JP2008254106A - Paste material - Google Patents

Paste material Download PDF

Info

Publication number
JP2008254106A
JP2008254106A JP2007097733A JP2007097733A JP2008254106A JP 2008254106 A JP2008254106 A JP 2008254106A JP 2007097733 A JP2007097733 A JP 2007097733A JP 2007097733 A JP2007097733 A JP 2007097733A JP 2008254106 A JP2008254106 A JP 2008254106A
Authority
JP
Japan
Prior art keywords
magnetic
polishing
metal particles
solvent
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007097733A
Other languages
Japanese (ja)
Inventor
Rei Hanamura
玲 花村
Teruhisa Nakamura
輝久 中村
Toshitaka Hashimoto
敏隆 橋本
Yoshio Matsuo
良夫 松尾
Keita Yamamoto
慶太 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2007097733A priority Critical patent/JP2008254106A/en
Publication of JP2008254106A publication Critical patent/JP2008254106A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paste material capable of carrying mirror finishing at high grade even on a member hard to be subjected to surface processing such as soft metal material, and efficiently carrying out work of surface processing by minute cutting action. <P>SOLUTION: A magnetic polishing liquid 4 includes metal particles having magnetism, a solvent, and a low welting point resin. The solvent is vegetable oil and fat, and the low melting point resin is formed from resin material insoluble in the solvent and has a low melting point. The magnetic metal particles is a non-spherical shape with a sharp angle portion. A diameter of the particle is made to be 10 μm to 300 μm, and saturated magnetization when volume magnetization is 4πM is made to be not less than 15kG. When a magnetic field of a permanent magnet 20 effects, the magnetic metal particles attract each other to generate a magnetic cluster. The magnetic metal particles also function as abrasive grains, and the magnetic cluster becomes a magnetic brush carrying minute shaving. The magnetic metal particles which are the abrasive grains is prevented from remaining in the magnetic brush and permeating out due to the effect of the magnetic field. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アルミニウムやその合金など、比較的に軟らかい軟性金属材料の対象物に対して緻密な削り作用による表面処理を行うためのペースト材料に関するもので、より具体的には、磁界の作用により連動して流動する磁気研磨液(ペースト材料)において、緻密な削り作用を発揮する組成についての改良に関する。   The present invention relates to a paste material for performing a surface treatment by a precise cutting action on an object of a relatively soft soft metal material such as aluminum or an alloy thereof, more specifically, by the action of a magnetic field. The present invention relates to an improvement in a composition that exhibits a precise shaving action in a magnetic polishing liquid (paste material) that flows in conjunction.

金属材料にあっては、各種工業製品への適用において、装飾性や機能性の面から表面性状の改質を行う表面処理が必要であり、その表面について研磨および洗浄等の表面処理が行われている。金属材料として、特に使用量が多く需要が大きいものは鉄系材料であるが、近年は軽量化の要求から、アルミニウムやその合金などアルミニウム系材料に注目があり需要が高まっている。   In the case of metallic materials, a surface treatment that modifies the surface properties is necessary in terms of decorativeness and functionality in application to various industrial products. Surface treatment such as polishing and cleaning is performed on the surface. ing. As a metal material, iron-based materials that are used in large amounts and are in great demand are recently attracting attention because of demands for weight reduction, and aluminum-based materials such as aluminum and its alloys are attracting increasing demand.

表面処理の一つには鏡面仕上げがあり、上述したアルミニウム系材料でも重要な表面処理となる。つまり、部材表面の鏡面仕上げは外観の美しさを得ることはもちろん、アルミニウム系材料ではメッキ処理前の下地作りや、多層構造での重ね合わせ面の接着性向上といった目的から特に重要となっている。   One of the surface treatments is a mirror finish, which is an important surface treatment even with the above-described aluminum-based materials. In other words, the mirror finish on the surface of the member is of particular importance not only for obtaining a beautiful appearance, but also for aluminum-based materials, for the purpose of creating a base before plating and improving the adhesion of the overlapping surface in a multilayer structure. .

鏡面仕上げが行い得る精密研磨の技術として、いわゆる磁気研磨法と呼ばれる技術がよく知られている。これは、磁性流体(MF:Magnetic Fluid)や磁気粘性流体(MRF:Magneto Rheological Fluid)を研磨粒子と混合させ、磁界により混合液を運動させることで研磨を行っている。   A so-called magnetic polishing technique is well known as a precision polishing technique that can be mirror-finished. This is performed by mixing a magnetic fluid (MF) or a magnetorheological fluid (MRF) with abrasive particles and moving the mixed liquid by a magnetic field.

研磨バイトには永久磁石を備えて磁界発生源とし、その研磨バイトの周りに磁気研磨液(ペースト材料)を付着させると、磁気吸引力によりMFやMRF中の強磁性粒子(例えば、鉄粒子),マグネタイト粒子が、多数凝集して磁気クラスタを形成する。この磁気クラスタは、磁束に沿うので研磨対象に対立して針状に多数が立ち並ぶ態様を採る。よって、磁気研磨液が研磨バイトに付着して磁気ブラシとなる。   The polishing tool is equipped with a permanent magnet to serve as a magnetic field source. When a magnetic polishing liquid (paste material) is attached around the polishing tool, ferromagnetic particles (for example, iron particles) in MF or MRF are generated by magnetic attraction. , Many magnetite particles aggregate to form a magnetic cluster. Since this magnetic cluster follows the magnetic flux, it takes a form in which a large number of needles are arranged in opposition to the object to be polished. Therefore, the magnetic polishing liquid adheres to the polishing bite to form a magnetic brush.

磁気ブラシあるいは研磨対象が回転動作することにより、両者間の相対運動により磁気ブラシが研磨対象の表面を接触した状態で移動する。その結果、研磨対象の表面の凹凸は研磨粒子を伴う磁気ブラシが研磨し、より平滑な表面を得ることができ、非接触の流体研磨が行える。   When the magnetic brush or the object to be polished rotates, the magnetic brush moves in contact with the surface of the object to be polished by relative movement between the two. As a result, the unevenness of the surface to be polished is polished by the magnetic brush with the abrasive particles, a smoother surface can be obtained, and non-contact fluid polishing can be performed.

このような磁界の作用により非接触の流体研磨を行うための磁気研磨液に関しては、例えば特許文献1などに見られるような技術の開示がある。特許文献1には、強磁性粒子である鉄と研磨粒子である非磁性のアルミナとを混合した組成が示されている。
特開平6−116549号公報
With respect to a magnetic polishing liquid for performing non-contact fluid polishing by the action of such a magnetic field, for example, there is a disclosure of a technique as seen in Patent Document 1 and the like. Patent Document 1 discloses a composition in which iron that is ferromagnetic particles and nonmagnetic alumina that is abrasive particles are mixed.
JP-A-6-116549

しかし、アルミニウム系材料は比較的軟らかく、いわゆる軟性金属材料であることから、研磨処理に伴い微細な傷や白濁等が残ってしまい、鏡面仕上げなどの表面処理は容易ではない。つまり、磁気研磨法を適用した場合、磁気研磨液に含有させた砥粒により傷が入りやすいという問題がある。これは、磁気研磨液の砥粒にはアルミナや炭化ケイ素などを用いるが、これらの砥粒は軟性金属材料に比べて硬度が格段に高く、このため磁気研磨の際に対象物(軟性金属材料)の表面に傷をつけてしまい、その傷によって表面が白濁化するため高度な鏡面を得ることは容易ではない。   However, since the aluminum-based material is relatively soft and is a so-called soft metal material, fine scratches, white turbidity, and the like remain with the polishing process, and surface treatment such as mirror finish is not easy. That is, when the magnetic polishing method is applied, there is a problem that the abrasive grains contained in the magnetic polishing liquid are easily damaged. This is because the abrasive grains of the magnetic polishing liquid use alumina, silicon carbide, etc., but these abrasive grains have remarkably higher hardness than the soft metal material, and therefore the object (soft metal material) during magnetic polishing. ) Is scratched, and the surface becomes clouded by the scratch, so that it is not easy to obtain an advanced mirror surface.

