JPH0985627A - Grinding wheel - Google Patents

Grinding wheel

Info

Publication number
JPH0985627A
JPH0985627A JP24793695A JP24793695A JPH0985627A JP H0985627 A JPH0985627 A JP H0985627A JP 24793695 A JP24793695 A JP 24793695A JP 24793695 A JP24793695 A JP 24793695A JP H0985627 A JPH0985627 A JP H0985627A
Authority
JP
Japan
Prior art keywords
abrasive grains
grinding
grain size
abrasive
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24793695A
Other languages
Japanese (ja)
Inventor
Masayuki Takahashi
正行 高橋
Kazunari Yasuda
一成 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24793695A priority Critical patent/JPH0985627A/en
Publication of JPH0985627A publication Critical patent/JPH0985627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure the high efficiency of grinding and polishing processes with less finished surface roughness by maintaining the presence of a plurality of peak grain diameters within the radial distribution of abrasive grains. SOLUTION: A grinding wheel part 1 is formed out of copper powder baked material containing a baked mixture of the first abrasive grains 4 made of diamond powder having a classified grain size and a mean grain size with the first peak grain size of 3.5μm, and the second abrasive grains 5 made of diamond ultra-fine powder called cluster diamond having a classified grain size and a mean grain size with the second peak grain size of 50Å. Thus, the first abrasive grains 4 and the second abrasive grains 5 exist in a copper power baking base material 3 in a mixed state. In this case, the first abrasive grains 4 perform an efficient grinding process and a highly efficient grinding process can be provided. Also, many of the second abrasive grains 5 distributed among the first abrasive grains 4 give a polishing action and a product with less finished surface roughness can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、研削用砥石に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grinding wheel.

【0002】[0002]

【従来の技術】従来から、砥粒と金属焼成素材とを混合
し焼成してなる研削用砥石のドレッシング(目立て)方
法の一つに、電解作用を利用した技術がある。近年にな
って、この技術を加工中の砥石に適用することが盛んに
研究されている。この研削方法は、電解インプロセスド
レッシング研削と呼ばれている。
2. Description of the Related Art Conventionally, there is a technique utilizing an electrolytic action as one of dressing methods for a grinding stone for grinding which is prepared by mixing and firing abrasive grains and a metal burning material. In recent years, application of this technique to a grindstone under processing has been actively studied. This grinding method is called electrolytic in-process dressing grinding.

【0003】電解インプロセスドレッシング研削に用い
られる砥石としては、日刊工業新聞社1993年8月3
1日発行の精密工学会編「ナノメータスケール加工技
術」の189頁に記載のように、鋳鉄ファイバーを金属
焼成基材として使用した鋳鉄ファイバーボンド砥石が、
良好な仕上げ面が得られるという理由で実用化されはじ
めている。
As a grindstone used for electrolytic in-process dressing grinding, Nikkan Kogyo Shimbun, August 3, 1993.
As described on page 189 of "Nanometer Scale Processing Technology" edited by Japan Society for Precision Engineering, issued on the 1st, cast iron fiber bond grindstone using cast iron fiber as a metal firing base material,
It has started to be put to practical use because a good finished surface can be obtained.

【0004】以下に、従来の鋳鉄ファイバーボンド砥石
の特徴を図5、図6に基づいて説明する。
The characteristics of the conventional cast iron fiber bond grindstone will be described below with reference to FIGS. 5 and 6.

【0005】図5に示すように、鋳鉄ファイバーボンド
砥石Dは、クラス分けされて大きさが揃っている砥粒1
2と、鋳鉄ファイバー焼成基材部11とからなり、クラ
ス分けされて大きさが揃っている砥粒12と鋳鉄ファイ
バーとを混合して焼成したものである。鋳鉄ファイバー
焼成基材部11は鋳鉄ファイバーが砥粒12にからんで
焼成されているので、砥粒12との結合力が強く、電解
インプロセスドレッシング中に、砥粒12が鋳鉄ファイ
バー焼成基材部表面11aから脱落しにくくなってい
る。そのために、極めて小さな砥粒12を使用しても安
定した研削・研磨加工が可能で、高精度な研削・研磨加
工を維持できる。
As shown in FIG. 5, a cast iron fiber bond grindstone D has abrasive grains 1 classified into classes and of uniform size.
No. 2 and cast iron fiber firing base material 11 are mixed and fired by mixing abrasive grains 12 and cast iron fibers which are classified into classes and have uniform sizes. In the cast iron fiber firing base material portion 11, since the cast iron fiber is entangled in the abrasive grains 12 and fired, the binding force with the abrasive grains 12 is strong, and the abrasive grains 12 are used during the electrolytic in-process dressing. It is hard to fall off the surface 11a. For this reason, stable grinding / polishing can be performed even if extremely small abrasive grains 12 are used, and highly accurate grinding / polishing can be maintained.

