JP2007045878A - Magnetic abrasive grain - Google Patents
Magnetic abrasive grain Download PDFInfo
- Publication number
- JP2007045878A JP2007045878A JP2005229375A JP2005229375A JP2007045878A JP 2007045878 A JP2007045878 A JP 2007045878A JP 2005229375 A JP2005229375 A JP 2005229375A JP 2005229375 A JP2005229375 A JP 2005229375A JP 2007045878 A JP2007045878 A JP 2007045878A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- particles
- abrasive grains
- flexible
- abrasive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
本発明は、磁性砥粒に関し、更に詳しくは、磁気研磨法等に利用される磁性砥粒に関するものである。 The present invention relates to magnetic abrasive grains, and more particularly to magnetic abrasive grains used in a magnetic polishing method or the like.
磁場の作用を取り込んだ精密加工技術である「磁気研磨法(磁気援用加工法)」は、既成概念にとらわれない新技術として注目されている。この磁気研磨法は、磁力線を媒介にして磁性砥粒や磁性粒子に加工力と運動力を与えて精密な表面加工を実現するものである。磁力線を媒介にする磁気研磨法は、X線の物体透過現象と同じく、磁力線が非磁性体を透過する現象に着目した技術であり、従来の機械加工では困難な部品の研磨等の加工を可能とすることができ、例えば、複雑な形状を有する部品の表面、工具が入らない穴の内面、工具が届かない管の内面等の研磨等を行うことができる(例えば、特許文献1を参照)。 “Magnetic polishing method (magnetic assisted processing method)”, which is a precision processing technology that incorporates the action of a magnetic field, is attracting attention as a new technology that is not bound by existing concepts. This magnetic polishing method realizes precise surface processing by applying a processing force and a kinetic force to magnetic abrasive grains or magnetic particles through the lines of magnetic force. The magnetic polishing method using magnetic lines of force is a technology that focuses on the phenomenon that magnetic lines of force pass through a non-magnetic material, similar to the X-ray object transmission phenomenon, and enables processing such as polishing of parts that are difficult with conventional machining. For example, it is possible to polish the surface of a part having a complicated shape, the inner surface of a hole where a tool does not enter, the inner surface of a tube where the tool does not reach, and the like (see, for example, Patent Document 1) .
これまで、磁気研磨法に使用されている磁性砥粒は、鉄粉を主成分とし、その中に微粒の研磨材を焼結技術等によって一体化した粒子状の固体の磁性砥粒であった。このため、磁気力を受けて工作物表面を押し付けて加工する従来の磁性砥粒による加工は、研磨材による微細な切削作用に基づいており、このような硬質の磁性砥粒による加工面は完全な引っかき加工痕からなっている。さらに、磁性砥粒の粒径は、元来、統計量であり、大きな粒径も含まれており、この大きな粒径には過大な加工力が作用し、結果として加工面に大きな引っかき傷をつくる。この大きな引っかき傷は超精密加工面を阻害し、大きな問題となっている。
上述したように、鉄粉中に研磨材を焼結により一体化することによって得られるような、従来の硬質な磁性砥粒は、大きな研磨効果を有するものの、例えば、一部に含まれる比較的粒径の大きな砥粒によって必要以上に被加工物の表面を研磨し、被研磨表面に引っかき傷を残してしまうといった問題が生じることから、超精密な研磨加工を行う際には、必ずしも好ましい研磨砥粒であるとはいえないものであった。 As described above, the conventional hard magnetic abrasive grains obtained by integrating the abrasive in the iron powder by sintering have a large polishing effect, but are relatively contained in a part, for example. A problem arises in that the surface of the workpiece is unnecessarily polished with abrasive grains having a large particle diameter, and scratches remain on the surface to be polished. It could not be said to be abrasive grains.
本発明は、上記課題を解決するためになされたものであって、その目的は、より精密な表面加工を可能にする磁性砥粒を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a magnetic abrasive grain that enables more precise surface processing.
上記目的を達成するための本発明の磁性砥粒は、磁性体粒子を含有する可撓性材料により形成された可撓性粒子の表面に、研磨粒子が分散していることを特徴とする。 In order to achieve the above object, the magnetic abrasive grains of the present invention are characterized in that abrasive particles are dispersed on the surface of flexible particles formed of a flexible material containing magnetic particles.
この発明によれば、磁性砥粒のマトリックスが可撓性材料により構成されているので、工作物表面を押し付けた磁性砥粒は、図5の模式図に示すように、粒子そのもの及び粒子群が加工力を受けて容易に粘弾性変形し、さらに、粘弾性体表面に分散している研磨粒子に作用する加工力によって研磨粒子そのものが粘弾性体の中に後退する。その結果、磁性砥粒による過剰な切込みを全研磨粒子について完全に防止でき、工作物表面に研磨傷が生じないダメージフリーの超精密表面仕上げを実現できる。さらに、可撓性材料をマトリックスとすることによって、磁性砥粒が軽量化するので、表面加工の際の磁性砥粒の動きを容易とし、複雑な形状を有する工作物に対しても、より精密な表面加工を行うことができる。 According to the present invention, since the matrix of magnetic abrasive grains is made of a flexible material, the magnetic abrasive grains pressed against the workpiece surface are composed of particles themselves and particles as shown in the schematic diagram of FIG. The abrasive particles are easily viscoelastically deformed by the processing force, and the abrasive particles themselves retreat into the viscoelastic body by the processing force acting on the abrasive particles dispersed on the surface of the viscoelastic body. As a result, excessive cutting by magnetic abrasive grains can be completely prevented for all abrasive particles, and a damage-free ultra-precise surface finish that does not cause polishing scratches on the workpiece surface can be realized. In addition, the use of a flexible material as a matrix reduces the weight of the magnetic abrasive grains, facilitating the movement of the magnetic abrasive grains during surface processing, and even more accurate for workpieces with complex shapes. Surface processing can be performed.
