JP2002265933A - Magnetic abrasive tool produced by electroless plating method and magnetic abrasion method using the same - Google Patents

Magnetic abrasive tool produced by electroless plating method and magnetic abrasion method using the same

Info

Publication number
JP2002265933A
JP2002265933A JP2001066325A JP2001066325A JP2002265933A JP 2002265933 A JP2002265933 A JP 2002265933A JP 2001066325 A JP2001066325 A JP 2001066325A JP 2001066325 A JP2001066325 A JP 2001066325A JP 2002265933 A JP2002265933 A JP 2002265933A
Authority
JP
Japan
Prior art keywords
magnetic
abrasive
abrasive grains
abrasive grain
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001066325A
Other languages
Japanese (ja)
Inventor
Shinnosuke Bando
慎之介 坂東
Akira Tsukuda
昭 佃
Yoshihito Kondou
祥人 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa Prefectural Government
Original Assignee
Kagawa Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa Prefectural Government filed Critical Kagawa Prefectural Government
Priority to JP2001066325A priority Critical patent/JP2002265933A/en
Publication of JP2002265933A publication Critical patent/JP2002265933A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a tool to use for a magnetic abrasion method which enables polishing of a complicate shape or an inner tubular surface. SOLUTION: The magnetic abrasive tool comprises an abrasive grain layer coating only the surface of a metal powder to support an ultra abrasive grain such as diamond and CBN or a usual abrasive grain such as W, GC and an emery on the surface, preferably the abrasive grain layer supporting the abrasive grain firmly with a uniform injection level and a homogeneous distribution, wherein the abrasive grain layer is prepared by using an electroless plating method, more concretely the method which pretreats not only a magnetic powder but also the abrasive grain so that the abrasive grain may be supported in increased number per unit area of the tool surface though a constant weight of the grain is dipped in a plating solution; or the method which controls the weight of the abrasive grain, the thickness of a plating membrane and the particle size of the abrasive grain to use so that the abrasive grain may be regulated in density and injection height in the abrasive grain layer. The magnetic abrasive method uses the magnetic abrasive tool. The method enables polishing of an aluminum inner tubular surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業の属する技術分野】本発明は無電解めっき法によ
り作製した磁気研磨用工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic polishing tool manufactured by an electroless plating method.

【0002】[0002]

【従来の技術】機械加工では困難な部品の加工を可能と
する方法として磁気研磨法がある。磁気研磨法は、レニ
ングラード大学バロンによる基礎研究、同大学マドケン
スキーによる「磁場の中における研削」という研究に端
を発し、1981年宇都宮大学進村武男、東洋研磨材工
業(株)波田野栄十らによって日本に導入され、現在も
盛んに実用化研究が行われている研磨技術である。この
研磨法は、上記のとおり従来加工困難であった複雑形状
を有する部品、工具が入らない穴や円管内面について、
形状を崩すことなく精密仕上げ研磨が行える研磨方法で
ある。フレキシブルチューブ内面研磨やハードディスク
ヘッドのバリ取りおよび研磨において、一部実用化され
ている例もある。
2. Description of the Related Art There is a magnetic polishing method as a method capable of processing parts which are difficult to machine. The magnetic polishing method originated in basic research by Baron of Leningrad University and research of "grinding in a magnetic field" by Madkensky of the same university. It is a polishing technology that was introduced in Japan and is currently being actively studied for practical use. This polishing method is, as described above, for parts with complicated shapes that were difficult to process conventionally, for holes and circular pipe inner surfaces where tools do not enter,
This is a polishing method that can perform precision finish polishing without losing the shape. Some examples have been put to practical use in polishing the inner surface of a flexible tube and deburring and polishing a hard disk head.

【0003】図9に、(a)平面磁気研磨法および
(b)円管内面磁気研磨法の模式図を示す。磁気研磨法
では、磁性体および砥粒から構成される磁性砥粒を研磨
工具として使用する。研磨工具に対する磁力線の作用に
より研磨圧力を発生させ、かつ工作物との間に相対運動
を生じさせることにより加工を進行させる。相対運動を
付与する方法には、工作物を固定し磁極に回転および送
りを与える方法、磁極を固定し工作物(テーブル、旋盤
主軸等)に送りを与える方法があり、工作物形状にあわ
せていずれかの方法が選択される。磁気研磨法による仕
上げ面の良否を左右する重要な要因として工具と工作物
の干渉状況、および研磨圧力の効率的な伝達が挙げられ
る。そのため磁極配置の最適化、高性能工具の開発等が
必要不可欠である。
FIG. 9 is a schematic view showing (a) a planar magnetic polishing method and (b) a circular pipe inner magnetic polishing method. In the magnetic polishing method, magnetic abrasive grains composed of a magnetic material and abrasive grains are used as a polishing tool. The processing proceeds by generating a polishing pressure by the action of the magnetic force lines on the polishing tool and causing relative movement between the polishing tool and the workpiece. There are two methods of giving relative motion: a method of fixing the workpiece and giving rotation and feed to the magnetic pole, and a method of fixing the magnetic pole and giving feed to the workpiece (table, lathe spindle, etc.) according to the shape of the workpiece. Either method is selected. Important factors that affect the quality of the finished surface by the magnetic polishing method include the state of interference between the tool and the workpiece and the efficient transmission of the polishing pressure. Therefore, optimization of magnetic pole arrangement, development of high performance tools, etc. are indispensable.

【0004】磁気研磨法に用いる研磨工具には、単純混
合型磁性砥粒、砥粒および磁性体を焼結・粉砕した磁性
砥粒、プラズマ粉末溶融法による磁性砥粒が例示され
る。 単純混合型磁性砥粒は、磁性粉末、砥粒、油脂(もし
くは研削液)を単純に混合することにより得られ、工具
準備および調製に手間がかからない。単純混合型磁性砥
粒は、取扱いが容易であるため、比較的使用頻度が高い
方法である。しかし、磁性粉末表面において砥粒分散状
況や、砥粒突出量が不均一であること、砥粒保持力が低
いことが問題点として挙げられる。砥粒は加工中に磁性
粉末と容易に分離、脱落し、また加工圧力伝達が非効率
であることから、加工効率が悪化する。また、図10に
示す工具と工作物の干渉状況のとおり、磁性体粒子が直
接工作物に接触する可能性が高く、特に高硬度材料の研
磨においては、磁性体が磨耗し、その磨耗屑によって加
工面が汚染される恐れがある。しかしこの場合、切り屑
と砥粒の分離が困難であることから、再利用には不向き
であるという課題が残されている。
Examples of the polishing tool used in the magnetic polishing method include simple mixed type magnetic abrasive grains, magnetic abrasive grains obtained by sintering and pulverizing abrasive grains and a magnetic substance, and magnetic abrasive grains obtained by a plasma powder melting method. Simple mixed type magnetic abrasive grains are obtained by simply mixing magnetic powder, abrasive grains, and oils (or grinding fluids), and require no labor for tool preparation and preparation. Simple mixed type magnetic abrasive grains are relatively frequently used because they are easy to handle. However, there are problems in that the abrasive particles are dispersed on the surface of the magnetic powder, the amount of abrasive particles projected is non-uniform, and the abrasive particle holding power is low. The abrasive grains are easily separated and fall off from the magnetic powder during processing, and the processing pressure is inefficient, so that the processing efficiency is deteriorated. Further, as shown in the interference state between the tool and the workpiece shown in FIG. 10, there is a high possibility that the magnetic particles directly contact the workpiece. The work surface may be contaminated. However, in this case, there is a problem that it is not suitable for reuse because it is difficult to separate chips and abrasive grains.

