JPH0671554A - Magnetic polishing method - Google Patents

Magnetic polishing method

Info

Publication number
JPH0671554A
JPH0671554A JP22440092A JP22440092A JPH0671554A JP H0671554 A JPH0671554 A JP H0671554A JP 22440092 A JP22440092 A JP 22440092A JP 22440092 A JP22440092 A JP 22440092A JP H0671554 A JPH0671554 A JP H0671554A
Authority
JP
Japan
Prior art keywords
polishing
magnetic
abrasive grains
grain
nbc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22440092A
Other languages
Japanese (ja)
Inventor
Hiroshi Endo
博司 遠藤
Toru Nagashima
徹 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP22440092A priority Critical patent/JPH0671554A/en
Publication of JPH0671554A publication Critical patent/JPH0671554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To secure an excellently efficient and good surface roughness by performing 'rough polishing' with a composite abrasive grain containing NbC and/or Al2O3 as a hard grain, and then doing 'finish polishing' with another composite abrasive grain containing TiC, SiC and/or WC as the hard grain in succession. CONSTITUTION:At the time of magnetic polishing by means of a composite abrasive grain between a ferromagnetic body and a hard grain, first 'rough polishing' is performed by a composite abrasive grain containing NbC and/or Al2O3 as this hard grain. 'Finish polishing' is carried out by another abrasive grain containing TiC, SiC and/or WC as the hard grain. Thus, a mirror finished surface of excellently efficient and good surface roughness is securable by means of magnetic polishing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気研摩方法に関す
るものである。さらに詳しくは、この発明は、金属表面
等の鏡面形成をも可能とする磁気研摩方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic polishing method. More specifically, the present invention relates to a magnetic polishing method capable of forming a mirror surface such as a metal surface.

【0002】[0002]

【従来の技術とその課題】従来より、研摩材の硬質粒子
を強磁性物質と複合化して製造した砥粒を使用し、磁場
中において研摩圧力を発生させて金属部品などの表面を
研摩する「磁気研摩法」が知られている。この研摩法
は、金型表面の仕上げ加工の自動化、簡易化等の手段と
して有用であるとされ、注目されている。
2. Description of the Related Art Conventionally, abrasive grains produced by compounding hard particles of an abrasive with a ferromagnetic substance are used to generate a polishing pressure in a magnetic field to polish a surface of a metal part or the like. The magnetic polishing method is known. This polishing method is attracting attention because it is useful as a means for automating and simplifying the finishing of the die surface.

【0003】この磁気研摩においては、数百μmの比較
的粗い砥粒を使用してもμm以下のオーダー仕上粗さが
得られるという特徴があり、このことは、研摩時に磁力
で結合された砥粒群が全体として柔軟な加工挙動をする
こと、硬質研摩材成分の粒子が応力下で受けた加工歪
を、強磁性体のマトリックスが分相し緩和することのあ
らわれであると考えられている。
This magnetic polishing is characterized in that an order finishing roughness of less than μm can be obtained even if a relatively coarse abrasive grain of several hundreds of μm is used. This means that the abrasive grains bonded by magnetic force during polishing. It is considered that the particles have a flexible processing behavior as a whole and that the matrix of the ferromagnetic material phase-separates and relaxes the processing strain received by the particles of the hard abrasive component under stress. .

【0004】そして、このような特徴のある磁気研摩方
法では、硬質研摩材粒子とマトリックスの強磁性体との
複合化の状態が、研摩精度を左右し、またその寿命にも
大きな影響を及ぼしていることが明らかになってきたこ
とから、磁気研摩用の砥粒についての工夫も種々なされ
てきている。たとえば、従来は、研摩材の硬質粒子を強
磁性体粉末と混合して焼結させて製造していたが、研摩
特性の向上と研摩材の寿命の増大のために、硬質粒子
を、強磁性体のプラズマアークによる溶融体からなるマ
トリックスで結合した磁気研摩用砥粒が本出願人によっ
て提案されてもいる(特開平2−224967号公
報)。
In the magnetic polishing method having such characteristics, the composite state of the hard abrasive particles and the ferromagnetic material of the matrix influences the polishing accuracy and also has a great influence on its life. Since it has been clarified that the particles are present, various ideas have been made for the abrasive grains for magnetic polishing. For example, in the past, hard particles of abrasives were mixed with ferromagnetic powders and sintered to produce, but hard particles were made to be ferromagnetic to improve the polishing characteristics and the life of the abrasives. The applicant has also proposed an abrasive grain for magnetic polishing, which is bound by a matrix composed of a melt by a plasma arc of the body (JP-A-2-224967).