【0006】[0006]

【発明が解決しようとする課題】しかし、鋳鉄ファイバ
ーボンド砥石には、下記の問題点がある。
However, the cast iron fiber bond grindstone has the following problems.

【0007】研削用砥石には、一般に、クラス分けされ
て大きさが揃った砥粒が使用されている。そして、砥粒
径と研削効率と仕上がり面粗さとには、図6に示すよう
な関係がある。即ち、砥粒径の大きなものを使用する
と、加工能率は高いが仕上がり面粗さが大きい。砥粒径
の小さなものを使用すると、仕上がり面粗さは小さいが
加工能率が低い。例えば、仕上がり面粗さが小さい研削
に適した#8000の砥粒の平均粒径は約2μmであ
り、鋳鉄ファイバー焼成基材部表面からの砥粒の突き出
し量は1μm以下であると推定され、時間をかければ所
望の仕上がり面粗さが得られるが、加工能率が低く、能
率面では実用に適さない。
[0007] In the grindstone for grinding, generally, abrasive grains classified into classes and of uniform size are used. The abrasive grain size, the grinding efficiency, and the finished surface roughness have a relationship as shown in FIG. That is, when a large abrasive grain size is used, the processing efficiency is high but the finished surface roughness is large. When using one with a small abrasive grain size, the finished surface roughness is small but the processing efficiency is low. For example, the average grain size of # 8000 abrasive grains suitable for grinding with a small finished surface roughness is about 2 μm, and the protrusion amount of the abrasive grains from the surface of the cast iron fiber firing base material portion is estimated to be 1 μm or less, Although it takes a long time to obtain a desired finished surface roughness, the processing efficiency is low and it is not suitable for practical use in terms of efficiency.

【0008】又、鋳鉄ファイバーボンド砥石は、電解イ
ンプロセスドレッシング研削専用で需要量が限られ、且
つ、焼成温度が高く、特殊な技術が必要であるので、コ
スト高である。
Further, the cast iron fiber bond grindstone is exclusively for electrolytic in-process dressing grinding, the demand is limited, the firing temperature is high, and a special technique is required, so that the cost is high.

【0009】本発明は、上記の問題点を解決し、電解イ
ンプロセスドレッシング研削により、仕上がり面粗さが
小さな研削・研磨加工を高能率で行うことができ、且
つ、安価な研削用砥石の提供を課題とする。
The present invention solves the above problems and provides an inexpensive grinding wheel capable of efficiently performing grinding / polishing with a small finished surface roughness by electrolytic in-process dressing grinding. Is an issue.

【0010】[0010]

【課題を解決するための手段】本発明の研削用砥石は、
上記の課題を解決するために、砥粒と金属焼成素材とを
混合し焼成してなる研削用砥石において、砥粒の粒径分
布に複数のピーク粒径が存在することを特徴とする。
The grinding wheel of the present invention comprises:
In order to solve the above-mentioned problems, a grinding stone formed by mixing abrasive grains and a metal firing material and firing the mixture has a plurality of peak grain sizes in the grain size distribution of the abrasive grains.

【0011】又、本発明の研削用砥石は、上記の課題を
解決するために、砥粒の材質は、ダイヤモンド、立方晶
窒化ホウ素、アルミナ、炭化ケイ素の何れかであること
が好適である。
In order to solve the above problems, the grinding stone of the present invention is preferably such that the material of the abrasive grains is any one of diamond, cubic boron nitride, alumina and silicon carbide.

【0012】又、本発明の研削用砥石は、上記の課題を
解決するために、金属焼成素材は、銅系焼成素材又は鋳
鉄素材であることが好適である。
In order to solve the above problems, the grinding stone of the present invention is preferably such that the metal burning material is a copper burning material or a cast iron material.

【0013】又、本発明の研削用砥石は、上記の課題を
解決するために、砥粒は、平均砥粒径が200Å以下の
ダイヤモンド超微細砥粒を含むことが好適である。
Further, in order to solve the above-mentioned problems, it is preferable that the abrasive grains of the present invention include diamond ultrafine abrasive grains having an average abrasive grain size of 200 Å or less.