【0005】砥粒および磁性体を焼結・粉砕した磁性
砥粒は粉末状であり、粉末冶金学的に砥粒と磁性体を焼
結しているため、砥粒保持力に優れる。しかし粉砕して
得た工具の表面においては、砥粒分散状況および砥粒突
出量にムラが生じる可能性が高い。この場合、と同
様、加工圧力伝達、磁性体と工作物の干渉状況が悪化す
る。 プラズマ粉末溶融法による磁性砥粒は、高温にて溶融
した金属と砥粒を混合後、冷却、粉砕する方法による粉
末状磁性砥粒である。この工具の製造方法の模式図を図
11に示す。この方法で得られた金属・砥粒混合塊を粉
砕することにより作製され、砥粒保持力は高い。しか
し、磁性金属材料に比べ比重が軽い砥粒(ダイヤ等)を
使用した場合、砥粒が溶融金属中で浮遊し、砥粒分散状
態にムラが生じる。また、酸化物系砥粒は鉄系磁性体と
の親和性が低く、充分な砥粒保持力が得られないという
報告もある。これらから、砥粒を均一にかつ強固に保持
した工具が得られる可能性が低いこと、使用できる砥粒
材種には限りがあることが問題となる。また、この工具
を作製するには、図11の様な特殊な装置が必要であ
る。 また、上記、共通の問題点として、ともに磁
性体と砥粒の混合塊を粉砕して作製するため、得られた
工具上の砥粒は、磁性体表面だけでなく、磁性体内部に
も存在する可能性がある。磁性体内部に存在する砥粒は
加工に直接関与しない。また、ダイヤ、CBN等の超砥
粒を使用する場合、加工に関与しない砥粒の存在は、原
料コスト削減を妨げる要因となる。
The magnetic abrasive grains obtained by sintering and pulverizing the abrasive grains and the magnetic substance are in a powder form, and since the abrasive grains and the magnetic substance are sintered by powder metallurgy, they have excellent abrasive grain holding power. However, on the surface of the pulverized tool, there is a high possibility that the dispersion state of the abrasive grains and the projection amount of the abrasive grains become uneven. In this case, as in the case described above, the transmission of the processing pressure and the state of interference between the magnetic body and the workpiece deteriorate. The magnetic abrasive grains obtained by the plasma powder melting method are powdery magnetic abrasive grains obtained by mixing a metal melted at a high temperature and the abrasive grains, followed by cooling and pulverization. FIG. 11 shows a schematic diagram of a method for manufacturing this tool. It is produced by pulverizing a metal-abrasive mixed mass obtained by this method, and has a high abrasive holding power. However, when abrasive grains (diamond or the like) having a lower specific gravity than the magnetic metal material are used, the abrasive grains float in the molten metal, and unevenness occurs in the dispersed state of the abrasive grains. In addition, there is a report that oxide-based abrasive grains have low affinity with iron-based magnetic substances, and that sufficient abrasive-grain holding power cannot be obtained. From these, there is a problem that there is a low possibility that a tool holding the abrasive grains uniformly and firmly is obtained, and there is a limit to the types of abrasive grains that can be used. In order to produce this tool, a special device as shown in FIG. 11 is required. Also, as a common problem described above, since both are made by crushing a mixed mass of magnetic material and abrasive grains, the abrasive grains on the obtained tool are present not only on the magnetic material surface but also inside the magnetic material. there's a possibility that. The abrasive grains present inside the magnetic material do not directly participate in the processing. Also, when using super-abrasive grains such as diamond and CBN, the presence of abrasive grains not involved in the processing is a factor that hinders the reduction of raw material costs.

【0006】[0006]

【発明が解決しようとする課題】本発明は、複雑形状や
管(直管、異形管)内面の研磨が可能という磁気研磨法
における工具として、磁性粉末表面のみに均一な砥粒分
布、均一な砥粒突出量、充分な砥粒保持力を有する砥粒
層を配した工具を提供することを目的とする。また、本
発明は、研磨効率を向上させ(仕上げ面粗さの低減、加
工時間短縮)、適用範囲の拡大した磁気研磨法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a magnetic polishing method capable of polishing a complicated shape or the inner surface of a pipe (straight pipe or deformed pipe). An object of the present invention is to provide a tool provided with an abrasive layer having an abrasive protrusion amount and a sufficient abrasive holding force. Another object of the present invention is to provide a magnetic polishing method with improved polishing efficiency (reduced surface roughness, reduced processing time) and an expanded range of application.

【0007】[0007]

【課題を解決するための手段】本発明は、磁性粉末の表
面のみに砥粒層を配した磁気研磨工具を要旨としてい
る。
The gist of the present invention is a magnetic polishing tool in which an abrasive layer is provided only on the surface of a magnetic powder.

【0008】砥粒が均一な突出量で強固に保持され均一
に分布した砥粒層であり、その場合、本発明は、磁性粉
末の表面のみに砥粒が均一な突出量で強固に保持され均
一に分布した砥粒層を配した磁気研磨工具を要旨として
いる。
The abrasive layer is a layer of abrasive grains in which the abrasive grains are firmly held and uniformly distributed with a uniform protrusion amount. In this case, the present invention provides a method in which the abrasive grains are firmly held only on the surface of the magnetic powder with a uniform protrusion amount. The gist of the invention is a magnetic polishing tool having a uniformly distributed abrasive layer.

【0009】無電解めっきを用いて、磁性粉末の表面に
砥粒を保持させたものであり、その場合、本発明は、無
電解めっきを用いて、磁性粉末の表面に砥粒を保持させ
た、磁性粉末の表面のみに砥粒層、好ましくは砥粒が均
一な突出量で強固に保持され均一に分布した砥粒層を配
した磁気研磨工具を要旨としている。
[0009] The abrasive grains are held on the surface of the magnetic powder using electroless plating. In this case, the present invention uses the electroless plating to hold the abrasive grains on the surface of the magnetic powder. The gist of the present invention is a magnetic polishing tool in which an abrasive layer, preferably an abrasive layer in which the abrasive grains are firmly held with a uniform protrusion amount and are uniformly distributed is arranged only on the surface of the magnetic powder.