本発明の磁性砥粒においては、研磨粒子が前記可撓性粒子を形成する可撓性材料中に配合されていることを特徴とする。 The magnetic abrasive grains of the present invention are characterized in that abrasive particles are blended in a flexible material forming the flexible particles.
この発明によれば、研磨粒子を容易にかつ安定に磁性砥粒の表面に分散配置することができるので、磁性砥粒からの研磨粒子の脱落等の不具合が生じ難い。 According to the present invention, since the abrasive particles can be easily and stably dispersed and arranged on the surface of the magnetic abrasive grains, problems such as the falling off of the abrasive particles from the magnetic abrasive grains hardly occur.
本発明の磁性砥粒においては、(1)前記研磨粒子が、前記可撓性粒子を形成する可撓性材料と同一又は異なる可撓性材料中に研磨粒子を配合し、当該配合材料を前記可撓性粒子の表面に直接又は接触層を介してコーティングすることにより、層状に付与されているように構成してもよいし、(2)前記研磨粒子が、前記可撓性粒子の表面に、又は、前記可撓性粒子上に形成された可撓性材料からなる層の表面に、研磨粒子を機械的衝撃力を与えて打付け固着することにより、層状に付与されているように構成してもよい。 In the magnetic abrasive grains of the present invention, (1) the abrasive particles are blended with a flexible material that is the same as or different from the flexible material forming the flexible particles, and the blended material is The surface of the flexible particle may be coated directly or via a contact layer so as to be applied in a layered form. (2) The abrasive particle is applied to the surface of the flexible particle. Alternatively, the abrasive particles are applied to the surface of the layer made of a flexible material formed on the flexible particles by applying a mechanical impact force and fixed to form a layer. May be.
これらの発明によれば、研磨粒子の配合量が少なくても、研磨粒子を可撓性粒子の表面に効果的に局在化させることができるので、より高い研磨作用を得ることが期待できる。 According to these inventions, even if the blending amount of the abrasive particles is small, the abrasive particles can be effectively localized on the surface of the flexible particles, so that higher polishing action can be expected.
さらに、本発明の磁性砥粒において、前記可撓性粒子は、磁性体粒子を核粒子として、その表面に可撓性材料からなる被覆層を有することで構成されていることを特徴とする。この場合において、研磨粒子が、上記したように可撓性材料中に配合され、あるいは、可撓性材料からなる可撓性粒子の表面にさらに層状に付与されることにより、磁性砥粒の表面に配置される。 Furthermore, in the magnetic abrasive grains of the present invention, the flexible particles are characterized by having magnetic particles as core particles and having a coating layer made of a flexible material on the surface thereof. In this case, the abrasive particles are blended in the flexible material as described above, or applied to the surface of the flexible particles made of the flexible material in a layered manner, so that the surface of the magnetic abrasive grains Placed in.
この発明によれば、核粒子としての磁性体粒子によって、より安定かつ大きな磁気特性を確保することができ、かつ比較的大きな所期の磁気特性を得ようとする場合であっても、可撓性材料への配合量の増加による機械的強度の低下等の問題も生じず、磁性砥粒を容易に調製することができる。 According to the present invention, the magnetic particles as the core particles can secure more stable and large magnetic characteristics, and even when trying to obtain relatively large desired magnetic characteristics, Magnetic abrasive grains can be easily prepared without causing problems such as a decrease in mechanical strength due to an increase in the blending amount of the conductive material.
以上説明したように、本発明の磁性砥粒によれば、磁気研磨法に適用した場合において、工作物表面を押し付けた磁性砥粒は粒子そのもの及び粒子群が加工力を受けて容易に粘弾性変形すると共に、過大な粒径の研磨粒子は粘弾性体表面に分散している研磨材に作用する加工力によって磁性砥粒の可撓性材料の中に後退する。その結果、過剰な砥粒の切込みが全ての研磨粒子について完全に防止でき、工作物表面に研磨傷が生じないダメージフリーの研磨加工を実現できる。 As described above, according to the magnetic abrasive grains of the present invention, when applied to the magnetic polishing method, the magnetic abrasive grains pressing the workpiece surface are easily viscoelastic when the particles themselves and the particles are subjected to processing force. While being deformed, the abrasive particles having an excessive particle size are retracted into the flexible material of the magnetic abrasive grains by a processing force acting on the abrasive dispersed on the surface of the viscoelastic body. As a result, excessive cutting of the abrasive grains can be completely prevented for all the abrasive particles, and a damage-free polishing process can be realized without causing any polishing scratches on the workpiece surface.
以下、本発明の磁性砥粒について図面に基づき詳細に説明する。 Hereinafter, the magnetic abrasive grains of the present invention will be described in detail with reference to the drawings.
本発明の磁性砥粒は、磁性体粒子を含有する可撓性材料により形成された可撓性粒子の表面に、研磨粒子が分散していることを特徴とするものである。 The magnetic abrasive grains of the present invention are characterized in that abrasive particles are dispersed on the surfaces of flexible particles formed of a flexible material containing magnetic particles.
本発明の磁性砥粒としては、磁性砥粒自体として磁性を示し、かつ外力が加わった際にこれを構成する可撓性材料によって粘弾性を発揮し、また、研磨粒子が少なくともその表面領域に存在しているものである限り、その形態としては種々のものを含み得る。 The magnetic abrasive grains of the present invention exhibit magnetism as the magnetic abrasive grains themselves, and exhibit viscoelasticity by a flexible material constituting the magnetic abrasive grains when an external force is applied, and the abrasive particles are at least in the surface region. As long as it exists, the form may include various forms.
磁性体粒子に関しては、微細な磁性体粒子が可撓性粒子を構成する可撓性材料中に分散配合された形態であってもよいし、あるいは、比較的粒径の大きな磁性体粒子を核粒子として、この核粒子の周りに可撓性材料からなる層を形成するものであってもよい。また、研磨粒子に関しても、可撓性材料からなる可撓性粒子全体に磁性体粒子と共に均一に分散させたものであってもよいし、あるいは、磁性砥粒の比較的表面領域のみに局在的に(例えば層状に)配置させたものであってもよい。 With respect to the magnetic particles, fine magnetic particles may be dispersed and mixed in a flexible material constituting the flexible particles, or magnetic particles having a relatively large particle diameter may be used as a core. As the particles, a layer made of a flexible material may be formed around the core particles. Also, the abrasive particles may be uniformly dispersed together with the magnetic particles throughout the flexible particles made of a flexible material, or may be localized only in a relatively surface area of the magnetic abrasive grains. It may be arranged (for example, in layers).
図1〜図4は、それぞれ本発明の磁性砥粒の例を示す模式断面図である。図1に示す磁性砥粒10は、可撓性材料11からなる可撓性粒子中に、磁性体粒子12及び研磨粒子13が均一に分散した構成からなるものである。図2に示す磁性砥粒20は、可撓性材料21aからなる可撓性粒子中に磁性体粒子22が均一に分散した内層部を有し、その内部層の外側(表面領域)に、その可撓性材料21aと同一又は異なる可撓性材料21b中に研磨粒子23が均一に分散してなる外層部を有する構成からなるものである。図3に示す磁性砥粒30は、磁性体粒子からなる核粒子32を有し、その核粒子32の外側(表面)に、可撓性材料31中に研磨粒子33が均一に分散してなる外層部を有する構成からなるものである。さらに、図4に示す磁性砥粒40は、磁性体粒子からなる核粒子42を有し、その核粒子42の外側(表面)に、可撓性材料41aからなる中間層部を設け、さらにその外側(表面)に、その可撓性材料41aと同一又は異なる可撓性材料41b中に研磨粒子43が均一に分散してなる外層部を設けた構成からなるものである。
1 to 4 are schematic sectional views showing examples of the magnetic abrasive grains of the present invention. A magnetic
なお、図2及び図4に示すように、研磨粒子23,43を磁性砥粒20,40の表面に局在的に配置させる方法の一例としては、研磨粒子23,43のより内部側の可撓性材料21a,41aからなる可撓性粒子の表面に、その可撓性材料21a,41aと同一又は異なる可撓性材料21b,41b中に研磨粒子23,43を分散配合した配合材料を、直接又は接触層を介してコーティングする方法を例示できる。こうした方法により、研磨粒子23,43を磁性砥粒20,40の表面に層状に付与することができる。なお、上記配合材料を可撓性材料21a,41aからなるマトリックスの表面に直接コーティングする場合には、可撓性材料21b,41bが、可撓性材料21a,41aに対して良好な被着性を有するものであることが好ましく、そうした可撓性材料21b,41bとしては、例えば、内部側の可撓性材料21a,41aと同一又は同系の材料、その他内部側の可撓性材料21a,41aの表面に良好な濡れ性を有する可撓性材料などを挙げることができる。
As shown in FIGS. 2 and 4, as an example of a method for locally disposing the
また、他の一例としては、内部の可撓性粒子の表面に、又は、前記可撓性粒子上に形成された可撓性材料からなる層の表面に、研磨粒子23,43を気流中にて衝突させ、その機械的衝撃力によって打付け固着する方法を例示できる。さらに他の一例としては、内部の可撓性粒子の表面に、研磨粒子23,43と可撓性材料からなる微粒子とを配合した混合粒子を気流中にて衝突させ、その機械的衝撃力によって打付け、その際発生する熱によって可撓性材料の微粒子が溶融ないし部分的に溶融し、溶融した可撓性材料で形成された層中に研磨粒子23,43を付着させる方法を例示できる。
As another example, the
なお、図3及び図4に示すように、磁性体粒子を核粒子32,42とし、その核粒子32,42の表面を可撓性材料31,41aで被覆する場合も、通常のコーティング法以外に、上記したような機械的衝撃力を利用したメカノケミカルな被覆方法を用いることができる。
In addition, as shown in FIG.3 and FIG.4, when making magnetic body particle |
可撓性材料としては、所期の粘弾性を有し、磁気研磨法における諸条件(例えば、耐衝撃強度、耐熱性等の条件)を満たすものであれば、各種の可撓性材料を使用可能である。例えば、各種の樹脂やゴム等の有機高分子(シリコーン樹脂及びシリコーンゴムを含む。)を用いることができる。特に、耐熱性を有する硬質プラスチック粒子は、被加工物の表面加工の際に発生する熱に対して耐熱性を有するので好ましく用いられる。具体的には、ナイロン6、ナイロン66等のポリアミド、ポリイミド、ポリアラミド、ポリエステル等を挙げることができる。 As the flexible material, various flexible materials can be used as long as they have the desired viscoelasticity and satisfy various conditions in the magnetic polishing method (for example, conditions such as impact strength and heat resistance). Is possible. For example, organic polymers (including silicone resin and silicone rubber) such as various resins and rubbers can be used. In particular, hard plastic particles having heat resistance are preferably used because they have heat resistance against heat generated during surface processing of a workpiece. Specific examples include polyamides such as nylon 6 and nylon 66, polyimide, polyaramid, polyester, and the like.
可撓性材料の選定にあたっては、磁性砥粒全体の比重を考慮することがより好ましい。例えば、本発明の磁性砥粒が液状媒体と共に磁性砥液を構成する場合には、その液状媒体の比重との関係で可撓性材料の比重が考慮される。具体的には、液状媒体よりも比重の小さい材質からなる可撓性材料を用いることにより、最終的に得られた磁性砥粒を磁性砥液に浮かせた状態で用いることができる。また、液状媒体と同程度の比重の材質からなる可撓性材料を用いることにより、最終的に得られた磁性砥粒を磁性砥液に浮遊した状態で用いることができる。また、液状媒体よりも比重の大きい材質からなる可撓性材料を用いることにより、最終的に得られた磁性砥粒を磁性砥液に沈めた状態で用いることができる。このように、磁性砥粒全体の重さを考慮しつつ、可撓性材料の材質の比重を考慮して選定することにより、最終的に得られた磁性砥粒の磁性砥液中での状態を上記のように制御することができる。磁性砥液中での磁性砥粒の状態制御は、例えば磁気研磨法等の精密加工において、特にナノメートルレベルの精密加工及びその精度調整に有効である。 In selecting a flexible material, it is more preferable to consider the specific gravity of the entire magnetic abrasive grains. For example, when the magnetic abrasive grains of the present invention constitute a magnetic abrasive liquid together with a liquid medium, the specific gravity of the flexible material is considered in relation to the specific gravity of the liquid medium. Specifically, by using a flexible material made of a material having a specific gravity smaller than that of the liquid medium, the finally obtained magnetic abrasive grains can be used in a state of floating in the magnetic abrasive liquid. Further, by using a flexible material made of a material having a specific gravity similar to that of the liquid medium, the finally obtained magnetic abrasive grains can be used in a state of floating in the magnetic abrasive liquid. Further, by using a flexible material made of a material having a specific gravity greater than that of the liquid medium, the finally obtained magnetic abrasive grains can be used in a state where they are submerged in the magnetic abrasive liquid. In this way, the state of the finally obtained magnetic abrasive grains in the magnetic abrasive liquid is selected by considering the specific gravity of the material of the flexible material while considering the weight of the whole magnetic abrasive grains. Can be controlled as described above. Control of the state of the magnetic abrasive grains in the magnetic abrasive liquid is effective for precision processing such as a magnetic polishing method, particularly for precision processing at the nanometer level and for adjusting the accuracy.
磁性体粒子としては、少なくとも磁場により運動可能な磁気特性を有するものであればよく、例えば鉄系の金属又は合金からなる強磁性材料であることが好ましい。図3及び図4に示すように、磁性体粒子により核粒子32,42を形成する場合には、その粒径は特に限定されないが、例えば、50〜1000μm程度とされる。
The magnetic particles only need to have at least magnetic properties that can be moved by a magnetic field. For example, a ferromagnetic material made of an iron-based metal or alloy is preferable. As shown in FIGS. 3 and 4, when the
一方、図1及び図2に示すように、磁性体粒子を微粒子として可撓性材料中に配合する場合には、その粒径は特に限定されないが、例えば、5〜300μm程度とされる。この場合、微粒子の形状は、例えば、球形状(真球形状も含む)、角形状、針状、鱗片状等の各種の形状とすることができる。また、可撓性材料に対する配合量としては、必要とされる磁気特性、使用する磁性体粒子の種類、また成膜方法等によっても左右されるので一概には規定できないが、可撓性材料をマトリックスとする層の機械的強度を十分なものとする上から、可撓性材料100質量部に対し30〜60質量部程度であることが好ましい。なお、同一層に研磨粒子を配合する場合には、双方の配合量の合計が70質量部を超えないことが望ましい。 On the other hand, as shown in FIGS. 1 and 2, when magnetic particles are blended in the flexible material as fine particles, the particle size is not particularly limited, but is, for example, about 5 to 300 μm. In this case, the shape of the fine particles can be various shapes such as a spherical shape (including a true spherical shape), a square shape, a needle shape, a scale shape, and the like. In addition, the blending amount with respect to the flexible material depends on the required magnetic characteristics, the kind of magnetic particles to be used, the film forming method, etc. From the viewpoint of sufficient mechanical strength of the layer used as the matrix, the amount is preferably about 30 to 60 parts by mass with respect to 100 parts by mass of the flexible material. In addition, when mix | blending abrasive | polishing particle | grains in the same layer, it is desirable for the sum total of both the compounding quantities not to exceed 70 mass parts.
研磨粒子としては、研磨粒子として利用可能な各種の無機粒子や化合物(酸化物、炭化物、窒化物等)粒子を用いることができ、例えばJIS表示でA、WA、GC、SA、MA、C、MD、CBNといったものを含む、Al2O3、SiC、ZrO2、B4C、ダイアモンド、立方晶窒化ホウ素、MgO、CeO2又はヒュームドシリカ等を挙げることができる。 As the abrasive particles, various inorganic particles and compound (oxide, carbide, nitride, etc.) particles that can be used as abrasive particles can be used. For example, A, WA, GC, SA, MA, C, Examples include Al 2 O 3 , SiC, ZrO 2 , B 4 C, diamond, cubic boron nitride, MgO, CeO 2, and fumed silica, including those such as MD and CBN.
研磨粒子の粒径は、加工対象である工作物の材質や形状及びその工作物への加工目的等に応じて適宜選定される。例えば、本発明の磁性砥粒を用いてナノメートルレベルの精密加工を行う場合には、研磨粒子の平均粒径が300nm以下であることが好ましい。このときの平均粒径の下限は特に限定されず、例えば市販の研磨粒子の中から入手可能な範囲のものであればよいが、例えば平均粒径が10nm以上のものを用いることができる。 The particle size of the abrasive particles is appropriately selected according to the material and shape of the workpiece to be processed and the purpose of processing the workpiece. For example, when nanometer level precision machining is performed using the magnetic abrasive grains of the present invention, the average particle size of the abrasive particles is preferably 300 nm or less. The lower limit of the average particle size at this time is not particularly limited, and may be, for example, within a range that can be obtained from commercially available abrasive particles. For example, particles having an average particle size of 10 nm or more can be used.
研磨粒子の形状は、加工対象である被加工物の材質や形状及びその被加工物への加工目的等に応じて適宜選定され、例えば、球形状(真球形状も含む)、多角形状、針状等の各種の形状が挙げられる。このうち、特に、表面に極微細な切れ刃を有する球形状のものが好ましく用いられる。 The shape of the abrasive particles is appropriately selected according to the material and shape of the workpiece to be processed and the purpose of processing the workpiece, such as a spherical shape (including a true spherical shape), a polygonal shape, and a needle. Various shapes such as a shape can be mentioned. Of these, a spherical shape having an extremely fine cutting edge on the surface is particularly preferably used.
研磨粒子の含有量についても、加工対象である被加工物の材質や形状及びその被加工物への加工目的、またマトリックスとなる可撓性樹脂の特性等に応じて適宜選定される。研磨粒子の含有量を多くすることにより、研磨性能を向上させて研磨効率を向上させることができる。一方、研磨粒子の含有量をあまり多くしないことにより、研磨効率を抑えて徐々に研磨を進行させ、精密な加工を行うこともできる。一概に規定できないが、例えば、磁性砥粒全質量の10〜25質量%程度の範囲内で含有させることが好ましい。 The content of the abrasive particles is also appropriately selected according to the material and shape of the workpiece to be processed, the purpose of processing the workpiece, the characteristics of the flexible resin serving as the matrix, and the like. By increasing the content of the abrasive particles, the polishing performance can be improved and the polishing efficiency can be improved. On the other hand, by not increasing the content of the abrasive particles too much, it is possible to suppress the polishing efficiency and gradually advance the polishing to perform precise processing. Although it cannot be generally defined, for example, it is preferably contained within a range of about 10 to 25% by mass of the total mass of the magnetic abrasive grains.
本発明に係る磁性砥粒の形状は、加工対象である被加工物の材質や形状及びその被加工物への加工目的等に応じて適宜選定され、例えば、球形状(真球形状も含む)、角形状、針状、鱗片状等の各種の形状が挙げられる。特に磁性砥粒としての運動の容易さの観点から、球形状のものとすることが望ましい。 The shape of the magnetic abrasive according to the present invention is appropriately selected according to the material and shape of the workpiece to be processed, the purpose of processing the workpiece, and the like, for example, a spherical shape (including a true spherical shape). , Various shapes such as a square shape, a needle shape, and a scale shape. In particular, from the viewpoint of ease of movement as magnetic abrasive grains, it is desirable to have a spherical shape.
本発明に係る磁性砥粒の粒径としても、加工対象である被加工物の材質や形状及びその被加工物への加工目的等に応じて適宜選定される。例えば、本発明の磁性砥粒を用いてナノメートルレベルの精密加工を行う場合には、磁性砥粒の平均粒径が10〜500μmであることが好ましい。 The particle size of the magnetic abrasive grains according to the present invention is also appropriately selected according to the material and shape of the workpiece to be processed and the purpose of processing the workpiece. For example, when performing precision processing at the nanometer level using the magnetic abrasive grains of the present invention, the average grain size of the magnetic abrasive grains is preferably 10 to 500 μm.
本発明の磁性砥粒は、そのままの態様で例えば磁気研磨法等の精密加工用の砥粒として使用したり、液状媒体と共に磁性砥液として使用したりすることができる。磁性砥液として用いる場合の液状媒体としては、被加工物の種類や磁性砥粒の比重等を考慮して適宜選定され、例えば水、水性潤滑剤、油、油性潤滑剤等を用いることができる。また、磁性砥液中の磁性砥粒の含有量についても、加工用途や被加工物に応じて適宜調整される。 The magnetic abrasive grains of the present invention can be used as they are in the form as they are, for example, as abrasive grains for precision processing such as magnetic polishing, or as a magnetic abrasive liquid together with a liquid medium. The liquid medium when used as the magnetic abrasive liquid is appropriately selected in consideration of the type of workpiece and the specific gravity of the magnetic abrasive grains. For example, water, aqueous lubricant, oil, oil-based lubricant, and the like can be used. . Further, the content of the magnetic abrasive grains in the magnetic abrasive liquid is also appropriately adjusted according to the processing application and the workpiece.
また、本発明の磁性砥粒を用いた磁気研磨法として、上記の磁気研磨法の他に、変動磁場中に磁性砥粒を配し、磁場の変動によってその磁性砥粒に運動を与え、磁性砥粒を工作物に衝突させることで加工を行うことも可能である。この場合の磁性砥粒には磁気異方性を有するものが使用され、球形以外のものであればよい。変動磁場としては、N・S交番磁場、回転磁場等のN極とS極とが交互に変動する磁場であればよい。これらの磁場は、例えば永久磁石、電磁コイル、又はこれらの組合せから構成される。電磁コイルによるN・S交番磁場を採用する場合は、加工場となる密閉状の非磁性の容器の近傍まで延設した電磁コイルを、電流制御(例えば交流電流の通電)することにより変動磁場を発生させることができ、その磁力の制御は、電磁コイルへの通電周波数を変動させることにより制御することができる。また、永久磁石による回転磁場を採用する場合は、例えば永久磁石を備えた回転テーブルを回転させることにより変動磁場を発生させることができ、その磁力の制御は、その回転数を変動させることにより制御することができる。 Further, as a magnetic polishing method using the magnetic abrasive grains of the present invention, in addition to the magnetic polishing method described above, magnetic abrasive grains are arranged in a variable magnetic field, and the magnetic abrasive grains are caused to move by the change of the magnetic field. It is also possible to perform processing by causing abrasive grains to collide with a workpiece. In this case, magnetic abrasive grains having magnetic anisotropy are used, and any grains other than a spherical shape may be used. The variable magnetic field may be a magnetic field in which the N and S poles alternately change, such as an N / S alternating magnetic field and a rotating magnetic field. These magnetic fields are composed of, for example, permanent magnets, electromagnetic coils, or combinations thereof. When N / S alternating magnetic field by electromagnetic coil is adopted, the magnetic field is controlled by current control (for example, energization of alternating current) of the electromagnetic coil extended to the vicinity of the sealed non-magnetic container as the processing site. The magnetic force can be controlled by changing the energization frequency to the electromagnetic coil. In addition, when a rotating magnetic field using a permanent magnet is employed, a variable magnetic field can be generated, for example, by rotating a rotary table equipped with a permanent magnet, and the magnetic force is controlled by changing the rotational speed. can do.
このような変動磁場発生装置中に、加工場となる密閉状の非磁性体の容器を配置し、この容器内部に、工作物と、活発な三次元挙動をするのに必要な適当数の磁性砥粒とを収納した後、その容器に対して変動磁場を与える。変動磁場が与えられた容器内の磁性砥粒は、磁場の変動に引っ張られ、容器内で三次元的な不規則運動を起こす。こうした磁性砥粒の不規則運動は、工作物と磁性砥粒との間の相対運動となり、その結果、磁性砥粒が工作物の表面に衝突し、工作物の表面研磨や表面仕上げ、又はエッジの仕上げ、又は表面硬化加工を行うことができる。 In such a variable magnetic field generator, a sealed non-magnetic container serving as a processing field is arranged, and inside this container, an appropriate number of magnets necessary for active three-dimensional behavior with the workpiece are placed. After storing the abrasive grains, a variable magnetic field is applied to the container. Magnetic abrasive grains in a container to which a varying magnetic field is applied are pulled by the fluctuation of the magnetic field and cause three-dimensional irregular motion in the container. Such irregular movement of the magnetic abrasive grains results in relative movement between the workpiece and the magnetic abrasive grains. As a result, the magnetic abrasive grains collide with the surface of the workpiece, and surface polishing or surface finishing of the workpiece or edge Finishing or surface hardening can be performed.
なお、永久磁石による回転磁場を採用する場合には、必要に応じて、回転テーブルの回転軸と容器の軸とを交差させて配置することもできる。すなわち、回転テーブル又は容器を傾斜させることで、回転中の永久磁石と容器内の磁性砥粒との距離を逐次変動させることができる。さらに、その傾斜角度が回転中に変化するように制御すれば、磁性砥粒と工作物との間の相対位置が変動し、磁性工具に三次元的な不規則運動を与えることができるのでより好ましい。 In addition, when employ | adopting the rotating magnetic field by a permanent magnet, it can also arrange | position so that the rotating shaft of a rotary table and the axis | shaft of a container may cross | intersect as needed. That is, by tilting the rotary table or the container, the distance between the rotating permanent magnet and the magnetic abrasive grains in the container can be sequentially changed. Furthermore, if the tilt angle is controlled so that it changes during rotation, the relative position between the magnetic abrasive grains and the workpiece will fluctuate, giving the magnetic tool a three-dimensional irregular motion. preferable.
以上、磁気研磨法について簡単に説明してきたが、使用される装置の細部構成については適宜変更可能である。例えば、(a)回転磁場装置における回転テーブルの形状、材質及びその回転駆動形態、(b)回転テーブルに設置される磁石の数及びその磁極の配列形態、(c)磁石の磁場の変動制御形態、(d)加工場となる容器の形状、材質、(e)磁性砥粒の形状、数、(f)工作物の材質、容器内での固定形態、等については適宜変更可能である。なお、上記のうち、(a)の回転磁場装置の回転駆動形態については、駆動源は電動のみならず油圧や空気圧でもよいし、磁性砥粒の挙動をより活発にするためにパルスモータによる非等速回転や回転方向制御がなされてもよい。また、(b)の回転テーブルに設置される磁極の配列形態としては、S極及びN極の配列の他、永久磁石の配設と電磁石の通電制御とを併用してもよい。また、(c)の磁石の磁場の変動制御形態については、永久磁石及び電磁石が設置された回転テーブルの回転数制御による周波数変動により磁場を変動制御したり、電磁石が設置された場合は、回転数制御に優先させて電磁石のランダムな電流制御により励磁力を変動させて磁場をランダムに変動制御したりしてもよい。 Although the magnetic polishing method has been briefly described above, the detailed configuration of the apparatus used can be changed as appropriate. For example, (a) the shape and material of the rotary table in the rotary magnetic field device, and its rotational drive mode, (b) the number of magnets installed on the rotary table and the magnetic pole array, and (c) the magnetic field fluctuation control mode. (D) The shape and material of the container serving as a processing field, (e) the shape and number of magnetic abrasive grains, (f) the material of the workpiece, the fixing form in the container, and the like can be appropriately changed. Of the above, for the rotational drive mode of the rotating magnetic field device of (a), the drive source may be not only electric but also hydraulic or pneumatic, and in order to make the behavior of magnetic abrasive grains more active, it is not driven by a pulse motor. Constant speed rotation and rotation direction control may be performed. In addition, as an arrangement form of the magnetic poles installed on the rotary table (b), in addition to the arrangement of the S poles and the N poles, the arrangement of the permanent magnets and the energization control of the electromagnets may be used in combination. As for the magnetic field fluctuation control mode of the magnet of (c), the magnetic field fluctuation control is performed by the frequency fluctuation by the rotation speed control of the rotary table on which the permanent magnet and the electromagnet are installed, or the rotation is performed when the electromagnet is installed. The magnetic field may be randomly controlled by changing the exciting force by random current control of the electromagnet in preference to the number control.
本発明の磁性砥粒を用いた磁気研磨法は、用途の一例として、各種被加工物の精密加工への適用が期待できる。例えば、次世代半導体や医療分野の製造プロセス等に用いられるスーパークリーンパイプ等のように、精密研磨等の加工処理が要求される製品やパイプ内のような微小空間の高精度の加工(研磨等)が要求される製品等の加工に有効である。また、例えば、ハードディスク装置のハードディスク基板表面のテクスチャ加工への応用が挙げられる。また、例えば、半導体基板に銅配線を形成するダマシン工程で使用される化学的機械的研磨(CMP)の代替工程としての応用が期待できる。ダマシン工程とは、絶縁膜上の配線溝にバリア層と銅めっき層を形成した後、表面の不要な銅を取り除く工程である。本発明の磁性砥粒を用いた磁気研磨法は、こうした応用に限定されず、非磁性体又は磁性体工作物の細部、内面、表面仕上げ及びエッジ部のバリ取り仕上げ、又は表面層の硬化、圧縮応力の残留による曲げ疲労強度の向上等のために、各種の用途に広く適用可能である。 The magnetic polishing method using the magnetic abrasive grains of the present invention can be expected to be applied to precision machining of various workpieces as an example of application. For example, products such as super clean pipes used in next-generation semiconductors and manufacturing processes in the medical field, etc. that require processing such as precision polishing, and high-precision processing (polishing etc.) of minute spaces such as in pipes ) Is effective for processing products that require it. In addition, for example, application to texture processing of a hard disk substrate surface of a hard disk device can be mentioned. Further, for example, application as an alternative process of chemical mechanical polishing (CMP) used in a damascene process for forming a copper wiring on a semiconductor substrate can be expected. The damascene process is a process of removing unnecessary copper on the surface after forming a barrier layer and a copper plating layer in a wiring groove on an insulating film. The magnetic polishing method using the magnetic abrasive grain of the present invention is not limited to such an application, and details of a non-magnetic material or a magnetic material workpiece, inner surface, surface finishing and deburring finishing of an edge portion, or hardening of a surface layer, In order to improve bending fatigue strength due to residual compressive stress, etc., it can be widely applied to various applications.
以下に、実施例を挙げて本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
(実施例1)
平均粒径200nmのWA(ホワイトアルミナ)研磨粒子10質量部を、ナイロン6の30質量部中に、二軸押出機を用いて分散配合した。得られた組成物を、平均粒径330μmの鉄粒子を核粒子とし、その核粒子の表面に約30μmの厚さとなるように市販の接着剤を介してコーティングし、本発明に係る磁性砥粒を作製した。
Example 1
10 parts by weight of WA (white alumina) abrasive particles having an average particle diameter of 200 nm were dispersed and blended in 30 parts by weight of nylon 6 using a twin screw extruder. The obtained composition was coated with an iron particle having an average particle size of 330 μm as a core particle, and the surface of the core particle was coated with a commercially available adhesive so as to have a thickness of about 30 μm. Was made.
(実施例2)
実施例1で得られた磁性砥粒を用いて平面磁気研磨法により、工作物としてステンレス鋼(SUS304)平板表面の磁気研磨加工を行った。
(Example 2)
Using the magnetic abrasive grains obtained in Example 1, magnetic polishing was performed on the surface of a stainless steel (SUS304) flat plate as a workpiece by a planar magnetic polishing method.
実験は、先ず、直径20mmの円柱状の磁極をフライス盤の主軸に取り付けた。円柱状の磁極は、直径20mmのSS400鋼棒材を切断し、その中間に直径20mmのネオジウム永久磁石を挟んで形成したものであり、N極側の先端をワーク側の磁極とし、他の一方をフライス盤の主軸にチャッキングした。工作物として、SUS304ステンレス鋼平板を用い、そのステンレス鋼平板をフライス盤テーブル上に設置した。上記磁極先端と、上記ステンレス鋼平板との間隙を2mmとし、その間隙に実施例1の研磨砥粒を配して、磁極を毎分1200回転で回転させると共に、ステンレス鋼平板を左右方向に毎分200mmの送り運動を与えながら、幅20mm×長さ50mmの帯状部分について磁気研磨加工した。このとき、実施例1の磁性砥粒は、回転する磁極を中心に渦を巻くように連なった形態でステンレス鋼平板表面を研磨しているのが確認された。 In the experiment, a cylindrical magnetic pole having a diameter of 20 mm was first attached to the main spindle of a milling machine. The cylindrical magnetic pole is formed by cutting a SS400 steel bar with a diameter of 20 mm and sandwiching a neodymium permanent magnet with a diameter of 20 mm in the middle. The tip on the N pole side is used as a magnetic pole on the workpiece side, and the other Was chucked on the spindle of the milling machine. As a workpiece, a SUS304 stainless steel flat plate was used, and the stainless steel flat plate was placed on a milling machine table. The gap between the magnetic pole tip and the stainless steel flat plate is 2 mm, the abrasive grains of Example 1 are arranged in the gap, the magnetic pole is rotated at 1200 revolutions per minute, and the stainless steel flat plate is moved in the horizontal direction. While applying a feed movement of 200 mm per minute, a belt-like portion having a width of 20 mm and a length of 50 mm was magnetically polished. At this time, it was confirmed that the magnetic abrasive grains of Example 1 were polishing the surface of the stainless steel flat plate in a form in which the magnetic abrasive grains were continuously wound around a rotating magnetic pole.
こうした平面磁気研磨を行った結果、5分間の研磨処理後において、ステンレス鋼平板表面の当初粗さ2μmRz(最大高さ/JIS B 0601−2001。以下同じ。)を磁気研磨加工面の全面にわたって0.05μmRzと、極めて良好な鏡面状態に加工することができ、また、SEM観察の結果、表面には特別に観察されるような引っ掻き傷はまったく観察されなかった。 As a result of such planar magnetic polishing, after 5 minutes of polishing treatment, an initial roughness of 2 μm Rz (maximum height / JIS B 0601-2001; the same applies hereinafter) of the stainless steel flat plate surface is 0 over the entire surface of the magnetic polishing processed surface. .05 μmRz and could be processed into a very good mirror surface state, and as a result of SEM observation, no scratches that were observed specifically on the surface were observed.
(比較例1)
磁性砥粒として、従来から使用されている平均粒径80μmの焼結タイプの磁性砥粒(東洋研磨材工業株式会社:KMX−80、平均粒径5μm以下のWA研磨粒子と鉄粉から構成されている。)を用いた外は、実施例2と同様にして平面磁気研磨法と研磨条件による研磨加工を行った。その結果、5分間の研磨処理後において、ステンレス鋼平板表面の当初粗さ2μmRzは0.2μmRzと、ほぼ鏡面状態近くに加工されたが、SEM観察の結果、加工面は極微細なひっかき傷の集積によって創成されていることがわかった。また、加工面には所々に深さ0.5μm程度の大きな引っ掻き傷が、単位面積(cm2)当たり平均して5〜10本程度観察された。
(Comparative Example 1)
As the magnetic abrasive grains, conventionally used sintered type magnetic abrasive grains having an average particle diameter of 80 μm (Toyo Abrasive Co., Ltd .: KMX-80, composed of WA abrasive particles having an average particle diameter of 5 μm or less and iron powder are used. In the same manner as in Example 2, polishing using a planar magnetic polishing method and polishing conditions was performed except that the above was used. As a result, after the polishing process for 5 minutes, the initial roughness 2 μm Rz of the stainless steel flat plate surface was processed to be almost a mirror surface state of 0.2 μm Rz. However, as a result of SEM observation, the processed surface was extremely fine scratches. It was found that it was created by accumulation. On the processed surface, about 5 to 10 large scratches having a depth of about 0.5 μm were observed on average per unit area (cm 2 ).
10,20,30,40 磁性砥粒
11,21a,21b,31,41a,41b 可撓性材料
12,22 磁性体微粒子
32,42 磁性体核粒子
13,23,33,43 研磨粒子
10, 20, 30, 40 Magnetic
Claims (5)
The said flexible particle is comprised by having the said magnetic body particle as a core particle, and having the coating layer which consists of a flexible material on the surface, The any one of Claims 1-4 characterized by the above-mentioned. Magnetic abrasive grains.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005229375A JP2007045878A (en) | 2005-08-08 | 2005-08-08 | Magnetic abrasive grain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005229375A JP2007045878A (en) | 2005-08-08 | 2005-08-08 | Magnetic abrasive grain |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007045878A true JP2007045878A (en) | 2007-02-22 |
Family
ID=37848985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005229375A Withdrawn JP2007045878A (en) | 2005-08-08 | 2005-08-08 | Magnetic abrasive grain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007045878A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302733A (en) * | 2006-05-09 | 2007-11-22 | Trial Corp | Magnetic abrasive grain and method for producing the same |
WO2009034924A1 (en) * | 2007-09-10 | 2009-03-19 | Bando Chemical Industries, Ltd. | Magnetorheological polishing slurry composition |
JP2009255274A (en) * | 2008-03-26 | 2009-11-05 | Fuji Xerox Co Ltd | Method of renewing surface of resin-made exterior finishing material, and business equipment having resin-made exterior finishing material with surface renewed by the method |
CN107433515A (en) * | 2017-09-15 | 2017-12-05 | 辽宁科技大学 | Spiral electromagnetic field complex space elbow internal wall magnetic abrasive finishing burnishing device and method |
CN113369498A (en) * | 2021-08-10 | 2021-09-10 | 陕西斯瑞新材料股份有限公司 | Surface post-treatment method for 3D printing copper alloy contact material |
-
2005
- 2005-08-08 JP JP2005229375A patent/JP2007045878A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302733A (en) * | 2006-05-09 | 2007-11-22 | Trial Corp | Magnetic abrasive grain and method for producing the same |
WO2009034924A1 (en) * | 2007-09-10 | 2009-03-19 | Bando Chemical Industries, Ltd. | Magnetorheological polishing slurry composition |
JP2009255274A (en) * | 2008-03-26 | 2009-11-05 | Fuji Xerox Co Ltd | Method of renewing surface of resin-made exterior finishing material, and business equipment having resin-made exterior finishing material with surface renewed by the method |
CN107433515A (en) * | 2017-09-15 | 2017-12-05 | 辽宁科技大学 | Spiral electromagnetic field complex space elbow internal wall magnetic abrasive finishing burnishing device and method |
CN107433515B (en) * | 2017-09-15 | 2023-04-28 | 辽宁科技大学 | Magnetic particle grinding and polishing device and method for inner wall of spiral electromagnetic field complex space bent pipe |
CN113369498A (en) * | 2021-08-10 | 2021-09-10 | 陕西斯瑞新材料股份有限公司 | Surface post-treatment method for 3D printing copper alloy contact material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5396025B2 (en) | Magnetic spiral polishing machine | |
Mulik et al. | Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives | |
Khan et al. | Selection of optimum polishing fluid composition for ball end magnetorheological finishing (BEMRF) of copper | |
Heng et al. | Review of superfinishing by the magnetic abrasive finishing process | |
JP4139906B2 (en) | Polishing method and magnetic polishing apparatus for thin plate with opening pattern | |
JP2007268689A (en) | Magnetic abrasive finishing device, method therefor, and machining tool used therefor | |
JP2007045878A (en) | Magnetic abrasive grain | |
Mun | Micro machining of high-hardness materials using magnetic abrasive grains | |
JP6371645B2 (en) | Magnetic polishing method and magnetic polishing apparatus using a magnet tool | |
JP2007167968A (en) | Mirror finished surface polishing method and mirror finished surface polishing device | |
Mahalik et al. | Nanofinishing techniques | |
Judal et al. | Electrochemical magnetic abrasive machining of AISI304 stainless steel tubes | |
Deepak et al. | Effect of rotational motion on the flat work piece magnetic abrasive finishing | |
WO2006030854A1 (en) | Complex profile body polishing method and polishing apparatus | |
JP2007296598A (en) | Magnetic polishing method and wafer polishing device | |
JP2006247835A (en) | Super-abrasive grain working tool and its method of use | |
Wu et al. | Nano-precision polishing of CVD SiC using MCF (magnetic compound fluid) slurry | |
JP4185985B2 (en) | Magnetically assisted processing | |
JP2006272520A (en) | Magnetism-assisted processing method and magnetic tool for use in it | |
JP2008254106A (en) | Paste material | |
JP4263673B2 (en) | Magnetic inner surface polishing method and apparatus | |
JP4185986B2 (en) | Magnetic deburring method | |
JP2007210073A (en) | Magnetic grinding device and magnetic grinding tool | |
JP7026927B2 (en) | Magnetic polishing method and magnetic polishing equipment | |
JP2010214505A (en) | Method for increasing form restoring force of particle dispersion type mixture functional fluid using varied magnetic field and polishing method and polishing device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081104 |