【0014】[0014]

【作用】本発明の研削用砥石は、砥粒と金属焼成素材と
を混合し焼成してなる研削用砥石において、砥粒の粒径
分布に複数のピーク粒径が存在する。従って、大きい側
のピーク粒径を平均値として有する砥粒が、被研削物を
能率良く研削するので、高能率研削が可能であり、且
つ、大きい側のピーク粒径を平均値として有する砥粒の
間に分布する多数の小さい側のピーク粒径を平均値とし
て有する砥粒が、研磨作用を発揮するので、被研削物の
仕上がり面粗さが小さくなる。
The grinding stone of the present invention is a grinding stone made by mixing abrasive grains and a metal-fired raw material and firing them, and the abrasive grain size distribution has a plurality of peak particle sizes. Therefore, since the abrasive grains having the larger peak particle size as an average value grinds the workpiece more efficiently, it is possible to perform high-efficiency grinding, and the abrasive grains having the larger peak particle size as the average value. Since the abrasive grains having a large number of small-side peak particle diameters distributed in the meanwhile exhibit the polishing action, the finished surface roughness of the object to be ground becomes small.

【0015】又、一般に、電解インプロセスドレッシン
グすると、金属焼成基材部が電解されて砥粒が金属焼成
基材部表面から突き出るようになり研削用砥石の目立て
ができるが、その際に、砥粒と金属焼成基材部との粒界
で特に電解作用が進み、砥粒が脱落し易くなる。しか
し、砥粒の粒径分布に複数のピーク粒径が存在する場合
には、小さい側のピーク粒径を平均値として有する砥粒
は脱落し易いが、大きい側のピーク粒径を平均値として
有する砥粒は脱落し難くなる。そして、小さい側のピー
ク粒径を平均値として有する砥粒は、脱落してもその数
が多いので、砥石としての大きな粒径の砥粒の研削作用
と、小さな粒径の砥粒の研磨作用とが充分に維持され、
砥石のドレッシング効果が大きくなると共に、砥石の寿
命が長くなる。上記の作用が得られる理由は、下記のよ
うに推定される。
Further, in general, when electrolytic in-process dressing is performed, the metal firing base material is electrolyzed so that the abrasive grains protrude from the surface of the metal firing base material portion, so that the grindstone for grinding can be sharpened. The electrolytic action particularly progresses at the grain boundaries between the grains and the metal-fired base material portion, and the abrasive grains are likely to fall off. However, when there are a plurality of peak particle sizes in the particle size distribution of the abrasive particles, the abrasive particles having the smaller peak particle size as the average value are likely to fall off, but the larger particle size as the average value. The abrasive grains that it has become difficult to fall off. And, since the number of the abrasive grains having the smaller peak particle size as an average value is large even if they fall off, the grinding action of the large grain abrasive grains as the grindstone and the polishing action of the small grain abrasive particles are performed. And are well maintained,
The dressing effect of the grindstone is increased and the life of the grindstone is extended. The reason why the above action is obtained is presumed as follows.

【0016】即ち、電解インプロセスドレッシングで
は、電解作用に寄与する電解電流量はドレッシング用電
解液の量で略一定量に限定される。従って、砥粒の粒径
分布に複数のピーク粒径が存在し、金属焼成基材部表面
に、少数の大きな粒径の砥粒と多数の小さな粒径の砥粒
とが存在する場合には、これらに前記の略一定量の電解
電流が分散して流れ、少数の大きな粒径の砥粒の界面に
流れる電解電流の量が少なくなり、大きな粒径の砥粒が
脱落し難くなる。
That is, in electrolytic in-process dressing, the amount of electrolytic current contributing to electrolytic action is limited to a substantially constant amount by the amount of dressing electrolytic solution. Therefore, when there are a plurality of peak particle sizes in the particle size distribution of the abrasive grains, and a small number of large abrasive grains and a large number of small abrasive grains are present on the surface of the metal-fired base material portion, The above-mentioned approximately constant amount of electrolytic current disperses and flows into these, and the amount of electrolytic current flowing at the interface of a small number of large-sized abrasive grains becomes small, making it difficult for large-sized abrasive grains to fall off.

【0017】そして、小さい側のピーク粒径を平均値と
して有する砥粒に平均砥粒径が200Å以下のダイヤモ
ンド超微細砥粒を使用すると、上記の作用が顕著にな
る。
If the diamond ultrafine abrasive grains having an average abrasive grain size of 200 Å or less are used as the abrasive grains having the smaller peak grain size as an average value, the above-mentioned action becomes remarkable.

【0018】又、上記の2つの作用は、砥粒の材質には
関係がなく、各種材質の砥粒に共通である。
The above-mentioned two effects are common to the abrasive grains of various materials, regardless of the material of the abrasive grains.

【0019】[0019]

【実施例】本発明の研削用砥石は、ピーク粒径が2つ以
上ある粒径分布を有する砥粒を、金属粉焼成素材に混合
して焼成したものであり、その第1実施例を図1、図4
に基づいて説明する。
EXAMPLE A grinding wheel of the present invention is one in which abrasive particles having a particle size distribution having two or more peak particle sizes are mixed with a metal powder calcining material and then calcined. 1, Figure 4
It will be described based on.

