JP2010052123A - Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing - Google Patents

Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing Download PDF

Info

Publication number
JP2010052123A
JP2010052123A JP2008222379A JP2008222379A JP2010052123A JP 2010052123 A JP2010052123 A JP 2010052123A JP 2008222379 A JP2008222379 A JP 2008222379A JP 2008222379 A JP2008222379 A JP 2008222379A JP 2010052123 A JP2010052123 A JP 2010052123A
Authority
JP
Japan
Prior art keywords
polishing
magnetic
polished
slurry
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008222379A
Other languages
Japanese (ja)
Inventor
Yanhua Zou
艶華 鄒
Takeo Suzumura
武男 進村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP2008222379A priority Critical patent/JP2010052123A/en
Publication of JP2010052123A publication Critical patent/JP2010052123A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraprecise magnetic polishing method capable of attaining highly precise polishing of a pipe inner surface and easy cleaning and to provide a polishing slurry for ultraprecise magnetic polishing. <P>SOLUTION: Using a pipe 1 to be polished, polishing slurry 2 introduced into the pipe 1 to be polished and a pipe inner surface magnetic polishing apparatus 3 for agitating the polishing slurry 2 by relatively moving the pipe 1 to be polished and the polishing slurry 2, the inner surface of the pipe 1 to be polished is polished with the polishing slurry 2 by moving the pipe inner surface magnetic polishing apparatus 3. At this time, the polishing slurry 2 comprises spherical magnetic particles, polishing particles having average particle diameter in the range of 1/4 to 1/1000 of the average particle diameter of the magnetic particle, and a slurry medium which is a medium for making the magnetic particles and the polishing particles into a slurry state and does not contain additive for dispersing the polishing particles in the polishing slurry. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超精密磁気研磨方法及びそれに用いる研磨スラリーに関し、更に詳しくは、管の内面を極めて精密に研磨することができ且つ洗浄も容易な超精密磁気研磨方法と、その方法で用いる研磨スラリーに関する。   The present invention relates to an ultraprecision magnetic polishing method and a polishing slurry used therefor, and more specifically, an ultraprecision magnetic polishing method capable of extremely precisely polishing an inner surface of a tube and easy to clean, and a polishing slurry used in the method. About.

半導体分野、医療機器分野、バイオテクノロジー分野等の様々な技術分野で、高精度の精密部品が要求されている。こうした分野では、高純度ガスや高純度流体を輸送するための装置にクリーンパイプが用いられている。このクリーンパイプは、その内面が鏡面仕上げされていることが要求されており、こうした要求に応えるため、磁性砥粒、磁気感応性粒子、磁性流体、磁気粘性流体等を利用した管内面磁気研磨法が提案されている(例えば、特許文献1〜3及び非特許文献1を参照)。   High precision precision parts are required in various technical fields such as the semiconductor field, the medical device field, and the biotechnology field. In these fields, clean pipes are used in devices for transporting high purity gas and high purity fluid. This clean pipe is required to have a mirror-finished inner surface, and in order to meet these requirements, the pipe inner surface magnetic polishing method using magnetic abrasive grains, magnetic sensitive particles, magnetic fluid, magnetorheological fluid, etc. Has been proposed (see, for example, Patent Documents 1 to 3 and Non-Patent Document 1).

特許文献1には、粒径4mmの鋼球を磁性砥粒として管内に入れ、管と、管の外周側に配置した2つの磁石とを相対運動させることにより、その磁性砥粒で管内面を研磨する磁気研磨方法が記載されている。また、特許文献2には、管の内外に磁気感応性の磁性砥粒を配置し、管と磁界とを相対運動させることにより、その磁性砥粒で管の内面と外面とを研磨する磁気研磨方法が記載されている。また、特許文献3には、平均粒径4〜30μmのアルミナ砥粒を混入した磁性流体を管内に入れ、管と磁界とを相対運動させることにより、その磁性砥粒で管の内面を研磨する磁気研磨方法が記載されている。また、非特許文献1には、磁場により粘性が変化する磁気粘性流体中に平均粒径4μmのアルミナ砥粒と平均粒径5μmの鉄粉粒子とを混合した研磨スラリーを管内に入れ、管と磁界とを相対運動させることにより、その磁性砥粒で管の内面を研磨する磁気研磨方法が記載されている。   In Patent Document 1, a steel ball having a particle diameter of 4 mm is put in a pipe as magnetic abrasive grains, and the pipe and the two magnets arranged on the outer peripheral side of the pipe are moved relative to each other so that the inner surface of the pipe is covered with the magnetic abrasive grains. A magnetic polishing method for polishing is described. Patent Document 2 discloses magnetic polishing in which magnetically sensitive magnetic abrasive grains are arranged inside and outside a tube, and the inner surface and the outer surface of the tube are polished with the magnetic abrasive particles by moving the tube and a magnetic field relative to each other. A method is described. Further, in Patent Document 3, a magnetic fluid mixed with alumina abrasive grains having an average particle diameter of 4 to 30 μm is put into a pipe, and the inner surface of the pipe is polished with the magnetic abrasive grains by relatively moving the pipe and the magnetic field. A magnetic polishing method is described. Further, in Non-Patent Document 1, a polishing slurry in which alumina abrasive grains having an average particle diameter of 4 μm and iron powder particles having an average particle diameter of 5 μm are mixed in a magnetorheological fluid whose viscosity is changed by a magnetic field is put in the pipe, A magnetic polishing method is described in which the inner surface of a tube is polished with the magnetic abrasive grains by moving the magnetic field relative to each other.

特開2002−210648号公報JP 2002-210648 A WO2006/090741号公報WO2006 / 090741 特開2003−062747号公報JP 2003-062747 A 山口ひとみ、進村武男、佐藤隆史及び谷口 彰、「磁気粘性流体を利用した精密加工技術の開発研究(磁気粘性流体ベーススラリーの開発とその加工特性)」、精密工学会誌、72巻、1号、100頁(2006).Hitomi Yamaguchi, Takeo Shinmura, Takashi Sato and Akira Taniguchi, “Development and Research of Precision Machining Technology Using Magnetorheological Fluid (Development of Magnetorheological Fluid-Based Slurries and Its Machining Properties)”, Journal of Precision Engineering, Vol. 72, No. 1 100 (2006).

近年、研磨対象となる管の径がより細径になって管内面の研磨がより困難になってきており、さらに管内面の平滑性もより高いレベルが要求されてきている。また、研磨した後の管の内部に残存するスラリーについては、容易に洗浄できることが要求されてきている。   In recent years, the diameter of a pipe to be polished has become smaller and it has become more difficult to polish the inner surface of the pipe, and a higher level of smoothness of the inner surface of the pipe has been demanded. Further, it has been required that the slurry remaining inside the tube after polishing can be easily washed.

しかしながら、上記特許文献1に記載の磁気研磨方法では、磁性砥粒が粒径4mmの鋼球であり、細径管の内面を高い平滑性となるように研磨することは困難である。また、上記特許文献2に記載の磁気研磨方法では、5〜2000μmの磁性粒子を用いているが、そうした磁性粒子は凝集し易いという難点がある。なお、そうした凝集を防ぐために界面活性剤をスラリー中に含有させることが有効であるが、そうした界面活性剤は洗浄しにくく、容易に洗い流すことができないという難点がある。また、特許文献3に記載の磁気研磨方法では、磁性砥粒を混入した磁性流体で研磨するが、研磨対象物に対する加工力が十分ではなく、精密仕上げを効率的に行うのは難しい。また、非特許文献1に記載の磁気研磨方法では、特殊な添加剤を含む磁気粘性流体を使用するため、研磨加工後の洗浄を十分に行わなければならないという難点があり、コスト高になり易い。   However, in the magnetic polishing method described in Patent Document 1, the magnetic abrasive grains are steel balls having a particle diameter of 4 mm, and it is difficult to polish the inner surface of the small diameter tube so as to have high smoothness. Further, in the magnetic polishing method described in Patent Document 2, magnetic particles having a diameter of 5 to 2000 μm are used. However, there is a problem that such magnetic particles are easily aggregated. In order to prevent such agglomeration, it is effective to contain a surfactant in the slurry. However, such a surfactant is difficult to wash and cannot be easily washed away. Further, in the magnetic polishing method described in Patent Document 3, polishing is performed with a magnetic fluid mixed with magnetic abrasive grains, but the processing force for the object to be polished is not sufficient, and it is difficult to efficiently perform precision finishing. Further, in the magnetic polishing method described in Non-Patent Document 1, since a magnetorheological fluid containing a special additive is used, there is a problem in that cleaning after polishing must be performed sufficiently, which tends to increase costs. .

本発明は、上記課題を解決するためになされたものであって、その目的は、管の内面を極めて精密に研磨することができ且つ洗浄も容易な超精密磁気研磨方法と、その方法で用いる研磨スラリーを提供することにある。
を提供することにある。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an ultra-precise magnetic polishing method capable of extremely precisely polishing the inner surface of a tube and easy to clean, and to use the method. It is to provide an abrasive slurry.
Is to provide.

本発明者は、上記課題解決を目的として鋭意研究を行っている過程で、微細な球形鉄粉と超微粒砥粒と一般的な研磨油とを単純に混合してなる研磨スラリーを調製し、その研磨スラリーを用いて管内面の磁気研磨加工を行ったところ、所定の条件を満たした場合に限り、管内面を極めて平滑に研磨することができ、しかも洗浄も極めて容易に行うことができることを見出し、本発明を完成させた。   The present inventor prepared a polishing slurry obtained by simply mixing fine spherical iron powder, ultrafine abrasive grains, and general polishing oil in the course of conducting earnest research for the purpose of solving the above problems, When the inner surface of the tube is magnetically polished using the polishing slurry, the inner surface of the tube can be polished very smoothly and can be cleaned very easily only when predetermined conditions are satisfied. The headline and the present invention were completed.

すなわち、本発明の超精密磁気研磨方法は、被研磨管と、該被研磨管内に導入された研磨スラリーと、該被研磨管と該研磨スラリーとを相対運動させて前記研磨スラリーを攪拌させる管内面磁気研磨装置とを用い、該管内面磁気研磨装置を動作させて前記被研磨管の内面を前記研磨スラリーで研磨する超精密磁気研磨方法であって、前記研磨スラリーが、球状の磁性粒子と、該磁性粒子の平均粒径の1/4〜1/1000の範囲の平均粒径からなる研磨粒子と、該磁性粒子と該研磨粒子をスラリー状にするスラリー媒体であって該研磨粒子を研磨スラリー内に分散させるための添加剤を含まないスラリー媒体とを有することを特徴とする。   That is, the ultra-precision magnetic polishing method of the present invention includes a tube to be polished, a polishing slurry introduced into the tube to be polished, and a tube in which the polishing slurry is stirred by relatively moving the tube to be polished and the polishing slurry. A surface magnetic polishing apparatus, and operating the tube inner surface magnetic polishing apparatus to polish the inner surface of the pipe to be polished with the polishing slurry, wherein the polishing slurry comprises spherical magnetic particles and Abrasive particles having an average particle size in the range of 1/4 to 1/1000 of the average particle size of the magnetic particles, and a slurry medium in which the magnetic particles and the abrasive particles are in a slurry state, and polishing the abrasive particles And a slurry medium not containing an additive for dispersing in the slurry.