【0010】無電解めっき条件のうち、めっき液に浸漬
する砥粒の重量が同一でも、磁性粉末のみならず砥粒へ
も前処理することで工具表面において単位面積あたり保
持される砥粒の数を増加させており、その場合、本発明
は、無電解めっき条件のうち、めっき液に浸漬する砥粒
の重量が同一でも、磁性粉末のみならず砥粒へも前処理
することで工具表面において単位面積あたり保持される
砥粒の数を増加させる無電解めっきを用いて、磁性粉末
の表面に砥粒を保持させた、磁性粉末の表面のみに砥粒
層、好ましくは砥粒が均一な突出量で強固に保持され均
一に分布した砥粒層を配した磁気研磨工具を要旨として
いる。
[0010] Among the electroless plating conditions, even if the weight of the abrasive grains immersed in the plating solution is the same, the number of abrasive grains retained per unit area on the tool surface by pretreating not only the magnetic powder but also the abrasive grains In this case, the present invention, in the electroless plating conditions, even if the weight of the abrasive particles immersed in the plating solution is the same, by pre-processing not only the magnetic powder but also the abrasive particles on the tool surface Using electroless plating to increase the number of abrasive grains held per unit area, the abrasive grains were held on the surface of the magnetic powder, the abrasive layer only on the surface of the magnetic powder, preferably the abrasive grains were uniformly projected The gist of the present invention is a magnetic polishing tool provided with an abrasive grain layer which is firmly held in an amount and uniformly distributed.

【0011】無電解めっきにおいて、めっき液に浸漬す
る砥粒重量、めっき被膜の膜厚、使用する砥粒の粒径を
調整することにより、砥粒層における砥粒密度、砥粒突
出し高さが調整されており、その場合、本発明は、めっ
き液に浸漬する砥粒重量、めっき被膜の膜厚、使用する
砥粒の粒径を調整することにより、砥粒層における砥粒
密度、砥粒突出し高さが調整された無電解めっきを用い
て、磁性粉末の表面に砥粒を保持させた、磁性粉末の表
面のみに砥粒層、好ましくは砥粒が均一な突出量で強固
に保持され均一に分布した砥粒層を配した磁気研磨工具
を要旨としている。
In electroless plating, by adjusting the weight of the abrasive grains immersed in the plating solution, the thickness of the plating film, and the particle size of the abrasive grains used, the abrasive grain density and the abrasive grain protrusion height in the abrasive grain layer can be reduced. In this case, the present invention adjusts the weight of the abrasive grains immersed in the plating solution, the thickness of the plating film, and the particle diameter of the abrasive grains to be used, so that the abrasive grain density in the abrasive grain layer and the abrasive grains are adjusted. Using an electroless plating whose protrusion height has been adjusted, the abrasive grains are held on the surface of the magnetic powder.The abrasive layer is formed only on the surface of the magnetic powder, preferably the abrasive grains are firmly held with a uniform protrusion amount. The gist of the invention is a magnetic polishing tool having a uniformly distributed abrasive layer.

【0012】磁性粉末が金属粉末であり、砥粒がダイヤ
モンド、CBN等の超砥粒もしくはWA、GC、エメリ
ー等の一般砥粒であり、その場合、本発明は、無電解め
っきを用いて、より具体的には無電解めっき条件のう
ち、めっき液に浸漬する砥粒の重量が同一でも、磁性粉
末のみならず砥粒へも前処理することで工具表面におい
て単位面積あたり保持される砥粒の数を増加させる無電
解めっき、あるいはめっき液に浸漬する砥粒重量、めっ
き被膜の膜厚、使用する砥粒の粒径を調整することによ
り、砥粒層における砥粒密度、砥粒突出し高さが調整さ
れた無電解めっきを用いて、金属粉末の表面にダイヤモ
ンド、CBN等の超砥粒もしくはWA、GC、エメリー
等の一般砥粒を保持させた、金属粉末の表面のみに砥粒
層、好ましくは砥粒が均一な突出量で強固に保持され均
一に分布した砥粒層を配した磁気研磨工具を要旨として
いる。
The magnetic powder is a metal powder, and the abrasive grains are superabrasive grains such as diamond and CBN or general abrasive grains such as WA, GC, and emery. In this case, the present invention uses electroless plating, More specifically, among the electroless plating conditions, even if the weight of the abrasive grains immersed in the plating solution is the same, the abrasive grains held per unit area on the tool surface by pre-processing not only the magnetic powder but also the abrasive grains By adjusting the weight of the abrasive grains immersed in the plating solution, the thickness of the plating film, and the grain size of the abrasive grains to be used, the density of the abrasive grains in the abrasive grain layer and the height of the abrasive grains are increased. The surface of the metal powder is coated with super-abrasive grains such as diamond and CBN or general abrasive grains such as WA, GC, and emery using electroless plating with a controlled grain size. The abrasive layer is formed only on the surface of the metal powder. , Preferably abrasive Are summarized as magnetic polishing tool arranged abrasive grain layer distributed tightly held uniform uniform protrusion amount.

【0013】また、本発明は、上記の磁気研磨工具を用
いることを特徴とする磁気研磨法を要旨としている。
Further, the present invention provides a magnetic polishing method characterized by using the above magnetic polishing tool.

【0014】アルミナ円管内面の磁気研磨を行こなって
おり、その場合、本発明は、上記の磁気研磨工具を用い
てアルミナ円管内面の磁気研磨を行うことを特徴とする
磁気研磨法を要旨としている。
The magnetic polishing of the inner surface of the alumina circular tube is performed, and in this case, the present invention provides a magnetic polishing method characterized in that the magnetic polishing of the inner surface of the alumina circular tube is performed by using the above magnetic polishing tool. And

【0015】約0.3μmRyの高品位加工面を創成し
ており、その場合、本発明は、上記の磁気研磨工具を用
いて約0.3mRyの高品位加工面を創成すること、好
ましくはアルミナ円管内面の磁気研磨を行うことを特徴
とする磁気研磨法を要旨としている。
In the present invention, a high-quality machined surface of about 0.3 μmRy is created by using the above-described magnetic polishing tool. The gist of the invention is a magnetic polishing method characterized by magnetically polishing the inner surface of a circular tube.

【0016】[0016]

【発明の実施の形態】本発明は、これまで磁気研磨用工
具の製造に採用されていなかった工具作製技術を用いて
磁性粉末表面のみに均一な砥粒分布、均一な砥粒突出
量、充分な砥粒保持力を有する砥粒層を配した工具を製
造した。この工具を用いた磁気研磨法により磁気研磨の
高効率化を達成した。本発明の研磨工具の製造には無電
解めっき法を採用する。この際、磁性粉粒体に対する前
処理(脱脂、表面の活性化等)に加え、砥粒にも前処理
を施し、めっき浴へ混入する。この方法により、粒径が
既知である磁性粉末の表面全体に生成した、厚さが均一
なめっき被膜中に、均一に砥粒が分散した工具を作製す
ることができる。またこの工具は、砥粒突出量が均一
で、十分な砥粒保持力を有するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention uses a tool making technique which has not been employed in the manufacture of magnetic polishing tools until now, and has a uniform abrasive grain distribution, a uniform abrasive grain projection amount only on the magnetic powder surface. A tool provided with an abrasive layer having an excellent abrasive holding power was manufactured. High efficiency of magnetic polishing was achieved by the magnetic polishing method using this tool. An electroless plating method is employed for manufacturing the polishing tool of the present invention. At this time, in addition to the pretreatment (degreasing, surface activation, etc.) for the magnetic powder, the abrasive particles are also subjected to the pretreatment and mixed into the plating bath. According to this method, a tool in which abrasive grains are uniformly dispersed in a plating film having a uniform thickness and formed on the entire surface of a magnetic powder having a known particle size can be produced. Further, this tool has a uniform abrasive grain protrusion amount and has a sufficient abrasive grain holding force.