なお、別の方法として、有機溶媒や酸,アルカリ等により化学的に表面処理する化学研磨や、酸,アルカリ等のイオン化により表面処理する電解研磨の方法などもあるが、軟性金属材料へ使用することでは反応性の問題があって一般的ではない。   In addition, as another method, there are a chemical polishing method in which the surface is chemically treated with an organic solvent, an acid, an alkali, or the like, and an electrolytic polishing method in which the surface treatment is performed by ionization of an acid, an alkali, etc., but it is used for a soft metal material. This is not common due to reactivity issues.

現状は、アルミニウム系材料では、鏡面仕上げにはバフ研磨が行われている。これは、いわゆるバフによる手磨きであって効率が非常に悪く、このためアルミニウム系材料の表面処理について自動化が求められている。   At present, buffing is performed for mirror finishing of aluminum-based materials. This is hand polishing by so-called buffing, and the efficiency is very low. Therefore, automation of the surface treatment of the aluminum-based material is required.

磁気研磨法における問題点としては、MFによる磁気研磨では、磁界を作用させた際に磁性粒子の固定が弱く、研磨効率が低いため長時間の磁気研磨が必要になる。また、MFは粒子径10nm程度の磁性粒子を均一に分散させたものであるため、研磨加工後の洗浄が困難であり、微小な隙間に磁性粒子がつまってしまい、除去できなくなる問題が起きる。MRFによる磁気研磨では、磁気クラスタの制御が難しく、研磨対象の表面に深いスクラッチ痕ができ易く、精細な仕上げ加工への適用に改善の余地がある。   As a problem in the magnetic polishing method, magnetic polishing by MF requires a long time magnetic polishing because the fixation of magnetic particles is weak when a magnetic field is applied and the polishing efficiency is low. Further, since MF is obtained by uniformly dispersing magnetic particles having a particle diameter of about 10 nm, it is difficult to clean after polishing, and magnetic particles are clogged in minute gaps and cannot be removed. In magnetic polishing by MRF, it is difficult to control the magnetic cluster, deep scratch marks are easily formed on the surface to be polished, and there is room for improvement in application to fine finishing.

前述した特許文献1などがそうであるように、磁気研磨液を構成する研磨粒子には一般にアルミナ等の非磁性粒子を使用している。しかし、磁気研磨の際は、磁気研磨液には研磨バイトの回転運動による大きな遠心力が作用し、そして研磨バイトの磁石による磁界の分布の影響から、非磁性粒子の一部は磁気クラスタにトラップされなく、磁気ブラシから染み出してしまう問題がある。そのため、染み出した非磁性粒子が加工面を汚染し、磁気研磨液中から研磨粒子の分量が減ることでの研磨効率の低下が起きる。   As is the case with Patent Document 1 described above, nonmagnetic particles such as alumina are generally used for the abrasive particles constituting the magnetic polishing liquid. However, during magnetic polishing, a large centrifugal force due to the rotational movement of the polishing tool acts on the magnetic polishing liquid, and due to the influence of the magnetic field distribution by the magnet of the polishing tool, some nonmagnetic particles are trapped in the magnetic cluster. There is a problem that the magnetic brush oozes out. Therefore, the non-magnetic particles that have exuded contaminate the processed surface, and the polishing efficiency is lowered by reducing the amount of the abrasive particles from the magnetic polishing liquid.

また、特許文献1などのように、強磁性粒子は鉄(金属材料)とし、これと非磁性の研磨粒子(アルミナ)とを混合させる組成は、両者の結合性が悪く、壊れやすいため寿命が短くなり、品質の安定性の面で不安がある。   In addition, as in Patent Document 1, the composition in which the ferromagnetic particles are iron (metal material) and this is mixed with nonmagnetic abrasive particles (alumina) has a poor life and is easy to break. There is concern about the stability of quality.

この発明は上述した課題を解決するもので、その目的は、軟性金属材料などの表面処理が困難な部材であっても高度に鏡面仕上げを行うことができ、緻密な削り作用による表面処理の作業を高効率に行うことができるペースト材料を提供することにある。   The object of the present invention is to solve the above-mentioned problems. The purpose of the present invention is to provide a highly mirror-finished surface treatment work even with a difficult-to-surface material such as a soft metal material. Is to provide a paste material that can be efficiently performed.

上述した目的を達成するために、本発明に係るペースト材料は、アルミニウムやその合金など比較的に軟らかい軟性金属材料の対象物に対して緻密な削り作用による表面処理を行うために、前記対象物と非接触に対面する磁界発生源の周辺に存在させ、磁界の作用により連動させるペースト材料であって、磁性を有する金属粒子および溶媒を含み、金属粒子は、体積磁化4πMでの飽和磁化が15kG以上であるものとする(請求項1)。   In order to achieve the above-described object, the paste material according to the present invention is provided with the object in order to perform a surface treatment by a fine cutting action on an object of a relatively soft soft metal material such as aluminum or an alloy thereof. A paste material that exists in the vicinity of a magnetic field generation source facing non-contact with each other and is interlocked by the action of a magnetic field, and includes magnetic metal particles and a solvent. The metal particles have a saturation magnetization of 15 kG at a volume magnetization of 4πM. This is the above (claim 1).

溶媒は植物油脂とし(請求項2)、溶媒中には当該溶媒に溶解しない不溶解性で低融点樹脂を混合させて含ませる(請求項3)。この低融点樹脂は、融点を40℃以上から80℃以下であるものとする(請求項4)。   The solvent is vegetable oil and fat (Claim 2), and the solvent is mixed with an insoluble and low melting point resin that does not dissolve in the solvent (Claim 3). The low melting point resin has a melting point of 40 ° C. or higher and 80 ° C. or lower (Claim 4).

また、金属粒子は、角部(好ましくは鋭い角部)を有する形状であるものとする(請求項5)。さらに金属粒子は、粒子径を10μmから300μとし、好ましくは30μmから100μm程度とすることがよい(請求項6)。この金属粒子には、鉄粉末を用いることができる(請求項7)。   Further, the metal particles have a shape having corners (preferably sharp corners) (Claim 5). Further, the metal particles may have a particle size of 10 μm to 300 μm, preferably about 30 μm to 100 μm (Claim 6). As the metal particles, iron powder can be used (claim 7).

本発明では、ペースト材料は組成を磁性金属粒子および溶媒を含むものとし、磁性金属粒子は、いわゆる磁気研磨において磁気クラスタを形成する機能と、研磨のための研磨材(砥粒)の機能を発揮することになる。つまり、磁性を有する金属粒子は、磁界をかけることで当該粒子は磁気クラスタを形成する。そして、この磁性金属粒子は、対象物とした軟性金属材料等に比べて一般に硬い部材となる。よって、金属粒子は研磨のための砥粒として機能させることができ、磁気クラスタそのものが、緻密な削りを行う磁気ブラシとなる。したがって、緻密な削り作用による表面処理の作業、例えば鏡面仕上げなどを良好に行うことができる。   In the present invention, the paste material is composed of magnetic metal particles and a solvent, and the magnetic metal particles exhibit a function of forming a magnetic cluster in so-called magnetic polishing and a function of an abrasive (abrasive grain) for polishing. It will be. That is, metal particles having magnetism form magnetic clusters by applying a magnetic field. And this magnetic metal particle becomes a generally hard member compared with the soft metal material etc. which were made into the target object. Therefore, the metal particles can function as abrasive grains for polishing, and the magnetic cluster itself becomes a magnetic brush that performs fine cutting. Therefore, it is possible to satisfactorily perform a surface treatment operation by a precise shaving action, for example, a mirror finish.