この発明によれば、管内面磁気研磨装置により被研磨管と研磨スラリーとを相対運動させて起こる研磨スラリーの攪拌は、球状の磁性粒子が大きく渦巻き回転するように動いて起こるものである(この攪拌現象を本発明者は「自生攪拌現象」と呼ぶ。)が、その結果、小径の研磨粒子が凝集するのを防いで研磨スラリー中で均一分散させることができるので、磁性粒子よりも小径で凝集しない研磨粒子によって、管内面の微細研磨を実現できる。研磨粒子の4倍〜1000倍大きい磁性粒子は球状であるので、被研磨管の内面に傷等を付けることを極力防ぐことができ、平滑性を損なうように作用しない。さらに、その磁性粒子は研磨粒子を凝集しない自生攪拌現象を生じさせることができるので、従来のように研磨粒子を分散させるための添加剤(界面活性剤等)をスラリー媒体中に配合させる必要が無くなる。そのため、研磨後にそうした添加剤を洗浄して除去する困難さを無くすことができ、極めて効率的且つ簡単に洗浄することができる。さらに、磁性粒子の1/4〜1/1000の小径の研磨粒子は、磁性粒子と被研磨管との間に挟まれるようにして被研磨管を研磨するので、凝集しないで均一分散した微細な研磨粒子で被研磨管の内面を精密研磨することができる。   According to the present invention, the stirring of the polishing slurry caused by the relative movement of the tube to be polished and the polishing slurry by the tube inner surface magnetic polishing apparatus is caused by the movement of the spherical magnetic particles so as to swirl large (this The agitation phenomenon is referred to by the present inventor as the “autogenous agitation phenomenon”.) As a result, the small-diameter abrasive particles are prevented from agglomerating and can be uniformly dispersed in the abrasive slurry. Fine polishing of the inner surface of the tube can be realized by non-aggregated abrasive particles. Since the magnetic particles 4 to 1000 times larger than the abrasive particles are spherical, it is possible to prevent the inner surface of the polished tube from being scratched as much as possible and do not act to impair the smoothness. Furthermore, since the magnetic particles can cause a self-stirring phenomenon that does not agglomerate abrasive particles, it is necessary to add an additive (such as a surfactant) for dispersing abrasive particles to the slurry medium as in the past. Disappear. Therefore, it is possible to eliminate the difficulty of cleaning and removing such additives after polishing, and cleaning can be performed extremely efficiently and easily. Furthermore, the abrasive particles having a small diameter of 1/4 to 1/1000 of the magnetic particles are polished between the magnetic particles and the tube to be polished so that the fine particles uniformly dispersed without agglomeration are polished. The inner surface of the tube to be polished can be precisely polished with the abrasive particles.

本発明の超精密磁気研磨方法において、前記被研磨管内で攪拌する磁性粒子は、前記研磨粒子の凝集を抑えて該研磨粒子を分散させるように構成する。   In the ultraprecision magnetic polishing method of the present invention, the magnetic particles stirred in the tube to be polished are configured to disperse the abrasive particles while suppressing aggregation of the abrasive particles.

この発明によれば、管内面磁気研磨装置を制御して磁性粒子に渦巻き回転するような運動力を与えることにより自生攪拌現象を生じさせ、その結果として、被研磨管内で攪拌する磁性粒子が研磨粒子の凝集を抑えてその研磨粒子を分散させるので、従来のように研磨粒子を分散させるための添加剤(界面活性剤等)をスラリー媒体中に配合させる必要が無くなる。そのため、研磨後にそうした添加剤を洗浄して除去する困難さを無くすことができ、極めて効率的且つ簡単に洗浄することができるとともに、凝集しないで均一分散した微細な研磨粒子で被研磨管の内面を精密研磨することができる。   According to the present invention, the tube inner surface magnetic polishing apparatus is controlled to give the magnetic particles a kinetic force that rotates in a spiral manner, thereby generating a spontaneous stirring phenomenon. As a result, the magnetic particles stirred in the polished tube are polished. Since the agglomeration of the particles is suppressed and the abrasive particles are dispersed, it is not necessary to add an additive (such as a surfactant) for dispersing the abrasive particles to the slurry medium as in the prior art. Therefore, it is possible to eliminate the difficulty of cleaning and removing such additives after polishing, and it is possible to clean very efficiently and easily, and the inner surface of the tube to be polished with fine abrasive particles uniformly dispersed without agglomeration. Can be precision polished.

本発明の超精密磁気研磨方法において、前記磁性粒子の平均粒径と前記研磨粒子の平均粒径とを変化させた複数の研磨スラリーを準備し、平均粒径の大きい粒子を含む研磨スラリーから段階的に前記被研磨管内に入れ替えて研磨するように構成する。   In the ultraprecision magnetic polishing method of the present invention, a plurality of polishing slurries in which the average particle size of the magnetic particles and the average particle size of the polishing particles are changed are prepared, and the polishing slurry containing particles having a large average particle size is used. Therefore, it is configured to polish by replacing the inside of the pipe to be polished.

この発明によれば、研磨を例えば粗研磨、中間研磨又は仕上研磨のいずれで行うかによって、磁性粒子と研磨粒子とを適した平均粒径とした複数の研磨スラリーを準備し、平均粒径の大きい粒子を含む研磨スラリーから段階的に被研磨管内に入れ替えて研磨すれば、粗研磨、中間研磨、仕上研磨を順次行うことができる。その結果、研磨段階毎に最も適した研磨スラリーを用いることにより、研磨効率を向上させることができる。   According to the present invention, a plurality of polishing slurries having magnetic particles and abrasive particles having a suitable average particle diameter are prepared depending on whether the polishing is performed by, for example, rough polishing, intermediate polishing, or finish polishing. If polishing is performed by gradually replacing the polishing slurry containing large particles into the tube to be polished, rough polishing, intermediate polishing, and finish polishing can be sequentially performed. As a result, the polishing efficiency can be improved by using the most suitable polishing slurry for each polishing stage.

上記課題を解決する本発明の研磨スラリーは、被研磨管内に導入して、該被研磨管との間で相対運動させて該被研磨管の内面を研磨する研磨スラリーであって、球状の磁性粒子と、該磁性粒子の平均粒径の1/4〜1/1000の範囲の平均粒径からなる研磨粒子と、該磁性粒子と該研磨粒子をスラリー状にするスラリー媒体であって該研磨粒子を研磨スラリー内に分散させるための添加剤を含まないスラリー媒体とを有することを特徴とする。   The polishing slurry of the present invention that solves the above problems is a polishing slurry that is introduced into a tube to be polished and moves relative to the tube to be polished to polish the inner surface of the tube to be polished. Abrasive particles having an average particle size in the range of 1/4 to 1/1000 of the average particle size of the magnetic particles, and a slurry medium in which the magnetic particles and the abrasive particles are in a slurry state, the abrasive particles And a slurry medium not containing an additive for dispersing the powder in the polishing slurry.

この発明によれば、被研磨管との間で相対運動する研磨スラリーは、球状の磁性粒子とその磁性粒子よりも小径(1/4〜1/1000)の研磨粒子とを有するので、球状の磁性粒子の運動が小径の研磨粒子の凝集を防ぐことができる。その結果、研磨スラリー中の研磨粒子を均一に分散させることができ、均一分散した研磨粒子によって、管内面の微細研磨を実現できる。研磨粒子の4倍〜1000倍大きい磁性粒子は球状であるので、被研磨管の内面に傷等を付けることを極力防ぐことができ、平滑性を損なうように作用しない。さらに、研磨粒子が凝集しないので、従来のように研磨粒子を分散させるための添加剤(界面活性剤等)をスラリー媒体中に配合させる必要が無くなる。そのため、研磨後にそうした添加剤を洗浄して除去する困難さを無くすことができ、極めて効率的且つ簡単に洗浄することができる。さらに、磁性粒子の1/4〜1/1000の小径の研磨粒子は、磁性粒子と被研磨管との間に挟まれるようにして被研磨管を研磨するので、凝集しないで均一分散した微細な研磨粒子で被研磨管の内面を精密研磨することができる。   According to the present invention, the polishing slurry that moves relative to the pipe to be polished has spherical magnetic particles and abrasive particles having a smaller diameter (1/4 to 1/1000) than the magnetic particles. The movement of the magnetic particles can prevent agglomeration of small-diameter abrasive particles. As a result, the abrasive particles in the polishing slurry can be uniformly dispersed, and fine polishing of the inner surface of the tube can be realized by the uniformly dispersed abrasive particles. Since the magnetic particles 4 to 1000 times larger than the abrasive particles are spherical, it is possible to prevent the inner surface of the polished tube from being scratched as much as possible and do not act to impair the smoothness. Further, since the abrasive particles do not aggregate, it is not necessary to add an additive (such as a surfactant) for dispersing the abrasive particles to the slurry medium as in the conventional case. Therefore, it is possible to eliminate the difficulty of cleaning and removing such additives after polishing, and cleaning can be performed extremely efficiently and easily. Furthermore, the abrasive particles having a small diameter of 1/4 to 1/1000 of the magnetic particles are polished between the magnetic particles and the tube to be polished so that the fine particles uniformly dispersed without agglomeration are polished. The inner surface of the tube to be polished can be precisely polished with the abrasive particles.

本発明の研磨スラリーにおいて、前記磁性粒子が球状のカルボニル鉄粉であり、前記研磨粒子がダイヤモンド粒子であるように構成する。   In the polishing slurry of the present invention, the magnetic particles are spherical carbonyl iron powder, and the polishing particles are diamond particles.

本発明の超精密磁気研磨方法及びその方法で用いる研磨スラリーによれば、管内面磁気研磨装置により被研磨管と研磨スラリーとを相対運動させて起こる研磨スラリーの攪拌(自生攪拌現象)により、小径の研磨粒子が凝集するのを防いで研磨スラリー中で均一分散させることができるので、磁性粒子よりも小径で凝集しない研磨粒子によって、管内面の微細研磨を実現できる。研磨粒子の4倍〜1000倍大きい磁性粒子は球状であるので、被研磨管の内面に傷等を付けることを極力防ぐことができ、平滑性を損なうように作用しない。さらに、磁性粒子は研磨粒子を凝集しない自生攪拌現象を生じさせることができるので、従来のような研磨粒子を分散させるための添加剤(界面活性剤等)をスラリー媒体中に配合させる必要が無くなる。そのため、研磨後にそうした添加剤を洗浄して除去する困難さを無くすことができ、極めて効率的且つ簡単に洗浄することができる。さらに、磁性粒子の1/4〜1/1000の小径の研磨粒子は、磁性粒子と被研磨管との間に挟まれるようにして被研磨管を研磨するので、凝集しないで均一分散した微細な研磨粒子で被研磨管の内面を精密研磨することができる。   According to the ultra-precise magnetic polishing method of the present invention and the polishing slurry used in the method, a small diameter is obtained by agitation of the polishing slurry (spontaneous stirring phenomenon) caused by relative movement of the pipe to be polished and the polishing slurry by the pipe inner surface magnetic polishing apparatus. Since the abrasive particles are prevented from agglomerating and can be uniformly dispersed in the polishing slurry, fine polishing of the inner surface of the tube can be realized by the abrasive particles having a smaller diameter than the magnetic particles and not agglomerated. Since the magnetic particles 4 to 1000 times larger than the abrasive particles are spherical, it is possible to prevent the inner surface of the polished tube from being scratched as much as possible and do not act to impair the smoothness. Further, since the magnetic particles can cause a self-stirring phenomenon that does not aggregate abrasive particles, it is not necessary to add additives (surfactants, etc.) for dispersing abrasive particles to the slurry medium as in the past. . Therefore, it is possible to eliminate the difficulty of cleaning and removing such additives after polishing, and cleaning can be performed extremely efficiently and easily. Furthermore, the abrasive particles having a small diameter of 1/4 to 1/1000 of the magnetic particles are polished between the magnetic particles and the tube to be polished so that the fine particles uniformly dispersed without agglomeration are polished. The inner surface of the tube to be polished can be precisely polished with the abrasive particles.

以下、本発明の超精密磁気研磨方法及びその方法で用いる研磨スラリーについて、図面を参照しつつ説明する。なお、本発明は、その技術的特徴を有する範囲を包含し、以下に示す説明及び図面等に限定されない。   Hereinafter, the ultraprecision magnetic polishing method of the present invention and the polishing slurry used in the method will be described with reference to the drawings. In addition, this invention includes the range which has the technical feature, and is not limited to description, drawing, etc. which are shown below.

図1は、本発明の超精密磁気研磨方法の加工原理を示す模式図である。図2は、本発明の超精密磁気研磨方法で用いる研磨スラリーの説明図である。本発明の超精密磁気研磨方法は、図1に示すように、被研磨管1と、その被研磨管1内に導入された研磨スラリー2と、被研磨管1と研磨スラリー2とを相対運動させるとともに研磨スラリー2を攪拌させる管内面磁気研磨装置3とを用い、管内面磁気研磨装置3を動作させて被研磨管1の内面を研磨スラリー2で研磨する研磨方法である。そして、本発明の特徴は、図2に示すように、研磨スラリー2が、球状の磁性粒子11と、磁性粒子11の平均粒径Dの1/4〜1/1000の範囲の平均粒径dからなる研磨粒子12と、磁性粒子11と研磨粒子12をスラリー状にするスラリー媒体であって研磨粒子12を研磨スラリー2内に分散させるための添加剤を含まないスラリー媒体13と、を有することにある。   FIG. 1 is a schematic diagram showing the processing principle of the ultraprecision magnetic polishing method of the present invention. FIG. 2 is an explanatory diagram of a polishing slurry used in the ultraprecision magnetic polishing method of the present invention. As shown in FIG. 1, the ultraprecision magnetic polishing method of the present invention moves a pipe 1 to be polished, a polishing slurry 2 introduced into the pipe 1 to be polished, and the polishing pipe 1 and the polishing slurry 2 relative to each other. And a polishing method for polishing the inner surface of the pipe 1 to be polished with the polishing slurry 2 by operating the tube inner surface magnetic polishing device 3 using the tube inner surface magnetic polishing device 3 for stirring the polishing slurry 2. As shown in FIG. 2, the feature of the present invention is that the polishing slurry 2 has spherical magnetic particles 11 and an average particle diameter d in the range of 1/4 to 1/1000 of the average particle diameter D of the magnetic particles 11. And a slurry medium 13 which is a slurry medium in which the magnetic particles 11 and the abrasive particles 12 are made into a slurry and does not contain an additive for dispersing the abrasive particles 12 in the polishing slurry 2. It is in.

(管内面磁気研磨装置)
図1において、管内面磁気研磨装置3は、被研磨管1の外部に配置された磁石31(31a〜31d)から研磨スラリー2に変動磁場を与えるが、こうした変動磁場は、研磨スラリー2中の磁性粒子11を磁気吸引して被研磨管1の内面に押し付けるように作用する。そうした管内面磁気研磨装置3としては各種の形態のものを挙げることができるが、図1の例では、被研磨管1の外部に90°間隔で配置された4つの磁石31a〜31dと、2つの磁石間(31aと31b、31cと31d)を接続するヨーク32(32a,32b)と、被研磨管1を回転33させて被研磨管1と磁石31とを相対運動させる回転装置(図示しない)とで構成されている(後述の図5も参照)。なお、磁石31a〜31dは図1の例では90°の角度となるように被研磨管1の周囲に配置されているが、その角度は任意である。
(Pipe inner surface magnetic polishing equipment)
In FIG. 1, the tube inner surface magnetic polishing apparatus 3 applies a varying magnetic field to the polishing slurry 2 from a magnet 31 (31 a to 31 d) arranged outside the polished tube 1, and these varying magnetic fields are generated in the polishing slurry 2. The magnetic particles 11 are magnetically attracted to act on the inner surface of the tube 1 to be polished. Such a tube inner surface magnetic polishing apparatus 3 can be of various forms. In the example of FIG. 1, four magnets 31a to 31d arranged at intervals of 90 ° on the outside of the polished tube 1, and 2 A yoke 32 (32a, 32b) connecting the two magnets (31a and 31b, 31c and 31d), and a rotating device (not shown) for rotating the polished tube 1 to move the polished tube 1 and the magnet 31 relative to each other. (See also FIG. 5 described later). In the example of FIG. 1, the magnets 31a to 31d are disposed around the polished tube 1 so as to have an angle of 90 °, but the angle is arbitrary.

詳しくは、90°に配置された1対のS極31a及びN極31bをヨーク32aで連結してなる複合磁石36aと、90°に配置された1対のS極31c及びN極31dをヨーク32bで連結してなる複合磁石36bとにより、各々磁界が形成されている。複合磁石36aと複合磁石36bとは、被研磨管1の周りに180°の位置関係で対向するように配置され、その2つの複合磁石36a,36bで挟まれるように被研磨管1が配置される。被研磨管1の内部には研磨スラリー2が入っている。なお、図1と図5では、複合磁石36a,36bを固定し、被研磨管1を回転させて被研磨管1と研磨スラリー2とを相対運動させる態様であるが、被研磨管1を固定し、複合磁石36a,36bを回転させて被研磨管1と研磨スラリー2とを相対運動させるものであってもよい。また、複合磁石と被研磨管1とを反対方向に同時に回転させてもよい。相対運動は、被研磨管1と研磨スラリー2と間で起こるものであるが、研磨スラリー2は複合磁石36a,36bに磁気吸引されるので、相対運動は、被研磨管1と磁石(磁界)ということもできる。   Specifically, a composite magnet 36a formed by connecting a pair of S pole 31a and N pole 31b arranged at 90 ° with a yoke 32a, and a pair of S pole 31c and N pole 31d arranged at 90 ° are yoked. Magnetic fields are formed by the composite magnets 36b connected by 32b. The composite magnet 36a and the composite magnet 36b are arranged so as to face each other around the polished tube 1 in a 180 ° positional relationship, and the polished tube 1 is arranged so as to be sandwiched between the two composite magnets 36a and 36b. The A polishing slurry 2 is contained in the polished tube 1. 1 and 5, the composite magnets 36a and 36b are fixed and the polished tube 1 is rotated to move the polished tube 1 and the polishing slurry 2 relative to each other. However, the polished tube 1 is fixed. Then, the composite magnets 36a and 36b may be rotated to cause the polished tube 1 and the polishing slurry 2 to move relative to each other. Further, the composite magnet and the tube 1 to be polished may be simultaneously rotated in opposite directions. The relative motion occurs between the polished tube 1 and the polishing slurry 2. However, since the polishing slurry 2 is magnetically attracted to the composite magnets 36a and 36b, the relative motion occurs between the polished tube 1 and the magnet (magnetic field). It can also be said.

相対運動の速度は、研磨スラリー2中の磁性粒子11が自生攪拌現象35を起こして研磨スラリー2中の研磨粒子12を均一に分散するに足る速度であればよく、そうした相対運動速度は任意に設定されることになるが、例えば、被研磨管1と研磨スラリー2(磁石)との相対移動速度を50〜200m/minの範囲とすることができる。   The speed of the relative motion may be a speed that allows the magnetic particles 11 in the polishing slurry 2 to cause the self-stirring phenomenon 35 to uniformly disperse the abrasive particles 12 in the polishing slurry 2. Although it will be set, for example, the relative moving speed between the pipe 1 to be polished and the polishing slurry 2 (magnet) can be set in the range of 50 to 200 m / min.

磁性粒子11と研磨粒子12を含む研磨スラリー2は、被研磨管1が回転33しても2つの複合磁石36a,36bに磁気吸引されて所定の領域から動かず、回転する被研磨管1の内面に対して相対移動する。この研磨スラリー2の相対移動により、被研磨管1の内面を研磨することができる。   The polishing slurry 2 containing the magnetic particles 11 and the abrasive particles 12 is magnetically attracted by the two composite magnets 36a and 36b and does not move from a predetermined region even when the polished tube 1 rotates 33, and the rotating slurry 1 is rotated. Move relative to the inner surface. By the relative movement of the polishing slurry 2, the inner surface of the polished tube 1 can be polished.

磁石の強さ(磁力)は、他の条件との兼ね合いで決定されるので一概には言えないが、研磨スラリー2が被研磨管1内で自生攪拌現象35を生じさせる磁力であることが好ましい。複合磁石36を構成する磁石31の種類に特に制限はなく、永久磁石でも電磁石でもよい。永久磁石としては、例えば希土類磁石、フェライト磁石、アルニコマグネット、MA磁石等を挙げることができる。希土類磁石は強力な磁界を得られる点で好ましい。希土類磁石としては、具体的には、ネオジウム磁石(Nd−Fe−B)やサマリウムコバルト磁石(Sm−Co)が好ましく用いられる。   Since the strength (magnetic force) of the magnet is determined in consideration of other conditions, it cannot be generally stated. However, it is preferable that the polishing slurry 2 has a magnetic force that causes the spontaneous stirring phenomenon 35 in the polished pipe 1. . There is no restriction | limiting in particular in the kind of magnet 31 which comprises the composite magnet 36, A permanent magnet or an electromagnet may be sufficient. Examples of permanent magnets include rare earth magnets, ferrite magnets, alnico magnets, and MA magnets. Rare earth magnets are preferred in that a strong magnetic field can be obtained. Specifically, a neodymium magnet (Nd—Fe—B) or a samarium cobalt magnet (Sm—Co) is preferably used as the rare earth magnet.

磁石の数や配置にも特に制限はなく、磁石により形成される磁界中に被研磨管1を配置できるような数や配置にすればよい。例えば、被研磨管1を挟んで対向するように一対のN極とS極とを配置してもよいし、あるいは、図1に示すように一対のN極とS極とが隣り合うように配置してもよい。前者の場合には被研磨管1が配置される箇所に均一磁界を形成しやすく、後者の場合には不均一磁界を形成しやすい。通常は、不均一磁界中に被研磨管1を配置することが好ましい。磁石の数は1つでもよいが、被研磨管1が大きい場合には、磁石の数を2以上に増やすことが好ましく、この場合には、一対のN極とS極が隣り合うように配置された磁石を被研磨管1の周りに複数並べて配置することが好ましい。   There are no particular restrictions on the number and arrangement of magnets, and the number and arrangement may be such that the polished tube 1 can be arranged in a magnetic field formed by magnets. For example, a pair of N poles and S poles may be disposed so as to face each other with the polished tube 1 interposed therebetween, or a pair of N poles and S poles are adjacent to each other as shown in FIG. You may arrange. In the former case, it is easy to form a uniform magnetic field at the place where the polished tube 1 is disposed, and in the latter case, it is easy to form a non-uniform magnetic field. Usually, it is preferable to arrange the polished tube 1 in a non-uniform magnetic field. The number of magnets may be one, but when the polished pipe 1 is large, it is preferable to increase the number of magnets to 2 or more. In this case, the pair of N poles and S poles are arranged adjacent to each other. It is preferable to arrange a plurality of magnets arranged around the pipe 1 to be polished.

N極とS極の形状にも特に制限はない。通常は、円柱や多角柱等の柱状の磁石をN極及びS極として用いる。また、磁束密度を高める観点から、N極及び/又はS極の先端を錘台形、例えば円錐台形や角錘台形としてもよい。また、磁石は角部の磁場強度が大きくなることから、N極やS極の先端を切り欠きが入った形状とすることもできる。なお、ヨーク32a,32bについては特に限定されず、一般的にヨークとして用いられているものを用いることができる。例えば、後述する実施例に示す一般構造用圧延鋼材(SS400)等が用いられる。   There are no particular restrictions on the shape of the N and S poles. Normally, columnar magnets such as cylinders and polygonal columns are used as the N pole and S pole. Further, from the viewpoint of increasing the magnetic flux density, the tip of the N pole and / or the S pole may be a frustum shape, for example, a truncated cone shape or a truncated pyramid shape. In addition, since the magnetic field strength at the corners of the magnet is increased, the tip of the N pole or S pole can be formed with a notch. The yokes 32a and 32b are not particularly limited, and those generally used as yokes can be used. For example, the general structural rolled steel (SS400) shown in the Example mentioned later is used.

なお、管内面磁気研磨装置3には、磁石31を振動させるための振動装置を備えていてもよい。   The tube inner surface magnetic polishing apparatus 3 may include a vibration device for vibrating the magnet 31.

被研磨管1は、その内面を研磨する対象となる管であり、その材質は非磁性管であっても磁性管であってもよい。非磁性管の材質としては、例えば、プラスチックス、ガラス、セラミックス、非磁性の金属(銅、アルミニウム、非磁性鋼材、非磁性ステンレス鋼、チタン、等々)などを挙げることができる。磁性管の材質としては、例えば、鋼管、磁性ステンレス管、ニッケル管、磁性合金管、等を挙げることができる。ただし、被研磨管1が磁性管である場合には、管が有する磁性に抗して磁石31の磁力により研磨スラリー2に自生攪拌現象を生じさせる必要がある。   The to-be-polished tube 1 is a tube to be polished, and the material thereof may be a non-magnetic tube or a magnetic tube. Examples of the material of the nonmagnetic tube include plastics, glass, ceramics, and nonmagnetic metals (copper, aluminum, nonmagnetic steel, nonmagnetic stainless steel, titanium, and the like). Examples of the material of the magnetic tube include a steel tube, a magnetic stainless steel tube, a nickel tube, and a magnetic alloy tube. However, when the pipe 1 to be polished is a magnetic pipe, it is necessary to cause a spontaneous stirring phenomenon in the polishing slurry 2 by the magnetic force of the magnet 31 against the magnetism of the pipe.

被研磨管1の内径は特に限定されず、0.2mm程度の細径管から80mm程度の管であってもよい。また、被研磨管1の内径は長手方向に一定でも途中で変化するものであってもよい。なお、被研磨管1は、真っ直ぐでも曲がっていてもよい。被研磨管1が真っ直ぐである場合には、被研磨管1と磁石31のいずれかが回転しながら被研磨管1の長手方向に移動すればよいが、被研磨管1が曲がっている場合には、曲がった被研磨管1は回転しにくいので、磁石31を回転させることがよい。   The inner diameter of the pipe 1 to be polished is not particularly limited, and may be a thin pipe having a diameter of about 0.2 mm to a pipe having a diameter of about 80 mm. Further, the inner diameter of the tube 1 to be polished may be constant in the longitudinal direction or may change in the middle. The polished tube 1 may be straight or bent. If the pipe 1 to be polished is straight, either the pipe 1 to be polished or the magnet 31 may move while rotating in the longitudinal direction of the pipe 1 to be polished, but when the pipe 1 to be polished is bent. Since the bent pipe 1 to be polished is difficult to rotate, the magnet 31 is preferably rotated.

(研磨スラリー)
研磨スラリー2は、図2に示すように、磁性粒子11と研磨粒子12とスラリー媒体13とを有している。この研磨スラリー2は、被研磨管1内に導入されて、その被研磨管1との間で相対運動させて被研磨管1の内面を研磨する。
(Polishing slurry)
As illustrated in FIG. 2, the polishing slurry 2 includes magnetic particles 11, polishing particles 12, and a slurry medium 13. The polishing slurry 2 is introduced into the polished tube 1 and is moved relative to the polished tube 1 to polish the inner surface of the polished tube 1.

磁性粒子11は、球状の粒子であり、真球状でも楕円形状でもよく、要するに、シャープなエッジを有さないなだらかな曲面を外周に有する形状であればよい。こうした形状からなる磁性粒子11は、被研磨管1の内面に当たった場合であっても、その内面を傷付け難いという利点がある。また、この磁性粒子11は、被研磨管内においては磁石の対向位置に保持され、被研磨管1と研磨スラリー2とが相対運動することにより自生攪拌現象35を生じるための必須の要素である。したがって、磁性粒子11は、被研磨管1と研磨スラリー2との相対運動によって自生攪拌現象35を生じるような磁気特性や粒径を持っている必要がある。したがって、磁性粒子11の材質としては、磁石に磁気吸引されて被研磨管1の内壁に押し当たるとともに、自生攪拌現象35を生じる程度の磁性を有する粒子である必要がある。   The magnetic particle 11 is a spherical particle and may be a true spherical shape or an elliptical shape. In short, it may be any shape as long as it has a smooth curved surface without a sharp edge on its outer periphery. Even when the magnetic particle 11 having such a shape hits the inner surface of the tube 1 to be polished, there is an advantage that the inner surface is hardly damaged. In addition, the magnetic particles 11 are held in a position opposite to the magnet in the polished tube, and are an essential element for causing the self-stirring phenomenon 35 by the relative movement of the polished tube 1 and the polishing slurry 2. Therefore, the magnetic particle 11 needs to have a magnetic characteristic and a particle size that cause the spontaneous stirring phenomenon 35 due to the relative movement of the polished tube 1 and the polishing slurry 2. Therefore, the material of the magnetic particles 11 needs to be particles that are magnetically attracted to the magnet and pressed against the inner wall of the tube 1 to be polished and cause the self-stirring phenomenon 35.

磁性粒子11としては、鉄、コバルト、ニッケル、クロムやこれらの酸化物、合金、化合物等、一般に磁性体と呼ばれる元素を全部又は一部に含む粒子が用いられる。具体例としては、カルボニル鉄粉、電解鉄粉、ニッケル粉、Ni−P合金粉又はNi−B合金粉等のニッケル合金粉等を使用することができる。また、高温高圧下の不活性ガス中で鉄と焼結させた球状の酸化アルミニウム粉や、不活性ガス雰囲気中でのアルミニウムと酸化鉄とのテルミット反応の生成物粉等を用いることも可能である。なお、市販されている磁性砥粒(東洋研磨材工業株式会社;KMX−80)や、その他の未市販の磁性砥粒等であっても、その表面を球状に加工してそれ自身の砥粒として効果を減少させた後であれば用いることができる。また、磁性を持つ球状粉末の表面に、他の材料を被覆してなる粒子であってもよい。   As the magnetic particles 11, particles containing all or part of an element generally called a magnetic substance such as iron, cobalt, nickel, chromium, oxides, alloys, and compounds thereof are used. As specific examples, nickel alloy powder such as carbonyl iron powder, electrolytic iron powder, nickel powder, Ni-P alloy powder or Ni-B alloy powder can be used. It is also possible to use spherical aluminum oxide powder sintered with iron in an inert gas under high temperature and pressure, or a product powder of a thermite reaction between aluminum and iron oxide in an inert gas atmosphere. is there. In addition, even if it is a commercially available magnetic abrasive grain (Toyo Abrasives Co., Ltd .; KMX-80) or other non-commercially available magnetic abrasive grains, the surface thereof is processed into a spherical shape and is itself abrasive grains. As long as the effect is reduced, it can be used. Moreover, the particle | grains which coat | cover another material on the surface of the spherical powder with magnetism may be sufficient.

磁性粒子11の大きさは、研磨粒子12との相対的な関係においては、研磨粒子12の4倍以上1000倍以下、好ましくは4倍以上50倍以下、さらに好ましくは5倍以上20倍以下の範囲である。磁性粒子11の大きさと研磨粒子12の大きさとの関係は、研磨する前の被研磨管内面の表面状態(表面粗さの程度を含む。)、要求される被研磨管内面の表面状態、要求される研磨時間、研磨粒子12の凝集防止の程度等によって上記範囲内から任意に選択される。   The size of the magnetic particle 11 is 4 times or more and 1000 times or less, preferably 4 times or more and 50 times or less, more preferably 5 times or more and 20 times or less that of the abrasive particles 12 in the relative relationship with the abrasive particles 12. It is a range. The relationship between the size of the magnetic particles 11 and the size of the abrasive particles 12 is that the surface state of the inner surface of the tube to be polished (including the degree of surface roughness) before polishing, the required surface state of the inner surface of the tube to be polished, and the requirements. The polishing time is arbitrarily selected from the above range depending on the polishing time, the degree of prevention of aggregation of the abrasive particles 12, and the like.

磁性粒子11の大きさが研磨粒子12の4倍未満では、両者の大きさが近づいて磁性粒子11によって研磨粒子12を均一に分散させることができないことがあり、また、後述する図4に示す態様のように磁性粒子11と被研磨管内面との間に研磨粒子12が挟まれ難くなり、その結果、被研磨管内面を研磨しにくくなる。一方、磁性粒子11の大きさが研磨粒子12の1000倍を超えると、両者の大きさに差がありすぎて磁性粒子11の大きさに対して研磨粒子12が小さすぎ、効率的な研磨を実現できない。なお、5倍以上20倍以下の範囲では、後述する図4に示す態様のように磁性粒子11と被研磨管内面との間に研磨粒子12が挟まれて効率的な研磨を行うことができるので特に好ましい。   If the size of the magnetic particles 11 is less than 4 times the size of the abrasive particles 12, the sizes of both particles may approach each other and the abrasive particles 12 may not be uniformly dispersed by the magnetic particles 11, and will be described later with reference to FIG. As in the embodiment, it becomes difficult for the abrasive particles 12 to be sandwiched between the magnetic particles 11 and the inner surface of the tube to be polished, and as a result, it becomes difficult to polish the inner surface of the tube to be polished. On the other hand, if the size of the magnetic particles 11 exceeds 1000 times that of the abrasive particles 12, the difference between the two is too large, and the abrasive particles 12 are too small relative to the size of the magnetic particles 11, and efficient polishing is performed. Cannot be realized. In the range of 5 times or more and 20 times or less, the polishing particles 12 are sandwiched between the magnetic particles 11 and the inner surface of the tube to be polished as in the embodiment shown in FIG. Therefore, it is particularly preferable.

磁性粒子11の絶対値としては、平均粒径Dで0.5μm以上500μm以下であることが好ましく、0.5μm以上50μm以下であることがより好ましく、0.5μm以上10μm以下の範囲内であることが特に好ましい。これらの平均粒径Dは、研磨対象となる被研磨管1の内径に応じて任意に選択される。内径が大きい場合や粗研磨時等に大きな研磨粒子12を用いる場合には、上記の研磨粒子12と間の相対的な寸法範囲内で大きな粒径の磁性粒子11が選択され、内径が小さい場合や仕上研磨時等に小さな研磨粒子12を用いる場合には、上記の研磨粒子12と間の相対的な寸法範囲内で小さな粒径の磁性粒子11が選択される。すなわち、被研磨管1の内径によって、又は研磨段階(粗研磨、通常研磨、仕上研磨等)によって任意に選択される。特に0.5μm以上10μm以下の範囲では、従来から高精度研磨が難しいとされる細径管を精密研磨できるという効果がある。なお、平均粒径Dは、磁性粒子11の電子顕微鏡写真から測定した平均値であり、表面粗さ(Ra)は、JIS B 0601(2001)に基づいて測定した算術平均粗さである。   The absolute value of the magnetic particles 11 is preferably 0.5 μm or more and 500 μm or less in average particle diameter D, more preferably 0.5 μm or more and 50 μm or less, and within the range of 0.5 μm or more and 10 μm or less. It is particularly preferred. These average particle diameters D are arbitrarily selected according to the inner diameter of the polished tube 1 to be polished. When using a large abrasive particle 12 when the inner diameter is large or during rough polishing, the magnetic particle 11 having a large particle diameter is selected within the relative size range between the abrasive particles 12 and the inner diameter is small. In the case where small abrasive particles 12 are used at the time of finish polishing or the like, the magnetic particles 11 having a small particle diameter are selected within a relative size range with respect to the abrasive particles 12 described above. That is, it is arbitrarily selected depending on the inner diameter of the tube 1 to be polished or by the polishing step (rough polishing, normal polishing, finish polishing, etc.). In particular, in the range of 0.5 μm or more and 10 μm or less, there is an effect that it is possible to precisely polish a small-diameter tube that has been difficult to polish with high accuracy. The average particle diameter D is an average value measured from an electron micrograph of the magnetic particles 11, and the surface roughness (Ra) is an arithmetic average roughness measured based on JIS B 0601 (2001).

研磨粒子12は、上記した磁性粒子11の平均粒径Dの1/4〜1/1000の範囲の平均粒径dからなる研磨粒子である。この研磨粒子12の形態は特に制限されず各種の形態ものを用いることができる。研磨粒子12としては、ダイヤモンド粒子、酸化アルミニウム粒子、酸化セリウム粒子、炭化ケイ素粒子、二酸化ケイ素粒子、酸化クロム粒子、又はそれらの複合体等が挙げられる。また、JIS表示でA、WA、GC、SA、MA、C、MD、CBNとして表されているものを含む、Al、SiC、ZrO、BC、ダイヤモンド、立方晶窒化ホウ素、MgO、CeO又はヒュームドシリカ等の研磨粒子であってもよい。 The abrasive particles 12 are abrasive particles having an average particle diameter d in the range of 1/4 to 1/1000 of the average particle diameter D of the magnetic particles 11 described above. The form of the abrasive particles 12 is not particularly limited, and various forms can be used. Examples of the abrasive particles 12 include diamond particles, aluminum oxide particles, cerium oxide particles, silicon carbide particles, silicon dioxide particles, chromium oxide particles, and composites thereof. Also, A in JIS display, WA, GC, SA, MA , C, MD, include those represented as CBN, Al 2 O 3, SiC , ZrO 2, B 4 C, diamond, cubic boron nitride, Abrasive particles such as MgO, CeO 2 or fumed silica may also be used.

研磨粒子12の粒径は、上記した磁性粒子11のところで理由とともに説明したように、平均粒径dで磁性粒子11の1/4〜1/1000の範囲であり、好ましくは1/4〜1/50の範囲であり、さらに好ましくは1/5〜1/20の範囲である。こうした範囲の研磨粒子12は、後述する図4に示す態様のように磁性粒子11と被研磨管1との間に挟まれるようにして被研磨管1を研磨するので、凝集しないで均一分散した微細な研磨粒子12で被研磨管1の内面を精密研磨することができる(後述の図3,4を参照)。なお、平均粒径dは、研磨粒子12の電子顕微鏡写真から測定した平均値であり、表面粗さ(Ra)は、JIS B 0601(2001)に基づいて測定した算術平均粗さである。   The particle size of the abrasive particles 12 is in the range of 1/4 to 1/1000 of the magnetic particles 11 with an average particle size d as described above with the reason for the magnetic particles 11, and preferably 1/4 to 1 / 50, more preferably 1/5 to 1/20. The abrasive particles 12 in such a range are uniformly dispersed without being agglomerated because the polished tube 1 is polished so as to be sandwiched between the magnetic particles 11 and the polished tube 1 as shown in FIG. The inner surface of the tube to be polished 1 can be precisely polished with fine abrasive particles 12 (see FIGS. 3 and 4 described later). The average particle diameter d is an average value measured from an electron micrograph of the abrasive particles 12, and the surface roughness (Ra) is an arithmetic average roughness measured based on JIS B 0601 (2001).

スラリー媒体13は、磁性粒子11と研磨粒子12をスラリー状にする媒体であって、研磨粒子12を研磨スラリー2内に分散させるための添加剤を含まない媒体である。スラリー状とする際の好ましい媒体としては、軽油、水の他、一般的に研磨液として用いられる水溶性や油溶性の液体等が挙げられる。   The slurry medium 13 is a medium in which the magnetic particles 11 and the abrasive particles 12 are made into a slurry, and does not contain an additive for dispersing the abrasive particles 12 in the abrasive slurry 2. As a preferable medium in the slurry state, water-soluble and oil-soluble liquids generally used as polishing liquids can be used in addition to light oil and water.

特に本発明では、従来、スラリー中の小粒径の研磨粒子が凝縮しないように添加していた界面活性剤等の添加剤が研磨後の洗浄工程での洗浄効率を妨げているという問題点を解決した点にも特徴があり、本発明で利用する研磨スラリー2がそうした添加剤を含まないことに特徴がある。そうした添加剤を含まないようにしても、本発明では上記したように磁性粒子11が自生攪拌現象35することにより研磨粒子12を均一分散させることができるという効果があるので、そうした添加剤は不要となるのである。その結果、研磨後の洗浄工程においては、特殊な洗浄液で洗浄する必要がなくなり、単純な水洗浄やエタノール洗浄のみでも効果的な洗浄を行うことができる。   Particularly in the present invention, there has been a problem that additives such as surfactants, which have been added so as not to condense the small abrasive particles in the slurry, hinder the cleaning efficiency in the cleaning step after polishing. The problem is also solved, and the polishing slurry 2 used in the present invention is characterized by not containing such an additive. Even if such an additive is not included, the present invention does not require such an additive because the magnetic particles 11 can be uniformly dispersed by the self-stirring phenomenon 35 as described above. It becomes. As a result, in the cleaning process after polishing, it is not necessary to perform cleaning with a special cleaning liquid, and effective cleaning can be performed only by simple water cleaning or ethanol cleaning.

こうして構成された研磨スラリー2においては、通常、研磨スラリー2中に含まれる磁性粒子11の含有量は30重量%〜70重量%の範囲であり、研磨粒子12の含有量は10重量%〜60重量%の範囲であり、これら磁性粒子11と研磨粒子12とをあわせた総含有量は70重量%〜90重量%の範囲であるように構成される。なお、磁性粒子11の含有量は、管内面磁気研磨装置3や磁性粒子11の粒径等の条件とも関係し、自生攪拌現象35を生じやすいように設定され、また、研磨粒子12の含有量は、被研磨管の内面の研磨の程度(粗研磨、通常研磨、仕上研磨等)や研磨効率を考慮して設定される。また、スラリー媒体12の含有量は、調製された研磨スラリー2が被研磨管1と磁石との間の相対運動によっても磁石の対向位置に流体物として留まっているように、ある程度の粘度を有するように設定される。   In the thus configured polishing slurry 2, the content of the magnetic particles 11 contained in the polishing slurry 2 is usually in the range of 30 wt% to 70 wt%, and the content of the abrasive particles 12 is 10 wt% to 60 wt%. The total content of the magnetic particles 11 and the abrasive particles 12 is in the range of 70% by weight to 90% by weight. The content of the magnetic particles 11 is related to conditions such as the particle diameter of the pipe inner surface magnetic polishing apparatus 3 and the magnetic particles 11 and is set so as to easily cause the self-stirring phenomenon 35. The content of the abrasive particles 12 Is set in consideration of the degree of polishing of the inner surface of the tube to be polished (rough polishing, normal polishing, finish polishing, etc.) and polishing efficiency. Further, the content of the slurry medium 12 has a certain degree of viscosity so that the prepared polishing slurry 2 remains as a fluid in the position opposite to the magnet even by the relative movement between the tube to be polished 1 and the magnet. It is set as follows.

以上説明したように、研磨スラリー2に含まれる球状の磁性粒子11は、研磨粒子12の4倍〜1000倍(好ましくは4倍〜50倍、特に好ましくは5倍〜20倍)大きいので、被研磨管1の内面に傷等を付けることを極力防ぐことができ、平滑性を損なうように作用しないという効果がある。さらに、研磨粒子12を凝集しない自生攪拌現象35を生じさせることができるので、従来のように研磨粒子12を分散させるための添加剤(界面活性剤等)をスラリー媒体中に配合させる必要が無くなる。そのため、研磨後にそうした添加剤を洗浄して除去する困難さを無くすことができ、極めて効率的且つ簡単に洗浄することができるという効果がある。なお、自生攪拌現象35とは、管内面磁気研磨装置3により被研磨管1と研磨スラリー2とを相対運動させたときに球状の磁性粒子11が大きく渦巻き状に動いて起こる攪拌現象であり、その結果、小径の研磨粒子12が凝集するのを防いでその研磨粒子12を研磨スラリー2中で均一分散させることができるので、磁性粒子11よりも小径で凝集しない研磨粒子12によって、被研磨管の内面の微細研磨を実現できる。   As described above, the spherical magnetic particles 11 contained in the polishing slurry 2 are 4 to 1000 times (preferably 4 to 50 times, particularly preferably 5 to 20 times) larger than the abrasive particles 12, The inner surface of the polishing tube 1 can be prevented from being scratched as much as possible, and there is an effect that it does not act so as to impair the smoothness. Furthermore, since the self-stirring phenomenon 35 that does not aggregate the abrasive particles 12 can be caused, it is not necessary to add an additive (such as a surfactant) for dispersing the abrasive particles 12 to the slurry medium as in the conventional case. . Therefore, it is possible to eliminate the difficulty of washing and removing such additives after polishing, and there is an effect that the washing can be performed very efficiently and easily. The self-stirring phenomenon 35 is a stirring phenomenon that occurs when the spherical magnetic particles 11 move in a large spiral shape when the tube 1 and the polishing slurry 2 are relatively moved by the tube inner surface magnetic polishing device 3. As a result, it is possible to prevent the abrasive particles 12 having a small diameter from agglomerating and to uniformly disperse the abrasive particles 12 in the polishing slurry 2. Fine polishing of the inner surface of the can be realized.

(研磨挙動)
図3は、被研磨管内の研磨スラリーに作用する力学的なモデル図である。図3に示すように、被研磨管1中に挿入した研磨スラリー2は、磁石31a,31bから磁力線方向と等磁位線方向にそれぞれ磁力FxとFyを受け、磁石31a,31bから引きつけられて磁石付近に保持される。磁力FxとFyは、磁性粒子11の径、磁性粒子11の磁化率、及び磁場の強さとその変化率とに関係する。被研磨管1を回転させると、研磨スラリー2は被研磨管1の内面との間で研磨抵抗ftを受ける。このとき、研磨スラリー2の加工中の挙動は、磁力FxとFy、重力mg及び研磨抵抗ftに関係する。研磨スラリー2を構成する磁性粒子11の粒径と含有割合を一定とすると、被研磨管1の回転速度と磁場の強さの選定によって、研磨スラリー2に自生攪拌現象35を起こさせ、小径の研磨粒子12の均一分散化を実現できる。このように、自生攪拌現象3の発生因子としては、磁場の強さ、磁性粒子の量と粒径、被研磨管の回転数(相対運動の程度)、被研磨管の内面から受ける研磨抵抗、等を挙げることができる。
(Polishing behavior)
FIG. 3 is a dynamic model diagram acting on the polishing slurry in the tube to be polished. As shown in FIG. 3, the polishing slurry 2 inserted into the polished tube 1 receives magnetic forces Fx and Fy from the magnets 31a and 31b in the direction of the magnetic lines and the direction of the equipotential lines, respectively, and is attracted from the magnets 31a and 31b. It is held near the magnet. The magnetic forces Fx and Fy are related to the diameter of the magnetic particles 11, the magnetic susceptibility of the magnetic particles 11, the strength of the magnetic field, and the rate of change thereof. When the polished tube 1 is rotated, the polishing slurry 2 receives a polishing resistance ft between the polished slurry 2 and the inner surface of the polished tube 1. At this time, the behavior of the polishing slurry 2 during processing is related to the magnetic forces Fx and Fy, gravity mg, and polishing resistance ft. When the particle size and content ratio of the magnetic particles 11 constituting the polishing slurry 2 are constant, the self-stirring phenomenon 35 is caused to occur in the polishing slurry 2 by selecting the rotation speed of the polished tube 1 and the strength of the magnetic field, and the small diameter Uniform dispersion of the abrasive particles 12 can be realized. As described above, the generation factors of the spontaneous stirring phenomenon 3 include the strength of the magnetic field, the amount and particle size of the magnetic particles, the number of rotations of the pipe to be polished (degree of relative movement), the polishing resistance received from the inner surface of the pipe to be polished, Etc.

図4は、本発明の研磨スラリーが被研磨管内を研磨するときの態様を示す模式図である。図1及び図3に示す態様において、被研磨管1と研磨スラリー2(磁石31)とを相対運動させると、研磨スラリー2は磁石31から吸引磁力を受けてN・S極間に保持され、その状態で研磨スラリー2と被研磨管の内面との間に相対運動が起こる。この相対運動は、研磨スラリー2を構成する磁性粒子11と被研磨管の内面との間で抵抗を生じさせるため、磁性粒子11に自生攪拌現象が起こり、その磁性粒子11の自生攪拌現象35により研磨粒子12が凝集を起こさずに均一分散され、被研磨管の内面の超精密研磨を実現することができる。   FIG. 4 is a schematic view showing an aspect when the polishing slurry of the present invention polishes the inside of the pipe to be polished. In the embodiment shown in FIGS. 1 and 3, when the polished tube 1 and the polishing slurry 2 (magnet 31) are moved relative to each other, the polishing slurry 2 receives an attractive magnetic force from the magnet 31 and is held between the N and S poles. In this state, relative movement occurs between the polishing slurry 2 and the inner surface of the pipe to be polished. This relative motion causes resistance between the magnetic particles 11 constituting the polishing slurry 2 and the inner surface of the polished pipe, and thus the self-stirring phenomenon occurs in the magnetic particles 11, and the self-stirring phenomenon 35 of the magnetic particles 11 is caused. The abrasive particles 12 are uniformly dispersed without causing aggregation, and ultraprecision polishing of the inner surface of the polished pipe can be realized.

このときの態様は図4に示す通りであり、凝集しない研磨粒子12は、大粒径の磁性粒子11と被研磨管1の内面との間に挟まれて被研磨管の内面を効率的に精密研磨する。   The mode at this time is as shown in FIG. 4. The non-aggregated abrasive particles 12 are sandwiched between the large-diameter magnetic particles 11 and the inner surface of the tube 1 to be polished, thereby efficiently covering the inner surface of the tube to be polished. Precision polishing.

なお、研磨加工が終了した後においては、研磨スラリー2を被研磨管1から分離する。この際、磁気を用いることにより、研磨スラリー2を比較的容易に被研磨管1から分離することができる。被研磨管1の内部の径に対して開口部の径が小さい場合や場所により内径の異なる場合においても、磁気を援用することにより、研磨スラリー2を比較的容易に被研磨管1から分離することができる。具体的には、図1に示すような態様で被研磨管1を研磨した場合には、被研磨管1を磁石31に対して軸方向に相対的に移動させることにより、研磨スラリー2を被研磨管1に対して軸方向に相対的に移動させ、研磨スラリー2を被研磨管1の開口部から排出することができる。   After the polishing process is completed, the polishing slurry 2 is separated from the polished tube 1. At this time, the polishing slurry 2 can be separated from the polished tube 1 relatively easily by using magnetism. Even when the diameter of the opening is smaller than the inner diameter of the pipe 1 to be polished or when the inner diameter differs depending on the location, the polishing slurry 2 can be separated from the pipe 1 to be polished relatively easily by using magnetism. be able to. Specifically, when the tube 1 to be polished is polished in the manner shown in FIG. 1, the polishing slurry 2 is moved by moving the tube 1 to be polished relative to the magnet 31 in the axial direction. The polishing slurry 2 can be discharged from the opening of the tube 1 to be polished by moving the polishing tube 1 relative to the polishing tube 1 in the axial direction.

また、本発明の超精密磁気研磨方法では、粗研磨、通常研磨、仕上研磨等のように研磨精度の段階毎に適した複数種の研磨スラリー2を準備することにより、段階毎の研磨を行うことができる。具体的には、磁性粒子11の平均粒径Dと研磨粒子12の平均粒径dとを変化させた複数の研磨スラリーを準備し、平均粒径D,dの大きい粒子(磁性粒子11及び/又は研磨粒子12)を含む研磨スラリーから段階的に被研磨管1内に入れ替えて研磨する。このように、例えば粗研磨、中間研磨又は仕上研磨のいずれで行うかによって、磁性粒子11と研磨粒子12とを適した平均粒径D,dとした複数の研磨スラリーを準備し、平均粒径D,dの大きい粒子を含む研磨スラリーから段階的に被研磨管1内に入れ替えて研磨すれば、粗研磨、中間研磨、仕上研磨を順次行うことができる。その結果、研磨段階毎に最も適した研磨スラリーを用いることにより、研磨効率を向上させることができる。   Further, in the ultraprecision magnetic polishing method of the present invention, polishing is performed at each stage by preparing a plurality of types of polishing slurry 2 suitable for each stage of polishing accuracy, such as rough polishing, normal polishing, and finish polishing. be able to. Specifically, a plurality of polishing slurries in which the average particle diameter D of the magnetic particles 11 and the average particle diameter d of the abrasive particles 12 are changed are prepared, and particles having large average particle diameters D and d (magnetic particles 11 and / or Alternatively, polishing is performed by gradually replacing the polishing slurry containing the abrasive particles 12) into the polishing pipe 1. Thus, a plurality of polishing slurries having suitable average particle diameters D and d for the magnetic particles 11 and the abrasive particles 12 are prepared depending on, for example, rough polishing, intermediate polishing, or finish polishing. If polishing is performed by gradually replacing the polishing slurry containing particles having large D and d into the tube 1 to be polished, rough polishing, intermediate polishing, and finish polishing can be sequentially performed. As a result, the polishing efficiency can be improved by using the most suitable polishing slurry for each polishing stage.

また、本発明の超精密磁気研磨方法を適用する前段階では、本発明の超精密磁気研磨以外の管内面研磨方法を適用してもよい。例えば、従来行われていたような上記特許文献や非特許文献に記載の方法で研磨してもよく、また、界面活性等の洗浄しにくい添加剤を含む研磨スラリーを用いるものであってもよい。要は、最終的な研磨として本発明の超精密磁気研磨方法を用いれば、上記本発明の効果を奏することができる。   In addition, a tube inner surface polishing method other than the ultraprecision magnetic polishing of the present invention may be applied before the application of the ultraprecision magnetic polishing method of the present invention. For example, polishing may be performed by a method described in the above-described patent documents and non-patent documents as conventionally performed, or a polishing slurry containing an additive that is difficult to clean such as surface activity may be used. . In short, if the ultra-precision magnetic polishing method of the present invention is used as the final polishing, the effects of the present invention can be achieved.

実験例を挙げて本発明をさらに具体的に説明する。なお、本発明の範囲は以下の実験例に限定されるものではない。   The present invention will be described more specifically with reference to experimental examples. The scope of the present invention is not limited to the following experimental examples.

[実験1]
図5は、実験に用いた磁気研磨装置であり、図1に示した磁気研磨装置と同じ構成からなる装置である。用いた磁気研磨装置は、被研磨管1を回転させるとともに、磁石31を振動させる機能を備えた装置であり、磁石31としては、N極、S極、S極、N極の4個のネオジウム永久磁石(18×12×10mm)を90°間隔で順番に配置し、2つずつヨーク32a,32bで接続して複合磁石36a,36bを構成した。被研磨管1を旋盤チャックに固定して毎分2800の回転数で回転させ、さらに複合磁石36a,36bを振動させことにより、被研磨管の内面と研磨スラリー2との間に相対運動が生じて自生攪拌現象35が起こり、被研磨管の内面を研磨加工した。実験条件は以下の通りである。
[Experiment 1]
FIG. 5 shows a magnetic polishing apparatus used in the experiment, which has the same configuration as the magnetic polishing apparatus shown in FIG. The used magnetic polishing apparatus is an apparatus having a function of rotating the polished tube 1 and vibrating the magnet 31. As the magnet 31, four neodymium of N pole, S pole, S pole and N pole are used. Permanent magnets (18 × 12 × 10 mm) were arranged in order at intervals of 90 °, and two magnets were connected by yokes 32a and 32b to form composite magnets 36a and 36b. The polished tube 1 is fixed to a lathe chuck and rotated at a rotational speed of 2800 per minute, and the composite magnets 36a and 36b are vibrated, thereby causing a relative motion between the inner surface of the polished tube and the polishing slurry 2. As a result, the spontaneous stirring phenomenon 35 occurred, and the inner surface of the polished tube was polished. The experimental conditions are as follows.

(研磨加工条件)
被研磨管:光輝焼鈍処理されたSUS316ステンレス鋼円管(内径12.4mm、外径12.7mm)
磁石:Fe−Nd−B系希土類磁石
被研磨管と磁石とのクリアランス:3mm
磁石振動:振幅5mm、振動数0.8Hz
磁石回転数:2800rpm
処理時間:15分間
研磨スラリー:磁性粒子(平均粒径6μmのカルボニル鉄粉、BASFジャパン株式会社製)、研磨粒子(粒径範囲が0.25μm〜0.75μmで平均粒径0.5μmのダイヤモンド粒子、Microdiamant社製)、スラリー媒体(カストロール社製、商品名:ホナイロ998、塩素フリー)
研磨スラリーの組成:磁性粒子62重量%、研磨粒子21重量%、研磨スラリー17重量%
(Polishing conditions)
Polished pipe: SUS316 stainless steel circular tube (inner diameter 12.4 mm, outer diameter 12.7 mm) subjected to bright annealing treatment
Magnet: Fe-Nd-B rare earth magnet Clearance between polished tube and magnet: 3 mm
Magnet vibration: amplitude 5mm, vibration frequency 0.8Hz
Magnet rotation speed: 2800 rpm
Treatment time: 15 minutes Polishing slurry: Magnetic particles (carbonyl iron powder with an average particle size of 6 μm, manufactured by BASF Japan Ltd.), abrasive particles (diamond with a particle size range of 0.25 μm to 0.75 μm and an average particle size of 0.5 μm) Particles, manufactured by Microdiamant), slurry medium (manufactured by Castrol, trade name: Honairo 998, chlorine free)
Composition of polishing slurry: 62% by weight of magnetic particles, 21% by weight of polishing particles, 17% by weight of polishing slurry

(測定及び結果)
図6は、研磨時間毎に測定した表面粗さRaと研磨量Mを示すグラフである。研磨は15分間行い、研磨前の表面粗さと、5分間刻みで研磨した後の表面粗さと、15分後の最終的な表面粗さとを測定した。5分間刻みで研磨したときの表面粗さは、所定の時間が経過したとき回転を止め、被研磨管をエタノールで5分間超音波洗浄し、研磨量Mと表面粗さRaを測定した。表面粗さRaは、触針式粗さ測定機を用い、被研磨管の内面を円周方向に120°間隔で3箇所測定し、その平均値を採用した。図6に示すように、研磨前の被研磨管の内面の表面粗さは43nmRaであったが、15分研磨した後の表面粗さは5nmRaとなり、極めて平滑な鏡面研磨を実現できた。なお、表面粗さの測定は、表面粗さ測定機(株式会社ミツトヨ、型番:SV−624−3D)を用い、JIS B 0601(2001)に基づいた方法で測定し、得られた算術平均粗さの値を表面粗さRaとして表した。また、研磨量Mは、被研磨管の重さを研磨加工の前後で測定して評価した。
(Measurement and results)
FIG. 6 is a graph showing the surface roughness Ra and the polishing amount M measured for each polishing time. Polishing was performed for 15 minutes, and the surface roughness before polishing, the surface roughness after polishing in increments of 5 minutes, and the final surface roughness after 15 minutes were measured. As for the surface roughness when polishing in increments of 5 minutes, the rotation was stopped when a predetermined time passed, and the polished tube was ultrasonically cleaned with ethanol for 5 minutes, and the polishing amount M and the surface roughness Ra were measured. For the surface roughness Ra, a stylus type roughness measuring machine was used, and the inner surface of the polished pipe was measured at 120 locations in the circumferential direction at 120 ° intervals, and the average value thereof was adopted. As shown in FIG. 6, the surface roughness of the inner surface of the polished tube before polishing was 43 nmRa, but the surface roughness after polishing for 15 minutes was 5 nmRa, and extremely smooth mirror polishing could be realized. In addition, the measurement of surface roughness measured by the method based on JISB0601 (2001) using the surface roughness measuring machine (Mitutoyo Corporation, model number: SV-624-3D), and obtained arithmetic average roughness The value of the roughness was expressed as the surface roughness Ra. The polishing amount M was evaluated by measuring the weight of the tube to be polished before and after polishing.

図7は、非接触表面形状粗さ測定装置を用いて測定した表面粗さ結果と、研磨加工前後の3次元形状画像とを示す図である。加工前の粗面は、加工後に滑らかなナノレベルの平滑面になってことがわかる。非接触表面形状粗さ測定装置は光干渉式の表面粗さ測定装置であるが、この装置を用いて測定した表面粗さは、図6で示したものとは若干異なり、研磨前の被研磨管の内面の表面粗さは184.48nmRaであったが、15分研磨した後の表面粗さは9.47nmRaとなった。なお、非接触表面形状粗さ測定装置は、Veeco Instruments社製、型番:WYKO NT1100M)であり、3次元形状画像は、この装置により測定して得られた画像である。   FIG. 7 is a diagram showing a surface roughness result measured using a non-contact surface shape roughness measuring apparatus and three-dimensional shape images before and after polishing. It can be seen that the rough surface before processing becomes a smooth nano-level smooth surface after processing. The non-contact surface shape roughness measuring device is an optical interference type surface roughness measuring device, but the surface roughness measured using this device is slightly different from that shown in FIG. The surface roughness of the inner surface of the tube was 184.48 nmRa, but the surface roughness after polishing for 15 minutes was 9.47 nmRa. Note that the non-contact surface shape roughness measuring device is manufactured by Veeco Instruments, model number: WYKO NT1100M), and the three-dimensional shape image is an image obtained by measuring with this device.

以上のように、球状の磁性粒子11と小径の研磨粒子12とスラリー媒体13とを単純混合して調製した新たな研磨スラリー2を用いて、研磨加工中の自生攪拌現象35を利用して研磨粒子12を均一分散させながら被研磨管1の内面を超精密研磨した。研磨加工実験の結果、触針式粗さ測定機で測定した表面粗さが43nmRaから5nmRaにすることができ、超精密表面に仕上げられることを明らかにした。また、従来の加工法で問題となっていた洗浄についても、本発明の超精密磁気研磨方法では、普通洗浄で十分であることも確認した。   As described above, by using the new polishing slurry 2 prepared by simply mixing the spherical magnetic particles 11, the small-diameter polishing particles 12 and the slurry medium 13, polishing is performed using the self-stirring phenomenon 35 during the polishing process. The inner surface of the tube to be polished 1 was subjected to ultra-precision polishing while uniformly dispersing the particles 12. As a result of the polishing process experiment, it was clarified that the surface roughness measured with a stylus type roughness measuring machine could be changed from 43 nmRa to 5 nmRa, and finished to an ultra-precision surface. In addition, it was also confirmed that ordinary cleaning was sufficient for the ultra-precision magnetic polishing method of the present invention for cleaning that was a problem in conventional processing methods.

本発明の超精密磁気研磨方法の加工原理を示す模式図である。It is a schematic diagram which shows the processing principle of the ultraprecision magnetic polishing method of this invention. 本発明の超精密磁気研磨方法で用いる研磨スラリーの説明図である。It is explanatory drawing of the polishing slurry used with the ultraprecision magnetic polishing method of this invention. 被研磨管内の研磨スラリーに作用する力学的なモデル図である。It is a dynamic model figure which acts on the polishing slurry in a to-be-polished pipe | tube. 本発明の研磨スラリーが被研磨管内を研磨するときの態様を示す模式図である。It is a schematic diagram which shows an aspect when the polishing slurry of this invention grind | polishes the inside of a to-be-polished pipe | tube. 実験に用いた磁気研磨装置であり、図1に示した磁気研磨装置と同じ構成からなる装置である。The magnetic polishing apparatus used in the experiment is an apparatus having the same configuration as the magnetic polishing apparatus shown in FIG. 研磨時間毎に測定した表面粗さと研磨量を示すグラフである。It is a graph which shows the surface roughness measured for every grinding | polishing time, and grinding | polishing amount. 非接触表面形状粗さ測定装置を用いて測定した表面粗さ結果と、研磨加工前後の3次元形状画像とを示す図である。It is a figure which shows the surface roughness result measured using the non-contact surface shape roughness measuring apparatus, and the three-dimensional shape image before and behind grinding | polishing process.

符号の説明Explanation of symbols

1 被研磨管
2 研磨スラリー
3 管内面磁気研磨装置
11 磁性粒子
12 研磨粒子
13 スラリー媒体
31,31a,31b,31c,31d 磁石
32,32a,32b ヨーク
33 回転
35 自生攪拌現象
36,36a,36b 複合磁石
D 磁性粒子の平均粒径
d 研磨粒子の平均粒径
DESCRIPTION OF SYMBOLS 1 Tube to be polished 2 Polishing slurry 3 Tube inner surface magnetic polishing device 11 Magnetic particle 12 Polishing particle 13 Slurry medium 31, 31a, 31b, 31c, 31d Magnet 32, 32a, 32b Yoke 33 Rotation 35 Self-stirring phenomenon 36, 36a, 36b Composite Magnet D Average particle size of magnetic particles d Average particle size of abrasive particles

Claims (5)

被研磨管と、該被研磨管内に導入された研磨スラリーと、該被研磨管と該研磨スラリーとを相対運動させて前記研磨スラリーを攪拌させる管内面磁気研磨装置とを用い、該管内面磁気研磨装置を動作させて前記被研磨管の内面を前記研磨スラリーで研磨する超精密磁気研磨方法であって、
前記研磨スラリーが、球状の磁性粒子と、該磁性粒子の平均粒径の1/4〜1/1000の範囲の平均粒径からなる研磨粒子と、該磁性粒子と該研磨粒子をスラリー状にするスラリー媒体であって該研磨粒子を研磨スラリー内に分散させるための添加剤を含まないスラリー媒体とを有することを特徴とする超精密磁気研磨方法。
Using a pipe to be polished, a polishing slurry introduced into the pipe to be polished, and a pipe inner surface magnetic polishing device that stirs the polishing slurry by moving the pipe to be polished and the polishing slurry relative to each other. An ultra-precise magnetic polishing method of operating a polishing apparatus to polish the inner surface of the pipe to be polished with the polishing slurry,
The abrasive slurry comprises spherical magnetic particles, abrasive particles having an average particle size in the range of 1/4 to 1/1000 of the average particle size of the magnetic particles, and the magnetic particles and the abrasive particles are made into a slurry. An ultra-precise magnetic polishing method comprising: a slurry medium that does not contain an additive for dispersing the abrasive particles in the polishing slurry.
前記被研磨管内で攪拌する磁性粒子は、前記研磨粒子の凝集を抑えて該研磨粒子を分散させる、請求項1に記載の超精密磁気研磨方法。   The ultra-precise magnetic polishing method according to claim 1, wherein the magnetic particles stirred in the polishing pipe are dispersed by suppressing aggregation of the polishing particles. 前記磁性粒子の平均粒径と前記研磨粒子の平均粒径とを変化させた複数の研磨スラリーを準備し、平均粒径の大きい粒子を含む研磨スラリーから段階的に前記被研磨管内に入れ替えて研磨する、請求項1又は2に記載の超精密磁気研磨方法。   Prepare a plurality of polishing slurries with the average particle size of the magnetic particles and the average particle size of the abrasive particles changed, and gradually replace the polishing slurry containing particles having a large average particle size into the polished pipe for polishing. The ultraprecision magnetic polishing method according to claim 1 or 2. 被研磨管内に導入して、該被研磨管との間で相対運動させて該被研磨管の内面を研磨する研磨スラリーであって、
球状の磁性粒子と、該磁性粒子の平均粒径の1/4〜1/1000の範囲の平均粒径からなる研磨粒子と、該磁性粒子と該研磨粒子をスラリー状にするスラリー媒体であって該研磨粒子を研磨スラリー内に分散させるための添加剤を含まないスラリー媒体とを有することを特徴とする超精密磁気研磨用の研磨スラリー。
A polishing slurry that is introduced into a pipe to be polished and moves relative to the pipe to be polished to polish the inner surface of the pipe to be polished,
A spherical magnetic particle, an abrasive particle having an average particle size in the range of 1/4 to 1/1000 of the average particle size of the magnetic particle, and a slurry medium in which the magnetic particle and the abrasive particle are made into a slurry. A polishing slurry for ultra-precise magnetic polishing, comprising a slurry medium containing no additive for dispersing the abrasive particles in the polishing slurry.
前記磁性粒子が球状のカルボニル鉄粉であり、前記研磨粒子がダイヤモンド粒子である、請求項4に記載の研磨スラリー。   The polishing slurry according to claim 4, wherein the magnetic particles are spherical carbonyl iron powder, and the polishing particles are diamond particles.
JP2008222379A 2008-08-29 2008-08-29 Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing Pending JP2010052123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008222379A JP2010052123A (en) 2008-08-29 2008-08-29 Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008222379A JP2010052123A (en) 2008-08-29 2008-08-29 Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing

Publications (1)

Publication Number Publication Date
JP2010052123A true JP2010052123A (en) 2010-03-11

Family

ID=42068585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008222379A Pending JP2010052123A (en) 2008-08-29 2008-08-29 Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing

Country Status (1)

Country Link
JP (1) JP2010052123A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111680A1 (en) 2010-03-09 2011-09-15 カルソニックカンセイ株式会社 Method and apparatus for creating surface processing data
JP2014085254A (en) * 2012-10-24 2014-05-12 Asahi Organic Chemicals Industry Co Ltd Ultrasonic flowmeter and liquid control apparatus having the same
WO2015078103A1 (en) * 2013-11-27 2015-06-04 洛阳双瑞精铸钛业有限公司 Method for manufacturing golf club head having ultrathin cap
JP2015168029A (en) * 2014-03-06 2015-09-28 国立大学法人宇都宮大学 magnetic polishing method and polishing slurry
JP2015530422A (en) * 2012-07-18 2015-10-15 キューイーディー・テクノロジーズ・インターナショナル・インコーポレーテッド Magnetorheological fluid for ultra-smooth polishing
CN108058090A (en) * 2017-12-14 2018-05-22 李玉茹 A kind of aluminum pipe inner wall derusting burnishing device
CN108699994A (en) * 2016-03-22 2018-10-23 马勒金属立夫有限公司 Cylinder jacket for internal combustion engine
JP2019030924A (en) * 2017-08-07 2019-02-28 国立大学法人宇都宮大学 Magnetic polishing method and magnetic polishing device
CN114619295A (en) * 2022-03-13 2022-06-14 温州聚星科技股份有限公司 Magnetic polishing equipment for removing black spots of rivet electrical contact
CN114619295B (en) * 2022-03-13 2024-04-26 温州聚星科技股份有限公司 Magnetic polishing equipment for removing black spots of rivet electrical contact

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157248A (en) * 1983-09-22 1986-03-24 日本磁力選鉱株式会社 Apparatus for polishing and washing fine metal particles
JPS62173166A (en) * 1985-08-08 1987-07-30 Jgc Corp Sphere polishing method using magnetic fluid and polishing device
JPH0550377A (en) * 1991-08-21 1993-03-02 Seiko Epson Corp Magnetogrinding method
JPH0671554A (en) * 1992-08-24 1994-03-15 Daido Steel Co Ltd Magnetic polishing method
JPH07227755A (en) * 1994-02-17 1995-08-29 Kyoei Denko Kk Method and device for treating surface using magnetic force
JPH11214339A (en) * 1998-01-22 1999-08-06 Mitsubishi Electric Corp Polishing method
JP2002356334A (en) * 2001-06-01 2002-12-13 Minolta Co Ltd Mold for forming glass and method for manufacturing the mold
JP2005050501A (en) * 2003-07-15 2005-02-24 Hoya Corp Method and device for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
JP2006043823A (en) * 2004-08-05 2006-02-16 Nachi Fujikoshi Corp Magnetic inner surface polishing method and device
WO2006090741A1 (en) * 2005-02-25 2006-08-31 Utsunomiya University Magnetic surface treatment method
JP2007103457A (en) * 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd Polishing slurry, surface treatment method of group iii nitride crystal, group iii nitride crystal substrate, group iii nitride crystal substrate with epitaxial layer, semiconductor device and its fabrication process
JP2007326183A (en) * 2006-06-08 2007-12-20 Fdk Corp Magnetic polishing liquid
JP2008222979A (en) * 2007-03-15 2008-09-25 Utsunomiya Univ Method for producing polishing composite particle

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157248A (en) * 1983-09-22 1986-03-24 日本磁力選鉱株式会社 Apparatus for polishing and washing fine metal particles
JPS62173166A (en) * 1985-08-08 1987-07-30 Jgc Corp Sphere polishing method using magnetic fluid and polishing device
JPH0550377A (en) * 1991-08-21 1993-03-02 Seiko Epson Corp Magnetogrinding method
JPH0671554A (en) * 1992-08-24 1994-03-15 Daido Steel Co Ltd Magnetic polishing method
JPH07227755A (en) * 1994-02-17 1995-08-29 Kyoei Denko Kk Method and device for treating surface using magnetic force
JPH11214339A (en) * 1998-01-22 1999-08-06 Mitsubishi Electric Corp Polishing method
JP2002356334A (en) * 2001-06-01 2002-12-13 Minolta Co Ltd Mold for forming glass and method for manufacturing the mold
JP2005050501A (en) * 2003-07-15 2005-02-24 Hoya Corp Method and device for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
JP2006043823A (en) * 2004-08-05 2006-02-16 Nachi Fujikoshi Corp Magnetic inner surface polishing method and device
WO2006090741A1 (en) * 2005-02-25 2006-08-31 Utsunomiya University Magnetic surface treatment method
JP2007103457A (en) * 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd Polishing slurry, surface treatment method of group iii nitride crystal, group iii nitride crystal substrate, group iii nitride crystal substrate with epitaxial layer, semiconductor device and its fabrication process
JP2007326183A (en) * 2006-06-08 2007-12-20 Fdk Corp Magnetic polishing liquid
JP2008222979A (en) * 2007-03-15 2008-09-25 Utsunomiya Univ Method for producing polishing composite particle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111680A1 (en) 2010-03-09 2011-09-15 カルソニックカンセイ株式会社 Method and apparatus for creating surface processing data
JP2015530422A (en) * 2012-07-18 2015-10-15 キューイーディー・テクノロジーズ・インターナショナル・インコーポレーテッド Magnetorheological fluid for ultra-smooth polishing
JP2014085254A (en) * 2012-10-24 2014-05-12 Asahi Organic Chemicals Industry Co Ltd Ultrasonic flowmeter and liquid control apparatus having the same
WO2015078103A1 (en) * 2013-11-27 2015-06-04 洛阳双瑞精铸钛业有限公司 Method for manufacturing golf club head having ultrathin cap
JP2015168029A (en) * 2014-03-06 2015-09-28 国立大学法人宇都宮大学 magnetic polishing method and polishing slurry
CN108699994A (en) * 2016-03-22 2018-10-23 马勒金属立夫有限公司 Cylinder jacket for internal combustion engine
JP2019030924A (en) * 2017-08-07 2019-02-28 国立大学法人宇都宮大学 Magnetic polishing method and magnetic polishing device
JP7026927B2 (en) 2017-08-07 2022-03-01 国立大学法人宇都宮大学 Magnetic polishing method and magnetic polishing equipment
CN108058090A (en) * 2017-12-14 2018-05-22 李玉茹 A kind of aluminum pipe inner wall derusting burnishing device
CN114619295A (en) * 2022-03-13 2022-06-14 温州聚星科技股份有限公司 Magnetic polishing equipment for removing black spots of rivet electrical contact
CN114619295B (en) * 2022-03-13 2024-04-26 温州聚星科技股份有限公司 Magnetic polishing equipment for removing black spots of rivet electrical contact

Similar Documents

Publication Publication Date Title
JP2010052123A (en) Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
Khan et al. Selection of optimum polishing fluid composition for ball end magnetorheological finishing (BEMRF) of copper
Heng et al. Review of superfinishing by the magnetic abrasive finishing process
CN101870851A (en) Chemico-mechanical polishing liquid and polishing method
JP6371645B2 (en) Magnetic polishing method and magnetic polishing apparatus using a magnet tool
Mutalib et al. Magnetorheological finishing on metal surface: A review
JP5036374B2 (en) Paste material
CN107378648A (en) A kind of workpiece partial high-precision burnishing device based on magnetic rheology effect
JP2007326183A (en) Magnetic polishing liquid
Srivastava et al. Review on the various strategies adopted for the polishing of silicon wafer—A chemical perspective
JPWO2006090741A1 (en) Magnetic surface treatment method
Patil et al. Study of mechanically alloyed magnetic abrasives in magnetic abrasive finishing
JP2007045878A (en) Magnetic abrasive grain
Wu et al. Nano-precision polishing of CVD SiC using MCF (magnetic compound fluid) slurry
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
JP4141634B2 (en) Particle dispersed mixed functional fluid and processing method using the same
JP2008254106A (en) Paste material
JP2015168029A (en) magnetic polishing method and polishing slurry
Heng et al. A novel auto-gaping magnetic pole system for inner surface finishing of non-circular pipes using magnetic abrasive finishing process
JP4263673B2 (en) Magnetic inner surface polishing method and apparatus
JP2007210073A (en) Magnetic grinding device and magnetic grinding tool
JP7026927B2 (en) Magnetic polishing method and magnetic polishing equipment
JP4471197B2 (en) Polishing method that does not require processing pressure control
CN207155394U (en) A kind of workpiece partial high-precision burnishing device based on magnetic rheology effect
JP5569998B2 (en) Paste material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110801

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228