【0017】本発明の工具製造に用いる磁性粉末には、
透磁率(物体中を磁力線が透過する度合いを表す値)の
高い、強磁性体金属材料を用いる。鋳鉄、純鉄、純ニッ
ケル(非金属)、鉄−クロム合金が例示される。粉末粒
径は100μm以上であることが望ましく、形状に制限
はない。
The magnetic powder used for producing the tool of the present invention includes:
A ferromagnetic metal material having a high magnetic permeability (a value indicating the degree of transmission of magnetic lines of force through an object) is used. Examples include cast iron, pure iron, pure nickel (non-metal), and iron-chromium alloy. The powder particle size is desirably 100 μm or more, and the shape is not limited.

【0018】本発明の工具製造に用いる砥粒には、ダイ
ヤモンド、CBN等の超砥粒もしくはWA、GC、エメ
リー等の一般砥粒を使用する。砥粒径は平均粒径が5μ
m以下であることが望ましい。
As the abrasive used in the production of the tool of the present invention, a superabrasive such as diamond or CBN or a general abrasive such as WA, GC or emery is used. The average grain size is 5μ.
m or less.

【0019】本発明の工具の製造には特殊な装置は不要
であり、使用する装置は、めっき浴温度管理に用いる恒
温装置(漕)およびめっき浴槽だけである。このため、
簡単な装置および操作で工具作製が可能である。各工具
諸元(a:砥粒密度、b:砥粒突出量および砥粒層の構
造)の調整については、それぞれ a:めっき浴に混入
する砥粒量の調整、b:めっき被膜の膜厚の調整により
行うことができるため、使用者が所望する工具諸元が設
定できる。さらに、本発明で作製する工具は、砥粒分散
状況、砥粒突出量が均一で、また砥粒保持力にも優れる
工具であり、上記従来技術における加工上問題となる加
工圧力伝達、工具−工作物の干渉状況等は全て解決する
ことができる。
No special equipment is required for manufacturing the tool of the present invention, and only equipment used is a constant temperature apparatus (row) and a plating bath used for controlling a plating bath temperature. For this reason,
Tool fabrication is possible with simple equipment and operation. Regarding the adjustment of each tool specification (a: abrasive grain density, b: abrasive grain protrusion amount and structure of abrasive grain layer), a: adjustment of the amount of abrasive grains mixed into the plating bath, b: film thickness of plating film Therefore, the tool specifications desired by the user can be set. Further, the tool produced by the present invention is a tool having uniform abrasive grain distribution, uniform abrasive grain protrusion, and excellent abrasive holding power, and has a processing pressure transmission and tool- All interference conditions of the workpiece can be solved.

【0020】研磨工具の作製方法について図面に基づき
説明する。図1は無電解めっきによる工具作製の流れ
図、図2は無電解めっき装置の模式図である。無電解め
っき液を加熱し一定温度に保持する。次に球形の鋳鉄粉
末などの磁性粉末にアセトンによる洗浄、塩酸による表
面活性化処理を行い、磁性粉末の前処理をする。さら
に、ダイヤモンドなどの砥粒をパラジウムイオン溶液に
浸漬し、砥粒表面へパラジウムイオン吸着処理を行い、
砥粒を前処理する。無電解めっき処理は、これら前処理
を施した磁性粉末、砥粒をめっき浴に入れ、一定温度に
保持しながら無電解めっき処理を行う。めっき処理後
は、水洗、乾燥を行い、研磨工具を得る。粒径および形
状が既知である金属粉末の表面全体に、砥粒を保持させ
た研磨工具を製造することができる。
A method for manufacturing a polishing tool will be described with reference to the drawings. FIG. 1 is a flow chart of tool production by electroless plating, and FIG. 2 is a schematic diagram of an electroless plating apparatus. The electroless plating solution is heated and maintained at a constant temperature. Next, magnetic powder such as spherical cast iron powder is washed with acetone and subjected to surface activation treatment with hydrochloric acid to pre-treat the magnetic powder. In addition, abrasive grains such as diamonds are immersed in a palladium ion solution, and palladium ion adsorption treatment is performed on the abrasive grains.
Pre-treat the abrasive. In the electroless plating, the pretreated magnetic powder and abrasive grains are placed in a plating bath, and the electroless plating is performed while maintaining the temperature at a constant temperature. After the plating treatment, washing and drying are performed to obtain a polishing tool. A polishing tool in which abrasive grains are held on the entire surface of a metal powder having a known particle size and shape can be manufactured.

【0021】無電解めっき条件の一例を下記に示す。 めっき方法 無電解めっき 被膜組成 Ni:91.7%、P:8.3% めっき浴温 70〜75℃ 処理時間 15、30、60、210、300min 金属粉末 球形鋳鉄粉末210〜300μm 砥粒 ダイヤモンド砥粒〔1/2〜3(中心粒径2μm)、6〜12 (中心粒径9μm) 砥粒前処理 パラジウムイオン溶液An example of electroless plating conditions is shown below. Plating method Electroless plating Film composition Ni: 91.7%, P: 8.3% Plating bath temperature 70 to 75 ° C Processing time 15, 30, 60, 210, 300 min Metal powder Spherical cast iron powder 210 to 300 μm Abrasive diamond Grain [1 / 2-3 (central particle size 2 μm), 6-12 (central particle size 9 μm) Abrasive pretreatment palladium ion solution

【0022】処理手順は、(1)めっき液の加熱、
(2)金属粉末の前処理(砥粒の前処理:パラジウムイ
オン溶液への浸せき)、(3)金属粉末、砥粒のめっき
浴への浸せき、(4)めっき後の洗浄および乾燥であ
る。処理中は浴温を一定に保ち、砥粒への前処理の有
無、処理時間、使用する砥粒径等、条件が異なる合計7
種の工具を試作した。試作した工具の一例として、約2
50μmの球形鋳鉄粉末の表面に、6〜12μmのダイ
ヤモンド砥粒が均一に保持されている試作工具の全景写
真を図3に示す。
The processing procedure includes (1) heating of a plating solution,
(2) Pretreatment of metal powder (pretreatment of abrasive grains: immersion in palladium ion solution), (3) immersion of metal powder and abrasive grains in plating bath, and (4) washing and drying after plating. The bath temperature is kept constant during the treatment, and the conditions differ, such as whether or not pre-treatment of the abrasive grains, the treatment time, the abrasive grain size to be used, etc.
Various kinds of tools were prototyped. As an example of a prototype tool, about 2
FIG. 3 shows a panoramic photograph of a prototype tool in which diamond abrasive grains of 6 to 12 μm are uniformly held on the surface of a 50 μm spherical cast iron powder.

