JP7026927B2 - Magnetic polishing method and magnetic polishing equipment - Google Patents
Magnetic polishing method and magnetic polishing equipment Download PDFInfo
- Publication number
- JP7026927B2 JP7026927B2 JP2017152496A JP2017152496A JP7026927B2 JP 7026927 B2 JP7026927 B2 JP 7026927B2 JP 2017152496 A JP2017152496 A JP 2017152496A JP 2017152496 A JP2017152496 A JP 2017152496A JP 7026927 B2 JP7026927 B2 JP 7026927B2
- Authority
- JP
- Japan
- Prior art keywords
- polished
- polishing
- magnet
- magnetic
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Description
本発明は、磁気研磨方法及び磁気研磨装置に関し、更に詳しくは、硬い被研磨体であっても磁性研磨剤で鏡面研磨可能な方法及び装置に関する。 The present invention relates to a magnetic polishing method and a magnetic polishing apparatus, and more particularly to a method and an apparatus capable of mirror polishing even a hard object to be polished with a magnetic abrasive.
磁気援用加工法(磁気研磨法ともいう。)は、磁場の作用を取り込んだ精密加工技術であり、磁力線を媒介にして磁性研磨剤に加工力と運動力を与えて精密な表面加工を実現するものである。例えば特許文献1には、特に磁性研磨剤を粒子ブラシとして用い、その粒子ブラシの柔軟な加工挙動により、例えば金型の曲面等のような複雑な部品の形状精度を維持しながら精密研磨を行うことができることが提案されている。
The magnetic assist processing method (also called magnetic polishing method) is a precision processing technology that incorporates the action of a magnetic field, and realizes precise surface processing by applying processing force and kinetic force to a magnetic polishing agent via magnetic lines of force. It is a thing. For example, in
特許文献2には、磁性金属材料からなる工作物であっても効率的に研磨することができる磁気研磨装置が提案されている。この装置は、磁性研磨剤を磁気吸着する2以上の永久磁石それぞれがヨークに離間して固定された先端構造を有する磁気研磨加工用工具を備え、その磁気研磨加工用工具の先端に磁性研磨剤を磁気吸着させた後に回転又は回動させながら工作物上を相対移動させて当該工作物を研磨するものである。
また、特許文献3では、管の内面を極めて精密に研磨することができ且つ洗浄も容易な超精密磁気研磨方法が提案されている。この技術は、被研磨管と、被研磨管内に導入された研磨スラリーと、被研磨管と研磨スラリーとを相対運動させて研磨スラリーを攪拌させる管内面磁気研磨装置とを用い、管内面磁気研磨装置を動作させて被研磨管の内面を研磨スラリーで研磨する方法である。
Further,
上記した各特許文献で提案されている方法又は装置は、磁石の表面に磁気吸着した磁性研磨剤で被加工面を研磨している。そのため、加工力が弱く、研磨時間が長くなるという加工効率上の難点があった。特に硬い材料からなる被研磨体を研磨する場合には、高効率で高精度の研磨加工が難しかった。 In the method or apparatus proposed in each of the above-mentioned patent documents, the surface to be processed is polished with a magnetic abrasive magnetically adsorbed on the surface of the magnet. Therefore, there is a problem in processing efficiency that the processing force is weak and the polishing time is long. In particular, when polishing an object to be polished made of a hard material, it is difficult to perform a highly efficient and highly accurate polishing process.
本発明は、上記課題を解決するためになされたものであって、その目的は、硬い材料からなる被研磨体を研磨する場合であっても、高効率で高精度の研磨加工を実現できる磁気研磨方法及び磁気研磨装置を提供することにある。 The present invention has been made to solve the above problems, and an object thereof is magnetism capable of realizing highly efficient and highly accurate polishing even when polishing an object to be polished made of a hard material. It is an object of the present invention to provide a polishing method and a magnetic polishing apparatus.
(1)本発明に係る磁気研磨方法は、磁石に磁気吸着させた磁性研磨剤で被研磨体の表面を研磨する方法であって、前記磁石は、前記被研磨体を挟んだ位置に配置されたN極磁石及びS極磁石であり、前記各磁石を前記被研磨体に向けて加圧しながら前記各磁石と前記被研磨体とを相対移動させることを特徴とする。 (1) The magnetic polishing method according to the present invention is a method of polishing the surface of an object to be polished with a magnetic polishing agent magnetically attracted to a magnet, and the magnet is arranged at a position sandwiching the object to be polished. These are an N-pole magnet and an S-pole magnet, and are characterized in that each magnet and the object to be polished are relatively moved while pressurizing each magnet toward the object to be polished.
この発明によれば、被研磨体を挟んだ位置に配置されたN極磁石とS極磁石とを、被研磨体に向けて加圧しながら各磁石(N極磁石とS極磁石)と被研磨体とを相対移動させるので、被研磨体の表面を高効率・高精度で研磨することができる。 According to the present invention, the N-pole magnet and the S-pole magnet arranged at positions sandwiching the object to be polished are pressed against the object to be polished, and each magnet (N-pole magnet and S-pole magnet) and the object to be polished are pressed. Since it moves relative to the body, the surface of the object to be polished can be polished with high efficiency and high accuracy.
本発明に係る磁気研磨方法において、前記相対移動は、前記被研磨体の回転若しくは前記各磁石の回転、及び/又は、前記被研磨体の振動若しくは揺動又は前記各磁石の振動若しくは揺動、であることが好ましい。この発明によれば、被研磨体の硬さや形状に応じて各磁石と被研磨体とを相対移動させる要素を調整することにより、種々の被研磨体の表面を研磨することができる。 In the magnetic polishing method according to the present invention, the relative movement is the rotation of the object to be polished or the rotation of each magnet, and / or the vibration or oscillation of the object to be polished or the vibration or oscillation of each magnet. Is preferable. According to the present invention, the surface of various objects to be polished can be polished by adjusting the element that relatively moves each magnet and the object to be polished according to the hardness and shape of the object to be polished.
本発明に係る磁気研磨方法において、前記磁性研磨剤が、粒径の異なる混合粒子であることが好ましい。この発明によれば、混合粒子を用いて研磨の効率化と研磨精度を上げることができる。 In the magnetic polishing method according to the present invention, it is preferable that the magnetic polishing agent is a mixed particle having a different particle size. According to the present invention, it is possible to improve the efficiency and polishing accuracy of polishing by using the mixed particles.
本発明に係る磁気研磨方法において、前記被研磨体が、棒状工作物である。特に、アルミナセラミックス等のような硬い材料からなる被研磨体により好ましく適用することができる。 In the magnetic polishing method according to the present invention, the object to be polished is a rod-shaped workpiece. In particular, it can be preferably applied to an object to be polished made of a hard material such as alumina ceramics.