この場合、磁気クラスタそのものが、緻密な削りを行う磁気ブラシとなり、砥粒である磁性金属粒子は磁界発生源の磁界により磁気ブラシ内に留まり染み出すことがない。したがって、加工面の汚染がなく、砥粒の減少がないため、緻密な削り作用による表面処理を高効率に行うことができる。   In this case, the magnetic cluster itself becomes a magnetic brush that performs fine cutting, and the magnetic metal particles that are abrasive grains do not stay in the magnetic brush due to the magnetic field of the magnetic field generation source and do not ooze out. Therefore, there is no contamination of the processed surface and there is no decrease in abrasive grains, so that surface treatment by a precise cutting action can be performed with high efficiency.

そして、金属粒子が磁化を持ち、これによる磁気クラスタそのものが研磨のための磁気ブラシとなるので、磁気バイトにつく磁気ブラシの付着度が高くなり、研磨バイトに連動する磁気ブラシのレスポンスが向上し、これによっても研磨効率が高くなる。   Since the metal particles are magnetized and the resulting magnetic cluster itself becomes a magnetic brush for polishing, the adhesion of the magnetic brush attached to the magnetic bite increases, and the response of the magnetic brush linked to the polishing bit improves. This also increases the polishing efficiency.

また、対象物の表面に有機物などの汚れが付着している場合、有機物は対象物よりも硬度が小さいため削り取ることが容易であり、磁性金属粒子による磁気ブラシの緻密な削り作用によって簡単に除去することができ、対象物の表面を傷つけることなく表面処理としていわゆる洗浄が行える。   In addition, when dirt such as organic matter adheres to the surface of the object, it is easy to scrape off because the organic substance is less hard than the object, and it can be easily removed by the fine shaving action of the magnetic brush with magnetic metal particles. So-called cleaning can be performed as a surface treatment without damaging the surface of the object.

研磨力を得るには、金属粒子は角部を持たせた(好ましくは鋭い角部を持たせた)形状がよい。金属粒子は、還元法やアトマイズ法による製造では形状が球形となってしまい、角部ができないため研磨力が弱くなる。粒子形状に角部,鋭い角部を持たせるには、機械力により粉砕する製造による粒子を使用するとよい。   In order to obtain polishing power, the metal particles should have a shape with corners (preferably with sharp corners). The metal particles have a spherical shape when manufactured by the reduction method or atomization method, and the corners are not formed, so that the polishing force is weakened. In order to give corners and sharp corners to the particle shape, it is preferable to use particles produced by pulverization by mechanical force.

ペースト材料(磁気研磨液)において、研磨の可否は磁気ブラシの強さに依存し、磁気ブラシが十分に強くないと研磨はできなくなる。この磁気ブラシの強さは、これを形成する粒子一つ当たりの磁化の強さに依存し、つまり、磁性金属粒子の飽和磁化が大きいほど強く、また粒子径が大きいほど強くなる。十分な研磨力を得るには、金属粒子の磁化は体積磁化4πMでの飽和磁化が15kG以上であることがよく、強ければ強いほどよい。   In the paste material (magnetic polishing liquid), whether polishing is possible or not depends on the strength of the magnetic brush. If the magnetic brush is not strong enough, polishing cannot be performed. The strength of the magnetic brush depends on the strength of magnetization per particle that forms the magnetic brush, that is, the strength increases as the saturation magnetization of the magnetic metal particles increases, and the strength increases as the particle diameter increases. In order to obtain a sufficient polishing force, the magnetization of the metal particles should preferably have a saturation magnetization of 15 kG or more at a volume magnetization of 4πM, and the stronger the better.

金属粒子の粒子径は、小さすぎると研磨できなくなるので10μm以上にすることが好ましい。しかし、粒子径が大きくなると、研磨対象の表面に対する傷が大きくなるため、上限は300μm以下とすることがよい。より好ましくは粒子径は30μmから100μmにしたい。そして、金属粒子としては、安価であり入手が容易な鉄が最適と言える。   If the particle size of the metal particles is too small, it becomes impossible to polish, so it is preferable that the particle size be 10 μm or more. However, as the particle diameter increases, the scratches on the surface to be polished increase, so the upper limit is preferably 300 μm or less. More preferably, the particle size is desired to be 30 μm to 100 μm. As the metal particles, iron that is inexpensive and easily available can be said to be optimal.

溶媒として植物油脂を使用することは、安全性および価格等から好ましいと言える。   It can be said that the use of vegetable oil as a solvent is preferable from the viewpoint of safety and price.

また、ペースト材料はその溶媒中に、当該溶媒に不溶解性で低融点樹脂を混合することにより、低融点樹脂と溶媒とが、相溶性により形状を維持しつつ応力による流動性のあるものとすることができる。外力が作用しない無応力となる際は、低融点樹脂が、溶媒中の金属粒子を保持するので沈降を抑えることができる。そして、外力の作用時には溶媒の流動性により流動することができる。   In addition, the paste material is mixed in the solvent with a low melting point resin that is insoluble in the solvent, so that the low melting point resin and the solvent have fluidity due to stress while maintaining the shape by compatibility. can do. When there is no stress at which no external force acts, the low melting point resin holds the metal particles in the solvent, so that sedimentation can be suppressed. And when an external force is applied, it can flow due to the fluidity of the solvent.

低融点樹脂を少量だけ混合した場合、金属粒子と溶媒の分離を引き起こすが、金属粒子の間に低融点樹脂が存在するため分散性はよくなり、混合が容易になるので少量の混合であっても有効である。この低融点樹脂の混合量は、当該低融点樹脂の融点,粒子径および磁気研磨液の形状維持度,粘度に応じて決定することになる。   If only a small amount of low melting point resin is mixed, separation of the metal particles and the solvent is caused. However, since the low melting point resin exists between the metal particles, the dispersibility is improved and mixing becomes easy. Is also effective. The mixing amount of the low melting point resin is determined according to the melting point, the particle diameter, the shape maintenance degree of the magnetic polishing liquid, and the viscosity of the low melting point resin.

低融点の樹脂の融点は、例えば100℃以下程度のものとする。これは、融点が100℃程度の樹脂の分子量は、1000程度であるが、融点が120℃程度の樹脂の分子量は10000程度となり、硬くなる。そして、100℃を越えた温度付近で、分子量が急激に増加する分岐点となる。そのため、係る増加する前の100℃以下の樹脂が低融点の樹脂といえる。   The melting point of the low melting point resin is, for example, about 100 ° C. or less. This is because the resin having a melting point of about 100 ° C. has a molecular weight of about 1000, but the resin having a melting point of about 120 ° C. has a molecular weight of about 10,000 and becomes hard. And it becomes a branching point where the molecular weight rapidly increases near the temperature exceeding 100 ° C. Therefore, it can be said that the resin at 100 ° C. or less before the increase is a low melting point resin.

さらに低融点樹脂は、融点が低すぎると環境温度の変化により液体化してフェライト粒子の沈降を引き起こすため融点は40℃以上が好ましい。しかし、高温すぎると硬くなり、溶媒との相溶性が低下するため上限は80℃以下がよい。   Further, the low melting point resin is preferably 40 ° C. or more because the low melting point resin is liquefied due to a change in environmental temperature and causes precipitation of ferrite particles. However, if the temperature is too high, it becomes hard and the compatibility with the solvent decreases, so the upper limit is preferably 80 ° C. or lower.