【0023】本発明の研削工具を用いて、アルミナ円管
内面磁気研磨を行い、研磨性能評価を行った。また、比
較的使用頻度の高い単純混合型磁性砥粒との性能比較、
試作工具の再利用可能性の評価も併せて行った。加工条
件の一例を下記に示す。 使用磁石 Fe・Nd・B永久磁石 ワーク材種(寸法) AL23(外径13mm、内径9mm) 工具 無電解めっき・研磨工具(本発明品) 単純混合型磁性砥粒(210〜300μm、砥粒1 /2〜3μm) 単純混合型磁性砥粒混合比 砥粒/金属粉=1/30(重量比) 加工液 水溶性研磨液 管内部への工具(粉末)充填量 0.83g/cm3 旋盤主軸回転数 1250rpm 管軸方向への送り 無し 加工時間 10min 磁気研磨法は、工具(磁性砥粒)を、磁力により加工面
に押し付け、工具とワークの間に相対運動を与えること
により加工が進行する。加工には汎用旋盤を用い、ワー
クをその主軸に固定した。磁力発生源にはFe・Nd・
B永久磁石を用い、治具により刃物台に固定した。これ
らの装置により加工を行い、(1)単純混合型磁性砥粒
との比較、(2)砥粒径、めっき膜厚が研磨性能に及ぼ
す影響、(3)試作工具再利用について検討した。
Using the grinding tool of the present invention, the inner surface of an alumina circular tube was magnetically polished, and the polishing performance was evaluated. In addition, performance comparison with relatively frequently used simple mixed type magnetic abrasive grains,
The reusability of the prototype tool was also evaluated. An example of the processing conditions is shown below. Using magnet Fe-Nd-B permanent magnets work Grade (dimension) AL 2 O 3 (outer diameter 13 mm, inner diameter 9 mm) Tool electroless plating and polishing tool (the present invention) simple mixed magnetic abrasive grains (210~300Myuemu, Abrasive grain 1/2 / 3μm) Simple mixing type magnetic abrasive grain mixing ratio Abrasive grain / metal powder = 1/30 (weight ratio) Working fluid Water-soluble polishing fluid Filling amount of tool (powder) into tube 0.83g / cm 3 Lathe spindle speed 1250 rpm Feed in the pipe axis direction None Machining time 10 min In the magnetic polishing method, the tool (magnetic abrasive grains) is pressed against the machined surface by magnetic force to give relative motion between the tool and the work. proceed. A general-purpose lathe was used for processing, and the workpiece was fixed to the spindle. Fe ・ Nd ・
Using a B permanent magnet, it was fixed to the tool post with a jig. Processing was performed using these devices, and (1) comparison with simple mixed type magnetic abrasive grains, (2) the effects of abrasive grain size and plating film thickness on polishing performance, and (3) reuse of prototype tools were examined.

【0024】試作工具の砥粒保持状況は、試作工具のS
EM観察写真(図4)によると、(a)砥粒径1/2−
3μm、砥粒前処理なし、(b)砥粒径1/2−3μ
m、砥粒前処理あり、(c)砥粒径6−12μm、砥粒
前処理ありの各条件によるいずれの場合も、使用した砥
粒径によらず、その粒径分布幅のうち中心粒径に相当す
る大きさの粒径が保持されている。また、写真(a)、
(b)から、めっき処理に使用する砥粒の重量が同一で
も、砥粒への前処理を行うことで、工具表面において単
位面積あたり保持される砥粒の数が増加している様子が
観察された。
The state of holding the abrasive grains of the prototype tool is determined by the S
According to the EM observation photograph (FIG. 4), (a) the abrasive grain size is 1 / 2-
3 μm, no abrasive grain pretreatment, (b) abrasive grain size 1 / 2-3μ
m, abrasive grain pre-treatment, (c) abrasive grain diameter 6-12 μm, under any of the conditions of abrasive grain pre-treatment, regardless of the abrasive grain size used, the center grain of the grain size distribution width A particle size corresponding to the diameter is maintained. Also, photos (a),
From (b), even though the weight of the abrasive grains used in the plating process is the same, it is observed that the number of the abrasive grains held per unit area on the tool surface is increased by performing the pretreatment on the abrasive grains. Was done.

【0025】加工性能評価について、単純混合型磁性砥
粒、試作工具による比較試験(加工条件:旋盤主軸回転
数1250rpm、管内部への工具充填量0.83g/
cm3、磁石−ワーク間距離0.5mm、加工時間10
min)の結果(最終加工面粗さ)を下記に示す。 無電解めっき・研磨工具(本発明品) 0.34μmRy 単純混合型磁性砥粒(210〜300μm、砥粒1/2〜3μm) 0.43μmRy 試作工具を使用することにより、単純混合に比べ面粗さ
を約0.8倍に減少させることが可能であった。これ
は、めっき被膜で砥粒を保持することにより、砥粒突出
量が均一になり、加工圧力伝達が効率化されたためと考
えられる。
Regarding the evaluation of machining performance, a comparative test using a simple mixed type magnetic abrasive grain and a prototype tool (machining conditions: lathe spindle rotation speed 1250 rpm, tool filling amount into tube 0.83 g /
cm 3 , magnet-workpiece distance 0.5 mm, processing time 10
min) (final machined surface roughness) is shown below. Electroless plating / polishing tool (product of the present invention) 0.34 μmRy Simple mixed type magnetic abrasive grains (210 to 300 μm, abrasive grains 1/2 to 3 μm) 0.43 μmRy By using a prototype tool, surface roughness compared to simple mixing It was possible to reduce the length by about 0.8 times. It is considered that this is because holding the abrasive grains with the plating film made the abrasive grain protrusion amount uniform, thereby increasing the efficiency of processing pressure transmission.

【0026】次に、砥粒径、めっき膜厚を制御した試作
工具による加工結果を図5に示す。砥粒径が一定の場
合、めっき膜厚の増加に伴い面粗さが減少するが、その
差はわずかである。一方、砥粒径が面粗さに与える影響
は大きく、砥粒径1/2−3μmでは、最も良好な結果
として0.34μmRyの仕上げ面が得られるのに対
し、6−12μmにおける面粗さの減少は、ごくわずか
である。ここで、砥粒径と研磨機構の関係を考察するた
め、加工面SEM観察、加工時間に対するワーク重量減
少量の測定を行った。加工時間に対する重量減少量の推
移を図6に示す。加工前(焼成面)、砥粒径1/2
−3μmによる加工面、砥粒径6−12μmについて
の加工面SEM写真(図7)によると、砥粒径1/2−
3μmの場合、全面にわたり研磨条痕が観察されるのに
対し、6−12μmの場合、研磨条痕に加え、焼成面
(結晶粒界)が観察される。
Next, FIG. 5 shows the results of processing using a prototype tool in which the abrasive grain size and the plating film thickness are controlled. When the abrasive grain size is constant, the surface roughness decreases as the plating film thickness increases, but the difference is slight. On the other hand, the effect of the abrasive grain size on the surface roughness is large. When the abrasive grain size is −3-3 μm, the finished surface of 0.34 μm Ry is obtained as the best result, whereas the surface roughness at 6-12 μm is obtained. Is negligible. Here, in order to consider the relationship between the abrasive grain size and the polishing mechanism, SEM observation of the processed surface and measurement of the amount of work weight reduction with respect to the processing time were performed. FIG. 6 shows the change of the weight loss with respect to the processing time. Before processing (fired surface), abrasive grain size 1/2
According to the SEM photograph (FIG. 7) of the machined surface at −3 μm and the machined grain size of 6-12 μm (FIG. 7),
In the case of 3 μm, polishing streaks are observed over the entire surface, whereas in the case of 6 to 12 μm, fired surfaces (crystal grain boundaries) are observed in addition to the polishing streaks.