(2)本発明に係る磁気研磨装置は、磁石に磁気吸着させた磁性研磨剤で被研磨体の表面を研磨する装置であって、前記被研磨体を装着する被研磨体装着部と、前記被研磨体装着部に装着された前記被研磨体を挟んだ位置に配置されたN極磁石及びS極磁石と、前記各磁石を前記被研磨体に向けて加圧する加圧装置と、前記各磁石と前記被研磨体とを相対移動させる相対移動機構とを少なくとも備えることを特徴とする。 (2) The magnetic polishing device according to the present invention is a device that polishes the surface of the object to be polished with a magnetic polishing agent magnetically attracted to a magnet, and includes an object mounting portion on which the object to be polished is attached and the object to be polished. An N-pole magnet and an S-pole magnet mounted on the object to be polished and arranged at positions sandwiching the object to be polished, a pressurizing device for pressurizing each magnet toward the object to be polished, and each of the above. It is characterized by including at least a relative moving mechanism for relatively moving the magnet and the object to be polished.
この発明によれば、被研磨体を挟んだ位置に配置されたN極磁石及びS極磁石を、被研磨体に向けて加圧する加圧装置を備え、その加圧装置で加圧した状態で各磁石と被研磨体とを相対移動させる相対移動機構を備えるので、被研磨体の表面を高効率・高精度で研磨することができる。 According to the present invention, a pressurizing device for pressurizing an N-pole magnet and an S-pole magnet arranged at positions sandwiching the object to be polished toward the object to be polished is provided, and the pressurizing device is used to pressurize the magnet. Since it is provided with a relative movement mechanism that relatively moves each magnet and the object to be polished, the surface of the object to be polished can be polished with high efficiency and high accuracy.
本発明に係る磁気研磨装置において、前記相対移動機構は、前記被研磨体若しくは前記各磁石を回転する回転装置、及び/又は、前記被研磨体を振動若しくは揺動する振動・揺動装置又は前記各磁石を振動若しくは揺動する振動・揺動装置、であることが好ましい。 In the magnetic polishing device according to the present invention, the relative moving mechanism is a rotating device that rotates the object to be polished or each magnet, and / or a vibration / shaking device that vibrates or swings the object to be polished, or the above. A vibration / swing device that vibrates or swings each magnet is preferable.
本発明によれば、硬い材料からなる被研磨体を研磨する場合であっても、高効率で高精度の研磨加工を実現できる磁気研磨方法及び磁気研磨装置を提供することができる。具体的には、被研磨体を挟んだ位置に配置されたN極磁石とS極磁石とを、被研磨体に向けて加圧しながら各磁石と被研磨体とを相対移動させるので、被研磨体の表面を高効率・高精度で研磨することができる。 According to the present invention, it is possible to provide a magnetic polishing method and a magnetic polishing apparatus capable of realizing highly efficient and highly accurate polishing even when polishing an object to be polished made of a hard material. Specifically, since the N-pole magnet and the S-pole magnet arranged at positions sandwiching the object to be polished are relatively moved between the magnet and the object to be polished while pressurizing the magnet to be polished. The surface of the body can be polished with high efficiency and high accuracy.
以下、本発明の磁気研磨方法及び磁気研磨装置について図面を参照しつつ説明する。なお、本発明は、その技術的特徴を有する範囲を包含し、以下に示す説明及び図面等に限定されない。 Hereinafter, the magnetic polishing method and the magnetic polishing apparatus of the present invention will be described with reference to the drawings. It should be noted that the present invention includes the scope having the technical features thereof, and is not limited to the explanations and drawings shown below.
[磁気研磨方法及び装置]
本発明に係る磁気研磨方法は、図1~図3に示すように、磁石21に磁気吸着させた磁性研磨剤2で被研磨体1の表面を研磨する方法である。磁石21は、被研磨体1を挟んだ位置に配置されたN極磁石21N及びS極磁石21Sである。各磁石21(N極磁石21N及びS極磁石21S)を被研磨体1に向けて加圧しながら各磁石21と被研磨体1とを相対移動させる。
[Magnetic polishing method and equipment]
As shown in FIGS. 1 to 3, the magnetic polishing method according to the present invention is a method of polishing the surface of an object to be polished 1 with a
本発明に係る磁気研磨装置31も図1~図3に示すように、磁石21に磁気吸着させた磁性研磨剤2で被研磨体1の表面を研磨する装置であり、被研磨体1を装着する被研磨体装着部31と、被研磨体装着部31に装着された被研磨体1を挟んだ位置に配置されたN極磁石21N及びS極磁石21Sと、各磁石21を被研磨体1に向けて加圧する加圧装置32と、各磁石21と被研磨体1とを相対移動させる相対移動機構33とを少なくとも備えている。
As shown in FIGS. 1 to 3, the
こうした磁気研磨方法及び装置は、被研磨体1を挟んだ位置に配置されたN極磁石21NとS極磁石21Sとを、被研磨体1に向けて加圧しながら各磁石21と被研磨体1とを相対移動させるので、被研磨体1の表面を高効率・高精度で研磨することができる。特に本発明では、被研磨体1と各磁石21との間に磁性研磨剤2を介した状態での磁気研磨において、被研磨体1を挟んで配置されたN極磁石21NとS極磁石21Sとが磁気的に相互に引き合っている点(第1の特徴)、N極磁石21NとS極磁石21Sには被研磨体1に向けて圧力が加えられている点(第2の特徴)、及び、各磁石21と被研磨体1とが相対移動した状態で研磨される点(第3の特徴)に特徴がある。
In such a magnetic polishing method and apparatus, each magnet 21 and the object to be polished 1 are pressed toward the
以下、各構成要素について詳しく説明する。なお、単に「磁石21」又は「各磁石21」というときは、N極磁石21NとS極磁石21Sの両方を指している。 Hereinafter, each component will be described in detail. The term "magnet 21" or "each magnet 21" simply refers to both the N-pole magnet 21N and the S-pole magnet 21S.
(被研磨体)
被研磨体1は、研磨する対象となるものであり、その形状及び材質は特に限定されない。形状は、丸棒、角棒等の棒状であってもよいし、球状、板状、矩形状であってもよく、上記した第1~第3の特徴を実現可能な構造形態であればよい。また、被研磨体1の形態は一様な一定形態であってもよいし、曲がった形態でも、段差を有する形態でも、途中で大きさが変化する形態であってもよい。要するに、第1~第3の特徴を実現できる形態であればよく、大きすぎる球、厚すぎる板、大きすぎる矩形物等のように、被研磨体1を挟んで配置されたN極磁石21NとS極磁石21Sとが磁気的に相互に引き合うことができないような場合は本発明の効果を十分に発揮させることができないことがある。好ましい例としては、棒であれば例えば直径20mm以下の丸棒や例えば厚さ20mm以下の角棒、球であれば例えば直径20mm以下、板や矩形物であれば厚さ例えば10mm以下、であることが好ましい。なお、後述する実験例では、直径が一様の丸棒を用いている。
(Object to be polished)
The object to be polished 1 is to be polished, and its shape and material are not particularly limited. The shape may be a rod shape such as a round bar or a square bar, a spherical shape, a plate shape, or a rectangular shape, and may be a structural form capable of realizing the above-mentioned first to third features. .. Further, the form of the object to be polished 1 may be a uniform constant form, a bent form, a form having a step, or a form in which the size changes in the middle. In short, any form can be used as long as it can realize the first to third features, and the N-pole magnet 21N arranged across the object to be polished 1 such as a sphere that is too large, a plate that is too thick, or a rectangular object that is too large. When the S pole magnet 21S and the S pole magnet 21S cannot be magnetically attracted to each other, the effect of the present invention may not be fully exerted. Preferred examples are a round bar having a diameter of 20 mm or less or a square bar having a thickness of 20 mm or less in the case of a bar, a square bar having a diameter of 20 mm or less in the case of a sphere, and a thickness of 10 mm or less in the case of a plate or a rectangular object. Is preferable. In the experimental example described later, a round bar having a uniform diameter is used.
