%未満であると添加の効果がなく、90体積%をこえると研磨具の結合剤量が少なすぎて、砥粒保持強度が著しく低下し、工具として用いることができない。   Further, according to the present invention, when the abrasive content is 10% by volume or more and 90% by volume or less, it is possible to particularly effectively achieve a highly efficient and high-quality processed surface. If the addition rate of the composite particles is less than 10% by volume, the effect of the addition is not obtained. Can not.

また本発明によれば、大きな専用装置を必要とせず、外部磁界の変化を制御することで、研磨層に含まれている磁性体粒子からなる第2の粒子、あるいは磁性体から砥粒に対し、ある一定の周波数で振動させることができる。   Further, according to the present invention, the second particle composed of the magnetic particles contained in the polishing layer or the magnetic material to the abrasive grains is controlled by controlling the change of the external magnetic field without requiring a large dedicated device. It can be vibrated at a certain frequency.

また本発明によれば、研磨具の下に埋設されている強磁性体は軟磁性であり、飽和磁化が0.8テスラ以上であれば、電磁石による発せする磁界が小さくても、強磁性体がよりやすく励磁されることで、より大きな磁束密度が得られ、粒径の小さい磁性体粒子も確実に吸着することができる。また、強磁性体が軟磁性であるため、残留磁化が小さく、外部磁界の変化により追随することができ、より確実に研磨層、あるいは砥粒を微小な振動をさせることができる。   Further, according to the present invention, the ferromagnetic material buried under the polishing tool is soft magnetic, and if the saturation magnetization is 0.8 Tesla or more, even if the magnetic field generated by the electromagnet is small, the ferromagnetic material Is more easily excited, a larger magnetic flux density can be obtained, and magnetic particles having a small particle diameter can be reliably adsorbed. Further, since the ferromagnetic material is soft magnetic, the residual magnetization is small and can be followed by a change in the external magnetic field, and the polishing layer or the abrasive grains can be vibrated minutely more reliably.

また本発明によれば、予め基材の表面と直交する方向に磁界を生じさせ、磁界が存在する環境で塗布液を基材上に塗布する工程によれば、磁性体粒子からなる第2の粒子はより基材の近いところに分布されることができる。これによる効果は、まず磁性体粒子が研磨具の下に埋設された強磁性体に近いため、加工研磨時により吸引されやすいことである。更に、磁性体粒子をより確実にバインダの内部に留めることができ、加工中に加工面に露出することを抑制することができる。   According to the invention, according to the step of generating a magnetic field in a direction perpendicular to the surface of the substrate in advance and applying the coating liquid on the substrate in an environment where the magnetic field exists, the second step comprising the magnetic particles is performed. The particles can be distributed closer to the substrate. The effect of this is that, first, the magnetic particles are close to a ferromagnetic material embedded under the polishing tool, and thus are more easily attracted during processing and polishing. Furthermore, the magnetic particles can be more reliably retained inside the binder, and exposure to the processed surface during processing can be suppressed.

また本発明によれば、複雑な設備を必要とせず、研磨加工時に、より確実に研磨層、少なくとも砥粒を加工面に対し、垂直方向で微小な振動をさせることができ、砥粒とワーク加工面との接触時間を短縮し、砥粒によるワーク表面への切り込みを微小化することによって、砥粒の粒径や硬さのばらつきによる突発的な応力集中を回避し、加工によるスクラッチなどの新たな加工ダメージを抑制することができ、高加工能率を犠牲することがなく、確実に高加工面品位が得ることができる。   Further, according to the present invention, no complicated equipment is required, and at the time of polishing, the polishing layer, at least the abrasive grains, can be vibrated minutely in the vertical direction with respect to the processing surface. By shortening the contact time with the machined surface and minimizing the incision on the workpiece surface by the abrasive grains, it avoids sudden stress concentration due to variations in the grain size and hardness of the abrasive grains. New processing damage can be suppressed, high processing efficiency can be reliably obtained without sacrificing high processing efficiency.

以下、図面により本発明による研磨具を説明する。
本発明の研磨具は、図1に示すように基材12の片面上に砥粒を磁性体からなる第2の粒子を含んだバインダで固定されている。
研磨具を製造する際には、図3の研磨具の塗布装置の平面図に示すように、基材12の上に予め砥粒および磁性体からなる第2の微粒子を含有する塗布液を塗布する。この際に、基材の平面に直交する磁界を印加している。従って、磁性体からなる第2の微粒子は外部磁界の存在により、基材の近いところに引き寄せられて、確実にバインダの中に含ませることができ、第2の微粒子を加工面に露出することなく、砥粒の突き出し量を確実に確保することができる。
Hereinafter, the polishing tool according to the present invention will be described with reference to the drawings.
In the polishing tool of the present invention, as shown in FIG. 1, abrasive grains are fixed on one surface of a substrate 12 with a binder containing second particles made of a magnetic material.
When manufacturing the polishing tool, as shown in the plan view of the polishing tool applicator shown in FIG. 3, a coating solution containing second fine particles made of abrasive grains and magnetic material is applied on the base 12 in advance. To do. At this time, a magnetic field orthogonal to the plane of the substrate is applied. Therefore, the second fine particles made of the magnetic material are attracted to the vicinity of the base material due to the presence of the external magnetic field, and can be surely included in the binder, and the second fine particles are exposed to the processing surface. Therefore, the protruding amount of the abrasive grains can be reliably ensured.