【0027】また図6では、砥粒径1/2−3μmの場
合は、加工時間の経過に伴い重量減少量が増加するのに
対し、6−12μmでは減少量に変化が生じていない。
これらから、砥粒径6−12μmの場合、材料除去が行
われていないことが推察される。通常、定圧研削加工の
材料除去機構は、加工圧力の増加に伴い、上滑り、掘起
し、切削へと推移する。砥粒径6−12μmの場合、1
/2−3μm比べて刃先角が鈍化するため、本試験の磁
場環境下では、加工圧力が研削開始圧力に達しなかった
ものと考えられる。またいずれの砥粒径においても加工
時間10minで0.3〜0.4mgの重量減少が生じ
ているが、これは焼成面の結晶粒界等を起点とする、初
期破壊(摩耗)が原因と考えられる。以上の結果は、使
用する砥粒径が、試作工具の研磨性能、特に研削開始圧
力の発生を左右する重要な因子であることを示唆してい
る。
In FIG. 6, when the abrasive grain size is 1 / 2-3 μm, the weight loss increases with the elapse of the processing time, whereas when the abrasive particle size is 6-12 μm, the reduction does not change.
From these, it is inferred that when the abrasive particle diameter is 6 to 12 μm, material removal is not performed. Normally, the material removal mechanism of the constant pressure grinding process shifts up, excavates, and cuts as the processing pressure increases. When the abrasive particle size is 6-12 μm, 1
It is considered that the processing pressure did not reach the grinding start pressure under the magnetic field environment of the present test because the cutting edge angle became duller than / 2-3 μm. In addition, in any of the abrasive grain sizes, a weight reduction of 0.3 to 0.4 mg occurs in a processing time of 10 min, which is caused by initial destruction (wear) starting from a crystal grain boundary or the like on a fired surface. Conceivable. The above results suggest that the abrasive grain size used is an important factor that affects the polishing performance of the prototype tool, particularly the generation of the grinding start pressure.

【0028】加工後の砥粒保持状況と再利用可能性につ
いて、加工試験の中で、最も良好な結果を示した工具
(砥粒径1/2−3μm、膜厚/砥粒径比=2.2)を用
いて、その再利用の可能性を検討した。その結果、加工
回数の増加に伴い、徐々に性能は低下するが、0.86
μmRyの仕上げ面を得ることが可能であった。性能低
下の原因について考察するため、加工後の試作工具にお
ける砥粒保持状況のSEM観察を行った(図8)。加工
後は、砥粒摩耗(微小破砕)および脱落が生じており、
これらが、再利用時の性能低下の原因と考えられる。
The tool showing the best results in the processing test with respect to the state of holding the abrasive grains after machining and the reusability (abrasive grain diameter: 1 / 2-3 μm, film thickness / abrasive grain ratio = 2 .2), the possibility of reuse was examined. As a result, the performance gradually decreases as the number of processing increases, but 0.86
It was possible to obtain a finished surface of μmRy. In order to consider the cause of the performance degradation, SEM observation of the state of holding the abrasive grains in the prototype tool after machining was performed (FIG. 8). After processing, abrasive wear (micro crushing) and falling off have occurred,
These are considered to be the causes of performance degradation during reuse.

【0029】[0029]

【作用】無電解めっきにおいては、金属粉末の表面に被
膜(本実施例では、ニッケル、リンを主成分とする被
膜)が形成される。被膜形成過程において、鋳鉄粉末に
接している砥粒が被膜内に取り込まれることにより、砥
粒が機械的に保持される。砥粒突出量(めっき被膜表面
から砥粒先端までの高さ)は、被膜の厚さを変化させる
ことにより制御することが可能である。また、作製した
磁気研磨工具の表面において、単位面積あたりに保持さ
れる砥粒の数は、めっき液に浸漬する砥粒の量で制御す
ることが可能である。また、めっき液に浸漬する砥粒の
重量が同じ場合でも、金属粉末のみでなく、砥粒へも前
処理を行うことで、工具表面において単位面積あたりの
砥粒の数が増加することを確認した。また試作工具によ
りアルミナ円管内面磁気研磨を行った結果、0.3μm
Ryの高品位加工面の創成が可能であった。さらに試作
工具の再利用を検討した結果、加工回数の増加に伴い、
砥粒摩耗(微小破砕)、砥粒脱落による有効切れ刃数の
減少等が生じ、若干仕上げ面粗さが増大するものの、正
常な加工が可能であった。
In the electroless plating, a film (in the present embodiment, a film mainly composed of nickel and phosphorus) is formed on the surface of the metal powder. In the film forming process, the abrasive particles in contact with the cast iron powder are taken into the film, whereby the abrasive particles are mechanically held. The protrusion amount of the abrasive grains (the height from the plating film surface to the tip of the abrasive grains) can be controlled by changing the thickness of the film. Further, the number of abrasive grains held per unit area on the surface of the manufactured magnetic polishing tool can be controlled by the amount of abrasive grains immersed in the plating solution. In addition, even if the weight of the abrasive grains immersed in the plating solution is the same, it is confirmed that the number of abrasive grains per unit area increases on the tool surface by performing the pretreatment not only on the metal powder but also on the abrasive grains. did. In addition, the inner surface of the alumina tube was magnetically polished with a prototype tool.
It was possible to create a high-quality processed surface of Ry. As a result of studying the reuse of prototype tools, as the number of machining increases,
Although abrasive grain wear (fine crushing) and a decrease in the number of effective cutting edges due to abrasive drop-off occurred, the finished surface roughness slightly increased, but normal machining was possible.

【0030】[0030]

【実施例】本願発明の詳細を実施例で説明する。本願発
明はこれら実施例によって何ら限定されるものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to embodiments. The present invention is not limited by these examples.

【0031】実施例1 無電解めっきにより作製した工具の一例とその研磨性能
を示す。 (無電解めっきによる工具作製)(図1および図2参
照) 無電解めっき液を70〜75度まで加熱し、めっき浴の
準備を行う。次に粒子径分布が210−300μm、球
形の鋳鉄粉末10gに対しアセトンによる脱脂、塩酸
(1規定)による表面活性化処理を行い、鋳鉄粉末への
前処理とする。さらに粒子径分布が1/2−3μmのダ
イヤモンド砥粒10gをパラジウムイオン溶液に浸漬
し、砥粒表面へパラジウムイオン吸着処理を行い、砥粒
への前処理とした。これら前処理を施した鋳鉄粉末、砥
粒をめっき浴に入れ、無電解めっき処理を行った(1時
間)。めっき処理後は、試料の水洗、乾燥を行い、工具
を得る。作製した工具は、鋳鉄粉末上に形成された約
4.4μmのNi−P被膜中に均一に砥粒を保持した工
具で、表層において単位面積あたり45万個の割合で砥
粒が保持されている。
Example 1 An example of a tool manufactured by electroless plating and its polishing performance are shown. (Production of Tool by Electroless Plating) (See FIGS. 1 and 2) The electroless plating solution is heated to 70 to 75 ° C. to prepare a plating bath. Next, 10 g of a spherical cast iron powder having a particle size distribution of 210 to 300 μm is subjected to a degreasing process with acetone and a surface activation treatment with hydrochloric acid (1N) to pre-treat the cast iron powder. Further, 10 g of diamond abrasive grains having a particle size distribution of −3-3 μm were immersed in a palladium ion solution, and the surface of the abrasive grains was subjected to a palladium ion adsorption treatment to prepare a pretreatment for the abrasive grains. The pretreated cast iron powder and abrasive grains were placed in a plating bath and subjected to electroless plating (1 hour). After the plating treatment, the sample is washed with water and dried to obtain a tool. The produced tool is a tool in which abrasive grains are uniformly held in a Ni-P coating of about 4.4 μm formed on cast iron powder, and the abrasive grains are held in a surface layer at a rate of 450,000 pieces per unit area. I have.