材質は、非磁性体であっても磁性体であってもよい。非磁性体の材質としては、例えば、プラスチックス、ガラス、セラミックス、非磁性の金属(銅、アルミニウム、非磁性鋼材、非磁性ステンレス鋼、チタン、等々)等を挙げることができる。磁性体の材質としては、例えば、鋼、磁性ステンレス、ニッケル、磁性合金等を挙げることができる。ただし、被研磨体1が磁性体である場合には、磁性研磨剤2は、その磁性体よりも磁力の大きい各磁石21に磁気吸着し、研磨剤として機能する。なお、後述の実験例では、被研磨体1の材質はアルミナセラミックスであり、特にアルミナ(酸化アルミニウム)やジルコニア(酸化ジルコニウム)等の硬いセラミックスに対して好ましく研磨することができる。
The material may be a non-magnetic material or a magnetic material. Examples of the material of the non-magnetic material include plastics, glass, ceramics, non-magnetic metals (copper, aluminum, non-magnetic steel, non-magnetic stainless steel, titanium, etc.). Examples of the material of the magnetic material include steel, magnetic stainless steel, nickel, and magnetic alloys. However, when the
(被研磨体装着部)
被研磨体装着部31は、磁気研磨装置30が備える構成部材であり、図1~図3に示すように、被研磨体1を装着する部材であればよく、特に限定されない。図3の例では、被研磨体1として丸棒を用いているので、丸棒を円管状の装着補助部材31aで固定し、その装着補助部材31aを被研磨体装着部31が固定し、その被研磨体装着部31を回転装置34で回転させている。なお、被研磨体装着部31や装着補助部材31aは図1~図3の例に限定されない。
(Mounting part to be polished)
The body to be polished 31 is a constituent member included in the
(磁性研磨剤)
磁性研磨剤2は、各磁石21に磁気吸着され、被研磨体1を研磨するように作用する。磁性研磨剤2は、磁性粒子と研磨粒子を含む研磨スラリーのことである。この磁性研磨剤2は、各磁石21と被研磨体1とが相対移動しても各磁石21に磁気吸引されており、その相対移動に基づいて被研磨体1の表面を研磨する。磁性研磨剤2の相対移動により、被研磨体1の表面を高効率・高精度で研磨することができる。
(Magnetic abrasive)
The magnetic abrasive 2 is magnetically attracted to each magnet 21 and acts to polish the object to be polished 1. The
磁性研磨剤2を構成する磁性粒子は特に限定されず、どのような形状であってもよい。例えば、球状又は略球状の粒子であってもよいし、非球状の角形や不定形の粒子であってもよい。磁性粒子は、磁性研磨剤2が磁石21に磁気吸着されて被研磨体1と磁石21との間に保持させるように作用する。磁石21に磁気吸着された態様で被研磨体1と磁石21とが相対運動することにより、磁性研磨剤2で被研磨体1の表面を精度良く研磨するという効果を奏することができる。したがって、磁性粒子は、こうした作用効果を奏するような磁気特性や粒径を持っている必要がある。
The magnetic particles constituting the magnetic abrasive 2 are not particularly limited and may have any shape. For example, the particles may be spherical or substantially spherical, or may be non-spherical square or amorphous particles. The magnetic particles act so that the magnetic abrasive 2 is magnetically attracted to the magnet 21 and held between the
磁性粒子としては、鉄、コバルト、ニッケル、クロムやこれらの酸化物、合金、化合物等、一般に磁性体と呼ばれる元素を全部又は一部に含む粒子が用いられる。具体例としては、カルボニル鉄粉、電解鉄粉、ニッケル粉、Ni-P合金粉又はNi-B合金粉等のニッケル合金粉等を使用することができる。また、高温高圧下の不活性ガス中で鉄と焼結させた酸化アルミニウム粉や不活性ガス雰囲気中でのアルミニウムと、酸化鉄とのテルミット反応の生成物粉等を用いることも可能である。なお、市販されている磁性研磨剤(東洋研磨材工業株式会社;KMX-80)や、その他の未市販の磁性研磨剤等を用いることができる。また、磁性を持つ粉末の表面に、他の材料を被覆してなる粒子であってもよい。 As the magnetic particles, particles containing all or a part of an element generally called a magnetic substance such as iron, cobalt, nickel, chromium and their oxides, alloys and compounds are used. As a specific example, nickel alloy powder such as carbonyl iron powder, electrolytic iron powder, nickel powder, Ni-P alloy powder or Ni-B alloy powder can be used. It is also possible to use aluminum oxide powder sintered with iron in an inert gas under high temperature and high pressure, or a product powder of a thermite reaction between aluminum in an inert gas atmosphere and iron oxide. A commercially available magnetic abrasive (Toyo Abrasive Industry Co., Ltd .; KMX-80), another uncommercially available magnetic abrasive, or the like can be used. Further, the particles may be particles obtained by coating the surface of a magnetic powder with another material.