また、上記研磨層において、砥粒を基材上に固定するバインダ11の実質的厚みは、砥粒2の平均粒径よりも小さいので、研磨加工時に砥粒がバインダよりも突出した上体を維持し、仕上げ加工精度を高めることができる。砥粒2としては、加工対象物にもよるが、一般には硬質無機材料であって、平均粒径が5μm以下の一次粒子の微細粉末が凝集して、平均粒径10〜300μm程度のもの、さらに好ましくは平均粒径40〜100μm程度の二次粒子径を備えたものが適する。通常の砥粒2に供する材料は、シリカ、セリア、ダイヤモンド、CBN(立方晶窒化ホウ素)、アルミナ、炭化珪素、酸化ジルコニウム等である。凝集体はゾルゲル法、スプレードライヤー等の手段でつくることができる(また、凝集でない一般に使われている単粒子砥粒も可能である)。   Further, in the polishing layer, the substantial thickness of the binder 11 for fixing the abrasive grains on the base material is smaller than the average grain diameter of the abrasive grains 2, so that the upper body in which the abrasive grains protrude from the binder during the polishing process. Maintaining and improving finishing accuracy. As the abrasive 2, although it depends on the object to be processed, it is generally a hard inorganic material, and a fine powder of primary particles having an average particle size of 5 μm or less aggregates to have an average particle size of about 10 to 300 μm. More preferably, those having a secondary particle size of about 40 to 100 μm in average particle size are suitable. Materials used for the normal abrasive grains 2 are silica, ceria, diamond, CBN (cubic boron nitride), alumina, silicon carbide, zirconium oxide, and the like. Aggregates can be produced by means such as a sol-gel method or a spray dryer (and generally used single particle abrasive grains that are not agglomerated are also possible).

また、磁性体粒子の粒径は砥粒の粒径より小さくすることで、より確実に磁性体粒子を研磨層のバインダの中に含ませることができる。これにより、研磨加工時に、研磨層あるいは砥粒の振動を起こす役割を果たし、磁性体粒子が加工面に露出することによる悪影響を抑制することができる。   In addition, by making the particle diameter of the magnetic particles smaller than the particle diameter of the abrasive grains, the magnetic particles can be more reliably included in the binder of the polishing layer. Thereby, it plays the role which raise | generates the vibration of a grinding | polishing layer or an abrasive grain at the time of grinding | polishing, and can suppress the bad influence by a magnetic body particle being exposed to a processed surface.

また、砥粒の含有率を10体積%以上90体積%以下にすることで、高能率かつ高品位な加工面を得ることができる。砥粒の添加率が10体積%未満であると添加の効果がなく、90体積%をこえると研磨具の結合剤量が少なすぎて、砥粒保持強度が著しく低下し、工具として用いることができない。   Moreover, a highly efficient and high quality processed surface can be obtained by making the content rate of an abrasive grain into 10 volume% or more and 90 volume% or less. When the addition rate of the abrasive grains is less than 10% by volume, the effect of the addition is not obtained. Can not.

上記の如き製造方法により製造された研磨具によれば、砥粒2を確実に基材12上に固定することができると同時に、磁性体からなる第2の微粒子は外部磁界の存在により、基材の近いところに引き寄せられて,確実にバインダの中に含ませることができ、第2の微粒子を加工面に露出することなく、砥粒の突き出し量を確実に確保することができる。 従って、加工時に、外部磁界を変化させることで、より確実に研磨層、あるいは砥粒を加工面と垂直方向に微小な振動をさせ、砥粒とワーク加工面との接触時間を短縮し、砥粒によるワーク表面への切り込みを微小化することによって、砥粒の粒径や硬さのばらつきによるスクラッチなどの加工による突発的な応力集中を回避し、加工による新たな加工ダメージを抑制することができ、高加工能率を犠牲することがなく、確実にナノメータオーダの優れた加工面品位を得ることができる。   According to the polishing tool manufactured by the manufacturing method as described above, the abrasive grains 2 can be reliably fixed on the base material 12 and, at the same time, the second fine particles made of a magnetic substance are It is drawn close to the material and can be surely included in the binder, and the protruding amount of the abrasive grains can be reliably ensured without exposing the second fine particles to the processing surface. Therefore, by changing the external magnetic field during processing, the polishing layer or abrasive grains can be vibrated minutely in the direction perpendicular to the processing surface, reducing the contact time between the abrasive grains and the workpiece processing surface. By minimizing the incision on the workpiece surface by grains, sudden stress concentration due to scratching due to variations in grain size and hardness of abrasive grains can be avoided, and new machining damage due to machining can be suppressed. Therefore, it is possible to reliably obtain an excellent processed surface quality of nanometer order without sacrificing high processing efficiency.