【0032】(作製した工具による磁気研磨実施例)ア
ルミナセラミックス円管(外径13mm、内径9mm、
加工前表面粗さ約2.3μmRy)内面の磁気研磨を行
い、その研磨性能を評価した。また従来の工具の中か
ら、単純混合型磁性砥粒を使用し、性能比較も行った。
10分間の加工後に得られた仕上げ面粗さは、開発した
工具:0.34μmRy、単純混合型磁性砥粒:0.4
5μmRyであり、従来の工具以上の研磨性能を示し
た。また開発した工具による加工面に、摩耗屑による汚
染はない。
(Example of Magnetic Polishing Using Prepared Tool) Alumina ceramic tube (outer diameter 13 mm, inner diameter 9 mm,
The inner surface was magnetically polished before processing with a surface roughness of about 2.3 μmRy, and its polishing performance was evaluated. In addition, the performance was compared by using a simple mixed type magnetic abrasive grain from conventional tools.
Finished surface roughness obtained after processing for 10 minutes is: developed tool: 0.34 μmRy, simple mixed type magnetic abrasive: 0.4
It was 5 μmRy, and showed a polishing performance higher than that of a conventional tool. In addition, there is no contamination by wear debris on the machined surface with the developed tool.

【0033】[0033]

【発明の効果】無電解めっきを用いた研磨工具を考案、
試作し、アルミナ円管内面磁気研磨による性能評価を行
った結果、以下の知見を得た。 (1)無電解めっきにより、単純混合型磁性砥粒と同等
もしくはそれ以上の性能を有する研磨工具が作成可能で
ある。 (2)砥粒への前処理には、試作工具の保持砥粒数を増
加させる効果がある。 (3)試作工具は、再利用時も十分な切削能力を有す
る、再利用可能な工具である。 (4)単純混合型磁性砥粒を使用した場合に生じた、磁
性粉末の摩耗屑による加工面の汚染は、試作工具を用い
た場合には生じない。
According to the present invention, a polishing tool using electroless plating is devised.
A prototype was fabricated and the performance was evaluated by magnetic polishing of the inner surface of the alumina tube, and the following findings were obtained. (1) By electroless plating, a polishing tool having performance equal to or higher than that of the simple mixed type magnetic abrasive grains can be produced. (2) The pretreatment of the abrasive grains has the effect of increasing the number of abrasive grains held on the prototype tool. (3) The prototype tool is a reusable tool having sufficient cutting ability even when reused. (4) The contamination of the machined surface due to wear debris of the magnetic powder, which occurs when using the simple mixed type magnetic abrasive grains, does not occur when using the prototype tool.

【図面の簡単な説明】[Brief description of the drawings]

【図1】無電解めっきによる工具作製の流れ図である。FIG. 1 is a flowchart of manufacturing a tool by electroless plating.

【図2】無電解めっき装置の模式図である。FIG. 2 is a schematic diagram of an electroless plating apparatus.

【図3】図面に代わる、約250μmの球形鋳鉄粉末の
表面に、均一にダイヤモンド砥粒が保持されている試作
工具の全景写真である。
FIG. 3 is a panoramic view photograph of a prototype tool in which diamond abrasive grains are uniformly held on a surface of a spherical cast iron powder of about 250 μm instead of a drawing.

【図4】試作工具の砥粒保持状況(膜厚/砥粒径比=2.
2)を示すSEM観察写真である。
[Fig. 4] Abrasive grain retention state of prototype tool (film thickness / abrasive grain ratio = 2.
It is a SEM observation photograph which shows 2).

【図5】砥粒径、めっき膜厚の変化と面粗さの推移を示
す図面である。
FIG. 5 is a drawing showing changes in abrasive grain size, plating film thickness, and surface roughness.

【図6】加工時間に対するワーク重量減少量の推移を示
す図面である。
FIG. 6 is a diagram showing a transition of a work weight reduction amount with respect to a processing time.

【図7】図面に代わる、試作工具による加工面のSEM
観察写真である。
FIG. 7 is an SEM of a machined surface using a prototype tool instead of a drawing.
It is an observation photograph.

【図8】加工後の試作工具の砥粒保持状況(砥粒径1/
2〜3μm、膜厚/砥粒径比=2.2)を示す図面に代わ
るSEM観察写真である。
FIG. 8 shows the state of holding the abrasive grains of the prototype tool after machining (abrasive grain diameter 1 /
4 is a SEM observation photograph instead of a drawing showing 2-3 μm, film thickness / abrasive particle diameter ratio = 2.2).

【図9】(a)平面磁気研磨法および(b)円管内面磁
気研磨法の模式図を示す。
9A and 9B are schematic views of (a) a planar magnetic polishing method and (b) a circular pipe inner magnetic polishing method.

【図10】単純混合型磁性砥粒使用時の工具と工作物の
干渉状況を説明する図面である。
FIG. 10 is a view for explaining an interference state between a tool and a workpiece when a simple mixed type magnetic abrasive grain is used.

【図11】プラズマ粉末溶融法の装置を説明する図面で
ある。
FIG. 11 is a drawing for explaining an apparatus of the plasma powder melting method.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年3月14日(2001.3.1
4)
[Submission date] March 14, 2001 (2001.3.1.1)
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図7[Correction target item name] Fig. 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図7】 FIG. 7

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図8[Correction target item name] Fig. 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図8】 FIG. 8

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B24D 3/00 320 B24D 3/00 320B 3/06 3/06 B 3/34 3/34 Z (72)発明者 近藤 祥人 香川県高松市郷東町587−1 香川県産業 技術センター内 Fターム(参考) 3C058 AA07 CA00 CB03 CB07 DA11 3C063 AA10 AB10 BB02 BB03 BC02 BG01 BG03 CC14 FF30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B24D 3/00 320 B24D 3/00 320B 3/06 3/06 B 3/34 3/34 Z (72) Inventor Yoshito Kondo 581-1 Goto-cho, Takamatsu City, Kagawa Prefecture F-term in the Kagawa Prefectural Industrial Technology Center 3C058 AA07 CA00 CB03 CB07 DA11 3C063 AA10 AB10 BB02 BB03 BC02 BG01 BG03 CC14 FF30