磁性粒子の大きさも特に限定されないが、研磨粒子との相対的な関係においては、磁性粒子の方が研磨粒子よりも大きいことが好ましい。一例としては、研磨粒子の4倍以上1000倍以下、好ましくは4倍以上50倍以下の範囲で任意に選択することができる。すなわち、磁性粒子と研磨粒子とを含む磁性研磨剤2は、粒径の大きさの異なる混合粒子であることが好ましく、混合粒子を用いて研磨の効率化と研磨精度を上げることができる。磁性粒子の大きさと研磨粒子の大きさとの関係は、研磨する前の被研磨体1の表面状態(表面粗さの程度を含む。)、要求される被研磨体表面の表面状態、要求される研磨時間等によって任意に選択される。
The size of the magnetic particles is not particularly limited, but it is preferable that the magnetic particles are larger than the abrasive particles in terms of the relative relationship with the abrasive particles. As an example, it can be arbitrarily selected in the range of 4 times or more and 1000 times or less, preferably 4 times or more and 50 times or less of the abrasive particles. That is, the
磁性粒子の粒径は特に限定されず、平均粒径として一定の範囲のあるものであればよい。例えば、平均粒径で0.5μm以上500μm以下等であればよい。平均粒径は、研磨対象となる被研磨体1の研磨段階や種類に応じて任意に選択される。例えば被研磨体1の粗研磨時や硬い被研磨体1の研磨時等に大きな研磨粒子を用いる場合には、研磨粒子と間の相対的な寸法範囲内で大きな粒径の磁性粒子が選択され、被研磨体1の仕上研磨時やあまり硬くない被研磨体1の研磨時等に小さな研磨粒子を用いる場合には、研磨粒子と間の相対的な寸法範囲内で小さな粒径の磁性粒子が選択されることが好ましい。すなわち、研磨段階(粗研磨、通常研磨、仕上研磨等)や被研磨体1の硬さ等によって任意に選択される。こうした選択により、特に従来から高精度研磨が難しいとされる高硬度のセラミックスをより一層精密研磨できるという効果がある。なお、平均粒径は、磁性粒子の電子顕微鏡写真から測定した平均値であり、表面粗さ(Ra)は、JIS B 0601(2001)に基づいて測定した算術平均粗さである。 The particle size of the magnetic particles is not particularly limited, and any particle size may be used as long as the average particle size has a certain range. For example, the average particle size may be 0.5 μm or more and 500 μm or less. The average particle size is arbitrarily selected according to the polishing stage and type of the object to be polished 1. For example, when large polishing particles are used during rough polishing of the object to be polished 1 or when polishing a hard object to be polished 1, magnetic particles having a large particle size are selected within a relative dimensional range with the polishing particles. When small polishing particles are used during finish polishing of the object to be polished 1 or when polishing the object to be polished 1 which is not very hard, magnetic particles having a small particle size within the relative dimensional range with the polishing particles are generated. It is preferred to be selected. That is, it is arbitrarily selected depending on the polishing stage (rough polishing, normal polishing, finish polishing, etc.), the hardness of the object to be polished 1, and the like. Such selection has the effect of being able to perform even more precise polishing of high-hardness ceramics, which has traditionally been difficult to perform with high-precision polishing. The average particle size is an average value measured from an electron micrograph of magnetic particles, and the surface roughness (Ra) is an arithmetic mean roughness measured based on JIS B 0601 (2001).
研磨粒子は、上記したように、磁性粒子との相対的な寸法関係を有することが好ましい。研磨粒子の形態も特に制限されず各種の形態ものを用いることができる。研磨粒子としては、ダイヤモンド粒子、酸化アルミニウム粒子、酸化セリウム粒子、炭化ケイ素粒子、二酸化ケイ素粒子、酸化クロム粒子、又はそれらの複合体等が挙げられる。また、JIS表示でA、WA、GC、SA、MA、C、MD、CBNとして表されているものを含む、Al2O3、SiC、ZrO2、B4C、ダイヤモンド、立方晶窒化ホウ素、MgO、CeO2又はヒュームドシリカ等の研磨粒子であってもよい。 As described above, the polished particles preferably have a relative dimensional relationship with the magnetic particles. The form of the polished particles is not particularly limited, and various forms can be used. Examples of the abrasive particles include diamond particles, aluminum oxide particles, cerium oxide particles, silicon carbide particles, silicon dioxide particles, chromium oxide particles, or a composite thereof. Also, Al 2 O 3 , SiC, ZrO 2 , B 4 C, diamond, cubic boron nitride, including those represented as A, WA, GC, SA, MA, C, MD, CBN in JIS notation, Abrasive particles such as MgO, CeO 2 or fumed silica may be used.
研磨粒子の粒径は、上記した磁性粒子のところで説明した大きさであることが好ましい。研磨粒子は、磁性粒子と被研磨体1との間に挟まれるようにして被研磨体1を研磨するので、凝集しないで均一分散した微細な研磨粒子で被研磨体1の表面を精密研磨することができる。なお、平均粒径は、研磨粒子の電子顕微鏡写真から測定した平均値であり、表面粗さ(Ra)は、JIS B 0601(2001)に基づいて測定した算術平均粗さである。 The particle size of the polished particles is preferably the size described above for the magnetic particles. Since the polishing particles polish the object to be polished 1 so as to be sandwiched between the magnetic particles and the object to be polished 1, the surface of the object to be polished 1 is precisely polished with fine abrasive particles uniformly dispersed without agglomeration. be able to. The average particle size is an average value measured from an electron micrograph of the polished particles, and the surface roughness (Ra) is an arithmetic average roughness measured based on JIS B 0601 (2001).
スラリー媒体は、磁性研磨剤2に含まれており、磁性粒子と研磨粒子をスラリー状にする媒体であって、研磨粒子を磁性研磨剤2内に分散させるための媒体である。スラリー状とする際の好ましい媒体としては、軽油、水の他、一般的に研磨液として用いられる水溶性や油溶性の液体等が挙げられる。
The slurry medium is contained in the
こうして構成された磁性研磨剤2においては、通常、磁性研磨剤2中に含まれる磁性粒子の含有量は30質量%~70質量%の範囲であり、研磨粒子の含有量は10質量%~60質量%の範囲であり、これら磁性粒子と研磨粒子とを併せた総含有量は70質量%~90質量%の範囲であるように構成される。なお、磁性粒子の含有量は、磁気研磨装置や磁性粒子の粒径等の条件とも関係し、また、研磨粒子の含有量は、被研磨体1の表面の研磨の程度(粗研磨、通常研磨、仕上研磨等)や研磨効率を考慮して設定される。また、スラリー媒体の含有量は、調製された磁性研磨剤2が被研磨体1と磁石21との間の相対運動によっても磁石21に磁気吸着されて流体物として留まっているように、ある程度の粘度を有するように設定される。また、粗研磨、通常研磨、仕上研磨等のように研磨精度の段階毎に適した複数種の磁性研磨剤2を準備することにより、段階毎の研磨を行うことができる。例えば粗研磨、中間研磨又は仕上研磨のいずれで行うかによって、磁性粒子と研磨粒子とを適した平均粒径とした複数の磁性研磨剤2を準備し、段階毎に使用して研磨効率を向上させてもよい。
In the
(磁石)
磁石21は、図1~図3に示すように、被研磨体装着部31に装着される被研磨体1を挟んだ位置に配置されている。図示の例では、N極磁石21NとS極磁石21Sとが、被研磨体1を挟む対向位置に配置されている。磁石21の強さ(磁力)は、他の条件(被研磨体1の材質や大きさ、磁性研磨剤2の種類等)との兼ね合いで決定されるので一概には言えないが、磁性研磨剤2を磁気吸着できるだけの磁力が必要であるが、磁石21の種類に特に制限はなく、永久磁石でも電磁石でもよい。永久磁石としては、例えば希土類磁石、フェライト磁石、アルニコマグネット、MA磁石等を挙げることができる。希土類磁石は強力な磁界を得られる点で好ましい。希土類磁石としては、具体的には、ネオジウム磁石(Nd-Fe-B)やサマリウムコバルト磁石(Sm-Co)が好ましく用いられる。
(magnet)
As shown in FIGS. 1 to 3, the magnet 21 is arranged at a position sandwiching the object to be polished 1 to be attached to the body to be polished 31. In the illustrated example, the N-pole magnet 21N and the S-pole magnet 21S are arranged at opposite positions sandwiching the object to be polished 1. The strength (magnetic force) of the magnet 21 is determined in consideration of other conditions (material and size of the object to be polished 1, type of
N極磁石21NとS極磁石21Sとが被研磨体1を挟んで対向していることにより、N極磁石21NとS極磁石21Sとが相互に引き合うことができる。対向位置としては、180°向かい合っていることが好ましいが、相互に引き合う位置関係であれば、必ずしも180°に限定されず、例えば150°~210°の範囲内としてもよい。磁石21の数は、対向する位置に1組み配置(計2つ)されていればよいが、2組配置されているようにしてもよい。 Since the N-pole magnet 21N and the S-pole magnet 21S face each other with the object to be polished 1 interposed therebetween, the N-pole magnet 21N and the S-pole magnet 21S can attract each other. The facing positions are preferably 180 °, but the positions are not necessarily limited to 180 ° as long as they are mutually attractive, and may be in the range of, for example, 150 ° to 210 °. The number of magnets 21 may be one set (two in total) arranged at opposite positions, but two sets may be arranged.