【0005】このような具体的検討の進展にもかかわら
ず、上記の磁気研摩法については、その砥粒の構成と研
摩性能との関係、砥粒の寿命と生産性との関係について
は必ずしも明らかにされていないのが実情である。特
に、上記のプラズマアークによる溶融によって製造した
砥粒の場合には、その優れた寿命の増大、研摩性能にも
かかわらず、いわゆる精密仕上げの点においては充分と
はいえない状況にあった。 実際、たとえばNbCを硬
質研摩材粒子とする場合には、たとえ原料で小さな粒径
のものを使用しても、製造過程でその数倍の大きさにな
ることがわかってきた。このため、硬質粒子の原料とし
ての粒径に根拠を置いた砥粒構成では研摩性能を判断す
ることができず、このNbCの場合にも、被研摩面の表
面粗さは、あるレベル以上にならないという問題があっ
た。
Despite the progress of such concrete studies, it is not always clear about the above-mentioned magnetic polishing method regarding the relationship between the composition of the abrasive grains and the polishing performance, and the relationship between the life of the abrasive grains and the productivity. The reality is that it is not. In particular, in the case of the abrasive grains produced by melting by the above-mentioned plasma arc, it was not enough in terms of so-called precision finishing in spite of its excellent life and polishing performance. In fact, it has been found that, for example, when NbC is used as hard abrasive particles, even if a raw material having a small particle size is used, the size thereof is several times that in the manufacturing process. For this reason, the polishing performance cannot be judged by the composition of the abrasive grains based on the particle size as the raw material of the hard particles, and even in the case of this NbC, the surface roughness of the surface to be polished exceeds a certain level. There was a problem of not becoming.

【0006】そこで、この発明は、以上の通りの事情に
鑑みてなされたものであり、従来の磁気研摩の課題を解
決し、砥粒構成と研摩性能との関係について充分な根拠
のある対応が可能で、鏡面研摩をも可能とすることので
きる新しい磁気研摩方法を提供することを目的としてい
る。
Therefore, the present invention has been made in view of the above circumstances, solves the problems of the conventional magnetic polishing, and provides a sufficient basis for the relationship between the abrasive composition and the polishing performance. It is an object of the present invention to provide a new magnetic polishing method capable of performing mirror polishing as well as possible.

【0007】[0007]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、強磁性体と硬質粒子との複合砥
粒による磁気研摩に際し、NbCおよび/またはAl2
3 を硬質粒子として含有する複合砥粒により粗研摩を
行い、次いでTiC、SiCおよび/またはWCを硬質
粒子として含有する複合砥粒により仕上げ研摩すること
を特徴とする磁気研摩方法を提供する。
In order to solve the above-mentioned problems, the present invention is to use NbC and / or Al 2 in magnetic polishing with composite abrasive grains of a ferromagnetic material and hard particles.
A magnetic polishing method is characterized in that rough polishing is carried out with a composite abrasive grain containing O 3 as hard particles, and then final polishing is carried out with a composite abrasive grain containing TiC, SiC and / or WC as hard particles.

【0008】この方法においては、研摩材としての硬質
粒子は、前記の通り、粗研摩ではNbCおよび/または
Al2 3 を、仕上げ研摩ではTiC、SiCおよび/
またはWCを使用するが、この際の砥粒における強磁性
体との割合については、厳密な意味で限定されるもので
はないが、NbCおよび/またはAl2 3 40〜70
体積%および強磁性体60〜30体積%の砥粒と、Ti
C、SiCおよび/またはWC60〜90体積%、強磁
性体40〜10体積%の砥粒とするのが好適でもある。
In this method, the hard particles as the abrasive are, as described above, NbC and / or Al 2 O 3 in the rough polishing and TiC, SiC and / or the final polishing.
Alternatively, WC is used, but the ratio of the abrasive grains to the ferromagnetic material is not limited in a strict sense, but NbC and / or Al 2 O 3 40 to 70 is used.
Volume% and ferromagnet 60-30 volume% abrasive grains, Ti
It is also preferable to use 60 to 90% by volume of C, SiC and / or WC and 40 to 10% by volume of a ferromagnetic substance as abrasive grains.