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 磁性粉末の表面のみに砥粒層を配した磁
気研磨工具。
1. A magnetic polishing tool in which an abrasive layer is disposed only on the surface of a magnetic powder.
【請求項2】 砥粒が均一な突出量で強固に保持され均
一に分布した砥粒層である請求項1の磁気研磨工具。
2. The magnetic polishing tool according to claim 1, wherein the abrasive grains are firmly held with a uniform protrusion amount and are uniformly distributed.
【請求項3】 無電解めっきを用いて、磁性粉末の表面
に砥粒を保持させた請求項1または2の磁気研磨工具。
3. The magnetic polishing tool according to claim 1, wherein abrasive grains are held on the surface of the magnetic powder using electroless plating.
【請求項4】 無電解めっき条件のうち、めっき液に浸
漬する砥粒の重量が同一でも、磁性粉末のみならず砥粒
へも前処理することで工具表面において単位面積あたり
保持される砥粒の数を増加させている請求項3の磁気研
磨工具。
4. An abrasive grain retained per unit area on a tool surface by pre-treating not only magnetic powder but also abrasive grains among electroless plating conditions, even if the weight of the abrasive grains immersed in a plating solution is the same. 4. The magnetic polishing tool according to claim 3, wherein the number is increased.
【請求項5】 無電解めっきにおいて、めっき液に浸漬
する砥粒重量、めっき被膜の膜厚、使用する砥粒の粒径
を調整することにより、砥粒層における砥粒密度、砥粒
突出し高さが調整された請求項3の磁気研磨工具。
5. In the electroless plating, by adjusting the weight of the abrasive grains immersed in the plating solution, the thickness of the plating film, and the particle diameter of the abrasive grains used, the abrasive grain density and the abrasive grain protrusion height in the abrasive grain layer are adjusted. 4. The magnetic polishing tool according to claim 3, wherein the tool is adjusted.
【請求項6】 磁性粉末が金属粉末であり、砥粒がダイ
ヤモンド、CBN等の超砥粒もしくはWA、GC、エメ
リー等の一般砥粒である請求項1ないし5のいずれかの
磁気研磨工具。
6. The magnetic polishing tool according to claim 1, wherein the magnetic powder is a metal powder, and the abrasive grains are super-abrasive grains such as diamond and CBN or general abrasive grains such as WA, GC and emery.
【請求項7】 請求項1ないし6のいずれかの磁気研磨
工具を用いることを特徴とする磁気研磨法。
7. A magnetic polishing method using the magnetic polishing tool according to claim 1.
【請求項8】 アルミナ円管内面の磁気研磨を行う請求
項7の磁気研磨法。
8. The magnetic polishing method according to claim 7, wherein the inner surface of the alumina circular tube is magnetically polished.
【請求項9】 約0.3μmRyの高品位加工面を創成
する請求項7または8磁気研磨法。
9. The magnetic polishing method according to claim 7, wherein a high-quality processed surface of about 0.3 μm Ry is created.
JP2001066325A 2001-03-09 2001-03-09 Magnetic abrasive tool produced by electroless plating method and magnetic abrasion method using the same Pending JP2002265933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066325A JP2002265933A (en) 2001-03-09 2001-03-09 Magnetic abrasive tool produced by electroless plating method and magnetic abrasion method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066325A JP2002265933A (en) 2001-03-09 2001-03-09 Magnetic abrasive tool produced by electroless plating method and magnetic abrasion method using the same

Publications (1)

Publication Number Publication Date
JP2002265933A true JP2002265933A (en) 2002-09-18

Family

ID=18924825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066325A Pending JP2002265933A (en) 2001-03-09 2001-03-09 Magnetic abrasive tool produced by electroless plating method and magnetic abrasion method using the same

Country Status (1)

Country Link
JP (1) JP2002265933A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005099A1 (en) * 2003-07-15 2005-01-20 Hoya Corporation Method and device for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
JP2008222979A (en) * 2007-03-15 2008-09-25 Utsunomiya Univ Method for producing polishing composite particle
JP2011526954A (en) * 2008-07-03 2011-10-20 スリーエム イノベイティブ プロパティズ カンパニー Fixed abrasive particles and articles made therefrom
CN110586927A (en) * 2019-09-12 2019-12-20 兰州理工大学 Preparation method of cBN cutting element iron-based magnetic polishing powder
CN110948290A (en) * 2019-10-30 2020-04-03 河南黄河旋风股份有限公司 Method for cleaning artificial diamond

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005099A1 (en) * 2003-07-15 2005-01-20 Hoya Corporation Method and device for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
US7175511B2 (en) 2003-07-15 2007-02-13 Hoya Corporation Method of manufacturing substrate for magnetic disk, apparatus for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
JP2008222979A (en) * 2007-03-15 2008-09-25 Utsunomiya Univ Method for producing polishing composite particle
JP2011526954A (en) * 2008-07-03 2011-10-20 スリーエム イノベイティブ プロパティズ カンパニー Fixed abrasive particles and articles made therefrom
CN110586927A (en) * 2019-09-12 2019-12-20 兰州理工大学 Preparation method of cBN cutting element iron-based magnetic polishing powder
CN110948290A (en) * 2019-10-30 2020-04-03 河南黄河旋风股份有限公司 Method for cleaning artificial diamond

Similar Documents

Publication Publication Date Title
Tian et al. Experimental investigations on magnetic abrasive finishing of Ti-6Al-4V using a multiple pole-tip finishing tool
Mun Micro machining of high-hardness materials using magnetic abrasive grains
EP2334455A1 (en) Microwave plasma sintering
Kim Polishing of Ultra-clean Inner Surfaces Using Magnetic Force.
JP5352872B2 (en) Method for producing composite particles for polishing
JP2002265933A (en) Magnetic abrasive tool produced by electroless plating method and magnetic abrasion method using the same
Patil et al. Study of mechanically alloyed magnetic abrasives in magnetic abrasive finishing
EP1700670A2 (en) Super-abrasive machining tool and method of use
Bae et al. Finishing characteristics of Inconel alloy 625 bars in ultra-precision magnetic abrasive finishing using CNC machine center
Singh et al. Optimization of magnetic abrasive finishing parameters with response surface methodology
TW419411B (en) Electrode generating hydrodynamic pressure
JP2008200780A (en) Mixed abrasive grain grinding wheel
JP2005153106A (en) Polishing tool, polishing tool manufacturing method, polishing method, and polishing device
JP2002273661A (en) Porous metal grinding wheel
JP3575540B2 (en) Numerical control polishing method
JP2010076094A (en) Metal bond diamond grinding wheel and method of manufacturing the same
Doshi et al. Some investigations on magnetic abrasive finishing of aluminium alloy
Batham et al. A review on fabrication, grinding performance and failure of micro-grinding tools
Su et al. Dressing of monolayer brazed diamond wheel for grinding Li-Ti ferrite
WO2022102335A1 (en) Method for manufacturing porous metal bonded grindstone, and method for manufacturing porous metal bonded wheel
JP2000061810A (en) Magnetic grinding method and magnetic grinding device
JP3295575B2 (en) Cubic BN fine particles with two-layer metal plating and method for producing the same
JP2009196048A (en) Grinding method, grinding tool and grinding device
Phan A new tool developed for ultraprecision milling nickel by using magnetic liquid slurries
Feng et al. Experiment on self-sharpening fine super-hard abrasive tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050511

A131 Notification of reasons for refusal

Effective date: 20050525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A02 Decision of refusal

Effective date: 20060901

Free format text: JAPANESE INTERMEDIATE CODE: A02