N極磁石21NとS極磁石21Sの形状も特に制限はなく、通常は、円柱や多角柱等の柱状の磁石を用いる。また、磁束密度を高める観点から、N極磁石21NとS極磁石21Sの先端を錘台形、例えば円錐台形や角錘台形としてもよい。また、磁石21は角部の磁場強度が大きくなることから、N極磁石21NとS極磁石21Sの先端を切り欠きが入った形状とすることもできる。また、被研磨体1の形状に合わせて磁石21の形状を変化させてもよく、例えば図2に示すように、曲面、段差、凹凸等を有する被研磨体1に対しては、磁石先端の一部をその形状に応じて加工してもよい。例えば、曲面の場合には、磁石先端をその曲面に合わせるように加工してもよく、段差の場合には、磁力先端をその段差に合わせるように加工してもよく、凹凸の場合には、磁力先端をその凹凸の寸法を超えないように加工してもよい。
The shapes of the N-pole magnet 21N and the S-pole magnet 21S are also not particularly limited, and usually, a columnar magnet such as a cylinder or a polygonal column is used. Further, from the viewpoint of increasing the magnetic flux density, the tips of the N-pole magnet 21N and the S-pole magnet 21S may have a weight trapezoidal shape, for example, a conical trapezoidal shape or a square trapezoidal shape. Further, since the magnetic field strength at the corners of the magnet 21 is increased, the tips of the N-pole magnet 21N and the S-pole magnet 21S can be shaped so as to have a notch. Further, the shape of the magnet 21 may be changed according to the shape of the object to be polished 1. For example, as shown in FIG. 2, for the
(研磨加工)
本発明では、図1~図3に示すように、各磁石21を被研磨体1に向けて圧力Fを加えながら(加圧しながら)各磁石21と被研磨体1とを相対移動させて研磨する。この方法で研磨加工する磁気研磨装置30は、各磁石21を被研磨体1に向けて圧力Fを加える加圧装置32と、各磁石21と被研磨体1とを相対移動させる相対移動機構33とを少なくとも備えている。こうした方法及び装置により、被研磨体1の表面を高効率・高精度で研磨することができる。
(Polishing)
In the present invention, as shown in FIGS. 1 to 3, each magnet 21 and the object to be polished 1 are moved relative to each other while applying pressure F (pressurizing) toward the object to be polished 1 for polishing. do. The
加圧手段は、空気圧、油圧、機械圧等のいずれであってもよく、特に限定されない。加える圧力Fは、被研磨体1の種類や磁性研磨剤2の研磨力との関係、求める研磨面の状態に応じて任意に設定される。例えば後述の実験例では、空気圧で加圧しており、その圧力Fは、0.05~0.35N/mm2の範囲で行っている。加える空気圧と、被研磨体1に加わる圧力Fとはほぼ比例関係となる。 The pressurizing means may be any of pneumatic pressure, hydraulic pressure, mechanical pressure and the like, and is not particularly limited. The pressure F to be applied is arbitrarily set according to the type of the object to be polished 1, the relationship with the polishing force of the magnetic abrasive 2, and the desired state of the polished surface. For example, in the experimental example described later, the pressure is increased by air pressure, and the pressure F is in the range of 0.05 to 0.35 N / mm 2 . The applied air pressure and the pressure F applied to the object to be polished 1 have a substantially proportional relationship.
相対移動は、被研磨体1と各磁石21とが相対的に移動していればよく、一方を固定して他方を移動させて研磨してもよいし、両方を移動しながら研磨してもよい。相対移動の形態は、被研磨体1の回転若しくは各磁石21の回転、及び/又は、被研磨体1の振動若しくは揺動又は各磁石21の振動若しくは揺動、であることが好ましい。こうした相対移動の要素を調整することにより、種々の硬さの被研磨体1の表面を効果的に研磨することができる。なお、回転は回転装置34で行われ、各磁石21の振動又は揺動は振動・揺動装置で行われる。回転装置34は特に限定されないが、図1~図3に示すように、被研磨体1を装着した被研磨体装着部31を回転させる装置であることが好ましいが、各磁石21を回転させる装置であってもよい。また、振動・揺動は、回転と併用して行ってもよいし、いずれか一方で行ってもよい。
Relative movement may be performed as long as the object to be polished 1 and each magnet 21 are relatively moving, one may be fixed and the other may be moved for polishing, or both may be moved for polishing. good. The form of relative movement is preferably rotation of the object to be polished 1 or rotation of each magnet 21 and / or vibration or rocking of the body to be polished 1 or vibration or rocking of each magnet 21. By adjusting the elements of such relative movement, the surface of the object to be polished 1 having various hardness can be effectively polished. The rotation is performed by the rotating
図3の実験例における相対移動機構33では、棒状工作物(被研磨体1)を装着した被研磨体装着部31を回転させ、各磁石21を固定し、被研磨体1と各磁石21とを相対移動させて研磨している。さらに、棒状工作物の軸方向に各磁石21が揺動するように、カムを用いた揺動機構33aを設けている。また、棒状工作物の研磨位置を移動できる移動機構33bを設けている。こうした相対移動機構33を備えた磁気研磨装置30において、空気圧による加圧装置32で磁石21が被研磨体1に向けて加圧されている。
In the relative movement mechanism 33 in the experimental example of FIG. 3, the object to be polished 31 to which the rod-shaped workpiece (object to be polished 1) is attached is rotated, each magnet 21 is fixed, and the
以上、本発明によれば、棒状工作物等の被研磨体1を対象として、高効率・高精度に表面仕上げすることができる。被研磨体1を挟むように対向する位置にN極磁石21NとS極磁石21Sとを配置し、それぞれの磁石21の表面に磁性研磨剤2を磁気吸着させ、さらにN極磁石21NとS極磁石21Sを被研磨体1に向けて圧力Fを加えた状態で加工する。こうして、被研磨体1の表面を高効率・高精度で研磨することができる。特にアルミナやジルコニア等の硬いセラミックス材料からなる被研磨体1であっても、超精密加工を実現することができる。この技術は、宇宙関連産業分野、医療分野、半導体産業分野、自動車産業分野等の広い技術分野での応用が期待できる。
As described above, according to the present invention, it is possible to finish the surface of the object to be polished 1 such as a rod-shaped workpiece with high efficiency and high accuracy. The N-pole magnet 21N and the S-pole magnet 21S are arranged at positions facing each other so as to sandwich the object to be polished 1, the
実験例を挙げて本発明をさらに具体的に説明する。なお、本発明の範囲は以下の実験例に限定されるものではない。 The present invention will be described in more detail with reference to experimental examples. The scope of the present invention is not limited to the following experimental examples.