本発明に係るペースト材料では、磁性を有する金属粒子が、磁気クラスタを形成する機能と、緻密な削り作用の機能とを発現するので、磁気クラスタそのものが研磨のための磁気ブラシとなる。よって、砥粒である磁性金属粒子は、磁界の作用により磁気ブラシ内に留まり染み出すことがなく、加工面を汚染しなく砥粒の減少がないため、緻密な削り作用による表面処理を高効率に行うことができる。その結果、軟性金属材料などの表面処理が困難な部材であっても高度に鏡面仕上げを行うことができる。   In the paste material according to the present invention, the magnetic metal particles exhibit a function of forming a magnetic cluster and a function of a fine cutting action, so that the magnetic cluster itself becomes a magnetic brush for polishing. Therefore, magnetic metal particles, which are abrasive grains, do not stay and penetrate into the magnetic brush due to the action of a magnetic field, do not contaminate the machined surface, and do not reduce abrasive grains. Can be done. As a result, even a member that is difficult to surface-treat, such as a soft metal material, can be highly mirror-finished.

この場合、金属粒子が磁化を持ち、これによる磁気クラスタそのものが研磨のための磁気ブラシとなるので、磁気バイトにつく磁気ブラシの付着度が高くなり、研磨バイトに連動する磁気ブラシのレスポンスが向上し、これによっても研磨効率が高くなる。   In this case, the metal particles are magnetized, and the resulting magnetic cluster itself becomes a magnetic brush for polishing, so the degree of adhesion of the magnetic brush attached to the magnetic bite is increased, and the response of the magnetic brush linked to the polishing bit is improved. However, this also increases the polishing efficiency.

また、対象物の表面に付着した有機物などの汚れは、対象物よりも硬度が小さいため削り取ることが容易であり、磁性金属粒子による磁気ブラシの緻密な削り作用によって簡単に除去することができ、対象物の表面を傷つけることなく表面処理としていわゆる洗浄が行える。   In addition, dirt such as organic matter adhering to the surface of the object is easy to scrape because the hardness is smaller than the object, and can be easily removed by the precise shaving action of the magnetic brush with magnetic metal particles, So-called cleaning can be performed as surface treatment without damaging the surface of the object.

すなわち本発明にあっては、アルミニウムやその合金および真鍮,銀,ニッケルなど、比較的に軟らかく傷つきやすい軟性金属材料に対して鏡面仕上げや洗浄等の表面処理を良好に行うことができ、機械力により自動化して高効率に行うことができる。   That is, in the present invention, surface treatment such as mirror finishing and cleaning can be satisfactorily performed on relatively soft and easily damaged soft metal materials such as aluminum, alloys thereof, brass, silver, and nickel. Can be automated and performed with high efficiency.

図1は本発明の好適な一実施の形態を示している。本発明に係るペースト材料は、いわゆる磁気研磨に使用し、磁気研磨において緻密な削り作用を発揮させることで、軟性金属材料等の表面について鏡面仕上げや汚れ(付着物)の除去が行えるようになっている。   FIG. 1 shows a preferred embodiment of the present invention. The paste material according to the present invention is used for so-called magnetic polishing, and exhibits a fine shaving effect in magnetic polishing, so that the surface of a soft metal material or the like can be mirror-finished and dirt (deposits) can be removed. ing.

磁気研磨を行う構成には磁界発生源(永久磁石20)を有する研磨バイト2を備え、研磨対象1はy軸ステージ3に固定し、その研磨対象1に対して研磨バイト2が非接触に対面する配置とし、研磨対象1との間にペースト材料(磁気研磨液4)を存在させ、研磨バイト2にはこれと連係させた駆動手段5を起動することにより所定の運動動作を行わせ、そしてy軸ステージ3を起動することにより研磨対象1にはy軸について所定の運動動作を行わせ、磁気研磨液4に生成した磁気クラスタにより流体研磨を行うようになっている。   The configuration for performing magnetic polishing includes a polishing tool 2 having a magnetic field generation source (permanent magnet 20), the polishing object 1 is fixed to the y-axis stage 3, and the polishing tool 2 faces the polishing object 1 in a non-contact manner. The paste material (magnetic polishing liquid 4) is present between the polishing object 1 and the polishing tool 2 is activated by driving the driving means 5 associated therewith, and a predetermined motion is performed. By starting the y-axis stage 3, the polishing object 1 is caused to perform a predetermined movement operation with respect to the y-axis, and fluid polishing is performed by a magnetic cluster generated in the magnetic polishing liquid 4.

研磨バイト2は、先端に永久磁石20を設けて磁界の発生源としている。磁界発生源としては永久磁石20に限らず、例えば電磁石なども好ましく適用でき、磁気研磨液4に対して磁界を作用し得るものであればよい。磁界の発生は時間的に定常的である必要はなく、時間的に変動的な磁界を発生させることもよい。   The polishing tool 2 is provided with a permanent magnet 20 at its tip to serve as a magnetic field generation source. The magnetic field generation source is not limited to the permanent magnet 20, and for example, an electromagnet can be preferably applied as long as it can act on the magnetic polishing liquid 4. The generation of the magnetic field does not have to be stationary in time, and a magnetic field that varies in time may be generated.

駆動手段5は、少なくともx軸,z軸について多軸制御の機能を有するものとし、当該駆動手段5を起動することにより研磨バイト2には回転動作およびx軸,z軸について所定に移動する運動動作を行わせる。もちろん、一軸方向に往復運動させるようにしてもよい。駆動手段5としては例えばNC工作機を用いればよく、ボール盤,旋盤,NC旋盤,フライス盤などの回転軸(チャック部)に研磨バイト2の軸部を取り付けし、着脱を行うようにする。   The driving means 5 has a multi-axis control function for at least the x-axis and z-axis. When the driving means 5 is activated, the polishing tool 2 rotates and moves in a predetermined manner with respect to the x-axis and z-axis. Let the action take place. Of course, you may make it reciprocate in a uniaxial direction. As the driving means 5, for example, an NC machine tool may be used, and the shaft portion of the polishing tool 2 is attached to and detached from a rotating shaft (chuck portion) such as a drilling machine, a lathe, an NC lathe, or a milling machine.

磁気研磨液4は、磁性を有する金属粒子および溶媒との2成分を含む。溶媒には植物油脂を用いている。この磁気研磨液4は研磨対象1と研磨バイト2との狭間へ供給手段により供給するようになっている。   The magnetic polishing liquid 4 contains two components of magnetic metal particles and a solvent. Vegetable oil is used as the solvent. This magnetic polishing liquid 4 is supplied by a supply means between the polishing object 1 and the polishing bit 2.

磁性を有する金属粒子は、磁界をかけることで磁気クラスタを形成する。この金属粒子としては、適切に磁化し得る金属材料であればよく、研磨対象1とした軟性金属材料等に比べて一般に硬い部材となる。よって、金属粒子は研磨のための砥粒として機能させることができ、磁気クラスタそのものが、緻密な削り作用による表面処理を行うための磁気ブラシとなる。   The magnetic metal particles form a magnetic cluster by applying a magnetic field. The metal particles may be any metal material that can be appropriately magnetized, and are generally harder members than the soft metal material or the like that is the subject of polishing 1. Therefore, the metal particles can function as abrasive grains for polishing, and the magnetic cluster itself becomes a magnetic brush for performing a surface treatment by a fine cutting action.

本実施形態では、金属粒子は、体積磁化4πMでの飽和磁化が15kG以上のものとする。また、金属粒子の粒子径は10μmから300μmとし、好ましくは30μmから100μm程度とすることがよい。そして、金属粒子は非球形粒子とし、好ましくは鋭い角部を有する形状とすることがよい。鋭い角部は機械的に粉砕する製法等により形成でき、これは砥粒としての機能が向上することになる。そこで金属粒子は、例えば鉄粉末から形成することがよい。   In the present embodiment, the metal particles have a saturation magnetization of 15 kG or more at a volume magnetization of 4πM. The particle diameter of the metal particles is 10 μm to 300 μm, preferably about 30 μm to 100 μm. The metal particles are non-spherical particles, preferably having a sharp corner. The sharp corners can be formed by a mechanical grinding method or the like, which improves the function as abrasive grains. Therefore, the metal particles are preferably formed from, for example, iron powder.

磁気研磨液4には、低融点樹脂をさらに混在させることもよい。この場合、低融点樹脂は溶媒に溶解しない不溶解性で低融点の樹脂材料から形成し、平均粒子径を数μmから数百μmとすることがよい。低融点樹脂の融点は40℃以上から80℃以下とするとよい。植物油脂に溶解しない樹脂材料としては、例えばポリエチレン、ポリスチレンなどがある。   The magnetic polishing liquid 4 may be further mixed with a low melting point resin. In this case, the low melting point resin is preferably formed from an insoluble and low melting point resin material that does not dissolve in the solvent, and the average particle size is preferably several μm to several hundred μm. The melting point of the low melting point resin is preferably 40 ° C. or more and 80 ° C. or less. Examples of resin materials that do not dissolve in vegetable oils include polyethylene and polystyrene.

研磨バイト2の運動動作は、例えば研磨対象1の表面に関してくまなく走査する動作としたり、あるいはy軸ステージ3および駆動手段5の動作設定により、研磨対象1にはx−y平面について所定の運動動作を行わせることもよい。このとき、研磨バイト2の周辺には磁気研磨液4を供給し、研磨バイト2には当該軸方向において正逆反転する回転動作を行わせる。あるいは所定に振動させる振動動作を行わせることもよい。   The movement operation of the polishing tool 2 is, for example, an operation of scanning the entire surface of the polishing object 1 or a predetermined movement of the polishing object 1 with respect to the xy plane by setting the operation of the y-axis stage 3 and the driving means 5. An operation may be performed. At this time, the magnetic polishing liquid 4 is supplied to the periphery of the polishing tool 2, and the polishing tool 2 is caused to perform a rotating operation that reverses forward and backward in the axial direction. Or it is good also to perform the vibration operation | movement which vibrates predetermined.

研磨バイト2と研磨対象1との間には磁気研磨液4が存在し、当該磁気研磨液4は磁性を有する金属粒子を含み、永久磁石20により磁気研磨液4に時間的に定常的あるいは変動的な磁界が加わると磁気クラスタが生成する。つまり、磁気研磨液中の磁性金属粒子が、磁気吸引力により多数凝集して磁気クラス夕となる。そして前述したように、金属粒子は研磨のための砥粒として機能し、磁気クラスタそのものが、緻密な削りを行う磁気ブラシとなる。磁気ブラシは、磁束に沿って研磨対象1に対立して針状に多数が立ち並び、砥粒作用を行う金属粒子が研磨対象1の表面に抑えつけられる。このとき、研磨バイト2と研磨対象1とは相対運動することから、金属粒子は研磨対象1の表面上を接触しつつ運動して緻密な削りを行う。よって、緻密な削り作用による表面処理を行うことができる。   A magnetic polishing liquid 4 exists between the polishing tool 2 and the polishing object 1, and the magnetic polishing liquid 4 contains metal particles having magnetism. The permanent magnet 20 causes the magnetic polishing liquid 4 to change constantly or fluctuate in time. When a magnetic field is applied, a magnetic cluster is generated. That is, a large number of magnetic metal particles in the magnetic polishing liquid are aggregated by the magnetic attractive force to form a magnetic class. As described above, the metal particles function as abrasive grains for polishing, and the magnetic cluster itself becomes a magnetic brush that performs fine cutting. A large number of magnetic brushes are arranged in a needle shape in opposition to the object 1 to be polished along the magnetic flux, and metal particles that perform the abrasive action are held down on the surface of the object 1 to be polished. At this time, since the polishing tool 2 and the polishing object 1 move relative to each other, the metal particles move while making contact with the surface of the polishing object 1 to perform precise cutting. Therefore, it is possible to perform a surface treatment by a precise cutting action.

このように、ペースト材料(磁気研磨液4)の組成は、磁性を有する金属粒子および溶媒を含むものとし、磁性金属粒子は、いわゆる磁気研磨において磁気クラスタを形成する機能と、研磨のための研磨材(砥粒)の機能を発揮することになる。   As described above, the composition of the paste material (magnetic polishing liquid 4) includes metal particles having a magnetic property and a solvent. The magnetic metal particles have a function of forming a magnetic cluster in so-called magnetic polishing, and an abrasive for polishing. The function of (abrasive grains) will be exhibited.

この場合、磁気クラスタそのものが、緻密な削りを行う磁気ブラシとなり、砥粒である金属粒子は永久磁石20の磁界により磁気ブラシ内に留まり染み出すことがない。したがって、加工面の汚染がなく、砥粒の減少がないため、緻密な削り作用による表面処理を高効率に行うことができる。ここで金属粒子は、アルミナなどの一般的な砥粒と比べて研磨力がさほど強力ではなく、適度な研磨力を発現する。その結果、アルミニウムやその合金など、比較的に軟らかく表面処理が困難な軟性金属材料であっても高度に鏡面仕上げを行うことができる。   In this case, the magnetic cluster itself becomes a magnetic brush that performs fine shaving, and the metal particles that are abrasive grains remain in the magnetic brush due to the magnetic field of the permanent magnet 20 and do not ooze out. Therefore, there is no contamination of the processed surface and there is no decrease in abrasive grains, so that surface treatment by a precise cutting action can be performed with high efficiency. Here, the metal particles are not so strong as compared with general abrasive grains such as alumina, and express an appropriate polishing force. As a result, even a soft metal material that is relatively soft and difficult to surface-treat, such as aluminum and its alloys, can be highly mirror-finished.

そして、金属粒子が磁化を持ち、これによる磁気クラスタそのものが研磨のための磁気ブラシとなるので、磁気バイトにつく磁気ブラシの付着度が高くなり、研磨バイトに連動する磁気ブラシのレスポンスが向上し、これによっても研磨効率が高くなる。   Since the metal particles are magnetized and the resulting magnetic cluster itself becomes a magnetic brush for polishing, the adhesion of the magnetic brush to the magnetic bite increases, and the response of the magnetic brush linked to the polishing bit improves. This also increases the polishing efficiency.

また、研磨対象1の表面に有機物などの汚れが付着している場合、有機物は当該研磨対象1と硬度が同程度であるため削り取ることが容易であり、金属粒子による磁気ブラシの緻密な削り作用によって簡単に除去することができ、研磨対象1の表面を傷つけることなく表面処理としていわゆる洗浄が行える。   Further, when dirt such as organic matter adheres to the surface of the object 1 to be polished, the organic substance has the same hardness as that of the object 1 to be polished, so that it can be easily scraped off. Can be easily removed, and so-called cleaning can be performed as a surface treatment without damaging the surface of the polishing object 1.

本発明のように、金属粒子を研磨材として機能させることでは、一般に研磨材として知られるアルミナ,ダイヤ,炭化ケイ素等と比較して硬度が劣るため、研磨対象1が、例えばガラスや金型材などの硬い材料に対しては研磨力で不安があるが、アルミニウムおよびその合金などの比較的に軟らかい軟性金属材料に対しては十分に研磨力が高く、高効率に研磨が行える。   Since the metal particles function as an abrasive as in the present invention, the hardness is inferior to alumina, diamond, silicon carbide, etc., which are generally known as abrasives. Although there is anxiety with respect to the hard material, the polishing power is sufficiently high with respect to relatively soft soft metal materials such as aluminum and its alloys, so that polishing can be performed with high efficiency.

研磨力を得るには、金属粒子は非球形粒子とし、好ましくは鋭い角部を持たせた形状がよい。金属粒子は、還元法やアトマイズ法による製造では形状が球形となってしまい、鋭い角部ができないため研磨力が弱くなる。粒子形状に鋭い角部を持たせるには、機械力により粉砕する製造による粒子を使用するとよい。   In order to obtain polishing power, the metal particles are non-spherical particles, and preferably have a shape with sharp corners. The metal particles have a spherical shape when manufactured by a reduction method or an atomization method, and sharp corners are not formed, so that the polishing force becomes weak. In order to give a sharp corner to the particle shape, particles produced by pulverization by mechanical force may be used.

ペースト材料(磁気研磨液4)において、研磨の可否は磁気ブラシの強さに依存し、磁気ブラシが十分に強くないと研磨はできなくなる。この磁気ブラシの強さは、これを形成する粒子一つ当たりの磁化の強さに依存し、つまり、金属粒子の飽和磁化が大きいほど強く、また粒子径が大きいほど強くなる。十分な研磨力を得るには、金属粒子の磁化は体積磁化4πMでの飽和磁化が15kG以上であることがよく、強ければ強いほどよい。   In the paste material (magnetic polishing liquid 4), whether or not polishing is possible depends on the strength of the magnetic brush. If the magnetic brush is not strong enough, polishing cannot be performed. The strength of the magnetic brush depends on the strength of magnetization per particle forming it, that is, the stronger the saturation magnetization of the metal particles, the stronger the particle diameter. In order to obtain a sufficient polishing force, the magnetization of the metal particles should preferably have a saturation magnetization of 15 kG or more at a volume magnetization of 4πM, and the stronger the better.

金属粒子の粒子径は、小さすぎると研磨できなくなるので10μm以上にすることが好ましい。しかし、粒子径が大きくなると、研磨対象の表面に対する傷が大きくなるため、上限は300μm以下とすることがよい。より好ましくは粒子径は30μmから100μmにしたい。そして、金属粒子としては、安価であり入手が容易な鉄が最適と言える。   If the particle size of the metal particles is too small, it becomes impossible to polish, so it is preferable that the particle size be 10 μm or more. However, as the particle diameter increases, the scratches on the surface to be polished increase, so the upper limit is preferably 300 μm or less. More preferably, the particle size is desired to be 30 μm to 100 μm. As the metal particles, iron that is inexpensive and easily available can be said to be optimal.

溶媒として植物油脂を使用することは、安全性および価格等から好ましいと言える。   It can be said that the use of vegetable oil as a solvent is preferable from the viewpoint of safety and price.

また、ペースト材料はその溶媒中に、当該溶媒に不溶解性で低融点の低融点樹脂を混合することにより、低融点樹脂と溶媒とが、相溶性により形状を維持しつつ応力による流動性のあるものとすることができる。外力が作用しない無応力となる際は、低融点樹脂が、溶媒中の金属粒子を保持するので沈降を抑えることができる。そして、外力の作用時には溶媒の流動性により流動することができる。   In addition, the paste material is mixed with a low melting point resin that is insoluble in the solvent and has a low melting point, so that the low melting point resin and the solvent have a fluidity due to stress while maintaining the shape by compatibility. There can be. When there is no stress at which no external force acts, the low melting point resin holds the metal particles in the solvent, so that sedimentation can be suppressed. And when an external force is applied, it can flow due to the fluidity of the solvent.

低融点樹脂は溶媒に溶解しない樹脂材料から形成するので、その溶媒との干渉がなく、研磨能力を良好に得ることができ、高度に精密な表面研磨が行える。   Since the low melting point resin is formed from a resin material that does not dissolve in the solvent, there is no interference with the solvent, a good polishing ability can be obtained, and highly precise surface polishing can be performed.

低融点樹脂を少量だけ混合した場合、金属粒子と溶媒の分離を引き起こすが、金属粒子の間に低融点樹脂が存在するため分散性はよくなり、混合が容易になるので少量の混合であっても有効である。この低融点樹脂の混合量は、当該低融点樹脂の融点,粒子径および磁気研磨液の形状維持度,粘度に応じて決定することになる。   If only a small amount of low melting point resin is mixed, separation of the metal particles and the solvent is caused. However, since the low melting point resin exists between the metal particles, the dispersibility is improved and mixing becomes easy. Is also effective. The mixing amount of the low melting point resin is determined according to the melting point, the particle diameter, the shape maintenance degree of the magnetic polishing liquid, and the viscosity of the low melting point resin.

低融点樹脂は、融点が低すぎると環境温度の変化により液体化してフェライト粒子の沈降を引き起こすため融点は40℃以上が好ましい。しかし、高温すぎると硬くなり、溶媒との相溶性が低下するため上限は80℃以下がよい。   When the melting point of the low melting point resin is too low, the melting point is preferably 40 ° C. or higher because the low melting point resin is liquefied due to a change in environmental temperature and causes precipitation of ferrite particles. However, if the temperature is too high, it becomes hard and the compatibility with the solvent decreases, so the upper limit is preferably 80 ° C. or lower.

(実験による検証)
図1に示す磁気研磨のための構成により試料の研磨を行った。つまり、研磨能力に関する本発明の効果を実証するため、ペースト材料(磁気研磨液4)は組成を変更した複数を用意し、それぞれの磁気研磨液4により研磨対象の研磨を行い、研磨後の表面粗さRa(算術平均粗さ),Ry(最大粗さ)を評価した。
(Verification by experiment)
The sample was polished according to the configuration for magnetic polishing shown in FIG. That is, in order to demonstrate the effect of the present invention regarding the polishing ability, a plurality of paste materials (magnetic polishing liquid 4) having different compositions are prepared, and the polishing target is polished with each magnetic polishing liquid 4, and the surface after polishing Roughness Ra (arithmetic average roughness) and Ry (maximum roughness) were evaluated.

磁気研磨液4は組成として、磁性を有する金属粒子(粉砕鉄粉)と、溶媒(植物油)とを表1に示すwt%とし、これらを均一に混合することにより実施例1を調製した。比較例1から比較例11では、砥粒としてアルミナあるいはフェライトをそれぞれ表1に示すwt%とし、溶媒を水に変更した組み合わせ(比較例4,5)、あるいは金属粒子を球形鉄粉末,球形コバルト,非球形センダスト(登録商標)にそれぞれ変更した組み合わせにした。

Figure 2008254106
The magnetic polishing liquid 4 was composed of magnetic metal particles (pulverized iron powder) and solvent (vegetable oil) in wt% shown in Table 1 as a composition, and Example 1 was prepared by mixing these uniformly. In Comparative Examples 1 to 11, a combination in which alumina or ferrite as the abrasive grains is wt% shown in Table 1 and the solvent is changed to water (Comparative Examples 4 and 5), or the metal particles are spherical iron powder and spherical cobalt. , The combination was changed to non-spherical Sendust (registered trademark).

Figure 2008254106

研磨対象は、アルミニウムからなる板片(Ry=5.7μm)とし、その表面の研磨を行った。この研磨対象1にはx軸方向に、2mm/secで15mmの往復運動を行わせた。磁界発生源の永久磁石20にはネオジウム磁石を用い、研磨時間は2分とした。表面粗さは表面粗さ段差計により測定し、これにはテンコール社製P−10を使用した。研磨対象の研磨を行ったところ、表2に示す結果を得た。

Figure 2008254106
The object to be polished was a plate piece made of aluminum (Ry = 5.7 μm), and the surface was polished. This polishing object 1 was reciprocated by 15 mm at 2 mm / sec in the x-axis direction. A neodymium magnet was used as the permanent magnet 20 of the magnetic field generation source, and the polishing time was 2 minutes. The surface roughness was measured by a surface roughness level meter, and P-10 manufactured by Tencor Corporation was used for this. When the object to be polished was polished, the results shown in Table 2 were obtained.

Figure 2008254106

表2から明らかなように、鉄粉末の粒子径を9μm以上にすることにより研磨が可能となるが、砥粒を加えた比較例3,8,9,10,11では白い傷が入って白濁化してしまい、鏡面は得られない結果となることを確認した。   As is apparent from Table 2, polishing can be achieved by setting the particle size of the iron powder to 9 μm or more, but in Comparative Examples 3, 8, 9, 10, and 11 to which abrasive grains were added, white scratches occurred and white turbidity occurred. It was confirmed that the mirror surface was not obtained.

比較例8から比較例11では、砥粒として加えるフェライト粒子の粒子径が、それぞれ順に小さくなる設定として研磨を行った。その結果、砥粒(フェライト粒子)の粒子径が小さければ、傷が浅くなるものの白濁化は避けられなく、鏡面が得られた組成は、砥粒を混合しない実施例1だけであった。   In Comparative Example 8 to Comparative Example 11, polishing was performed by setting the particle diameters of ferrite particles added as abrasive grains to be sequentially reduced. As a result, if the particle size of the abrasive grains (ferrite particles) is small, the scratches become shallow, but white turbidity is unavoidable, and the composition that gave a mirror surface was only Example 1 in which no abrasive grains were mixed.

なお、各金属粒子は体積磁化4πMでの飽和磁化が、鉄粉末は20kG、球形コバルトは17kG、非球形センダストは10kGのものを使用した。   Each metal particle used had a saturation magnetization at a volume magnetization of 4πM, iron powder of 20 kG, spherical cobalt of 17 kG, and non-spherical sendust of 10 kG.

図2は、研磨対象について表面粗さの測定結果を示すグラフであり、研磨前の表面粗さと、実施例1および比較例2での研磨後の表面粗さを表示している。同図から明らかなように、実施例1は研磨後の表面粗さが略零値であり、良好な鏡面が得られた。   FIG. 2 is a graph showing the measurement results of the surface roughness of the object to be polished, and shows the surface roughness before polishing and the surface roughness after polishing in Example 1 and Comparative Example 2. As can be seen from the figure, in Example 1, the surface roughness after polishing was substantially zero, and a good mirror surface was obtained.

さらに、磁気研磨液4としては、球形鉄粉末および粉砕鉄粉末それぞれの粒子径を変更した組成を用意し、溶媒をテルピネオール,シリコーンオイルへ変更した組成も設定し、研磨対象の研磨および評価を行った。つまり、磁気研磨液4は各成分を表3,表4に示すwt%とし、粉砕鉄粉末を加えた組成により実施例2から実施例5の4種類を調製した。また、比較例12から比較例21では、球形鉄粉末,球形コバルト,非球形センダストにそれぞれ変更した組み合わせにした。

Figure 2008254106

Figure 2008254106
Further, as the magnetic polishing liquid 4, a composition in which the particle diameters of the spherical iron powder and the pulverized iron powder are changed is prepared, and a composition in which the solvent is changed to terpineol or silicone oil is also set, and polishing and evaluation of the polishing target are performed. It was. In other words, the magnetic polishing liquid 4 was prepared in four types from Example 2 to Example 5 according to the composition in which each component was wt% shown in Tables 3 and 4 and crushed iron powder was added. In Comparative Examples 12 to 21, the combinations were changed to spherical iron powder, spherical cobalt, and non-spherical sendust.

Figure 2008254106

Figure 2008254106

研磨対象の研磨を行ったところ、表5に示す結果を得た。そして、各金属粒子について粒子径と表面粗さとの関係が判明し、図3に示すグラフを得た。

Figure 2008254106
When the object to be polished was polished, the results shown in Table 5 were obtained. And the relationship between a particle diameter and surface roughness became clear about each metal particle, and the graph shown in FIG. 3 was obtained.

Figure 2008254106

表5および図3から明らかなように、磁性金属粒子として、球形鉄粉末では研磨力が弱いが、粉砕鉄粉末では研磨が良好に行えており、これは粉砕鉄粉末は鋭い角部を有する形状であることが大きいと言える。さらに、非球形センダストでは研磨ができなく、したがって、形状が非球形、好ましくは鋭い角部を有する形状である条件とともに、所定以上の磁化が必要であることを確認した。   As apparent from Table 5 and FIG. 3, as the magnetic metal particles, the spherical iron powder has a low polishing power, but the pulverized iron powder is well polished. This is because the pulverized iron powder has a sharp corner. It can be said that it is big. Further, it was confirmed that non-spherical sendust cannot be polished, and therefore, it is necessary to have a magnetization of a predetermined level or more together with the condition that the shape is non-spherical, preferably a shape having sharp corners.

また、磁気研磨液4に対して低融点樹脂を加えることでの分散性を評価した。これには表6に示すように、実施例1について低融点(67℃)の低融点樹脂を、溶媒の20wt%を加えて調製し、調製から1週間後の分散性を検査した。その結果、低融点樹脂を加えたものでは、クリームのように形状を維持し、研磨力が調製直後と同程度に保たれていることを確認した。

Figure 2008254106
Moreover, the dispersibility by adding a low melting point resin to the magnetic polishing liquid 4 was evaluated. As shown in Table 6, a low melting point resin (67 ° C.) having a low melting point (67 ° C.) was prepared for Example 1 by adding 20 wt% of the solvent, and the dispersibility after one week from the preparation was examined. As a result, it was confirmed that with the addition of the low melting point resin, the shape was maintained like a cream and the polishing power was maintained at the same level as that immediately after the preparation.

Figure 2008254106

本発明の好適な一実施の形態を示す側面図である。1 is a side view showing a preferred embodiment of the present invention. 研磨対象について表面粗さの測定結果を示すグラフであり、研磨前の表面粗さと、実施例1および試料1での研磨後の表面粗さを表示している。It is a graph which shows the measurement result of surface roughness about grinding | polishing object, and displays the surface roughness before grinding | polishing and the surface roughness after grinding | polishing in Example 1 and Sample 1. 各金属粒子について粒子径と表面粗さとの関係を示すグラフである。It is a graph which shows the relationship between a particle diameter and surface roughness about each metal particle.

符号の説明Explanation of symbols

1 研磨対象
2 研磨バイト
20 永久磁石
3 y軸ステージ
4 磁気研磨液(ペースト材料)
5 駆動手段
DESCRIPTION OF SYMBOLS 1 Polishing object 2 Polishing tool 20 Permanent magnet 3 Y-axis stage 4 Magnetic polishing liquid (paste material)
5 Drive means

Claims (7)

アルミニウムやその合金など比較的に軟らかい軟性金属材料の対象物に対して緻密な削り作用による表面処理を行うために、前記対象物と非接触に対面する磁界発生源の周辺に存在させ、磁界の作用により連動させるペースト材料であって、
磁性を有する金属粒子および溶媒を含み、前記金属粒子は、体積磁化4πMでの飽和磁化が15kG以上であることを特徴とするペースト材料。
In order to perform surface treatment by a precise cutting action on a relatively soft soft metal object such as aluminum or an alloy thereof, the object is present in the vicinity of a magnetic field generation source facing the object in a non-contact manner. Paste material that is linked by action,
A paste material comprising metal particles having magnetism and a solvent, wherein the metal particles have a saturation magnetization of 15 kG or more at a volume magnetization of 4πM.
前記溶媒は植物油脂であることを特徴とする請求項1に記載のペースト材料。   The paste material according to claim 1, wherein the solvent is vegetable oil. 前記溶媒中に、当該溶媒に溶解しない不溶解性の低融点樹脂を混合させて含むことを特徴とする請求項1または2に記載のペースト材料。   The paste material according to claim 1 or 2, wherein the solvent contains an insoluble low melting point resin that does not dissolve in the solvent mixed therein. 前記低融点樹脂は、融点が40℃以上から80℃以下であることを特徴とする請求項3に記載のペースト材料。   The paste material according to claim 3, wherein the low melting point resin has a melting point of 40 ° C. or higher and 80 ° C. or lower. 前記金属粒子は、角部を有する形状であることを特徴とする請求項1から4の何れか1項に記載のペースト材料。   The paste material according to any one of claims 1 to 4, wherein the metal particles have a shape having corners. 前記金属粒子は、粒子径が10μmから300μmであることを特徴とする請求項1から5の何れか1項に記載のペースト材料。   The paste material according to any one of claims 1 to 5, wherein the metal particles have a particle size of 10 µm to 300 µm. 前記金属粒子が、鉄粉末であることを特徴とする請求項1から6の何れか1項に記載のペースト材料。   The paste material according to any one of claims 1 to 6, wherein the metal particles are iron powder.
JP2007097733A 2007-04-03 2007-04-03 Paste material Pending JP2008254106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097733A JP2008254106A (en) 2007-04-03 2007-04-03 Paste material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097733A JP2008254106A (en) 2007-04-03 2007-04-03 Paste material

Publications (1)

Publication Number Publication Date
JP2008254106A true JP2008254106A (en) 2008-10-23

Family

ID=39978214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097733A Pending JP2008254106A (en) 2007-04-03 2007-04-03 Paste material

Country Status (1)

Country Link
JP (1) JP2008254106A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130740A1 (en) * 2012-02-28 2013-09-06 University Of Florida Research Foundation, Inc. Systems and methods for extending cutting tool life
JP2014083647A (en) * 2012-10-25 2014-05-12 Avanstrate Inc Magnetic fluid for glass substrate polishing
CN110340736A (en) * 2019-06-19 2019-10-18 华中科技大学 A kind of magnetorheological finishing device and method based on flow field focusing
WO2023283582A1 (en) * 2021-07-06 2023-01-12 Red Wolf Technology, Inc. On-demand repair of mobile device screens

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239172A (en) * 1985-08-09 1987-02-20 Kureha Chem Ind Co Ltd Magnetic polishing machine
JPS6368356A (en) * 1986-09-08 1988-03-28 Kureha Chem Ind Co Ltd Polishing of inside surface of curved pipe and device thereof
JP2001025965A (en) * 1999-07-12 2001-01-30 Masayuki Oka Grinding machine
JP2003183633A (en) * 2001-10-30 2003-07-03 Degussa Ag Abrasive grain-containing dispersion, method for producing the same and application of the same
JP2005153106A (en) * 2003-11-27 2005-06-16 Ricoh Co Ltd Polishing tool, polishing tool manufacturing method, polishing method, and polishing device
JP2006015468A (en) * 2004-07-05 2006-01-19 Tochigi Prefecture Magnetic abrasive grain and magnetic polishing method
WO2006090741A1 (en) * 2005-02-25 2006-08-31 Utsunomiya University Magnetic surface treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239172A (en) * 1985-08-09 1987-02-20 Kureha Chem Ind Co Ltd Magnetic polishing machine
JPS6368356A (en) * 1986-09-08 1988-03-28 Kureha Chem Ind Co Ltd Polishing of inside surface of curved pipe and device thereof
JP2001025965A (en) * 1999-07-12 2001-01-30 Masayuki Oka Grinding machine
JP2003183633A (en) * 2001-10-30 2003-07-03 Degussa Ag Abrasive grain-containing dispersion, method for producing the same and application of the same
JP2005153106A (en) * 2003-11-27 2005-06-16 Ricoh Co Ltd Polishing tool, polishing tool manufacturing method, polishing method, and polishing device
JP2006015468A (en) * 2004-07-05 2006-01-19 Tochigi Prefecture Magnetic abrasive grain and magnetic polishing method
WO2006090741A1 (en) * 2005-02-25 2006-08-31 Utsunomiya University Magnetic surface treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130740A1 (en) * 2012-02-28 2013-09-06 University Of Florida Research Foundation, Inc. Systems and methods for extending cutting tool life
JP2014083647A (en) * 2012-10-25 2014-05-12 Avanstrate Inc Magnetic fluid for glass substrate polishing
CN110340736A (en) * 2019-06-19 2019-10-18 华中科技大学 A kind of magnetorheological finishing device and method based on flow field focusing
CN110340736B (en) * 2019-06-19 2021-05-18 华中科技大学 Magnetorheological polishing device and method based on flow field focusing
WO2023283582A1 (en) * 2021-07-06 2023-01-12 Red Wolf Technology, Inc. On-demand repair of mobile device screens

Similar Documents

Publication Publication Date Title
Heng et al. Review of superfinishing by the magnetic abrasive finishing process
JP5036374B2 (en) Paste material
JP6371645B2 (en) Magnetic polishing method and magnetic polishing apparatus using a magnet tool
JP2008254106A (en) Paste material
Mutalib et al. Magnetorheological finishing on metal surface: A review
JP2010052123A (en) Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
JP2007326183A (en) Magnetic polishing liquid
Deepak et al. Effect of rotational motion on the flat work piece magnetic abrasive finishing
Khurana et al. Spot nanofinishing using ball nose magnetorheological solid rotating core tool
Patil et al. Study of mechanically alloyed magnetic abrasives in magnetic abrasive finishing
CN100384590C (en) Liquid magnetic grinding and it preparation method
JP5569998B2 (en) Paste material
JP2007045878A (en) Magnetic abrasive grain
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
JP4141634B2 (en) Particle dispersed mixed functional fluid and processing method using the same
Wu et al. Mirror surface finishing of acrylic resin using MCF-based polishing liquid
JP2007210073A (en) Magnetic grinding device and magnetic grinding tool
JP7026927B2 (en) Magnetic polishing method and magnetic polishing equipment
JP4263673B2 (en) Magnetic inner surface polishing method and apparatus
Singh et al. A novel rotating wheel magnetorheological finishing process for external cylindrical workpieces
JP4189446B2 (en) Magnetic abrasive grain, manufacturing method thereof, and magnetic polishing method
Patil et al. Magnetic abrasive finishing
Wang et al. Experimental study on the polishing of aspheric surfaces on an S-136 mould steel using magnetic compound fluid slurries
Vahdati et al. Measurement and simulation of magnetic field strenght in the nano magnetic abrasive finishing process
Khan et al. Experimental investigations on the effect of relative particle sizes of abrasive and iron powder in polishing fluid composition for ball end MR finishing of copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130109