【0009】粗研摩では、NbC、Al2 3 の各々単
独、もしくはその両者を強磁性体と複合化し、また、仕
上げ研摩では、TiC、SiC、WCの各々単独、もし
くはそれらの任意の組合わせを強磁性体と複合化して砥
粒とし、これを磁気研摩に使用する。この際に、砥粒の
組成とともに上記範囲程度の組成比とするのが好まし
い。NbCおよび/またはAl2 3 硬質粒子、Ti
C、SiCおよび/またはWCの硬質粒子が上記範囲未
満もしくはそれを超える場合には、磁力作用が強すぎ、
あるいは弱すぎるため、これら粒子の特徴のある粗研摩
および仕上げ研摩は充分なものにならない。
In rough polishing, NbC and Al 2 O 3 are used alone or in combination with a ferromagnetic material, and in finish polishing, TiC, SiC and WC are used individually or in any combination thereof. Is compounded with a ferromagnetic material to form abrasive grains, which are used for magnetic polishing. At this time, it is preferable to set the composition ratio within the above range together with the composition of the abrasive grains. NbC and / or Al 2 O 3 hard particles, Ti
When the hard particles of C, SiC and / or WC are below or above the above range, the magnetic action is too strong,
Or, because they are too weak, the characteristic rough and finish polishing of these particles is not sufficient.

【0010】NbC、Al2 3 、さらには、TiC、
SiC、WCというこの発明の硬質粒子を含有する砥粒
は、混合焼結によっても製造できるが、本出願人がすで
に提案しているように、鉄等の強磁性体と硬質粒子とを
プラズマアーク溶融法によって結合させて製造したもの
が好適に使用される。それと言うのも、NbC、Al2
3 については、この製造において、原料よりもより径
の大きな粒子となるため、粗研摩用砥粒として有用であ
り、一方、TiC、SiC、WCは、プラズマアークを
用いた製造過程においても粒径の成長、巨大化がなく、
原料粉の粒径が保たれるので、所定の粒径の原料粉によ
って所定の表面粗度の研摩を計画し、かつ実施できるか
らである。
NbC, Al 2 O 3 , and further TiC,
Abrasive grains containing hard particles of the present invention, such as SiC and WC, can be produced by mixed sintering, but as already proposed by the present applicant, a ferromagnetic substance such as iron and hard particles are treated by plasma arc. Those manufactured by bonding by a melting method are preferably used. That is because NbC, Al 2
O 3 is a grain having a larger diameter than the raw material in this production and is therefore useful as an abrasive grain for rough polishing. On the other hand, TiC, SiC, and WC are grains even in the production process using a plasma arc. There is no growth in diameter, no enormous growth,
This is because the grain size of the raw material powder is maintained, so that polishing with a predetermined surface roughness can be planned and performed with the raw material powder having a predetermined particle size.

【0011】実際、この発明の方法によって、優れた磁
気研摩が可能となる。なお、強磁性体については、鉄、
鉄合金、その他の適宜なものが使用できることは言うま
でもない。以下、実施例を示し、さらに詳しく説明す
る。
In fact, the method of the present invention allows for excellent magnetic polishing. For ferromagnetic materials, iron,
It goes without saying that iron alloys and other appropriate materials can be used. Hereinafter, examples will be shown and described in more detail.

【0012】[0012]

【実施例】実施例1 鉄粉とNbC粉末(平均粒径3μm)を体積比35/6
5で混合し、成形した。これをプラズマ・アーク溶解炉
において溶融し、冷却、固化した。これを粉砕して粒径
212〜300μmの砥粒を得た。
Example 1 Iron powder and NbC powder (average particle size 3 μm) were used in a volume ratio of 35/6.
Mix at 5 and mold. This was melted in a plasma arc melting furnace, cooled and solidified. This was crushed to obtain abrasive grains having a particle diameter of 212 to 300 μm.

【0013】砥粒中のNbCの粒径は約25μmであっ
た。これを用いて、S55Cの鋼の表面の磁気研摩を以
下の条件において行った。 軸径:20mm 回転数:2000rpm ワークとの間隙:1.4mm 磁束密度:1T 砥粒量:2.5g 研摩時間:15分 その結果、Rmax 3.2μmの表面が、Rmax 0.9μ
mにまで研摩された。 実施例2 鉄粉とTiC粉末(平均粒径5μm)を体積比35/6
5で混合し、成形して、上記実施例1と同様に溶融、固
化し、粉砕して、粒径212〜300μmの砥粒を得
た。砥粒中のTiCの粒径は約5μmであった。
The grain size of NbC in the abrasive grains was about 25 μm.
It was Using this, the magnetic polishing of the S55C steel surface is performed.
It was conducted under the following conditions. Shaft diameter: 20 mm Rotation speed: 2000 rpm Gap with work: 1.4 mm Magnetic flux density: 1T Abrasive grain amount: 2.5 g Polishing time: 15 minutes As a result, RmaxThe surface of 3.2 μm is Rmax0.9μ
It was polished to m. Example 2 Volume ratio of iron powder and TiC powder (average particle size 5 μm) is 35/6
Mix in 5, mold, melt and solid as in Example 1 above.
And pulverize to obtain abrasive grains with a particle size of 212-300 μm.
It was The grain size of TiC in the abrasive grains was about 5 μm.