[実験1]
図1及び図3に示した磁気研磨装置30を用いた。この磁気研磨装置30は、被研磨体1を回転させるとともに、磁石31を揺動させる揺動機構33aと、研磨位置を移動する移動機構33bとを備えた装置である。被研磨体1は、直径10mmで長さ50mmのアルミナセラミックス棒であり、N極磁石21NとS極磁石21Sの2個のネオジウム永久磁石(縦18mm、横12mm、厚さ10mm)を、アルミナセラミックス棒を挟むように180°対向させて配置した。N極磁石21NとS極磁石21Sのそれぞれの先端には、磁性研磨剤2を磁気吸着させた。アルミナセラミックス棒を管状部材(装着補助部材31a)に固定し、その管状部材を旋盤チャック(被研磨体装着部31)に固定して、毎分1600の回転数で回転させ、さらにN極磁石21NとS極磁石21Sをカム(揺動機構33a)で揺動させことにより、アルミナセラミックス棒の表面と磁性研磨剤2との間の相対運動により被研磨体1の表面を研磨加工した。実験条件は以下の通りである。
[Experiment 1]
The
(研磨加工条件)
被研磨体:アルミナセラミックス棒(直径10mm、長さ50mm)
磁石:Fe-Nd-B系希土類磁石
磁石振動:振幅10mm、振動数1.3Hz
磁石回転数:1600rpm
研磨時間:5分間、10分間
磁性研磨剤:磁性粒子(平均粒径330μmの電解鉄粉、東邦亜鉛株式会社)、研磨粒子(粒径範囲が0~1.5μmのダイヤモンド粒子、Microdiamant社製)、スラリー媒体(カストロール社製、商品名:ホナイロ998、塩素フリー)
磁性研磨剤の組成:電解鉄粉8g、ダイヤモンド粒子0.2g、スラリー媒体3mL
空気供給圧力:0~0.35MPa(これは、圧力制御機械で測定された値である)
(Polishing conditions)
Body to be polished: Alumina ceramic rod (
Magnet: Fe-Nd-B system rare earth magnet Magnet vibration: Amplitude 10mm, frequency 1.3Hz
Magnet rotation speed: 1600 rpm
Polishing time: 5 minutes, 10 minutes Magnetic polishing agent: Magnetic particles (electrolytic iron powder with an average particle size of 330 μm, Toho Zinc Co., Ltd.), polishing particles (diamond particles with a particle size range of 0 to 1.5 μm, manufactured by Microdiamant) , Slurry medium (manufactured by Castrol, trade name: Honairo 998, chlorine-free)
Composition of magnetic abrasive: electrolytic iron powder 8 g, diamond particles 0.2 g,
Air supply pressure: 0 to 0.35 MPa (this is the value measured by the pressure control machine)
[測定及び結果]
(被研磨体表面に加わる圧力)
図4は、磁石21に与える空気圧(0~0.35MPa)と、磁石21の研磨圧力との関係を示すグラフである。図4中の「a」は、図1に示すように、被研磨体1と磁石21との間に磁性研磨剤2を介した状態で空気圧で加圧したときに、被研磨体表面に加わる圧力である。図4中の「b」は、被研磨体1と磁石21との間に磁性研磨剤2を介さない状態で空気圧で加圧したときに、被研磨体表面に加わる圧力である。図4中の「c」は、被研磨体1の表面に空気圧で加圧しただけの場合に、被研磨体表面に加わる圧力(kPa)である。なお、被研磨体表面に加わる圧力は、被研磨体1に対向する磁石面の面積が0.000216mm2であり、その表面積を踏まえて引張試験用ゲージ(株式会社大場計器製作所製)を用いて測定し、計算した値である。
[Measurement and results]
(Pressure applied to the surface of the object to be polished)
FIG. 4 is a graph showing the relationship between the air pressure (0 to 0.35 MPa) applied to the magnet 21 and the polishing pressure of the magnet 21. As shown in FIG. 1, "a" in FIG. 4 is applied to the surface of the object to be polished when it is pneumatically pressed with the magnetic abrasive 2 between the
図4の結果に示すように、空気圧だけの場合(c)に比べて、磁石21が対向配置されることにより(b)、被研磨体1の表面への圧力Fは約100kPa前後高くなった。これは、対向する磁石同士が引き合っているためである。さらに、磁性研磨剤2が被研磨体1と各磁石21との間に介することにより(a)、被研磨体1の表面への圧力Fはさらに30kPa前後高くなった。これは、磁性研磨剤2に含まれる磁性粒子が磁石21によって磁化され、各磁石21で磁化された磁性粒子同士が引き合っているためであろう。こうした結果より、本発明によれば、被研磨体1の表面への圧力Fは、空気圧、磁石及び磁性研磨剤により効果的に高めることができていることがわかった。
As shown in the result of FIG. 4, the pressure F on the surface of the object to be polished 1 is increased by about 100 kPa due to the arrangement of the magnets 21 facing each other (b) as compared with the case of only the air pressure (c). .. This is because the magnets facing each other are attracted to each other. Further, the magnetic abrasive 2 is interposed between the
(表面粗さ)図5は、空気供給圧力を0.25MPaとした場合における研磨前(A)、5分研磨後(B)、10分研磨後(C)の表面粗さ結果である。上段は、接触式の表面粗さ測定結果であり、下段は、非接触式の表面粗さ測定結果である。表面粗さは、所定の時間が経過したとき回転を止め、被研磨体をエタノールで5分間超音波洗浄し、表面粗さRaを測定した。併せて、研磨前後の被研磨体1の重さを秤量して研磨量を測定した。接触式の表面粗さ測定は、触針式粗さ測定機(株式会社ミツトヨ、型番:SV-624-3D)を用い、JIS B 0601(2001)に基づいた方法で測定し、得られた算術平均粗さの値を表面粗さRaとして表した。非接触式の表面粗さ測定は、非接触表面形状粗さ測定装置(ZYGO社製、型番:Zygo,NewView7300)を用い、表面粗さと3次元形状画像を得た。なお、いずれの方式の場合も、被研磨体の表面を円周方向に120°間隔で3箇所測定し、その平均値を採用した。 (Surface Roughness) FIG. 5 shows the surface roughness results before polishing (A), after 5-minute polishing (B), and after 10-minute polishing (C) when the air supply pressure is 0.25 MPa. The upper row is the contact type surface roughness measurement result, and the lower row is the non-contact type surface roughness measurement result. As for the surface roughness, the rotation was stopped after a predetermined time had passed, the object to be polished was ultrasonically cleaned with ethanol for 5 minutes, and the surface roughness Ra was measured. At the same time, the weight of the object to be polished 1 before and after polishing was weighed and the amount of polishing was measured. The contact-type surface roughness measurement was performed by a stylus-type roughness measuring machine (Mitutoyo Co., Ltd., model number: SV-624-3D) and measured by a method based on JIS B 0601 (2001). The value of the average roughness was expressed as the surface roughness Ra. For the non-contact type surface roughness measurement, a non-contact surface roughness measuring device (manufactured by ZYGO, model number: Zygo, NewView7300) was used to obtain a surface roughness and a three-dimensional shape image. In each method, the surface of the object to be polished was measured at three points in the circumferential direction at 120 ° intervals, and the average value was adopted.
