JPS6284967A - Magnetic power for magnetically polishing - Google Patents

Magnetic power for magnetically polishing

Info

Publication number
JPS6284967A
JPS6284967A JP60221976A JP22197685A JPS6284967A JP S6284967 A JPS6284967 A JP S6284967A JP 60221976 A JP60221976 A JP 60221976A JP 22197685 A JP22197685 A JP 22197685A JP S6284967 A JPS6284967 A JP S6284967A
Authority
JP
Japan
Prior art keywords
magnetic
polishing
powder
magnetically
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60221976A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Ishii
石井 博義
Kenzo Suzuki
鈴木 賢造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP60221976A priority Critical patent/JPS6284967A/en
Publication of JPS6284967A publication Critical patent/JPS6284967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To make it possible to sustain a highly accurate polishing characteristic of magnetically polishing magnetic powder with no separation and coming-off of A4l2O3, as conventionally experienced, occurring, by using amorphous magnetic alloy powder having a satisfactory magnetic characteristic and having a hardness above Hv 600, as the magnetically, polishing magnetic powder. CONSTITUTION:Amorphous magnetic alloy powder having an alloy composition of Fe72Co8Si5B15, and composed of scale-like particles having a majour diameter of 44-149mum and an aspect ratio of 2-10 is used as magnetically polishing magnetic powder, and magnetic-polishing is carried out. The condition of polishing is such that a round rod of 10mmphi diameter X 100mml length is polished by means of a drilling machine with a magnetic field intensity of 1.2T, a gap of 1.2mm at a speed of 500r.p.m. for two minutes with the use of light oil. As a result, the outer surface of the rod having a polished surface roughness of 2mumRmax is finished into that having a surface roughness 0.25mumRmax exhibiting a satisfactory mirrored surface condition. The variation in the surface roughness may be understood when reference is made to reference unmerals A, B is the drawing. Further, there is no risk of separation of coming-off of Al2O3 as experienced in conventional compound powder, thereby it is possible to sustain a highly accurate polishing characteristic of the magnetic polishing powder for a long period.

Description

【発明の詳細な説明】 発明の属する技術分野 この発明は、磁界により拘束された磁性粉末を研磨砥粒
として工作物表面を研磨する磁気研磨に使用される磁性
粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to magnetic powder used in magnetic polishing, which polishes the surface of a workpiece by using magnetic powder restrained by a magnetic field as abrasive grains.

従来技術と問題点 従来、工作物の表面仕上げ加工やパリ取りの手段として
、研削加工、ホーニング加工、バレル加工、パフ加工、
ラッピング加工、超音波加工、化学研磨、電解研磨など
多くの加工方法が目的に応じて採用されている。近年、
工作物の研磨加工において、被加工材料の多様化、被加
工物形状の複雑化、高精度加工の要求などにより、磁気
研磨法が注目されている。磁気研磨法には磁性流体を使
用する方法と磁気研磨材を使用する方法とがあり、前者
は主に平面研磨に使用され、後者は金型など複雑形状の
被加工物の表面研磨に利用される。
Conventional technology and problems Conventionally, methods for surface finishing and deburring of workpieces include grinding, honing, barrel processing, puff processing,
Many processing methods are used depending on the purpose, including lapping, ultrasonic processing, chemical polishing, and electrolytic polishing. recent years,
In the polishing process of workpieces, magnetic polishing methods are attracting attention due to the diversification of workpiece materials, the complexity of workpiece shapes, and the demand for high-precision machining. Magnetic polishing methods include methods that use magnetic fluid and methods that use magnetic abrasive materials.The former is mainly used for surface polishing, and the latter is used for surface polishing of complex-shaped workpieces such as molds. Ru.

この発明は、主に後者に属する磁気研磨において研磨材
として使用される磁性粉末に関する。
This invention mainly relates to magnetic powder used as an abrasive in magnetic polishing, which belongs to the latter category.

この種の磁気研磨では、N−S磁極間に研磨材となる磁
性粉末を存在させ、磁性粉末を磁力線に沿ってブラシ状
に整列保持させた中で被加工物を回転あるいは振動させ
る等により、磁性粉末(研磨材)と被加工物との間に相
対的運動を発生させて被工作物表面を研磨させる。
In this type of magnetic polishing, magnetic powder serving as an abrasive is present between the N and S magnetic poles, and the workpiece is rotated or vibrated while the magnetic powder is aligned and held in a brush shape along the lines of magnetic force. A relative movement is generated between the magnetic powder (abrasive material) and the workpiece to polish the workpiece surface.

磁気研磨で用いられる研磨材は、磁性体である必要があ
る。したがって、従来から一般の研磨材として広く使用
されているAQz○、やSiCなどの非磁性体は単独で
は磁気研磨用の研磨材とすることができない。
The abrasive used in magnetic polishing needs to be a magnetic material. Therefore, non-magnetic materials such as AQz○ and SiC, which have been widely used as general abrasive materials, cannot be used alone as an abrasive material for magnetic polishing.

従来、この種の磁気研磨用の研磨材として、磁性フェラ
イト粉末が提案されているが、フェライトは磁束密度が
低いため磁気的結合強度が弱く、したがって、被加工物
に対する圧接力が充分に得られず研磨能率が低い。また
、フェライトは脆弱であるため破砕されシャープエツジ
形状となり易く、高精度の研磨仕上げをする上で難があ
る。
Conventionally, magnetic ferrite powder has been proposed as an abrasive material for this type of magnetic polishing, but ferrite has a low magnetic flux density and therefore has weak magnetic coupling strength, so it is difficult to obtain sufficient pressing force against the workpiece. Polishing efficiency is low. Further, since ferrite is brittle, it is easily crushed into sharp edge shapes, making it difficult to polish with high precision.

また、Fe粉とA4.03とを複合させた複合粉末も磁
気研磨用の研磨材として提案されている。
A composite powder made by combining Fe powder and A4.03 has also been proposed as an abrasive for magnetic polishing.

この種の複合粉末は、FeとAQ、○、との複合材であ
るため、その接合強度に問題があり、研磨中にA+22
03が脱落し分離され、磁性研磨材としての寿命が短く
、また、表面部分にAQ20.を分散して有するために
磁気抵抗が大きく、したがって、被加工物表面に対する
圧接力を充分に確保するためには、強い外部磁界を形成
させる必要がある等の難があり、改良が望まれていた。
This type of composite powder is a composite material of Fe and AQ, ○, so there is a problem with the bonding strength, and during polishing, A+22
AQ20.03 falls off and separates, and has a short lifespan as a magnetic abrasive.Also, AQ20. Since magnetic resistance is dispersed, the magnetic resistance is large, and therefore, in order to secure sufficient pressure contact force against the surface of the workpiece, it is necessary to form a strong external magnetic field.Therefore, improvements are desired. Ta.

発明の目的 この発明は、上記に鑑み、磁気的特性に優れ、且つ良好
な研磨特性を示す改良された磁気研磨用磁性粉末を提供
することを目的とする。
Purpose of the Invention In view of the above, an object of the present invention is to provide an improved magnetic powder for magnetic polishing that has excellent magnetic properties and exhibits good polishing properties.

発明の構成および効果 この発明は、磁気研磨用磁性粉末として、硬度Hv60
0以上の非晶質磁性合金粉末を提供することで上記目的
を達成する。
Structure and Effects of the Invention The present invention provides a magnetic powder with a hardness of Hv60 as a magnetic powder for magnetic polishing.
The above object is achieved by providing an amorphous magnetic alloy powder of 0 or more.

溶融金属を急冷させて得られる非晶質合金は。An amorphous alloy is obtained by rapidly cooling molten metal.

磁気的、化学的あるいは機械的特性において特異な特性
を示すために、各種機能材料として注目されている。特
に非晶質合金は結晶異方性を示さないので軟質磁性材料
として注目され、実用化が進められている。
It is attracting attention as a variety of functional materials because it exhibits unique magnetic, chemical, or mechanical properties. In particular, amorphous alloys do not exhibit crystal anisotropy, so they are attracting attention as soft magnetic materials and are being put into practical use.

発明者等は、この種の非晶質磁性合金を粉末とした非晶
質合金粉末が、磁気研磨用磁性粉末として好適なもので
あることを見出した。
The inventors have discovered that an amorphous alloy powder made from this type of amorphous magnetic alloy is suitable as a magnetic powder for magnetic polishing.

非晶質軟磁性合金は、その一般的特性として高透磁率で
あり且つ高磁束密度を有する磁性合金であり、また、硬
度が高く且つ靭性に富んでおり、耐蝕性にも優れた合金
として公知である。この発明では、磁気研磨用磁性粉末
として非晶質磁性合金を粉末として使用する。
Amorphous soft magnetic alloys are generally known as magnetic alloys that have high magnetic permeability and high magnetic flux density, and are also known as alloys that have high hardness, high toughness, and excellent corrosion resistance. It is. In this invention, an amorphous magnetic alloy is used as a powder for magnetic polishing.

本発明において、非晶質磁性合金の硬度の大小は磁性粉
末の研磨特性および耐久性を左右する。
In the present invention, the hardness of the amorphous magnetic alloy influences the polishing characteristics and durability of the magnetic powder.

非晶質磁性合金の硬度がHv600未満であると研磨能
率が低下するとともに磁性粉末の耐久性が不充分となる
。それ故1本発明では、硬度Hv600以上の非晶質磁
性合金を採用する。
If the hardness of the amorphous magnetic alloy is less than Hv600, the polishing efficiency will decrease and the durability of the magnetic powder will be insufficient. Therefore, in the present invention, an amorphous magnetic alloy having a hardness of Hv600 or more is used.

本発明において採用される非晶質磁性合金粉末の組成の
例としては、 C076Fes S14 B □y、 HGOGIII
I Fe4’+2 Si、、 E3121ClC07o
−3F845its Blu、Cot、 5iL6 B
lzwCo、、Zr、、、  Co、6Fe、Cr、5
isB1.。
Examples of the composition of the amorphous magnetic alloy powder employed in the present invention include C076Fes S14 B □y, HGOGIII
I Fe4'+2 Si,, E3121ClC07o
-3F845its Blu, Cot, 5iL6 B
lzwCo, , Zr, , Co, 6Fe, Cr, 5
isB1. .

CoGg F e5 S lxt B xs (添数字
は原子%を示す。以下同様)などに代表されるCO基非
晶質合金組成、Fe、、Si、、B、、、Fe、、Co
ll5isB、s。
CO-based amorphous alloy compositions such as CoGg Fe5 S lxt B xs (subscripts indicate atomic %; the same applies hereinafter), Fe, Si, B, Fe, Co
ll5isB, s.

Fe、sCr、5i4B、、、Fea□5i4B、3C
:2゜F ee、P、、C,、Fe7oP、、C,Cr
、。。
Fe, sCr, 5i4B, , Fea□5i4B, 3C
:2゜Fee,P,,C,,Fe7oP,,C,Cr
,. .

F e4゜Ni、、PlGB、、 Fe、oZr□。F e4゜Ni, , PlGB, , Fe, oZr□.

F e6□Ni1.5isB□、などに代表されるFe
基非晶質合金組成とすることができる。
Fe represented by e6□Ni1.5isB□, etc.
A base amorphous alloy composition may be used.

これらの非晶質磁性合金は、磁束密度50000以上、
透磁率500以上の良好な磁気的特性を有し且つ硬度H
v600以上を示す合金である。
These amorphous magnetic alloys have a magnetic flux density of 50,000 or more,
Has good magnetic properties with magnetic permeability of 500 or more and hardness H
It is an alloy that exhibits v600 or higher.

磁気研磨用磁性粉末の各粒子は、磁界中で磁化され整列
結合されて磁気ブラシを構成する。
Each particle of the magnetic powder for magnetic polishing is magnetized in a magnetic field and aligned and combined to form a magnetic brush.

ここで、形成される磁気ブラシの嵩密度や磁性粉末粒子
間の磁気的結合の強さは、粉末粒子の大きさや形状にも
関係する。非晶質磁性合金粉末粒の長径が10μm未満
あるいは1mmを超えると粉末の充填密度が低く磁気ブ
ラシの嵩密度が充分に得られず、磁気ブラシ中の磁束密
度が小さくなり被加工物表面に対する磁性粉末の圧接力
が低くなるために研磨特性に低下傾向が生ずる。したが
って、本発明では非晶質磁性合金粉末粒の長径を10μ
m〜1mmの範囲、特に望ましくは20μI11〜50
0μmとすることが望ましい。
Here, the bulk density of the magnetic brush formed and the strength of magnetic coupling between magnetic powder particles are also related to the size and shape of the powder particles. If the long axis of the amorphous magnetic alloy powder grains is less than 10 μm or more than 1 mm, the packing density of the powder will be low and the bulk density of the magnetic brush will not be sufficiently obtained, and the magnetic flux density in the magnetic brush will become small, resulting in a decrease in magnetism to the surface of the workpiece. As the pressing force of the powder decreases, the polishing properties tend to decrease. Therefore, in the present invention, the major axis of the amorphous magnetic alloy powder grains is 10 μm.
m to 1 mm, particularly preferably 20μI11 to 50
It is desirable that the thickness be 0 μm.

また、非晶質磁性合金粉末の粒形は、粉末粒子の反磁場
係数を小さくし磁気ブラシの磁気抵抗を低減させる上か
らは形状異方性の大きな形状とすることが望ましく、反
面、粉末の流動性を向上させ充填性を向上させる上から
は球形とすることが望ましい。上記両面の要請から1本
発明においてはアスペクト比30以下の鱗片状、板状あ
るいは略球状の非晶質磁性合金粉末の採用が望ましい。
In addition, it is desirable that the particle shape of the amorphous magnetic alloy powder has a large shape anisotropy in order to reduce the demagnetizing field coefficient of the powder particles and reduce the magnetic resistance of the magnetic brush. A spherical shape is desirable in order to improve fluidity and filling properties. In view of the above requirements, it is desirable in the present invention to employ scale-like, plate-like, or substantially spherical amorphous magnetic alloy powder with an aspect ratio of 30 or less.

効果 本発明では、磁気研磨用磁性粉末として、磁気的特性が
良好であり且つ高硬度を有する非晶質磁性合金粉末が採
用される。
Effects In the present invention, an amorphous magnetic alloy powder having good magnetic properties and high hardness is employed as the magnetic powder for magnetic polishing.

したがって1本発明の磁気研磨用磁性粉末は均質であり
、Fe粉とAムO1とを複合した従来の複合粉末の場合
のようなA(,0,の分離脱落を発生することがなく、
高精度の研磨特性を長期間に亘り維持することができる
Therefore, the magnetic powder for magnetic polishing of the present invention is homogeneous, and does not cause the separation and falling off of A(,0,), which is the case with conventional composite powders of Fe powder and AmO1.
High precision polishing characteristics can be maintained for a long period of time.

実施例 合金組成F e72 Co@ S is B isでな
り、長径44〜149μm、アスペクト比2〜10の鱗
片状をした非晶質磁性合金粉末を磁気研磨用磁性粉末と
して使用し、磁気研磨を実施した。
Example: Magnetic polishing was carried out using a scaly-shaped amorphous magnetic alloy powder with alloy composition F e72 Co@S is Bis, major axis 44 to 149 μm, and aspect ratio 2 to 10 as magnetic powder for magnetic polishing. did.

旦皇条丘 研磨機械二  ボール盤 被加工物:5K−3焼入鋼の丸棒(HRC63)10a
+mφX 100m+RQ 磁場の強さ:1.2T(電磁石使用) 被加工物と 磁極との間隔: 1.2mm 研削油:   軽 油(10重量%) 被加工物回転速度:  500 rpm研磨時間:  
   2分間 研磨前粗さ2μmRmaxであった素材表面が磁気研磨
により粗さ0.25μrx Rwaxの鏡面状態の良好
な仕上げ面とされた。
Dannojooka polishing machine 2 Drilling machine Workpiece: 5K-3 hardened steel round bar (HRC63) 10a
+ mφ
The surface of the material, which had a roughness of 2 μm Rmax before polishing for 2 minutes, was made into a mirror-like finished surface with a roughness of 0.25 μrx Rwax by magnetic polishing.

磁気研磨の前後における被加工物表面粗さの変化を第1
図(A) (B)に示す。
The first change in the surface roughness of the workpiece before and after magnetic polishing is
Shown in Figures (A) and (B).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の磁気研磨用磁性粉末を用い
ておこなった磁気研磨の前後の被加工物表面粗さを示し
、第1図(A)は研磨前、第1図(B)は研磨後の被加
工物表面粗さを示す図である。
FIG. 1 shows the surface roughness of a workpiece before and after magnetic polishing performed using the magnetic powder for magnetic polishing of an example of the present invention, FIG. 1 (A) shows before polishing, FIG. ) is a diagram showing the surface roughness of the workpiece after polishing.

Claims (1)

【特許請求の範囲】 1)磁気研磨に使用される軟質磁性金属粉末であって、
該磁性金属粉末が硬度Hv600以上の非晶質合金粉末
であることを特徴とする磁気研磨用磁性粉末。 2)前記非晶質合金粉末が、長径10μm〜1mm、ア
スペクト比30以下の鱗片状、板状または略球状をして
いる特許請求の範囲第1項記載の磁気研磨用磁性粉末。
[Claims] 1) A soft magnetic metal powder used for magnetic polishing, comprising:
A magnetic powder for magnetic polishing, characterized in that the magnetic metal powder is an amorphous alloy powder having a hardness of Hv600 or more. 2) The magnetic powder for magnetic polishing according to claim 1, wherein the amorphous alloy powder has a scale-like, plate-like, or substantially spherical shape with a major axis of 10 μm to 1 mm and an aspect ratio of 30 or less.
JP60221976A 1985-10-07 1985-10-07 Magnetic power for magnetically polishing Pending JPS6284967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60221976A JPS6284967A (en) 1985-10-07 1985-10-07 Magnetic power for magnetically polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60221976A JPS6284967A (en) 1985-10-07 1985-10-07 Magnetic power for magnetically polishing

Publications (1)

Publication Number Publication Date
JPS6284967A true JPS6284967A (en) 1987-04-18

Family

ID=16775117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60221976A Pending JPS6284967A (en) 1985-10-07 1985-10-07 Magnetic power for magnetically polishing

Country Status (1)

Country Link
JP (1) JPS6284967A (en)

Similar Documents

Publication Publication Date Title
JP5051399B2 (en) Peripheral cutting blade manufacturing method and outer peripheral cutting blade manufacturing jig
CN102862129B (en) Carbide alloy base portion outer edge cutting wheel and manufacture method
JP2015155143A (en) Method for manufacturing super hard alloy baseplate outer circumference cutting blade
CN114561641A (en) Surface friction treatment method for ceramic reinforced aluminum matrix composite brake disc
CA2416522A1 (en) Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
JPS6284967A (en) Magnetic power for magnetically polishing
CN112828780B (en) Preparation method and application method of abrasive for layered sand-planting abrasive belt
JPH04176556A (en) Magnetic polishing method, abrasive grain for magnetic polishing and manufacture thereof
JP7026927B2 (en) Magnetic polishing method and magnetic polishing equipment
CN103756638A (en) Magnetic grinding material
JPS62166964A (en) Magnetic powder for magnetic polishing
CN112646551B (en) Composite abrasive and preparation method thereof
JPS62136361A (en) Magnetic powder
JP2005150572A (en) Sintered magnet and its manufacturing method
JPH0671554A (en) Magnetic polishing method
JP2015168029A (en) magnetic polishing method and polishing slurry
Petrie Permanent magnets in review
JPS60177870A (en) Magnetic polishing material
JPH05242427A (en) Thin-film magnetic head core
CN1281376C (en) Abrasive sheet for super precision polishing
JPS64183B2 (en)
CN208496776U (en) A kind of grinding rubber for preventing secondary scuffing technology based on absorption
JP2002220628A (en) Diamond-metal composite with mirror plane, and artificial joint, dice, roll or mold therewith, and method for manufacturing diamond-metal composite
JPS62287035A (en) Copper-iron group metal-base diamond tool for cutting fine ceramic
Singh et al. Preparation, Microstructure Evaluation, and Performance Analysis of Diamond-Iron Bonded Magnetic Abrasives