以下、本発明の第1の実施例を説明する。
まずは、50〜60nmからなる超微細ZrO2 粉末(超微細粒子)を水で泥しょう化し、スプレードライヤーで噴霧させて、所望のサイズを有する、例えば平均粒径で60μmの2次粒子(顆粒)を得る(一般的に、1μm〜300μmまでのサイズが得られる。粒度分布がシャープでないときに、分級プロセスを加える)。
The first embodiment of the present invention will be described below.
First, ultrafine ZrO 2 powder (ultrafine particles) consisting of 50 to 60 nm is made muddy with water and sprayed with a spray dryer to have secondary particles (granules) having a desired size, for example, an average particle diameter of 60 μm. (In general, sizes from 1 μm to 300 μm are obtained. Add a classification process when the particle size distribution is not sharp).

平均粒径は堀場製作所製レーザ回折/散乱式粒度分布測定装置LA−920を用いて、乾式で測定を行った。平均粒径の値は頻度積算50%のところの粒径を用いた(通常、メジアン径とも言う)。しかし、通常スプレードライヤーで作製した顆粒の1次粒子同士の結合力は弱すぎる場合もある。従って、必要に応じて、ZrO2 顆粒を電気炉の中に入れ、焼成を行った。また、焼成時間を短縮するために、あるいは硬さを更に高めるために、焼成時に、加圧した状態で行う場合もある。 The average particle diameter was measured by a dry method using a laser diffraction / scattering particle size distribution measuring apparatus LA-920 manufactured by Horiba. For the average particle size, the particle size at a frequency integration of 50% was used (usually also referred to as median diameter). However, the binding force between primary particles of a granule usually produced by a spray dryer may be too weak. Therefore, if necessary, ZrO 2 granules were placed in an electric furnace and fired. Moreover, in order to shorten baking time or in order to raise hardness further, it may carry out in the pressurized state at the time of baking.

一次粒子が加熱処理により成長するが、当該一次粒子がその構成物質の物質移動により成長するのみならず、粒子同士の結合箇所は、粒子の構成物質の物質移動により太くなり、不連続点のないなだらかな曲面となり、1葉双曲面状(鼓状)にくびれた、いわゆる「ネック」状となる。この加熱処理時の物質移動による一次粒子の成長及び「ネック」形成については、株式会社産業技術センター発行「セラミック材料技術集成」(昭和54年4月10日初版第1刷発行)の「2.3 物質移動の機構と焼結のモデル」に詳細に記載されている。この焼成工程においては、加熱温度および保持時間を制御することで、一次粒子同士の結合点にネックを形成させ、その多数の一次粒子が部分的に、かつ、その間に空隙が形成されている状態で結合している粒状の多孔質体に形成した。   Although primary particles grow by heat treatment, the primary particles grow not only by the mass transfer of the constituent substances, but also the bonding points between the particles become thicker due to the mass transfer of the constituent substances of the particles, and there are no discontinuities. It has a gentle curved surface and a so-called “neck” shape constricted in a one-leaf hyperboloid shape (a drum shape). Regarding the growth of primary particles and the formation of “neck” by mass transfer during the heat treatment, “2. Ceramic material technology collection” issued by the Industrial Technology Center Co., Ltd. (first edition issued on April 10, 1979) “2. 3 “Mass transfer mechanism and sintering model”. In this firing step, by controlling the heating temperature and holding time, a neck is formed at the bonding point between the primary particles, and a large number of the primary particles are partially formed and voids are formed therebetween. It formed into the granular porous body couple | bonded by.

次に、上記ZrO2 砥粒を磁性体粒子と混合した。磁性体粒子の組成としては、FeO・Fe34やFe23 やNiやCoなどがある。平均粒径が5μm以下の微細粉末が望ましい。ここでは、平均粒径5μmの酸化鉄(FeO・Fe34 )を用いた。そして、混合物に液状のウレタン樹脂に溶媒を加え、溶液粘度を調整した後、図3で示しているように、基材(例えば、厚さ約75μmのPET)の表面に直行する磁界の中で、ワイヤバーコータを用いて上記砥粒、FeO・Fe34 の第2粒子を含んだ塗布液を塗布した。そして最後に、塗布した研磨具を、恒温槽(Yamato科学製)60℃程度で1時間程度乾燥を施し、研磨具を作製した。 Next, the ZrO 2 abrasive grains were mixed with magnetic particles. Examples of the composition of the magnetic particles include FeO.Fe 3 O 4 , Fe 2 O 3 , Ni, and Co. A fine powder having an average particle size of 5 μm or less is desirable. Here, iron oxide (FeO.Fe 3 O 4 ) having an average particle diameter of 5 μm was used. Then, after adding a solvent to the liquid urethane resin and adjusting the solution viscosity to the mixture, as shown in FIG. 3, in a magnetic field perpendicular to the surface of the substrate (for example, PET having a thickness of about 75 μm). The coating liquid containing the abrasive grains and the second particles of FeO.Fe 3 O 4 was applied using a wire bar coater. Finally, the coated polishing tool was dried at about 60 ° C. for about 1 hour in a thermostatic bath (manufactured by Yamato Kagaku) to prepare a polishing tool.

このように作製した研磨具を図2(B)に示したパターン化された強磁性体を埋設された定盤に取りつけた。定盤の材質は、例えばSUS304、セラミックスなどの非磁性なものを用いた。また、図2(A)に示したように、強磁性体はある一定な形状、例えば円形、矩形、ライン状、リング状のものがある(ここでは、円形のものを例として説明する)。この円形の強磁性体同士は一定な間隔で格子状あるいは千鳥状などに配置されている。   The polishing tool thus produced was attached to a surface plate in which the patterned ferromagnetic material shown in FIG. 2B was embedded. As the material of the surface plate, for example, a nonmagnetic material such as SUS304 or ceramics was used. As shown in FIG. 2A, the ferromagnetic material has a certain shape, for example, a circular shape, a rectangular shape, a line shape, or a ring shape (here, a circular shape will be described as an example). The circular ferromagnets are arranged in a lattice pattern or a staggered pattern at regular intervals.

強磁性体の材料として、方向性ケイ素鋼板を用いた(飽和磁化は1.0T)。そして、この強磁性体が埋設された定盤の下にある電磁石に流す電流をある一定の周波数でオン/オフすることで、磁界を電流の周波数に応じて周期的に発生させる。また、加工時に電磁石に流す電流の大きさ、及びタイミング的に各電磁石に一斉に電流を流すか又は選択的に各々の電磁石にランダムに電流を流すかにより、磁界の大きさや発生パターンなどを制御する。これにより、研磨層又は砥粒の振動を制御する。   A directional silicon steel plate was used as the ferromagnetic material (saturation magnetization was 1.0 T). A magnetic field is periodically generated according to the frequency of the current by turning on / off the current flowing through the electromagnet under the surface plate in which the ferromagnetic material is embedded at a certain frequency. In addition, the magnitude of the magnetic field and the pattern of generation are controlled by the magnitude of the current that flows through the electromagnets during machining and whether the currents are flowed simultaneously to each electromagnet in a timely manner or selectively through each electromagnet. To do. Thereby, the vibration of the polishing layer or the abrasive grains is controlled.

強磁性体として軟磁性(透磁率が高く、保磁力が低い)材料を選び、飽和磁化が0.8テスラ以上のものを利用すれば、電磁石により発せられる磁界が小さくても、強磁性体がよりやすく励磁されることで、より大きな磁束密度が得られ、粒径の小さい磁性体粒子をも確実に吸着することができる。また、強磁性体が軟磁性であるため、残留磁化が小さく、外部磁界の変化により追随することができ、より確実に研磨層、あるいは砥粒に微小な振動をさせることができる。   By selecting a soft magnetic material (high magnetic permeability and low coercive force) as the ferromagnetic material and using a material having a saturation magnetization of 0.8 Tesla or higher, the ferromagnetic material can be used even if the magnetic field generated by the electromagnet is small. By exciting more easily, a larger magnetic flux density can be obtained, and magnetic particles having a small particle diameter can be reliably adsorbed. Further, since the ferromagnetic material is soft magnetic, the residual magnetization is small and can be followed by a change in the external magnetic field, so that the polishing layer or the abrasive grains can be caused to vibrate more reliably.

図1(B)で示したように、各砥粒の下に磁性体粒子が存在することで、外部磁界が発生したときに、aの砥粒、あるいはaを取り込んだ周りの研磨層が定盤に引き寄せられ、その後、磁界をオフにした時に、バインダの弾性により、再び元の位置に戻される。この操作を繰り返され、砥粒あるいは研磨層は周期的に微小な振動をもたらすことができる。   As shown in FIG. 1B, the presence of magnetic particles under each abrasive grain makes it possible to determine the abrasive grains a or the surrounding polishing layer into which a is incorporated when an external magnetic field is generated. When it is attracted to the board and then the magnetic field is turned off, it is returned to the original position again by the elasticity of the binder. By repeating this operation, the abrasive grains or the polishing layer can periodically cause minute vibrations.

また、振幅に関しては、磁性体粒子の大きさ、電磁石の電流、そして定盤に埋設された飽和磁化の異なる強磁性体への取替えにより、制御が可能である。この制御による発生できる振幅はおよそ1μmぐらいであった。このような構成を備え、図4で示した加工装置で、面粗さ30nmRy程度を有する鏡面に調整したφ150mmのBK7光学ガラスディスクを3分間で加工した結果(加工条件:定盤回転数60rpm、加工圧力30kPa)、加工マーク(スクラッチ、加工傷など)フリー、かつ30nmRyを維持した鏡面を得ることができた(面粗さの評価はテーラホプソン社製フォームタリサーフS4Cで行った)。また、引き続きガラスディスクを10枚加工しても、スクラッチの発生は見られなかった。   In addition, the amplitude can be controlled by replacing the size of the magnetic particles, the current of the electromagnet, and the ferromagnetic material with different saturation magnetization embedded in the surface plate. The amplitude that can be generated by this control was about 1 μm. A result of processing a BK7 optical glass disk of φ150 mm adjusted to a mirror surface having a surface roughness of about 30 nm Ry in 3 minutes with the processing apparatus shown in FIG. 4 (processing conditions: platen rotational speed 60 rpm, A mirror surface having a processing pressure of 30 kPa), processing marks (scratches, processing scratches, etc.) free and maintaining 30 nm Ry could be obtained (surface roughness was evaluated by Taylor Hopson's Form Talysurf S4C). Further, even when 10 glass disks were subsequently processed, no scratches were observed.

上記実施例1と同じ製法で、砥粒としてZrO2 を、磁性体粒子として酸化鉄FeO・Fe34 を採用した。平均粒径は30μmであった。研磨具を作製時は外部磁界を印加しなかった。また、この場合、塗布方法については、ワイヤバーコータ以外にグラビアコータやリバースロールコータ、ナイフコータなども使用できる。実施例1と同じように、このように作製した研磨具を研磨装置(図2、図5)の定盤に取りつけ、面粗さ30nmRy程度を有する鏡面に調整したφ150nmのBK7光学ガラスディスクを3分間で加工した結果(加工条件:定盤回転数60rpm、加工圧力30kPa)、加工マーク(スクラッチ、加工傷など)フリー、かつ30nmRy以下の鏡面を維持することができた(面粗さの評価はテーラホプソン社製フォームタリサーフS4Cで行った)。また、引き続きガラスディスクを10枚加工しても、スクラッチの発生は見られなかった。 In the same manufacturing method as in Example 1, ZrO 2 was used as abrasive grains and iron oxide FeO · Fe 3 O 4 was used as magnetic particles. The average particle size was 30 μm. No external magnetic field was applied during the production of the polishing tool. In this case, a gravure coater, a reverse roll coater, a knife coater, etc. can be used in addition to the wire bar coater. In the same manner as in Example 1, the polishing tool produced in this way was attached to a surface plate of a polishing apparatus (FIGS. 2 and 5), and a BK7 optical glass disk with a diameter of 150 nm adjusted to a mirror surface having a surface roughness of about 30 nm Ry was used. Results of processing in minutes (processing conditions: surface plate rotation 60 rpm, processing pressure 30 kPa), processing marks (scratches, processing scratches, etc.) free, and a mirror surface of 30 nmRy or less could be maintained (evaluation of surface roughness) This was carried out with a foam talissurf S4C manufactured by Taylor Hopson. Further, even when 10 glass disks were subsequently processed, no scratches were observed.

<比較例>
上記実施例と同じ塗布装置で、ZrO2 だけを用いて、研磨層に磁性体粒子を添加しないまま、従来の技術で記載されている研磨具と同じように研磨具を作製した。そして、上記実施例と同じように、面粗さ30nmRy程度を有する鏡面に調整したφ150mmのBK7光学ガラスディスク10枚をそれぞれ3分間で加工した結果(加工条件:定盤回転数60rpm、加工圧力30kPa)、30nmRy以下の鏡面を維持することができたものの、10枚加工したディスクのうち、3枚ほど細かいスクラッチの発生は見つかった。
<Comparative example>
Using the same coating apparatus as in the above example, using only ZrO 2 , a polishing tool was produced in the same manner as the polishing tool described in the prior art without adding magnetic particles to the polishing layer. Then, in the same manner as in the above example, 10 φ150 mm BK7 optical glass disks adjusted to a mirror surface having a surface roughness of about 30 nmRy were each processed in 3 minutes (processing conditions: platen rotation speed 60 rpm, processing pressure 30 kPa). ) However, although the mirror surface of 30 nmRy or less could be maintained, the occurrence of scratches as fine as 3 out of 10 processed disks was found.

この結果と上記実施例1、2と比べて分かるように、研磨層、少なくとも前記研磨層に固定されている砥粒を加工面に対し垂直方向で微小な振動をさせることで、砥粒とワーク加工面との接触時間を短縮し、砥粒によるワーク表面への切り込みを微小化することによって、砥粒の粒径や硬さのばらつきによる突発的な応力集中を回避し、加工によるスクラッチなどの新たな加工ダメージを抑制することができ、高加工能率を犠牲することなく、確実に高加工面品位が得ることができることが判明した。   As can be seen from the comparison between this result and Examples 1 and 2, the abrasive grains and the workpieces are made to vibrate in a direction perpendicular to the processing surface. By shortening the contact time with the machined surface and minimizing the incision on the workpiece surface by the abrasive grains, it avoids sudden stress concentration due to variations in the grain size and hardness of the abrasive grains. It has been found that new processing damage can be suppressed, and high processing surface quality can be reliably obtained without sacrificing high processing efficiency.

研磨具の研磨層に磁性体粒子を含ませることにより、研磨具を加工面に対して垂直に振動させることができる。本発明は、このような研磨具を使用する研磨装置や研磨方法等に幅広く適用可能である。   By including magnetic particles in the polishing layer of the polishing tool, the polishing tool can be vibrated perpendicularly to the processing surface. The present invention can be widely applied to a polishing apparatus, a polishing method, and the like using such a polishing tool.

研磨具の断面図であり、(A)は外部磁界が存在しない場合を、(B)は外部磁界が存在する場合を示している。It is sectional drawing of an abrasive | polishing tool, (A) has shown the case where an external magnetic field does not exist, (B) has shown the case where an external magnetic field exists. 研磨具とパターン化された強磁性体と組み合わせた場合を説明する図であり、(A)はパターン化された強磁性体を示し、(B)は研磨具とパターン化された強磁性体とを組み合わせたものの断面図である。It is a figure explaining the case where it combines with a polishing tool and a patterned ferromagnetic material, (A) shows a patterned ferromagnetic material, (B) shows a polishing tool, a patterned ferromagnetic material, and It is sectional drawing of what combined. 研磨具の作成装置を説明する図であり、(A)は平面図を、(B)は断面図を示す。It is a figure explaining the production apparatus of an abrasive | polishing tool, (A) shows a top view, (B) shows sectional drawing. 本発明の研磨具を用いた研磨装置の使用状態を説明する図である。It is a figure explaining the use condition of the polish device using the polish tool of the present invention. 従来の研磨具加工後の断面の模式図である。It is a schematic diagram of the cross section after the conventional polishing tool process.

符号の説明Explanation of symbols

1 研磨具
2 砥粒
3 定盤
4 電磁石
5 ワイヤーバー
6 ワーク
11 バインダ
12 基材
21 切りくずや磨耗した砥粒
22 磁性体微粒子
31 パターン化された強磁性体
DESCRIPTION OF SYMBOLS 1 Abrasive tool 2 Abrasive grain 3 Surface plate 4 Electromagnet 5 Wire bar 6 Work 11 Binder 12 Base material 21 Chips and worn abrasive grains 22 Magnetic fine particles 31 Patterned ferromagnetic material

Claims (11)

砥粒を基材の上にバインダで固定化した研磨層に当接した加工物の加工面と摺動し、該加工面を研磨する研磨具であって、研磨加工中に前記研磨層を前記加工面に対し、垂直方向で微小な振動をさせる手段を有することを特徴とする研磨具。   A polishing tool that slides on a processed surface of a workpiece in contact with a polishing layer in which abrasive grains are fixed on a base material with a binder, and polishes the processed surface. A polishing tool comprising means for causing minute vibrations in a vertical direction with respect to a processing surface. 前記研磨層は砥粒以外に磁性体粒子からなる第2の粒子を有し、外部磁界を変化させることによって、前記研磨層を前記加工面に対して垂直な方向に微小な振動をさせることを特徴とする請求項1記載の研磨具。   The polishing layer has second particles composed of magnetic particles in addition to the abrasive grains, and changes the external magnetic field to cause the polishing layer to vibrate in a direction perpendicular to the processing surface. The polishing tool according to claim 1, wherein 前記研磨層は磁性体粒子からなる砥粒を有し、外部磁界を変化させることによって、前記研磨層を前記加工面に対して垂直な方向に微小な振動をさせることを特徴とする請求項1に記載の研磨具。   2. The polishing layer according to claim 1, wherein the polishing layer has abrasive grains made of magnetic particles and causes the polishing layer to vibrate in a direction perpendicular to the processing surface by changing an external magnetic field. The polishing tool according to 1. 前記研磨層において、前記磁性体粒子からなる第2の粒子の粒径は前記砥粒の粒径より小さいことを特徴とする請求項2に記載の研磨具。   3. The polishing tool according to claim 2, wherein in the polishing layer, the particle size of the second particles made of the magnetic particles is smaller than the particle size of the abrasive particles. 前記研磨層において、前記磁性体粒子からなる第2の粒子は前記砥粒を基材の表面に固定するバインダに含まれ、前記砥粒を基材の表面に固定するバインダの厚みは前記砥粒の最大直径よりも小さいことを特徴とする請求項2に記載の研磨具。   In the polishing layer, the second particles made of the magnetic particles are included in a binder that fixes the abrasive grains to the surface of the substrate, and the thickness of the binder that fixes the abrasive grains to the surface of the substrate is the abrasive grains. The polishing tool according to claim 2, wherein the polishing tool is smaller than the maximum diameter. 前記研磨層の前記砥粒の含有率が、10体積%以上、90体積%以下であることを特徴とする請求項1から5のいずれか1項に記載の研磨具。   6. The polishing tool according to claim 1, wherein the abrasive grain content of the polishing layer is 10% by volume or more and 90% by volume or less. 砥粒を基材の上にバインダで固定化した研磨層に当接した加工物の加工面と摺動し、該加工面を研磨する研磨具であって、前記研磨具の下には、一定の間隔で多数の一定の形状を有するパターン化された強磁性体が埋設され、さらに該強磁性体の下には電磁石が配置されており、前記外部磁界は、前記電磁石によって生じさせられることを特徴とする請求項2又は3に記載の研磨具。   A polishing tool that slides on a processed surface of a workpiece in contact with a polishing layer in which abrasive grains are fixed on a base material with a binder, and polishes the processed surface. A plurality of patterned ferromagnets having a fixed shape are embedded at intervals, and an electromagnet is disposed under the ferromagnet, and the external magnetic field is generated by the electromagnet. The polishing tool according to claim 2 or 3, characterized in that 前記強磁性体は軟磁性であり、飽和磁化が0.8テスラ以上であることを特徴とする請求項7に記載の研磨具。   The polishing tool according to claim 7, wherein the ferromagnetic material is soft magnetic and has a saturation magnetization of 0.8 Tesla or more. 砥粒に磁性体粒子を混合する工程と、さらにバインダを加えて混合した塗布液を作製する工程と、あらかじめ基材の表面と直交する方向に磁界を生じさせ、磁界が存在する環境で前記塗布液を基材上に塗布する工程とを有することを特徴とする研磨具製造方法。   A step of mixing magnetic particles with abrasive grains, a step of preparing a coating solution by adding a binder, and a magnetic field is generated in a direction perpendicular to the surface of the substrate in advance, and the coating is performed in an environment where a magnetic field exists. And a step of applying the liquid onto the substrate. 砥粒を基材の上にバインダで固定化した研磨層に当接した加工物の加工面と摺動し、該加工面を研磨する研磨方法であって、前記基材の下には、一定の間隔で多数の一定の形状を有するパターン化された強磁性体が埋設され、さらに該強磁性体の下には電磁石が配置されており、前記電磁石により磁界を発生させ、該磁界を変化させることで、前記研磨層を前記加工面に対し、垂直な方向で微小な振動をさせることを特徴とする研磨方法。   A polishing method in which abrasive grains are slid against a processed surface of a workpiece that is in contact with a polishing layer fixed with a binder on a base material, and the processed surface is polished. A large number of patterned ferromagnets having a fixed shape are embedded at intervals, and an electromagnet is disposed under the ferromagnet, and a magnetic field is generated by the electromagnet to change the magnetic field. Thus, the polishing method is characterized in that the polishing layer is vibrated minutely in a direction perpendicular to the processed surface. 請求項7又は8に記載の研磨具を有することを特徴とする研磨装置。   A polishing apparatus comprising the polishing tool according to claim 7.
JP2003398000A 2003-11-27 2003-11-27 Polishing tool, polishing tool manufacturing method, polishing method, and polishing device Withdrawn JP2005153106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398000A JP2005153106A (en) 2003-11-27 2003-11-27 Polishing tool, polishing tool manufacturing method, polishing method, and polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398000A JP2005153106A (en) 2003-11-27 2003-11-27 Polishing tool, polishing tool manufacturing method, polishing method, and polishing device

Publications (1)

Publication Number Publication Date
JP2005153106A true JP2005153106A (en) 2005-06-16

Family

ID=34722991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398000A Withdrawn JP2005153106A (en) 2003-11-27 2003-11-27 Polishing tool, polishing tool manufacturing method, polishing method, and polishing device

Country Status (1)

Country Link
JP (1) JP2005153106A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254106A (en) * 2007-04-03 2008-10-23 Fdk Corp Paste material
CN109759966A (en) * 2019-02-22 2019-05-17 华侨大学 A kind of production method of flexible polishing particle magnetism arrangement polishing disk
US10655038B2 (en) 2016-10-25 2020-05-19 3M Innovative Properties Company Method of making magnetizable abrasive particles
US10774251B2 (en) 2016-10-25 2020-09-15 3M Innovative Properties Company Functional abrasive particles, abrasive articles, and methods of making the same
US10947432B2 (en) 2016-10-25 2021-03-16 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
US11072732B2 (en) 2016-10-25 2021-07-27 3M Innovative Properties Company Magnetizable abrasive particles and abrasive articles including them
US11253972B2 (en) 2016-10-25 2022-02-22 3M Innovative Properties Company Structured abrasive articles and methods of making the same
US11484990B2 (en) 2016-10-25 2022-11-01 3M Innovative Properties Company Bonded abrasive wheel and method of making the same
US11597860B2 (en) 2016-10-25 2023-03-07 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254106A (en) * 2007-04-03 2008-10-23 Fdk Corp Paste material
US10655038B2 (en) 2016-10-25 2020-05-19 3M Innovative Properties Company Method of making magnetizable abrasive particles
US10774251B2 (en) 2016-10-25 2020-09-15 3M Innovative Properties Company Functional abrasive particles, abrasive articles, and methods of making the same
US10947432B2 (en) 2016-10-25 2021-03-16 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
US11072732B2 (en) 2016-10-25 2021-07-27 3M Innovative Properties Company Magnetizable abrasive particles and abrasive articles including them
US11253972B2 (en) 2016-10-25 2022-02-22 3M Innovative Properties Company Structured abrasive articles and methods of making the same
US11484990B2 (en) 2016-10-25 2022-11-01 3M Innovative Properties Company Bonded abrasive wheel and method of making the same
US11597860B2 (en) 2016-10-25 2023-03-07 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
CN109759966A (en) * 2019-02-22 2019-05-17 华侨大学 A kind of production method of flexible polishing particle magnetism arrangement polishing disk

Similar Documents

Publication Publication Date Title
US5639363A (en) Apparatus and method for mirror surface grinding and grinding wheel therefore
JP4139906B2 (en) Polishing method and magnetic polishing apparatus for thin plate with opening pattern
JP2005153106A (en) Polishing tool, polishing tool manufacturing method, polishing method, and polishing device
JP2006224227A (en) Magnetic polishing method
US20150231759A1 (en) Chemical mechanical polishing conditioner with high performance
JP2004082323A (en) Grinding tool and manufacturing method therefor
JP2009136926A (en) Conditioner and conditioning method
JP2007067166A (en) Chemomechanical polishing method of sic substrate
JP4301434B2 (en) Polishing abrasive grains and polishing tool
KR101010347B1 (en) Method For Manufacturing Diamond Grinding Tool, Diamond Grinding Tool By The Same Manufacturing Method
JP2008006559A (en) Mirror-finishing method and machining body for mirror-finishing
WO2004062851A1 (en) Cutting tool for soft material
JP2006218577A (en) Dresser for polishing cloth
JP4849590B2 (en) Polishing tool and manufacturing method thereof
JP2008221353A (en) Polishing device and method of manufacturing same
JP3846052B2 (en) Magnetic polishing apparatus and magnetic polishing method
JP4601317B2 (en) Polishing tool and manufacturing method thereof
JP2005186239A (en) Grinding method using magnetic abrasive grain, and grinder
JP3906165B2 (en) Cutting edge polishing method using electric abrasive grains, and manufacturing method of fine parts having cutting edge
JP2003260642A (en) Mirror grinding method and its device
JP4621441B2 (en) Polishing tool and method for manufacturing polishing tool
JP2002265933A (en) Magnetic abrasive tool produced by electroless plating method and magnetic abrasion method using the same
JP2005349542A (en) Grindstone and method of producing the same
JP2001129764A (en) Tool for machining silicon and its manufacturing method, and machining method using the tool
JP2005014148A (en) Polishing tool, polishing method using the polishing tool and polishing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206