図5中にも記載したように、接触式と非接触式とで表面粗さRaの値は若干異なるものの、研磨前の被研磨体の表面粗さに対し、5分間研磨した後や10分間研磨した後の表面粗さは極めて小さくなっており、研磨により極めて平滑な鏡面研磨を実現できた。また、下段の3次元形状画像からわかるように、磁気研磨後の表面は、滑らかなナノレベルの平滑面になってことがわかった。なお、空気供給圧力を0.05MPa、0.15MPaでも同様の試験を行ったが、図5の0.25MPaと同様の傾向であった。 As described in FIG. 5, although the surface roughness Ra value is slightly different between the contact type and the non-contact type, the surface roughness of the object to be polished before polishing is compared with that after polishing for 5 minutes or for 10 minutes. The surface roughness after polishing was extremely small, and extremely smooth mirror polishing could be realized by polishing. Further, as can be seen from the lower three-dimensional shape image, it was found that the surface after magnetic polishing became a smooth nano-level smooth surface. The same test was performed even when the air supply pressure was 0.05 MPa and 0.15 MPa, but the tendency was the same as that of 0.25 MPa in FIG.
図6は、空気供給圧力を3段階(0.05MPa、0.15MPa、0.25MPa)で変えた場合において、表面粗さと研磨量に及ぼす研磨時間の影響をまとめたグラフである。研磨時間は、0、5分間、10分間で行った。5分間研磨することにより、いずれの空気供給圧力においても表面粗さは著しく小さくなった。この表面粗さの改善効果は、研磨時間に比例している研磨量に比べて顕著であった。また、ここでの実験の範囲では、空気供給圧力は0.15MPaと0.25MPaとは同程度の表面粗さの改善効果を示していた。 FIG. 6 is a graph summarizing the effects of polishing time on the surface roughness and the amount of polishing when the air supply pressure is changed in three steps (0.05 MPa, 0.15 MPa, 0.25 MPa). The polishing time was 0, 5 minutes, and 10 minutes. After polishing for 5 minutes, the surface roughness was remarkably reduced at any air supply pressure. This effect of improving the surface roughness was remarkable as compared with the polishing amount which is proportional to the polishing time. Further, in the range of the experiment here, the air supply pressure showed the same improvement effect of the surface roughness as 0.15 MPa and 0.25 MPa.
[実験2]
被研磨体1と各磁石21との間隔を変えた場合において、表面粗さと研磨量に及ぼす研磨時間の影響について検討した。その結果を図7にまとめた。間隔は1mmと2mmとし、空気供給圧力は0.15MPaとし、それ以外は実験1と同様にした。図7の結果より、研磨量は間隔が1mmの方が大きい値を示していた。表面粗さは、0.15MPaでは間隔が1mmの方が大きい値を示したが、0.25MPaでは同程度であった。
[Experiment 2]
The influence of the polishing time on the surface roughness and the polishing amount was examined when the distance between the object to be polished 1 and each magnet 21 was changed. The results are summarized in FIG. The intervals were 1 mm and 2 mm, the air supply pressure was 0.15 MPa, and the rest was the same as in
[実験3]
磁性粒子の量を変えた場合において、表面粗さと研磨量に及ぼす研磨時間の影響について検討した。その結果を図8にまとめた。磁性粒子の量は4gと8gとし、空気供給圧力は0.15MPaとし、それ以外は実験1と同様にした。図8の結果より、磁性粒子の量によっては傾向が見られなかった。
[Experiment 3]
When the amount of magnetic particles was changed, the effect of polishing time on the surface roughness and the amount of polishing was investigated. The results are summarized in FIG. The amount of magnetic particles was 4 g and 8 g, the air supply pressure was 0.15 MPa, and the other parts were the same as in
[実験4]
研磨時間を変えた場合において、表面粗さと研磨量に及ぼす研磨時間の影響について検討した。表面粗さの結果を図9(A)に示し、研磨量の結果を図9(B)に示した。研磨時間は、10~50秒とし、空気供給圧力は0.15MPaとし、それ以外は実験1と同様にした。図9の結果より、研磨量は間隔が1mmの方が大きい値を示していた。表面粗さは、0.15MPaでは間隔が1mmの方が大きい値を示したが、0.25MPaでは同程度であった。時間が長くなるほど表面粗さが小さくなり、研磨量が増しているのがわかる。
[Experiment 4]
The effect of the polishing time on the surface roughness and the amount of polishing when the polishing time was changed was investigated. The result of the surface roughness is shown in FIG. 9 (A), and the result of the polishing amount is shown in FIG. 9 (B). The polishing time was 10 to 50 seconds, the air supply pressure was 0.15 MPa, and other than that, it was the same as in
[実験5]
磁石21の先端形状の違いによる被研磨体1の表面圧力について実験した。その結果を図10にまとめた。aは、実験1で用いた磁石先端が平坦な磁石(図1参照)の場合(縦18mm、横12mm)であり、bは、磁石先端の一部を凸部にした場合(縦10mm、横12mm)である。図10に示すように、磁石先端の一部を凸部にした場合の方が、空気供給圧力が単位面積当たりに集中するので、高い圧力を示した。
[Experiment 5]
An experiment was conducted on the surface pressure of the object to be polished 1 due to the difference in the tip shape of the magnet 21. The results are summarized in FIG. A is a case where the magnet tip used in
以上の実験1~5より、硬い材料からなる被研磨体を研磨する場合であっても、高効率で高精度の研磨加工を実現できる磁気研磨方法及び磁気研磨装置を提供することができた。具体的には、被研磨体1を挟んだ位置に配置されたN極磁石21NとS極磁石21Sとを、被研磨体1に向けて加圧しながら各磁石21と被研磨体1とを相対移動させるので、被研磨体1の表面を高効率・高精度で研磨することができた。
From the
1 被研磨体
2 磁性研磨剤
21 磁石
21N N極磁石
21S S極磁石
30 磁気研磨装置
31 被研磨体装着部
31a 装着補助部材
32 加圧装置
33 相対移動機構
33a 揺動機構
33b 移動機構
34 回転装置
F 圧力
1
Claims (5)
前記永久磁石は、前記被研磨体を挟んだ位置に配置されて相互に引き合う1組のN極磁石及びS極磁石であり、
前記磁性研磨剤が、研磨粒子と該研磨粒子よりも大きい磁性粒子とを含み、該磁性粒子は平均粒径で0.5μm以上500μm以下であり、
前記N極磁石を前記被研磨体に向けて空気圧で加圧するための加圧装置及び前記S極磁石を前記被研磨体に向けて空気圧で加圧するための加圧装置により前記各磁石を前記被研磨体に向けて加圧しながら、前記各磁石と前記被研磨体とを相対移動させる、ことを特徴とする磁気研磨方法。 A method of magnetically attracting a magnetic polishing agent to a permanent magnet and polishing the surface of the object to be polished with the magnetic polishing agent interposed between the permanent magnet and the object to be polished .