【0014】この砥粒を用いて、上記実施例1と同様に
してS55Cの鋼の表面(Rmax 3.4μm)を磁気研
摩したところ、Rmax 0.1μmにまで研摩された。実施例3 鉄粉とSiC粉(粒径8μm)を体積比40/60で混
合、成形し、実施例1と同様にしてプラズマ・アーク溶
融した。固化物を粉砕して、粒径150〜212μmの
砥粒を得た。砥粒中のSiCは、粒径が約8μmであっ
た。
Using these abrasive grains, the surface of S55C steel (R max 3.4 μm) was magnetically polished in the same manner as in Example 1 above, and it was polished to R max 0.1 μm. Example 3 Iron powder and SiC powder (particle size 8 μm) were mixed and molded at a volume ratio of 40/60, and plasma arc melting was carried out in the same manner as in Example 1. The solidified product was crushed to obtain abrasive grains having a particle size of 150 to 212 μm. The SiC in the abrasive grains had a grain size of about 8 μm.

【0015】この砥粒を用いて、実施例1と同様に研摩
したところ、Rmax 2.7μmの表面は、Rmax 0.1
5μmにまで研摩された。実施例4 実施例1のNbC−Fe砥粒を用いてS55Cの鋼の表
面を磁気研摩し、その後、実施例2のTiC−Fe砥粒
を用いてさらに磁気研摩した。
When polishing was performed in the same manner as in Example 1 using the abrasive grains, the surface having R max of 2.7 μm had a R max of 0.1.
Polished to 5 μm. Example 4 The surface of S55C steel was magnetically polished using the NbC-Fe abrasive grains of Example 1, and then further magnetically polished using the TiC-Fe abrasive grains of Example 2.

【0016】この時の研摩条件は、NbC−Fe砥粒に
よる粗研摩の場合は、実施例1と同様にして、TiC−
Fe砥粒による仕上げ研摩の場合には、研摩時間を5分
とした他は、実施例1と同様とした。この研摩によっ
て、Rmax 5.2μmの表面は、Rmax 0.1μmにま
で研摩された。実施例5 実施例4において、TiC−Fe砥粒に代えて、実施例
3のSiC−Fe砥粒を用いて研摩したところ、Rmax
5.2μmの表面は、0.17μmにまで研摩された。実施例6〜10 実施例4に沿って、各種の砥粒と条件によって磁気研摩
を行った。その結果を示したものが表1および表2であ
る。
The polishing conditions at this time are the same as in Example 1 in the case of rough polishing with NbC-Fe abrasive grains.
In the case of finish polishing with Fe abrasive grains, the same procedure as in Example 1 was performed except that the polishing time was 5 minutes. By this polishing, the surface of R max of 5.2 μm was polished to R max of 0.1 μm. Example 5 When polishing was performed using the SiC-Fe abrasive grains of Example 3 in place of the TiC-Fe abrasive grains in Example 4, R max was obtained.
The 5.2 μm surface was polished to 0.17 μm. Magnetic polishing was performed according to various abrasive grains and conditions in accordance with Examples 6 to 10 . The results are shown in Tables 1 and 2.

【0017】いずれの場合にも、優れた研摩性能が得ら
れていることがわかる。
It can be seen that in each case, excellent polishing performance was obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】この発明によって、以上詳しく説明した
通り、優れた効率で、かつ良好な表面粗度の鏡面が磁気
研摩によって得られる。
As described in detail above, according to the present invention, a mirror surface having excellent efficiency and good surface roughness can be obtained by magnetic polishing.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 強磁性体と硬質粒子との複合砥粒による
磁気研摩に際し、NbCおよび/またはAl2 3 を硬
質粒子として含有する複合砥粒により粗研摩を行い、次
いでTiC、SiCおよび/またはWCを硬質粒子とし
て含有する複合砥粒により仕上げ研摩することを特徴と
する磁気研摩方法。
1. Magnetic polishing with a composite abrasive grain of a ferromagnetic material and hard particles, rough polishing is performed with a composite abrasive grain containing NbC and / or Al 2 O 3 as hard particles, and then TiC, SiC and / or Alternatively, a magnetic polishing method is characterized in that finish polishing is carried out with a composite abrasive containing WC as hard particles.
【請求項2】 NbCおよび/またはAl2 3 40〜
70体積%および強磁性体60〜30体積%の砥粒と、
TiC、SiCおよび/またはWC60〜90体積%、
強磁性体40〜10体積%の砥粒により研摩する請求項
1の磁気研摩方法。
2. NbC and / or Al 2 O 3 40-
Abrasive particles of 70% by volume and 60 to 30% by volume of a ferromagnetic material,
TiC, SiC and / or WC 60-90% by volume,
The magnetic polishing method according to claim 1, wherein polishing is performed with abrasive grains of 40 to 10% by volume of a ferromagnetic material.
【請求項3】 砥粒が、強磁性体を含有する金属の溶融
体からなるマトリックスによって硬質粒子を結合したも
のである請求項1または2の磁気研摩方法。
3. The magnetic polishing method according to claim 1 or 2, wherein the abrasive grains are composed of hard particles bonded by a matrix made of a melt of a metal containing a ferromagnetic material.
【請求項4】 プラズマアーク溶融により結合した請求
項3の磁気研摩方法。
4. The magnetic polishing method according to claim 3, wherein the magnetic polishing is performed by plasma arc melting.
JP22440092A 1992-08-24 1992-08-24 Magnetic polishing method Pending JPH0671554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22440092A JPH0671554A (en) 1992-08-24 1992-08-24 Magnetic polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22440092A JPH0671554A (en) 1992-08-24 1992-08-24 Magnetic polishing method

Publications (1)

Publication Number Publication Date
JPH0671554A true JPH0671554A (en) 1994-03-15

Family

ID=16813163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22440092A Pending JPH0671554A (en) 1992-08-24 1992-08-24 Magnetic polishing method

Country Status (1)

Country Link
JP (1) JPH0671554A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052123A (en) * 2008-08-29 2010-03-11 Utsunomiya Univ Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
JP2015183052A (en) * 2014-03-24 2015-10-22 ケヰテック株式会社 abrasive composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052123A (en) * 2008-08-29 2010-03-11 Utsunomiya Univ Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
JP2015183052A (en) * 2014-03-24 2015-10-22 ケヰテック株式会社 abrasive composition

Similar Documents

Publication Publication Date Title
CN1066661C (en) Improved metal bond and metal abrasive articles
JP2001504036A (en) Composite wear parts
JPH081521A (en) Tool for processing abrasive grains bound using new metal bond and manufacture thereof
JPH0671554A (en) Magnetic polishing method
JPH04176556A (en) Magnetic polishing method, abrasive grain for magnetic polishing and manufacture thereof
US4832707A (en) Metal-bonded tool and method of manufacturing same
Gao et al. Characteristics of a novel atomized spherical magnetic abrasive powder
JP3513547B2 (en) Grinding stone for polishing single crystal diamond or diamond sintered body and polishing method thereof
JPS64183B2 (en)
WO1999051693A1 (en) Magnetic-abrasive powder, and method of producing the same
JPH06116549A (en) Grindstone particle for magnetic abration and its production
JP2884031B2 (en) Metal bond superabrasive grinding wheel and method of manufacturing the same
CN112646551B (en) Composite abrasive and preparation method thereof
JPS6339381B2 (en)
JPS62277263A (en) Abrasive particle composition for magnetic polishing
JPH02224967A (en) Abrasive grain for magnetic polishing and manufacture thereof
JPH0985627A (en) Grinding wheel
WO1995033862A1 (en) Nonmagnetic or feeble magnetism diamond sintered body and method of manufacturing the same
JPS5815672A (en) Resinoid bonded flat shaped rotary grinding stone
JPS61111885A (en) Molding for grinding
JPS62287035A (en) Copper-iron group metal-base diamond tool for cutting fine ceramic
JPH05230589A (en) Wc-based cemented carbide
JPS62246474A (en) Manufacture of super abrasive grain grindstone for mirror-like surface finishing
JPS60177870A (en) Magnetic polishing material
JPS6284967A (en) Magnetic power for magnetically polishing