【0020】図4は、第1実施例Aの斜視図であり、台
金部2の外径は60mm、砥石部1の外径は70mmで
ある。
FIG. 4 is a perspective view of the first embodiment A, in which the base metal portion 2 has an outer diameter of 60 mm and the grindstone portion 1 has an outer diameter of 70 mm.

【0021】図1は、本実施例Aの一部拡大平面図であ
る。砥石部1は、銅粉焼成素材の中に、粒径をクラス分
けされて平均粒径が第1ピーク粒径3.5μmであるダ
イヤモンド粉からなる第1砥粒4と、粒径をクラス分け
されて平均粒径が第2ピーク粒径50Åを有するクラス
ターダイヤと呼ばれるダイヤモンド超微細粉末からなる
第2砥粒5とを混合して焼成したもので、銅粉焼成基材
部3の中に、第1砥粒4と、第2砥粒5とが混在してい
る。第1砥粒4と、第2砥粒5との混合量を表すには、
集中度という単位を使用する。集中度100のダイヤモ
ンド粉末の場合には、砥石部1の1cm3 当たりダイヤ
モンド粉末880mgが混合されていることになる。一
般には、集中度75〜150が使用される。本実施例の
ように、ピーク粒径が2つある場合にも、集中度75〜
150を使用するが、第1砥粒4と第2砥粒5との比率
は、双方の合計重量に対して、一方の重量%を30〜7
0%とし、残りを他方の重量%とする。
FIG. 1 is a partially enlarged plan view of the present embodiment A. The grindstone portion 1 is divided into copper powder calcined materials, the first abrasive grains 4 made of diamond powder having an average particle diameter of the first peak particle diameter of 3.5 μm, and the particle diameters are classified into classes. And the second abrasive grains 5 made of ultrafine diamond powder called cluster diamond having an average grain size having a second peak grain size of 50Å are mixed and fired. The first abrasive grains 4 and the second abrasive grains 5 are mixed. To express the mixed amount of the first abrasive grains 4 and the second abrasive grains 5,
Use the unit of concentration. In the case of a diamond powder having a concentration of 100, 880 mg of diamond powder is mixed per 1 cm 3 of the grindstone portion 1. Generally, a concentration of 75-150 is used. Even when there are two peak particle sizes as in this example, the degree of concentration is 75 to
Although 150 is used, the ratio of the first abrasive grains 4 and the second abrasive grains 5 is 30% to 7% by weight of one of them with respect to the total weight of both.
0% and the rest is the weight% of the other.

【0022】基材部表面3aには、第1砥粒4と、第2
砥粒5とが突き出ている。上記の配合にすると、1粒の
重量の比率から、基材部表面3aから突き出る砥粒の数
は、第1砥粒4よりも第2砥粒5の数が圧倒的に多い。
従って、基材部表面3aには、配合量で決まる一定分布
率で第1砥粒4が間隔を隔てて存在し、前記間隔部分に
多数の第2砥粒5が分布して存在する。
A first abrasive grain 4 and a second abrasive grain 4 are formed on the surface 3a of the base material portion.
Abrasive grains 5 are protruding. With the above composition, the number of abrasive grains protruding from the surface 3a of the base material portion is predominantly greater than the number of second abrasive grains 5 than the first abrasive grains 4 from the weight ratio of one grain.
Therefore, on the surface 3a of the base material portion, the first abrasive grains 4 are present at intervals with a constant distribution rate determined by the compounding amount, and a large number of second abrasive grains 5 are present in the interval portion in a distributed manner.

【0023】この状態の本実施例を使用して電解インプ
ロセスドレッシング研削を行うと、次のような特徴が見
られる。
When electrolytic in-process dressing grinding is performed using this embodiment in this state, the following features are observed.

【0024】先ず、研削加工については、高能率で研削
することができ、しかも、仕上がり面粗さが小さいもの
が得られる。その理由は次のように推定される。即ち、
配合量で決まる一定分布率で存在する第1砥粒4が、能
率良く研削するので、高能率研削が可能になり、第1砥
粒4の間に分布する多数の第2砥粒5が研磨作用を発揮
するので仕上がり面粗さが小さいものが得られると推定
される。そして、第2砥粒5による研磨作用があるの
で、第1砥粒4の粒径については、従来技術のピーク粒
径が1つの砥粒を使用する鋳鉄ファイバーボンド砥石の
砥粒よりも大きな平均粒径のものを使用できるので、よ
り高能率な研削が可能になる。
First, with respect to the grinding process, it is possible to grind with high efficiency and to obtain a product having a small finished surface roughness. The reason is estimated as follows. That is,
Since the first abrasive grains 4 existing at a constant distribution rate determined by the compounding amount grind efficiently, high efficiency grinding becomes possible, and a large number of second abrasive grains 5 distributed among the first abrasive grains 4 are polished. It is presumed that a product having a small finished surface roughness can be obtained because it exerts an action. Since the second abrasive grain 5 has a polishing action, the average grain size of the first abrasive grain 4 is larger than that of the cast iron fiber bond grindstone using one abrasive grain having the peak grain size of the prior art. Since particles with a particle size can be used, more efficient grinding becomes possible.

【0025】次に、電解インプロセスドレッシングにつ
いては、砥石のドレッシング効果が大きくなると共に、
砥石の寿命が長くなる。この理由は、下記のように推定
される。即ち、電解インプロセスドレッシングでは、電
解作用に寄与する電解電流量はドレッシング用電解液の
量で略一定量に限定される。従って、砥粒の粒径分布に
二つのピーク粒径が存在し、金属焼成基材部表面に、少
数の大きな粒径の砥粒と多数の小さな粒径の砥粒とが存
在する場合には、これらに前記の略一定量の電解電流が
分散して流れ、少数の大きな粒径の砥粒の界面に流れる
電解電流の量が少なくなり、小さい側のピーク粒径を平
均値として有する砥粒は脱落し易いが、大きい側のピー
ク粒径を平均値として有する砥粒は脱落し難くなる。そ
して、小さい側のピーク粒径を平均値として有する砥粒
は、脱落してもその数が多いので、砥石としての大きな
粒径の砥粒の研削作用と、小さな粒径の砥粒の研磨作用
とが充分に維持され、砥石のドレッシング効果が大きく
なると共に、砥石の寿命が長くなる。
Next, regarding the electrolytic in-process dressing, the dressing effect of the grindstone becomes large, and
The life of the grindstone is extended. The reason for this is presumed as follows. That is, in electrolytic in-process dressing, the amount of electrolytic current contributing to electrolysis is limited to a substantially constant amount by the amount of dressing electrolytic solution. Therefore, when there are two peak particle sizes in the particle size distribution of the abrasive grains, and on the surface of the metal-fired base material part, there are a small number of large particle size abrasive grains and a large number of small particle size abrasive grains. , The above-mentioned approximately constant amount of electrolytic current is dispersed and flows, the amount of electrolytic current flowing at the interface of a small number of large-sized abrasive grains is reduced, and abrasive grains having a smaller peak particle size as an average value Is easy to fall off, but abrasive grains having the larger peak particle size as an average value are less likely to fall off. And, since the number of the abrasive grains having the smaller peak particle size as an average value is large even if they fall off, the grinding action of the large grain abrasive grains as the grindstone and the polishing action of the small grain abrasive particles are performed. Are sufficiently maintained, the dressing effect of the grindstone is increased, and the life of the grindstone is extended.

【0026】本実施例では、平均粒径50Åを有するク
ラスターダイヤを使用したが、平均砥粒径が200Å以
下のダイヤモンド超微細砥粒を使用すると、充分に上記
の作用が得られる。
In this embodiment, a cluster diamond having an average particle size of 50Å was used. However, when diamond ultrafine abrasive particles having an average abrasive particle size of 200Å or less are used, the above-mentioned effect can be sufficiently obtained.

【0027】尚、粒径をクラス分けせず、ピーク粒径が
1つで、粒径の範囲が広い砥粒の場合には、砥粒の含有
量に上限があり、上記のように、研削作用を主体とする
粒径と、研磨作用を主体とする粒径とを、双方共に必要
量含有することは不可能であり、本実施例が示すような
作用を得られない。
Incidentally, in the case of abrasive particles having a single peak particle size and a wide particle size range without classifying the particle sizes, the content of the abrasive particles has an upper limit, and as described above, It is impossible to contain the required amount of both the particle size mainly having the action and the particle size mainly having the polishing action, and the action as shown in the present embodiment cannot be obtained.

【0028】又、上記の作用は、砥粒の材質には関係が
無く、ダイヤモンド以外の砥粒を使用しても同じ結果が
得られる。
Further, the above-mentioned action is not related to the material of the abrasive grains, and the same result can be obtained by using the abrasive grains other than diamond.

【0029】本実施例Aの砥石を、周速度2500m/
minで回転させ、専用研削液を砥石作用面に吹き付け
ながら電解インプロセスドレッシング研削を行った。ガ
ラス、セラミックス、フエライト等の硬脆材料を研削し
た結果、仕上がり面粗さはRMAX =20nm以下にな
り、加工時間は、従来技術の砥石を使用した従来の実績
に比較して約1/2に短縮した。
The grindstone of this Example A was applied with a peripheral speed of 2500 m /
Electron in-process dressing grinding was performed while rotating at min and spraying a dedicated grinding liquid on the working surface of the grindstone. As a result of grinding hard and brittle materials such as glass, ceramics, and ferrite, the finished surface roughness becomes R MAX = 20 nm or less, and the processing time is about 1/2 compared to the conventional results using the conventional grinding wheel. Shortened to.

【0030】以下に、ピーク粒径が3つある粒径分布を
有する砥粒を金属焼成素材に混合して焼成した第2実施
例Bを図2に基づいて説明する。
A second embodiment B in which abrasive grains having a grain size distribution with three peak grain sizes are mixed with a metal firing material and fired will be described below with reference to FIG.

【0031】本実施例Bは、第1実施例Aの砥粒を、粒
径をクラス分けされて平均粒径が第1ピーク粒径8μm
であるダイヤモンド粉からなる第1砥粒4と、粒径をク
ラス分けされて平均粒径が第2ピーク粒径4μmである
ダイヤモンド粉からなる第2砥粒5と、粒径をクラス分
けされて平均粒径が第3ピーク粒径50Åを有するクラ
スターダイヤと呼ばれるダイヤモンド超微細粉末からな
る第3砥粒6とで構成したもので、第1、第2、第3砥
粒の合計の集中度は125、第1砥粒4の集中度は4
0、第2砥粒5の集中度は50、第3砥粒6の集中度は
35とした。
In this embodiment B, the abrasive grains of the first embodiment A are classified according to the grain size and the average grain size is the first peak grain size of 8 μm.
The first abrasive grain 4 made of diamond powder and the second abrasive grain 5 made of diamond powder having an average grain size of the second peak particle size of 4 μm and the grain size are classified. It is composed of a third abrasive grain 6 made of ultrafine diamond powder called cluster diamond having an average grain size of 50 Å at the third peak grain size, and the total concentration of the first, second and third abrasive grains is 125, the concentration degree of the first abrasive grains 4 is 4
The concentration of the second abrasive grains 5 was 50, and the concentration of the third abrasive grains 6 was 35.

【0032】本実施例の砥石を、周速度2500m/m
inで回転させ、専用研削液を砥石作用面に吹き付けな
がら電解インプロセスドレッシング研削を行った。ガラ
ス、セラミックス、フエライト等の硬脆材料を研削した
結果、仕上がり面粗さはRMAX =0.08μm以下にな
り、加工時間は、従来技術の砥石を使用した従来の実績
に比較して約1/4に短縮した。又、砥石は目詰まりす
ることも無く1時間以上も連続使用可能であった。
The grindstone of this embodiment was set at a peripheral speed of 2500 m / m.
Electron in-process dressing grinding was performed while rotating at in and spraying a dedicated grinding liquid on the working surface of the grindstone. As a result of grinding hard and brittle materials such as glass, ceramics, and ferrite, the finished surface roughness becomes R MAX = 0.08 μm or less, and the processing time is about 1 in comparison with the conventional results using the conventional grindstone. Shortened to / 4. Further, the grindstone was not clogged and could be continuously used for 1 hour or more.

【0033】以下に、ダイヤモンド粉以外の砥粒を金属
焼成素材に混合して焼成した第3実施例Cを図3に基づ
いて説明する。
A third embodiment C in which abrasive grains other than diamond powder are mixed with a metal firing material and fired will be described below with reference to FIG.

【0034】本実施例Cは、第1実施例Aのダイヤモン
ド砥粒を、粒径をクラス分けされて平均粒径が第1ピー
ク粒径30μmである立方晶窒化ホウ素(以後CBNと
いう)粉からなる第1砥粒4と、粒径をクラス分けされ
て平均粒径が第2ピーク粒径15μmであるアルミナ
(以後WAという)粉からなる第2砥粒5とで構成した
もので、第1、第2砥粒の合計の集中度は100、第1
砥粒4の集中度は75、第2砥粒5の集中度は25とし
た。
Example C is the same as Example 1 except that the diamond abrasive grains of Example A were prepared from cubic boron nitride (hereinafter referred to as CBN) powder having different average particle sizes and a first peak particle size of 30 μm. The first abrasive grain 4 and the second abrasive grain 5 made of alumina (hereinafter referred to as WA) powder having an average grain size of 15 μm for the second peak grain size. , The total concentration of the second abrasive grains is 100, the first
The concentration of the abrasive grains 4 was 75, and the concentration of the second abrasive grains 5 was 25.

【0035】本実施例Cの砥石を、周速度2500m/
minで回転させ、専用研削液を砥石作用面に吹き付け
ながら電解インプロセスドレッシング研削を行った。焼
入鋼やチタン合金等を研削した結果、従来技術の砥石を
使用した従来の実績に比較して仕上がり面粗さは約1/
2になり、砥石の寿命は、従来技術の砥石を使用した従
来の実績に比較して約2倍に伸び、砥石は目詰まりする
ことも無く1時間以上も連続使用可能であった。
The grindstone of this Example C was run at a peripheral speed of 2500 m /
Electron in-process dressing grinding was performed while rotating at min and spraying a dedicated grinding liquid on the working surface of the grindstone. As a result of grinding hardened steel, titanium alloy, etc., the finished surface roughness is about 1 / compared with the conventional results using the conventional grinding wheel.
2, the life of the grindstone was approximately doubled as compared with the conventional results using the grindstone of the prior art, and the grindstone could be continuously used for 1 hour or more without being clogged.

【0036】砥粒の材料としては、炭化ケイ素(以後G
Cという)でも同様の結果が得られる。
The material of the abrasive grains is silicon carbide (hereinafter G
Similar results can be obtained with (C).

【0037】上記の実施例では、いずれも銅系焼成素材
を使用したが、金属焼成素材であれば、鋳鉄ファイバー
ボンド等のメタルボンドでも同様の結果が得られる。
In each of the above examples, a copper-based calcining material was used, but the same result can be obtained with a metal bond such as cast iron fiber bond as long as it is a metal calcining material.

【0038】[0038]

【発明の効果】本発明の研削用砥石は、砥粒と金属焼成
素材とを混合し焼成してなる研削用砥石において、砥粒
の粒径分布に複数のピーク粒径が存在することにより、
高能率研削が可能であり、且つ、被研削物の仕上がり面
粗さが小さくなるという効果を奏する。
The grinding grindstone of the present invention is a grinding grindstone obtained by mixing and baking abrasive grains and a metal firing material, and the presence of a plurality of peak particle sizes in the particle size distribution of the abrasive grains,
It is possible to perform high-efficiency grinding and to reduce the finished surface roughness of the object to be ground.

【0039】又、砥粒の粒径分布に複数のピーク粒径が
存在することにより、電解インプロセスドレッシング研
削を行う場合に、砥粒と金属焼成基材部との界面での電
解が、数が多くて脱落しても研磨作用に悪影響がない小
さなピーク粒径の砥粒に分散し、大きなピーク粒径の砥
粒の脱落が減少し、砥石のドレッシング効果が大きくな
ると共に、砥石の寿命が長くなるという効果を奏する。
Further, due to the presence of a plurality of peak particle sizes in the particle size distribution of the abrasive grains, when electrolytic in-process dressing grinding is performed, electrolysis at the interface between the abrasive grains and the metal-fired base material portion is several. There is a large amount of particles dispersed in the abrasive particles with a small peak particle size that does not adversely affect the polishing action even if they fall off, the removal of abrasive particles with a large peak particle size is reduced, the dressing effect of the grindstone is increased, and the life of the grindstone is increased. Has the effect of becoming longer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の研削用砥石の第1実施例の一部拡大断
面図である。
FIG. 1 is a partially enlarged sectional view of a first embodiment of a grinding wheel for grinding according to the present invention.

【図2】本発明の研削用砥石の第2実施例の一部拡大断
面図である。
FIG. 2 is a partially enlarged cross-sectional view of a second embodiment of the grinding wheel of the present invention.

【図3】本発明の研削用砥石の第3実施例の一部拡大断
面図である。
FIG. 3 is a partially enlarged cross-sectional view of a third embodiment of the grinding wheel of the present invention.

【図4】研削用砥石の斜視図である。FIG. 4 is a perspective view of a grinding wheel.

【図5】研削用砥石の従来例の一部拡大断面図である。FIG. 5 is a partially enlarged sectional view of a conventional grinding wheel.

【図6】研削用砥石の特性の傾向を示す図である。FIG. 6 is a diagram showing a tendency of characteristics of a grinding wheel.

【符号の説明】[Explanation of symbols]

1 砥石部 2 台金部 3 銅粉焼成基材部 3a 基材部表面 4 第1砥粒 5 第2砥粒 6 第3砥粒 1 Grindstone Part 2 Base Metal Part 3 Copper Powder Firing Base Material Part 3a Base Material Surface 4 First Abrasive Grain 5 Second Abrasive Grain 6 Third Abrasive Grain

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 砥粒と金属焼成素材とを混合し焼成して
なる研削用砥石において、砥粒の粒径分布に複数のピー
ク粒径が存在することを特徴とする研削用砥石。
1. A grinding grindstone obtained by mixing and baking abrasive grains and a metal calcined material, wherein a plurality of peak particle sizes are present in the particle size distribution of the abrasive grains.
【請求項2】 砥粒の材質は、ダイヤモンド、立方晶窒
化ホウ素、アルミナ、炭化ケイ素の何れかである請求項
1に記載の研削用砥石。
2. The grinding wheel according to claim 1, wherein the material of the abrasive grains is any one of diamond, cubic boron nitride, alumina and silicon carbide.
【請求項3】 金属焼成素材は、銅系焼成素材又は鋳鉄
素材である請求項1又は2に記載の研削用砥石。
3. The grinding wheel according to claim 1, wherein the metal-fired material is a copper-based fired material or a cast iron material.
【請求項4】 砥粒は、平均砥粒径が200Å以下のダ
イヤモンド超微細砥粒を含む請求項1、2又は3に記載
の研削用砥石。
4. The grinding stone according to claim 1, wherein the abrasive grains include ultrafine diamond grains having an average grain size of 200 Å or less.
JP24793695A 1995-09-26 1995-09-26 Grinding wheel Pending JPH0985627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24793695A JPH0985627A (en) 1995-09-26 1995-09-26 Grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24793695A JPH0985627A (en) 1995-09-26 1995-09-26 Grinding wheel

Publications (1)

Publication Number Publication Date
JPH0985627A true JPH0985627A (en) 1997-03-31

Family

ID=17170763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24793695A Pending JPH0985627A (en) 1995-09-26 1995-09-26 Grinding wheel

Country Status (1)

Country Link
JP (1) JPH0985627A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100037530A1 (en) * 2007-03-26 2010-02-18 Yuji Yoshida Synthetic grinding stone
JP2015202529A (en) * 2014-04-11 2015-11-16 京セラ株式会社 Grinding wheel and cutting tool processed thereby
JP2016026903A (en) * 2011-12-30 2016-02-18 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article, and forming method therefor
JP2021126729A (en) * 2020-02-13 2021-09-02 株式会社ダイセル Cutting blade
CN113427411A (en) * 2020-03-23 2021-09-24 镇江韦尔博新材料科技有限公司 Brazing diamond grinding wheel for casting polishing and preparation method thereof
KR20220067993A (en) * 2020-11-18 2022-05-25 주식회사 세한텍 Wheel for grinding glass sheet and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100037530A1 (en) * 2007-03-26 2010-02-18 Yuji Yoshida Synthetic grinding stone
US8377159B2 (en) * 2007-03-26 2013-02-19 Tokyo Diamond Tools Mfg. Co., Ltd. Synthetic grinding stone
JP2016026903A (en) * 2011-12-30 2016-02-18 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article, and forming method therefor
JP2015202529A (en) * 2014-04-11 2015-11-16 京セラ株式会社 Grinding wheel and cutting tool processed thereby
JP2021126729A (en) * 2020-02-13 2021-09-02 株式会社ダイセル Cutting blade
CN113427411A (en) * 2020-03-23 2021-09-24 镇江韦尔博新材料科技有限公司 Brazing diamond grinding wheel for casting polishing and preparation method thereof
KR20220067993A (en) * 2020-11-18 2022-05-25 주식회사 세한텍 Wheel for grinding glass sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN102066283B (en) Very low packing density ceramic abrasive grits and methods of producing and using the same
EP1151825A3 (en) A diamond grid cmp pad dresser
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
WO2002022310A1 (en) Ultra abrasive grain wheel for mirror finish
JP2972488B2 (en) Sintered composite abrasive grits, their production and use
JPH0985627A (en) Grinding wheel
JPS63256364A (en) Porous grindstone of super abrasive grain
JP3568446B2 (en) Grinding method using electrodeposition whetstone
JP2679178B2 (en) Electroplated whetstone
JP2005007531A (en) Throw away tip and manufacturing method thereof
JPH10151571A (en) Super abrasive grain grinding wheel
JP2000024934A (en) Super abrasive grain grinding wheel for mirror finished surface
JPH0857768A (en) Vitrified bond grinding wheel for heavy grinding
JPH09169971A (en) Cubic boron nitride abrasive grain and its production
EP3131998B1 (en) Abrasive grain on the basis of electrofused aluminum oxide with a surface coating comprising titanium oxide and/or carbon
JPH10113876A (en) Diamond grindstone, its manufacturing method and tool
JPS61257772A (en) Grinding wheel truing method
JPH10180630A (en) Dressing method for grinding wheel
JP3260252B2 (en) Rotary dresser
JPH1199474A (en) Super-abrasive grinding wheel for mirror finish
JPS6284977A (en) Grinding pellet
JPS5830111B2 (en) forming dresser
JP2511330B2 (en) How to dress and dress diamond whetstones
JP2002187071A (en) Electrotype thin-blade grindstone
JP3069138B2 (en) Whetstone cleaner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622