The permanent magnets are a set of N-pole magnets and S-pole magnets arranged at positions sandwiching the object to be polished and attracting each other .
The magnetic polishing agent contains polishing particles and magnetic particles larger than the polishing particles, and the magnetic particles have an average particle size of 0.5 μm or more and 500 μm or less.
Each magnet is subjected to the subject by a pressurizing device for pneumatically pressurizing the N-pole magnet toward the object to be polished and a pressurizing device for pneumatically pressurizing the S-pole magnet toward the object to be polished. A magnetic polishing method characterized in that each magnet and the object to be polished are relatively moved while being pressurized toward the object to be polished.
前記被研磨体を装着する被研磨体装着部と、前記被研磨体装着部に装着された前記被研磨体を挟んだ位置に配置されて相互に引き合う1組の前記永久磁石からなるN極磁石及びS極磁石と、前記N極磁石を前記被研磨体に向けて空気圧で加圧するための加圧装置及び前記S極磁石を前記被研磨体に向けて空気圧で加圧するための加圧装置と、前記各磁石と前記被研磨体とを相対移動させる相対移動機構とを少なくとも備え、
前記被研磨体の表面を研磨する前記磁性研磨剤は、研磨粒子と該研磨粒子よりも大きい磁性粒子とを含み、該磁性粒子が平均粒径で0.5μm以上500μm以下である、ことを特徴とする磁気研磨装置。 A device that magnetically attracts a magnetic polishing agent to a permanent magnet and polishes the surface of the object to be polished with the magnetic polishing agent interposed between the permanent magnet and the object to be polished .
An N-pole magnet consisting of a set of permanent magnets that are arranged at positions sandwiching between the object-mounted portion to which the object to be polished is attached and the object to be polished that is attached to the object to be polished and attract each other. And an S-pole magnet, a pressurizing device for pneumatically pressurizing the N-pole magnet toward the object to be polished, and a pressurizing device for pneumatically pressurizing the S-pole magnet toward the object to be polished. A relative moving mechanism for relatively moving each magnet and the object to be polished is provided .
The magnetic polishing agent for polishing the surface of the object to be polished contains polishing particles and magnetic particles larger than the polishing particles, and the magnetic particles have an average particle size of 0.5 μm or more and 500 μm or less . A featured magnetic polishing device.
The relative movement mechanism is a rotating device that rotates the object to be polished or each magnet, and / or a vibration / swing device that vibrates or swings the object to be polished, or a vibration that vibrates or swings each magnet. The magnetic polishing device according to claim 4 , which is a rocking device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017152496A JP7026927B2 (en) | 2017-08-07 | 2017-08-07 | Magnetic polishing method and magnetic polishing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017152496A JP7026927B2 (en) | 2017-08-07 | 2017-08-07 | Magnetic polishing method and magnetic polishing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019030924A JP2019030924A (en) | 2019-02-28 |
JP7026927B2 true JP7026927B2 (en) | 2022-03-01 |
Family
ID=65523946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017152496A Active JP7026927B2 (en) | 2017-08-07 | 2017-08-07 | Magnetic polishing method and magnetic polishing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7026927B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112476065B (en) * | 2019-09-11 | 2023-05-12 | 长春工业大学 | Non-resonant vibration auxiliary magnetorheological polishing device and method for processing optical element |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010052123A (en) | 2008-08-29 | 2010-03-11 | Utsunomiya Univ | Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03184762A (en) * | 1989-12-15 | 1991-08-12 | Isuzu Motors Ltd | Magnetic grinding attachment |
JPH0550377A (en) * | 1991-08-21 | 1993-03-02 | Seiko Epson Corp | Magnetogrinding method |
JPH11291165A (en) * | 1998-04-10 | 1999-10-26 | Toshiba Corp | Polishing device and polishing method |
-
2017
- 2017-08-07 JP JP2017152496A patent/JP7026927B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010052123A (en) | 2008-08-29 | 2010-03-11 | Utsunomiya Univ | Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing |
Also Published As
Publication number | Publication date |
---|---|
JP2019030924A (en) | 2019-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Khan et al. | Selection of optimum polishing fluid composition for ball end magnetorheological finishing (BEMRF) of copper | |
Zou et al. | Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field | |
Heng et al. | Review of superfinishing by the magnetic abrasive finishing process | |
JP2007268689A (en) | Magnetic abrasive finishing device, method therefor, and machining tool used therefor | |
JP2007253303A (en) | Method, device, and tool of vibration magnetic polishing | |
Sadiq et al. | Investigation into magnetorheological abrasive honing (MRAH) | |
JP2682260B2 (en) | Micro polishing method and micro polishing tool | |
JP6371645B2 (en) | Magnetic polishing method and magnetic polishing apparatus using a magnet tool | |
JP2010052123A (en) | Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing | |
JP7026927B2 (en) | Magnetic polishing method and magnetic polishing equipment | |
JPWO2006090741A1 (en) | Magnetic surface treatment method | |
JPS59161262A (en) | Magnetic attraction type method for abrasion | |
Singh et al. | Optimization of magnetic abrasive finishing parameters with response surface methodology | |
JP5499414B2 (en) | Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same | |
JP2007210073A (en) | Magnetic grinding device and magnetic grinding tool | |
JP2007045878A (en) | Magnetic abrasive grain | |
JP7564409B2 (en) | Fixed abrasive polishing method and polishing device using magnetically assisted machining | |
JP2015168029A (en) | magnetic polishing method and polishing slurry | |
CN111843627A (en) | Polishing method and polishing device based on magnetic composite fluid | |
JP2008254106A (en) | Paste material | |
JP4185986B2 (en) | Magnetic deburring method | |
JP2006272520A (en) | Magnetism-assisted processing method and magnetic tool for use in it | |
JP4185985B2 (en) | Magnetically assisted processing | |
Zou et al. | A study on the magnetic field assisted machining process for internal finishing using a magnetic machining jig | |
Patil et al. | Magnetic abrasive finishing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7026927 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |