JP2007210073A - Magnetic grinding device and magnetic grinding tool - Google Patents

Magnetic grinding device and magnetic grinding tool Download PDF

Info

Publication number
JP2007210073A
JP2007210073A JP2006033488A JP2006033488A JP2007210073A JP 2007210073 A JP2007210073 A JP 2007210073A JP 2006033488 A JP2006033488 A JP 2006033488A JP 2006033488 A JP2006033488 A JP 2006033488A JP 2007210073 A JP2007210073 A JP 2007210073A
Authority
JP
Japan
Prior art keywords
magnetic
workpiece
polishing
abrasive grains
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033488A
Other languages
Japanese (ja)
Inventor
Yanhua Zou
艶華 鄒
Takeo Suzumura
武男 進村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP2006033488A priority Critical patent/JP2007210073A/en
Publication of JP2007210073A publication Critical patent/JP2007210073A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic grinding device which can efficiently grind even a workpiece formed of a magnetic metal, and also to provide a magnetic grinding tool. <P>SOLUTION: The magnetic grinding device is formed of the magnetic grinding tool 10 having a tip structure in which two or more permanent magnets 11a, 11b for magnetically attracting magnetic grains 2 are secured to a yoke 12 separately from each other, and after the magnetic grains 2 are magnetically attracted by the tip of the magnetic grinding tool 10, the magnetic grinding tool 10 is relatively moved on the workpiece 3 while being kept rotated or pivoted, to thereby carry out grinding of the workpiece 3. Herein the two or more permanent magnets 11a, 11b serve as a north pole and a south pole, respectively, and a closed magnetic circuit 4 is formed among the north pole 11a, the yoke 12, the south pole 11b, and the magnetic grains 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気研磨装置及び磁気研磨加工用工具に関し、更に詳しくは、磁性金属材料からなる工作物であっても効率的に研磨することができる磁気研磨装置及び磁気研磨加工用工具に関する。   The present invention relates to a magnetic polishing apparatus and a magnetic polishing processing tool, and more particularly to a magnetic polishing apparatus and a magnetic polishing processing tool that can efficiently polish a workpiece made of a magnetic metal material.

例えば金型の曲面を精密研磨仕上げする場合、その多くは手作業によって行われている。そのため、機械的手段によって効率よく精密研磨仕上げできる新しい技術が求められている。   For example, when a curved surface of a mold is precisely polished, many of them are performed manually. Therefore, there is a demand for a new technique that can be precisely polished and finished efficiently by mechanical means.

ところで、磁場の作用を取り込んだ精密加工技術である「磁気援用加工法(磁気研磨法ともいう)」は、既成概念にとらわれない新技術として注目されている。この磁気研磨法は、磁力線を媒介にして磁性砥粒や磁性粒子に加工力と運動力を与えて精密な表面加工を実現するものである。特に磁性砥粒や磁性粒子等を粒子ブラシとして用いれば、その粒子ブラシが柔軟な加工挙動を示すので、例えば金型の曲面等、複雑な部品の形状精度を維持しながら精密研磨を行うことができる(例えば、特許文献1を参照)。
特開2002−192453号公報
By the way, “a magnetically assisted processing method (also referred to as magnetic polishing method)”, which is a precision processing technology that incorporates the action of a magnetic field, has attracted attention as a new technology that is not bound by existing concepts. This magnetic polishing method realizes precise surface processing by applying a processing force and a kinetic force to magnetic abrasive grains or magnetic particles through the lines of magnetic force. In particular, if magnetic abrasive grains or magnetic particles are used as a particle brush, the particle brush exhibits a flexible processing behavior. For example, it is possible to perform precision polishing while maintaining the shape accuracy of complicated parts such as curved surfaces of molds. (For example, refer to Patent Document 1).
JP 2002-192453 A

研磨対象となる工作物が非磁性の金属材料で形成されている場合、磁気研磨法では、加工域に強い磁場を発生させ、磁極と工作物との間に磁性砥粒等からなる粒子ブラシを形成することにより、工作物表面を効率的に研磨することができる。しかしながら、金型等のように磁性金属材料からなる工作物を磁気研磨する場合は、非磁性金属材料からなる工作物を磁気研磨する場合とは異なり、磁極と工作物との間に形成された粒子ブラシの中間でねじれ現象と攪拌現象が発生して、粒子ブラシを構成する磁性砥粒の粉砕や細粒化が進み、経時的に安定した研磨を行うことができないという問題がある。また、研磨後の工作物表面に残留する磁性砥粒も多く見られ、研磨加工に供される砥粒数の減少が問題となっている。   When the workpiece to be polished is made of a non-magnetic metal material, the magnetic polishing method generates a strong magnetic field in the processing area, and a particle brush made of magnetic abrasive grains or the like between the magnetic pole and the workpiece. By forming, the workpiece surface can be efficiently polished. However, when magnetically polishing a workpiece made of a magnetic metal material, such as a mold, unlike the case of magnetically polishing a workpiece made of a nonmagnetic metal material, it is formed between the magnetic pole and the workpiece. There is a problem that twisting phenomenon and stirring phenomenon occur in the middle of the particle brush, and the magnetic abrasive grains constituting the particle brush are pulverized and refined, and stable polishing cannot be performed over time. In addition, many magnetic abrasive grains remain on the surface of the workpiece after polishing, and a reduction in the number of abrasive grains used for polishing is a problem.

この問題について詳しく説明する。図10は、従来の磁気研磨加工用工具を備えた平面型磁気研磨装置の例を示す模式図である。図示の磁気研磨装置は、下側ヨーク上の磁性テーブルに磁性金属材料からなる工作物を磁着させ、その工作物を磁気研磨加工用工具と磁性砥粒とを用いて研磨加工する装置である。磁気研磨加工用工具は、工作物の上方に配置された回転軸の先端に設けられて回転磁極を構成し、この回転磁極には上側ヨークが接触している。上側ヨークと下側ヨークとの間には、鉄心にコイルが捲き回された電磁コイルが配置されている。電磁コイルにより発生した磁場は、鉄芯/上側ヨーク/回転磁極/工作物/磁性テーブル/下側ヨーク/鉄芯からなる閉磁気回路を構成する。こうした従来の平面型磁気研磨装置において、加工域に在る磁性砥粒は、強い磁力を受けて回転磁極と工作物との間に集中して充填される。このとき、回転磁極を高速回転させると、磁性砥粒もその回転に追従して回転移動し、工作物の表面を研磨加工する。   This problem will be described in detail. FIG. 10 is a schematic view showing an example of a planar magnetic polishing apparatus provided with a conventional magnetic polishing processing tool. The illustrated magnetic polishing apparatus is an apparatus for magnetically attaching a workpiece made of a magnetic metal material to a magnetic table on a lower yoke, and polishing the workpiece using a magnetic polishing processing tool and magnetic abrasive grains. . The magnetic polishing tool is provided at the tip of a rotating shaft disposed above the workpiece to form a rotating magnetic pole, and the upper yoke is in contact with the rotating magnetic pole. An electromagnetic coil in which a coil is wound around an iron core is arranged between the upper yoke and the lower yoke. The magnetic field generated by the electromagnetic coil constitutes a closed magnetic circuit comprising iron core / upper yoke / rotating magnetic pole / workpiece / magnetic table / lower yoke / iron core. In such a conventional planar magnetic polishing apparatus, the magnetic abrasive grains in the processing region receive a strong magnetic force and are concentrated and filled between the rotating magnetic pole and the workpiece. At this time, when the rotating magnetic pole is rotated at a high speed, the magnetic abrasive grains also rotate following the rotation, and the surface of the workpiece is polished.

図10に示す磁気研磨装置においては、磁性金属材料からなる工作物が常にS極に磁化されるため、工作物の表面に接触する磁性砥粒に強い磁気吸引力が作用する。このとき、粒子ブラシを構成する回転磁極側の磁性砥粒は回転磁極と一緒に回転するのに対し、粒子ブラシを構成する工作物側の磁性砥粒は、磁化された工作物表面に磁気吸引され、回転磁極の回転に追従し難い状態になる。その結果、粒子ブラシは、その中間でねじれ現象や攪拌現象が生じ、磁性砥粒の粉砕や細粒化が進むことになると共に、磁性砥粒が工作物の表面に残留することになる。   In the magnetic polishing apparatus shown in FIG. 10, since a workpiece made of a magnetic metal material is always magnetized to the south pole, a strong magnetic attractive force acts on the magnetic abrasive grains contacting the surface of the workpiece. At this time, the magnetic abrasive grains on the rotating magnetic pole side constituting the particle brush rotate together with the rotating magnetic poles, whereas the magnetic abrasive grains on the workpiece side constituting the particle brush are magnetically attracted to the magnetized workpiece surface. Thus, it becomes difficult to follow the rotation of the rotating magnetic pole. As a result, a twisting phenomenon and a stirring phenomenon occur in the middle of the particle brush, so that the magnetic abrasive grains are pulverized and refined, and the magnetic abrasive grains remain on the surface of the workpiece.

本発明は、上記課題を解決するためになされたものであって、その目的は、磁性金属材料からなる工作物であっても効率的に研磨することができる磁気研磨装置及び磁気研磨加工用工具を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a magnetic polishing apparatus and a magnetic polishing processing tool capable of efficiently polishing a workpiece made of a magnetic metal material. Is to provide.

上記課題を解決するための本発明の磁気研磨装置は、磁性砥粒を磁気吸着する2以上の永久磁石それぞれがヨークに離間して固定された先端構造を有する磁気研磨加工用工具を備え、前記磁気研磨加工用工具の先端に磁性砥粒を磁気吸着させた後に回転又は回動させながら工作物上を相対移動させて当該工作物を研磨することを特徴とする。本発明においては、前記2以上の永久磁石それぞれはN極又はS極になり、当該N極、ヨーク、S極及び磁性砥粒の間で閉磁気回路が構成される。   A magnetic polishing apparatus according to the present invention for solving the above-described problems includes a magnetic polishing processing tool having a tip structure in which two or more permanent magnets that magnetically attract magnetic abrasive grains are fixedly spaced from a yoke. The magnetic abrasive grains are magnetically attracted to the tip of the magnetic polishing tool, and then the workpiece is polished by rotating relative to the workpiece while rotating or rotating. In the present invention, each of the two or more permanent magnets is an N pole or an S pole, and a closed magnetic circuit is configured between the N pole, the yoke, the S pole, and the magnetic abrasive grains.

上記課題を解決するための本発明の磁気研磨加工用工具は、磁性砥粒を磁気吸着する2以上の永久磁石それぞれがヨークに離間して固定された先端構造を有し、その先端に磁性砥粒を磁気吸着させた後に回転又は回動させながら工作物上を相対移動させて当該工作物を研磨する工具である。   In order to solve the above problems, a magnetic polishing tool of the present invention has a tip structure in which two or more permanent magnets for magnetically adsorbing magnetic abrasive grains are fixedly spaced from a yoke, and a magnetic abrasive at the tip. It is a tool for polishing a workpiece by moving the workpiece relative to the workpiece while rotating or rotating the particles after magnetically adsorbing the particles.

本発明は、磁化し易い磁性金属材料からなる工作物を加工対象とした場合に、磁性砥粒がその工作物に磁気吸引される磁化現象を弱くして効率的な研磨加工を行うことができる装置及び工具を提供したものであり、その具体的手段として、(1)従来の閉磁気回路でない新たな閉磁気回路を構成することにより工作物の表面への磁場の影響を軽減させたこと、(2)ループ減衰脱磁原理を利用して工作物を脱磁しながら研磨加工を行うことにある。本発明によれば、2以上の永久磁石それぞれがヨークに離間して固定されているので、それぞれN極とS極になる複数の永久磁石の表面に磁性砥粒が磁気吸着(以下、「磁着」ともいう。)して粒子ブラシが形成される。こうした粒子ブラシは永久磁石とヨークとの間で閉磁気回路を構成し、磁性砥粒はその閉磁気回路の磁力線により保持される。その結果、相対移動する際、研磨加工用工具側の磁性砥粒も工作物側の磁性砥粒もその相対移動に追従して移動することができる。こうした本発明の磁気研磨装置によれば、磁性金属材料からなる工作物を加工対象とした場合であっても、従来のようなねじれ現象や攪拌現象が生じ難く、磁性砥粒の粉砕や細粒化が進むのを抑えることができる。   In the present invention, when a workpiece made of a magnetic metal material that is easily magnetized is processed, the magnetic phenomenon in which the magnetic abrasive grains are magnetically attracted to the workpiece can be weakened to perform efficient polishing. The apparatus and tool are provided, and as specific means, (1) the influence of the magnetic field on the surface of the workpiece is reduced by configuring a new closed magnetic circuit that is not a conventional closed magnetic circuit; (2) The polishing process is performed while demagnetizing the workpiece using the loop damping demagnetization principle. According to the present invention, since each of the two or more permanent magnets is fixed apart from the yoke, the magnetic abrasive grains are magnetically attracted (hereinafter referred to as “magnetic The particle brush is formed. Such a particle brush forms a closed magnetic circuit between the permanent magnet and the yoke, and the magnetic abrasive grains are held by the magnetic lines of force of the closed magnetic circuit. As a result, at the time of relative movement, both the magnetic abrasive grains on the polishing tool side and the magnetic abrasive grains on the workpiece side can move following the relative movement. According to such a magnetic polishing apparatus of the present invention, even when a workpiece made of a magnetic metal material is to be processed, the conventional twisting phenomenon and stirring phenomenon are unlikely to occur. It is possible to suppress the progress of conversion.

さらに、本発明によれば、磁気研磨加工用工具の先端に磁性砥粒を磁気吸着させた後に回転又は回動させながら工作物上を相対移動させて当該工作物を研磨するので、永久磁石により磁化した工作物上を異なる磁極が繰り返し通過する。その結果、ループ減衰脱磁原理により、磁化した工作物を脱磁しながら研磨加工を行うことができる。そして、磁性金属材料からなる工作物の磁化が弱まるので、工作物の表面に磁着した状態で残る磁性砥粒を少なくすることができ、研磨に供する磁性砥粒を磁極間に保持して研磨加工を効率的に行うことができる。   Furthermore, according to the present invention, after the magnetic abrasive grains are magnetically attracted to the tip of the magnetic polishing tool, the workpiece is polished by being relatively moved on the workpiece while being rotated or rotated. Different magnetic poles pass repeatedly over the magnetized workpiece. As a result, it is possible to perform polishing while demagnetizing the magnetized workpiece by the loop damping demagnetization principle. Since the magnetization of the workpiece made of a magnetic metal material is weakened, the number of magnetic abrasive grains remaining in the state of being magnetically attached to the surface of the workpiece can be reduced, and polishing is performed while holding the magnetic abrasive grains used for polishing between the magnetic poles. Processing can be performed efficiently.

本発明の磁気研磨装置及び磁気研磨加工用工具によれば、磁性金属材料からなる工作物を加工対象とした場合であっても、従来のようなねじれ現象や攪拌現象が生じ難く、磁性砥粒の粉砕や細粒化が進むのを抑えることができるので、効率的に研磨することができる。また、本発明によれば、ループ減衰脱磁原理を利用して工作物を脱磁しながら研磨加工を行うことができるので、工作物の表面に磁着した状態で残る磁性砥粒を少なくすることができ、研磨に供する磁性砥粒を磁極間に保持して研磨加工を効率的に行うことができる。   According to the magnetic polishing apparatus and the magnetic polishing processing tool of the present invention, even when a workpiece made of a magnetic metal material is processed, the conventional twisting phenomenon and stirring phenomenon are unlikely to occur. Since the progress of pulverization and fine graining can be suppressed, polishing can be performed efficiently. Further, according to the present invention, the polishing can be performed while demagnetizing the workpiece using the loop damping demagnetization principle, so that the magnetic abrasive grains remaining in the state of being magnetized on the surface of the workpiece are reduced. In addition, the magnetic abrasive grains used for polishing can be held between the magnetic poles and polishing can be performed efficiently.

以下、本発明の磁気研磨装置及び磁気研磨加工用工具について、図面を参照しつつ説明する。なお、本発明は、その技術的特徴を有する範囲を包含し、以下に示す図面等に限定されない。   Hereinafter, a magnetic polishing apparatus and a magnetic polishing tool of the present invention will be described with reference to the drawings. In addition, this invention includes the range which has the technical feature, and is not limited to drawing shown below.

本発明は、磁化し易い磁性金属材料からなる工作物を加工対象とした場合に、磁性砥粒がその工作物に磁気吸引される磁化現象を弱くして効率的な研磨加工を行うことができる装置を提供したものであり、その具体的手段として、(1)従来の閉磁気回路でない新たな閉磁気回路を構成することにより工作物の表面への磁場の影響を軽減させたこと、(2)ループ減衰脱磁原理を利用して工作物を脱磁しながら研磨加工を行うことにある。   In the present invention, when a workpiece made of a magnetic metal material that is easily magnetized is processed, the magnetic phenomenon in which the magnetic abrasive grains are magnetically attracted to the workpiece can be weakened to perform efficient polishing. As a specific means, (1) a new closed magnetic circuit that is not a conventional closed magnetic circuit is configured to reduce the influence of the magnetic field on the surface of the workpiece. ) Polishing is performed while demagnetizing the workpiece using the loop damping demagnetization principle.

図1は、本発明の磁気研磨装置の一例を示す構成図であり、図2は、本発明の磁気研磨装置に用いられる磁気研磨加工用工具の一例を示す図面代用写真である。本発明の磁気研磨装置1は、図1及び図2に示すように、磁性砥粒2を磁気吸着する2以上の永久磁石11それぞれがヨーク12に離間して固定された先端構造を有する磁気研磨加工用工具10を備えている。そして、その磁気研磨加工用工具10の先端に磁性砥粒2を磁気吸着させた後に回転又は回動させながら工作物3上を相対移動させて当該工作物3を研磨する装置である。このとき、2以上の永久磁石11それぞれはN極又はS極になり、そのN極11a、ヨーク12、S極11b及び磁性砥粒2の間で閉磁気回路4が構成される。   FIG. 1 is a configuration diagram showing an example of a magnetic polishing apparatus of the present invention, and FIG. 2 is a drawing-substituting photograph showing an example of a magnetic polishing processing tool used in the magnetic polishing apparatus of the present invention. As shown in FIGS. 1 and 2, the magnetic polishing apparatus 1 of the present invention has a tip structure in which two or more permanent magnets 11 that magnetically adsorb magnetic abrasive grains 2 are fixed to a yoke 12 separately from each other. A machining tool 10 is provided. Then, after the magnetic abrasive grains 2 are magnetically attracted to the tip of the magnetic polishing tool 10, the workpiece 3 is polished by rotating relative to the workpiece 3 while rotating or rotating. At this time, each of the two or more permanent magnets 11 is an N pole or an S pole, and the closed magnetic circuit 4 is configured among the N pole 11a, the yoke 12, the S pole 11b, and the magnetic abrasive grains 2.

磁気研磨加工用工具10は、図1及び図2に示すように、磁性砥粒2を磁気吸着する2以上の永久磁石11それぞれがヨーク12に離間して固定された先端構造を有し、その先端に磁性砥粒2を磁気吸着させた後に回転又は回動させながら工作物3上を相対移動させて工作物3を研磨する工具である。この磁気研磨加工用工具10に磁性砥粒2を磁着させると、図1及び図2に示すように、離間した永久磁石11に磁性砥粒2が磁着して粒子ブラシ2’を形成し、その粒子ブラシ2’と永久磁石11,11とヨーク12とで閉磁気回路4が形成する。本発明は、磁性砥粒2を磁気研磨加工用工具10に磁着させて形成される閉磁気回路4により、磁性金属材料からなる工作物3の表面への磁場の影響を軽減させることができる。なお、図1及び図2中の符号13は固定治具であり、ヨークと永久磁石からなる先端部を結合している。その固定治具13は、回転装置、回動装置又は往復運動装置のチャック部に装着される。   As shown in FIGS. 1 and 2, the magnetic polishing tool 10 has a tip structure in which two or more permanent magnets 11 that magnetically adsorb magnetic abrasive grains 2 are fixed to a yoke 12 apart from each other. This is a tool for polishing the workpiece 3 by causing the magnetic abrasive grains 2 to be magnetically attracted to the tip and then rotating or rotating the workpiece to move the workpiece 3 relatively. When the magnetic abrasive grains 2 are magnetically attached to the magnetic polishing tool 10, as shown in FIGS. 1 and 2, the magnetic abrasive grains 2 are magnetically attached to the separated permanent magnets 11 to form a particle brush 2 ′. The closed magnetic circuit 4 is formed by the particle brush 2 ′, the permanent magnets 11, 11 and the yoke 12. The present invention can reduce the influence of the magnetic field on the surface of the workpiece 3 made of a magnetic metal material by the closed magnetic circuit 4 formed by magnetically attaching the magnetic abrasive grains 2 to the magnetic polishing tool 10. . Reference numeral 13 in FIGS. 1 and 2 denotes a fixing jig, which joins a tip portion made of a yoke and a permanent magnet. The fixing jig 13 is attached to a chuck portion of a rotating device, a rotating device, or a reciprocating device.

図3は、本発明の磁気研磨装置が工作物を研磨加工している具体的形態を示す図面代用写真であり、図4は、図3に示す磁気研磨装置の全体構成の具体的形態を示す図面代用写真である。なお、図示の例は試験的な構成を示したものであり、本発明の磁気研磨装置1は図示の形態に限定されない。磁気研磨加工用工具10は、図3に示すように回転装置に取り付けられ、その先端の永久磁石11には磁性砥粒2が磁着し、粒子ブラシ2’を形成している。図3に示す磁気研磨装置においては、磁気研磨加工用工具10と工作物3との距離が調整され、粒子ブラシ2’が磁性金属材料からなる工作物3の表面に接触している。この状態で磁気研磨加工用工具10を回転させると、工作物3の表面が粒子ブラシ2’で研磨される。工作物3は、図4に示すように、移動テーブル14であるX・Yステージに固定され、そのX・Yステージが移動することにより、磁気研磨加工用工具10との間で相対移動する。   FIG. 3 is a drawing-substituting photograph showing a specific form in which the magnetic polishing apparatus of the present invention polishes a workpiece, and FIG. 4 shows a specific form of the entire configuration of the magnetic polishing apparatus shown in FIG. It is a drawing substitute photograph. The illustrated example shows a test configuration, and the magnetic polishing apparatus 1 of the present invention is not limited to the illustrated form. As shown in FIG. 3, the magnetic polishing tool 10 is attached to a rotating device, and magnetic abrasive grains 2 are magnetically attached to a permanent magnet 11 at the tip thereof to form a particle brush 2 '. In the magnetic polishing apparatus shown in FIG. 3, the distance between the magnetic polishing tool 10 and the workpiece 3 is adjusted, and the particle brush 2 'is in contact with the surface of the workpiece 3 made of a magnetic metal material. When the magnetic polishing tool 10 is rotated in this state, the surface of the workpiece 3 is polished by the particle brush 2 '. As shown in FIG. 4, the workpiece 3 is fixed to an XY stage that is a moving table 14, and moves relative to the magnetic polishing tool 10 by moving the XY stage.

本発明によれば、2以上の永久磁石11それぞれがヨーク12に離間して固定されているので、それぞれN極11aとS極11bになる複数の永久磁石11の表面に磁性砥粒2が磁着して粒子ブラシ2’が形成される。こうした粒子ブラシ2’は永久磁石11とヨーク12との間で閉磁気回路4を構成し、磁性砥粒2はその閉磁気回路4の磁力線により保持される。その結果、相対移動する際、研磨加工用工具側の磁性砥粒も工作物側の磁性砥粒もその相対移動に追従して移動することができる。こうした本発明の磁気研磨装置によれば、磁性金属材料からなる工作物3を加工対象とした場合に、従来のようなねじれ現象や攪拌現象が生じ難く、磁性砥粒の粉砕や細粒化が進むのを抑えることができる。   According to the present invention, since each of the two or more permanent magnets 11 is fixed to the yoke 12 so as to be spaced apart, the magnetic abrasive grains 2 are magnetized on the surfaces of the plurality of permanent magnets 11 that become the north pole 11a and the south pole 11b, respectively. The particle brush 2 'is formed by wearing. Such a particle brush 2 ′ forms a closed magnetic circuit 4 between the permanent magnet 11 and the yoke 12, and the magnetic abrasive grains 2 are held by the magnetic lines of force of the closed magnetic circuit 4. As a result, at the time of relative movement, both the magnetic abrasive grains on the polishing tool side and the magnetic abrasive grains on the workpiece side can move following the relative movement. According to the magnetic polishing apparatus of the present invention, when a workpiece 3 made of a magnetic metal material is processed, the conventional twisting phenomenon and stirring phenomenon hardly occur, and the magnetic abrasive grains are pulverized and finely divided. You can keep going.

次に、ループ減衰脱磁原理を利用した工作物の脱磁について説明する。磁気研磨加工用工具10の先端の粒子ブラシ2’を磁性金属材料からなる工作物の表面に接触させると共に磁気研磨加工用工具10を回転させると、工作物表面上の任意の1点では、N極とS極とが交互に通過して交番磁場が作用する。この作用により、磁性金属材料からなる工作物の磁化の大きさは、工具10の回転と共に次第に小さな値になって脱磁状態となる。図5は、ループ減衰脱磁法の原理図である。図5に示すように、ある残留磁束密度Brを有する磁性材料に対し、プラス/マイナスの磁界Hを交互にかけながら1’→2’→3’→4’→5’の順で除々に減衰させていくと、時間tの経過と共に、磁性体の残留磁束密度はヒステリシスループに沿って1→2→3→4→5の順で原点0に減衰しながら近づいていく。この事象は、磁性材料の磁化特性曲線で示されるループ減衰脱磁法の原理そのものに一致する。この効果により、磁性金属材料からなる工作物3表面は、自動的に脱磁状態となり、残留磁性砥粒は極めて少なくなることが期待できる。   Next, the demagnetization of the workpiece using the loop damping demagnetization principle will be described. When the particle brush 2 ′ at the tip of the magnetic polishing tool 10 is brought into contact with the surface of the workpiece made of a magnetic metal material and the magnetic polishing tool 10 is rotated, at any one point on the workpiece surface, N The alternating magnetic field acts by alternately passing the poles and the S poles. Due to this action, the magnitude of the magnetization of the workpiece made of the magnetic metal material gradually becomes a small value as the tool 10 rotates and enters a demagnetized state. FIG. 5 is a principle diagram of the loop attenuation demagnetization method. As shown in FIG. 5, a magnetic material having a certain residual magnetic flux density Br is gradually attenuated in the order of 1 ′ → 2 ′ → 3 ′ → 4 ′ → 5 ′ while alternately applying a plus / minus magnetic field H. As the time t elapses, the residual magnetic flux density of the magnetic material approaches the origin 0 while decreasing in the order of 1 → 2 → 3 → 4 → 5 along the hysteresis loop. This phenomenon is consistent with the principle of the loop attenuation demagnetization method shown by the magnetization characteristic curve of the magnetic material. By this effect, the surface of the workpiece 3 made of a magnetic metal material is automatically demagnetized, and it can be expected that the residual magnetic abrasive grains are extremely reduced.

すなわち、本発明によれば、磁気研磨加工用工具10の先端に磁性砥粒2を磁着させた後に回転又は回動させながら工作物3上を相対移動させて工作物3を研磨するので、永久磁石11により磁化した工作物3上を異なる磁極11a,11bが繰り返し通過する。その結果、ループ減衰脱磁原理により、磁化した工作物3を脱磁しながら研磨加工を行うことができる。そして、磁性金属材料からなる工作物3の磁化が弱まるので、工作物3の表面に磁着した状態で残る磁性砥粒2を少なくすることができ、研磨に供する磁性砥粒2を磁極間に保持して研磨加工を効率的に行うことができる。   That is, according to the present invention, the magnetic abrasive grain 2 is magnetically attached to the tip of the magnetic polishing tool 10 and then the workpiece 3 is polished by rotating relative to the workpiece 3 while rotating or rotating. Different magnetic poles 11 a and 11 b repeatedly pass over the workpiece 3 magnetized by the permanent magnet 11. As a result, it is possible to perform polishing while demagnetizing the magnetized workpiece 3 by the loop damping demagnetization principle. And since the magnetization of the workpiece 3 made of a magnetic metal material is weakened, the magnetic abrasive grains 2 remaining in the state of being magnetically attached to the surface of the workpiece 3 can be reduced, and the magnetic abrasive grains 2 used for polishing are placed between the magnetic poles. It can be held and polished efficiently.

本発明に使用される永久磁石11は、特に限定されないが、希土類磁石、フェライト磁石、アルニコマグネット、MA磁石等を挙げることができる。なお、希土類磁石としては、具体的には、ネオジウム磁石(Nd−Fe−B)やサマリウムコバルト磁石(Sm−Co)が好ましく用いられる。   Although the permanent magnet 11 used for this invention is not specifically limited, A rare earth magnet, a ferrite magnet, an alnico magnet, MA magnet etc. can be mentioned. As the rare earth magnet, specifically, a neodymium magnet (Nd—Fe—B) or a samarium cobalt magnet (Sm—Co) is preferably used.

永久磁石11は、2以上用いられ、それぞれが離間した状態でヨーク12に固定されている。永久磁石11は、図2に示すように、N極とS極とを構成する2つであってもよいし、3つでも4つでも5つい上であってもよい。要するに、2以上の複数の永久磁石11がそれぞれ離間した状態でヨーク12に固定されていればよい。永久磁石が奇数の場合には、N極とS極の何れか一方が1つ少なくなり、偶数の場合には、N極とS極は同数となる。永久磁石11の配置は、回転軸又は回動軸の中心点から同じ距離に複数配置されていることが好ましく、上述したようにループ減衰脱磁原理により磁化した工作物3を脱磁しながら研磨加工を行うことができる。また、回転軸又は回動軸の中心点からの距離が短い複数の永久磁石群と、回転軸又は回動軸の中心点からの距離が長い複数の永久磁石群とを配置したものであってもよい。この場合も、ループ減衰脱磁原理により磁化した工作物3を脱磁しながら研磨加工を行うことができる。なお、さらに距離が異なる永久磁石群を設けても構わない。   Two or more permanent magnets 11 are used and are fixed to the yoke 12 in a state of being separated from each other. As shown in FIG. 2, the number of permanent magnets 11 may be two constituting an N pole and an S pole, or may be three, four, or five above. In short, it is sufficient that two or more permanent magnets 11 are fixed to the yoke 12 in a state of being separated from each other. When the number of permanent magnets is odd, one of the N and S poles is reduced by one, and when the number is even, the number of N and S poles is the same. It is preferable that a plurality of permanent magnets 11 be arranged at the same distance from the rotation axis or the center point of the rotation axis. As described above, the workpiece 3 magnetized by the loop damping demagnetization principle is polished while being demagnetized. Processing can be performed. Further, a plurality of permanent magnet groups having a short distance from the center point of the rotating shaft or the rotating shaft and a plurality of permanent magnet groups having a long distance from the center point of the rotating shaft or the rotating shaft are arranged. Also good. Also in this case, polishing can be performed while demagnetizing the workpiece 3 magnetized by the loop damping demagnetization principle. In addition, you may provide the permanent magnet group from which distance differs further.

永久磁石11の大きさは、配置する箇所に応じた大きさであることが好ましく、例えば偶数配置する場合には通常同じ大きさとなるが、奇数配置する場合には少ない極をやや大きくすることが好ましい。なお、永久磁石11は、その磁化の大きさが磁石の大きさに顕著に変動しないので、小さい磁石であっても比較的大きな磁化を有し、磁性砥粒等を強く磁気吸着することができるという効果がある。   The size of the permanent magnet 11 is preferably a size according to the location to be arranged. For example, when the number of the permanent magnets 11 is set to an even number, the size is usually the same. preferable. In addition, since the magnitude | size of the permanent magnet 11 does not fluctuate | variate remarkably with the magnitude | size of a magnet, even if it is a small magnet, it has comparatively big magnetization and can magnetically adsorb magnetic abrasive grains etc. strongly. There is an effect.

ヨーク12は特に限定されず、一般的にヨークとして用いられているものを用いることができる。例えば、後述する実施例に示す一般構造用圧延鋼材(SS400)等が用いられる。   The yoke 12 is not particularly limited, and a yoke generally used as a yoke can be used. For example, the general structural rolled steel (SS400) shown in the Example mentioned later is used.

粒子ブラシ2’を形成する磁性砥粒2としては各種のものを用いることができる。磁性砥粒2は、磁石に磁気吸着する程度の磁性を有するものが好ましく、例えば現在国内で唯一市販されている磁性砥粒(東洋研磨材工業株式会社;KMX−80)や、その他の未市販の磁性砥粒等を使用することができ、また、砥粒機能を有する磁性粒子であってもよい。こうした磁性粒子としては、電解鉄等の鉄材や、ニッケル、Ni−P合金又はNi−B合金等のニッケル合金材等を使用することができる。また、砥粒機能を有する磁性粒子として、磁性のない砥粒の表面に磁性金属皮膜(例えば、ニッケル又はニッケル合金めっき皮膜)を形成してなる複合磁性粒子や、高温高圧下の不活性ガス中で鉄と焼結させた酸化アルミニウムや、不活性ガス雰囲気中でのアルミニウムと酸化鉄とのテルミット反応の生成物等を用いることも可能である。なお、研磨作用を備える磁性砥粒が好ましく用いられるが、磁性粒子を増量材料として加えることが工業的には好ましい。磁性砥粒と磁性粒子との配合割合は、それらの研磨能力と工作物の被研磨性とを考慮して設定される。   Various types of magnetic abrasive grains 2 for forming the particle brush 2 'can be used. The magnetic abrasive grains 2 are preferably those having a degree of magnetism that is magnetically attracted to the magnet. For example, magnetic abrasive grains (Toyo Abrasives Industries Co., Ltd .; KMX-80) that are currently marketed only in Japan, and other non-commercially available products. Magnetic abrasive grains can be used, and magnetic grains having an abrasive function may be used. As such magnetic particles, iron materials such as electrolytic iron, nickel alloy materials such as nickel, Ni-P alloy, or Ni-B alloy can be used. In addition, as magnetic particles having an abrasive function, composite magnetic particles formed by forming a magnetic metal film (for example, nickel or nickel alloy plating film) on the surface of non-magnetic abrasive grains, or in an inert gas under high temperature and pressure It is also possible to use aluminum oxide sintered with iron and the product of the thermite reaction between aluminum and iron oxide in an inert gas atmosphere. In addition, although magnetic abrasive grains having a polishing action are preferably used, it is industrially preferable to add magnetic particles as an extending material. The blending ratio of the magnetic abrasive grains and the magnetic particles is set in consideration of their polishing ability and the workability of the workpiece.

なお、こうした磁性砥粒等は、そのまま使用してもよいし、必要に応じて、一般的な研磨粒子を含むスラリーと共に使用してもよい。一般的な研磨粒子とは、JIS表示でA、WA、GC、SA、MA、C、MD、CBNといったものを含む、Al、SiC、ZrO、BC、ダイアモンド、立方晶窒化ホウ素、MgO、CeO又はヒュームドシリカ等の砥粒とを結合させたものを挙げることができる。 Such magnetic abrasive grains may be used as they are, or may be used together with a slurry containing general abrasive particles as necessary. General abrasive particles include A, WA, GC, SA, MA, C, MD, CBN, etc. in accordance with JIS indication, Al 2 O 3 , SiC, ZrO 2 , B 4 C, diamond, cubic nitriding There may be mentioned those bonded with abrasive grains such as boron, MgO, CeO 2 or fumed silica.

以下、実施例を挙げて本発明をさらに具体的に説明する。なお、本発明の範囲は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The scope of the present invention is not limited to the following examples.

(実施例1)
上記図3及び図4に示す磁気研磨装置を用いて磁気研磨を行った。2つの永久磁石11a,11bをヨーク12に離間して固定した磁気研磨加工用工具10を準備し、その工具10の先端に磁性砥粒2を磁着させて粒子ブラシ2’を形成した後に回転治具13をNCフライス盤の主軸に固定した。一方、X・YステージをNC立てフライス盤テーブル上に搭載し、そのX・Yステージ上に工作物3であるSPCC磁性鋼板を搭載した。粒子ブラシ2’が工作物3に接触するまで工具10を下降させた後、NCフライス盤の主軸を回転させて工作物表面を研磨加工した。さらに、X・Yステージで工作物を送りながら工作物の全面を研磨加工した。表1は、このときの加工条件を示している。ここでは、磁性砥粒としての電解鉄粉と、研磨材としてのダイヤモンド砥粒と、研磨液としての水溶性研磨液とを用いてなる研磨スラリーを作製し、この研磨スラリーを工具の先端に磁着させて粒子ブラシ2’を形成した。
Example 1
Magnetic polishing was performed using the magnetic polishing apparatus shown in FIG. 3 and FIG. A magnetic polishing tool 10 in which two permanent magnets 11a and 11b are spaced apart and fixed to a yoke 12 is prepared, and a magnetic brush 2 is magnetically attached to the tip of the tool 10 to form a particle brush 2 '. The jig 13 was fixed to the main spindle of the NC milling machine. On the other hand, an XY stage was mounted on an NC vertical milling machine table, and a SPCC magnetic steel plate as the workpiece 3 was mounted on the XY stage. After the tool 10 was lowered until the particle brush 2 'contacted the workpiece 3, the surface of the workpiece was polished by rotating the spindle of the NC milling machine. Furthermore, the entire surface of the workpiece was polished while feeding the workpiece on the XY stage. Table 1 shows the processing conditions at this time. Here, a polishing slurry is prepared using electrolytic iron powder as magnetic abrasive grains, diamond abrasive grains as an abrasive and a water-soluble polishing liquid as a polishing liquid, and this polishing slurry is magnetically applied to the tip of a tool. A particle brush 2 'was formed by wearing.

Figure 2007210073
Figure 2007210073

(評価)
上記加工条件で研磨した後の工作物の加工面について、加工量と表面粗さを評価した。加工量は、工作物の重さを加工前後で測定して評価し、表面粗さは、JIS B 0601(2001)に準拠して最大高さRzと算術平均粗さRaで評価した。なお、工作物の前加工面は、研磨紙#120を用いた手加工によって表面粗さ7.1μmRzに設定した。実験では4回の往復で一担実験を止め、十分に超音波洗浄して加工量と表面粗さを測定した。また、加工後の加工面を電子顕微鏡(100倍)で観察し、その表面形態を観察した。さらに、脱磁効果については、工作物の方に送り運動を与え、磁気研磨加工用工具を回転させた場合と回転させない場合の結果を比較して目視評価した。
(Evaluation)
With respect to the processed surface of the workpiece after being polished under the above processing conditions, the processing amount and the surface roughness were evaluated. The processing amount was evaluated by measuring the weight of the workpiece before and after processing, and the surface roughness was evaluated by the maximum height Rz and the arithmetic average roughness Ra according to JIS B 0601 (2001). The pre-processed surface of the workpiece was set to a surface roughness of 7.1 μm Rz by manual processing using abrasive paper # 120. In the experiment, one experiment was stopped by four reciprocations, and ultrasonic processing was sufficiently performed to measure the processing amount and the surface roughness. Moreover, the processed surface after processing was observed with an electron microscope (100 times), and the surface form was observed. Further, the demagnetization effect was visually evaluated by comparing the results when the workpiece was given a feed motion and the magnetic polishing tool was rotated and not rotated.

(結果)
図6は、加工面の表面粗さのプロフィルを示すグラフであり、図7は、加工面の表面粗さと加工量の時間的変化を示すグラフである。図6及び図7に示すように、4回往復加工した後の加工面はほぼ平滑化され、加工前の表面粗さ7.1μmRz(0.76μmRa)から0.90μmRz(0.16μmRa)と小さくなり、平滑性が向上した。4回往復加工した後の加工面の表面粗さは、ゆるやかに減少しており、8回往復加工後で平滑性は定常状態に落着くことがわかる。一方、加工量は直線的に増加しているのが確認された。
(result)
FIG. 6 is a graph showing a profile of the surface roughness of the processed surface, and FIG. 7 is a graph showing a temporal change in the surface roughness of the processed surface and the processing amount. As shown in FIGS. 6 and 7, the processed surface after the four reciprocating processes is almost smoothed, and the surface roughness before processing is reduced from 7.1 μmRz (0.76 μmRa) to 0.90 μmRz (0.16 μmRa). The smoothness was improved. It can be seen that the surface roughness of the machined surface after the four reciprocations are gradually reduced, and the smoothness settles to a steady state after the eight reciprocations. On the other hand, it was confirmed that the processing amount increased linearly.

図8は、得られた工作物表面の電子顕微鏡写真である。図8(A)は加工前の加工面を示したものであり、図8(B)は4回往復加工した後の加工面を示したものであり、図8(C)は8回往復加工した後の加工面を示したものである。図示のように、加工後においては、加工前の粗面がほぼ均一になっているのが確認された。本実験条件では加工面を鏡面にできていないが、微細な梨地面が観察されたことから、粒子ブラシ2’の加工作用は磁性砥粒2の転がり現象が伴っていると考えらる。   FIG. 8 is an electron micrograph of the obtained workpiece surface. FIG. 8A shows the machined surface before machining, FIG. 8B shows the machined surface after 4 reciprocations, and FIG. 8C shows 8 reciprocations. The processed surface after performing is shown. As shown in the figure, it was confirmed that the rough surface before processing was almost uniform after processing. Under the present experimental conditions, the machining surface is not mirror-finished, but since a fine textured surface was observed, it is considered that the machining action of the particle brush 2 ′ is accompanied by the rolling phenomenon of the magnetic abrasive grains 2.

図9は、磁性砥粒の残留現象を比較した写真であり、図9(A)は、磁気研磨加工用工具を回転させた状態で工作物に送り運動を与えた後の工作物表面の写真であり、図9(B)は、磁気研磨加工用工具を回転させない状態で工作物に送り運動を与えた後の工作物表面の写真である。両者を比較すると、回転させた図9(A)の方は、工作物表面に残留する磁性砥粒が少なかったが、回転させない図9(B)の方は、工作物表面に残留する磁性砥粒が多いことが分かる。このことからも、本発明に係る磁気研磨加工用工具を回転又は回動させることにより、工作物の脱磁に効果があることが明らかである。   FIG. 9 is a photograph comparing the residual phenomenon of magnetic abrasive grains, and FIG. 9A is a photograph of the workpiece surface after feeding the workpiece with the magnetic polishing tool rotated. FIG. 9B is a photograph of the workpiece surface after feeding the workpiece with the magnetic polishing tool not rotated. Comparing the two, the rotated FIG. 9A had fewer magnetic abrasive grains remaining on the workpiece surface, but the non-rotated FIG. 9B had the magnetic abrasive remaining on the workpiece surface. It can be seen that there are many grains. Also from this, it is clear that the work is demagnetized by rotating or rotating the magnetic polishing tool according to the present invention.

本発明の磁気研磨装置の一例を示す模式図である。It is a schematic diagram which shows an example of the magnetic polishing apparatus of this invention. 本発明の磁気研磨装置に用いられる磁気研磨加工用工具の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the tool for magnetic polishing used for the magnetic polishing apparatus of this invention. 本発明の磁気研磨装置が工作物を研磨加工している具体的形態を示す図面代用写真である。It is a drawing substitute photograph which shows the specific form in which the magnetic polishing apparatus of this invention has grind | polished a workpiece. 図3に示す磁気研磨装置の全体構成の具体的形態を示す図面代用写真である。4 is a drawing-substituting photograph showing a specific form of the overall configuration of the magnetic polishing apparatus shown in FIG. 3. ループ減衰脱磁法の原理図である。It is a principle diagram of the loop attenuation demagnetization method. 実施例1において、加工面の表面粗さのプロフィルを示すグラフである。In Example 1, it is a graph which shows the profile of the surface roughness of a process surface. 実施例1において、加工面の表面粗さと加工量の時間的変化を示すグラフである。In Example 1, it is a graph which shows the time change of the surface roughness of a process surface, and a process amount. 実施例1において、得られた工作物表面の電子顕微鏡写真である。In Example 1, it is an electron micrograph of the obtained workpiece surface. 磁性砥粒の残留現象を比較した写真である。It is the photograph which compared the residual phenomenon of the magnetic abrasive grain. 従来の磁気研磨加工用工具を備えた平面型磁気研磨装置の例を示す模式図である。It is a schematic diagram which shows the example of the planar magnetic polishing apparatus provided with the conventional tool for magnetic polishing processes.

符号の説明Explanation of symbols

1 磁気研磨装置
2 磁性砥粒
2’ 粒子ブラシ
3 工作物
4 閉磁気回路
10 磁気研磨加工用工具
11 永久磁石
11a N極
11b S極
12 ヨーク
13 固定治具
14 移動テーブル
DESCRIPTION OF SYMBOLS 1 Magnetic polishing apparatus 2 Magnetic abrasive grain 2 'Particle brush 3 Workpiece 4 Closed magnetic circuit 10 Magnetic polishing tool 11 Permanent magnet 11a N pole 11b S pole 12 Yoke 13 Fixing jig 14 Moving table

Claims (3)

磁性砥粒を磁気吸着する2以上の永久磁石それぞれがヨークに離間して固定された先端構造を有する磁気研磨加工用工具を備え、前記磁気研磨加工用工具の先端に磁性砥粒を磁気吸着させた後に回転又は回動させながら工作物上を相対移動させて当該工作物を研磨することを特徴とする磁気研磨装置。   A magnetic polishing tool having a tip structure in which each of two or more permanent magnets that magnetically attract magnetic abrasive grains is fixed to be separated from the yoke is provided, and the magnetic abrasive grains are magnetically attracted to the tip of the magnetic polishing tool. A magnetic polishing apparatus for polishing a workpiece by moving the workpiece relative to the workpiece while rotating or rotating the workpiece. 前記2以上の永久磁石それぞれはN極又はS極になり、当該N極、ヨーク、S極及び磁性砥粒の間で閉磁気回路が構成されることを特徴とする請求項1に記載の磁気研磨装置。   2. The magnetism according to claim 1, wherein each of the two or more permanent magnets is an N pole or an S pole, and a closed magnetic circuit is configured between the N pole, the yoke, the S pole, and the magnetic abrasive grains. Polishing equipment. 磁性砥粒を磁気吸着する2以上の永久磁石それぞれがヨークに離間して固定された先端構造を有し、その先端に磁性砥粒を磁気吸着させた後に回転又は回動させながら工作物上を相対移動させて当該工作物を研磨する磁気研磨加工用工具。
Each of the two or more permanent magnets that magnetically adsorb magnetic abrasive grains has a tip structure that is fixed to be separated from the yoke. After magnetically attracting magnetic abrasive grains to the tip, the workpiece is rotated or rotated on the workpiece. A magnetic polishing tool that polishes the workpiece by relative movement.
JP2006033488A 2006-02-10 2006-02-10 Magnetic grinding device and magnetic grinding tool Pending JP2007210073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033488A JP2007210073A (en) 2006-02-10 2006-02-10 Magnetic grinding device and magnetic grinding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033488A JP2007210073A (en) 2006-02-10 2006-02-10 Magnetic grinding device and magnetic grinding tool

Publications (1)

Publication Number Publication Date
JP2007210073A true JP2007210073A (en) 2007-08-23

Family

ID=38488927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033488A Pending JP2007210073A (en) 2006-02-10 2006-02-10 Magnetic grinding device and magnetic grinding tool

Country Status (1)

Country Link
JP (1) JP2007210073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024449A (en) * 2013-07-24 2015-02-05 カヤバ工業株式会社 Apparatus and method for magnetic polishing and tool
CN107617932A (en) * 2017-11-03 2018-01-23 青岛理工大学 Magnetic grinding machine for double-sided disc type small curvature surface component
CN109986414A (en) * 2019-03-21 2019-07-09 辽宁科技大学 A kind of device being electrolysed rotary ultrasonic magnetic force composite polishing plane

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118466A (en) * 1983-11-29 1985-06-25 Taihoo Kogyo Kk Grinding method using magnetic fluid
JPS62113961U (en) * 1986-01-10 1987-07-20
JPS62113962U (en) * 1986-01-10 1987-07-20
JPH01148264U (en) * 1988-03-31 1989-10-13
JPH03178767A (en) * 1989-12-04 1991-08-02 Matsushita Electric Ind Co Ltd Micropolishing method and micropolishing tool
JPH0425370A (en) * 1990-05-18 1992-01-29 Kenjiro Kusunoki Method and device for polishing surface of die and the like
SU1731606A1 (en) * 1989-08-30 1992-05-07 Белорусский Политехнический Институт Magnetic-abrasive machining
US6036580A (en) * 1997-09-03 2000-03-14 Scientific Manufacturing Technologies, Inc. Method and device for magnetic-abrasive machining of parts
JP2000107996A (en) * 1998-07-30 2000-04-18 Japan Science & Technology Corp Surface processing method using magnetic anisotropic tool and its device
JP2001198793A (en) * 2000-01-24 2001-07-24 Asahi Optical Co Ltd Magnetic polishing head of magnetic polishing device
JP2002210648A (en) * 2001-01-15 2002-07-30 Japan Science & Technology Corp Machining method of magnetic material, and its device
JP2003200343A (en) * 2001-12-20 2003-07-15 Mpm Ltd Polishing system and method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118466A (en) * 1983-11-29 1985-06-25 Taihoo Kogyo Kk Grinding method using magnetic fluid
JPS62113961U (en) * 1986-01-10 1987-07-20
JPS62113962U (en) * 1986-01-10 1987-07-20
JPH01148264U (en) * 1988-03-31 1989-10-13
SU1731606A1 (en) * 1989-08-30 1992-05-07 Белорусский Политехнический Институт Magnetic-abrasive machining
JPH03178767A (en) * 1989-12-04 1991-08-02 Matsushita Electric Ind Co Ltd Micropolishing method and micropolishing tool
JPH0425370A (en) * 1990-05-18 1992-01-29 Kenjiro Kusunoki Method and device for polishing surface of die and the like
US6036580A (en) * 1997-09-03 2000-03-14 Scientific Manufacturing Technologies, Inc. Method and device for magnetic-abrasive machining of parts
JP2000107996A (en) * 1998-07-30 2000-04-18 Japan Science & Technology Corp Surface processing method using magnetic anisotropic tool and its device
JP2001198793A (en) * 2000-01-24 2001-07-24 Asahi Optical Co Ltd Magnetic polishing head of magnetic polishing device
JP2002210648A (en) * 2001-01-15 2002-07-30 Japan Science & Technology Corp Machining method of magnetic material, and its device
JP2003200343A (en) * 2001-12-20 2003-07-15 Mpm Ltd Polishing system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024449A (en) * 2013-07-24 2015-02-05 カヤバ工業株式会社 Apparatus and method for magnetic polishing and tool
CN107617932A (en) * 2017-11-03 2018-01-23 青岛理工大学 Magnetic grinding machine for double-sided disc type small curvature surface component
CN109986414A (en) * 2019-03-21 2019-07-09 辽宁科技大学 A kind of device being electrolysed rotary ultrasonic magnetic force composite polishing plane

Similar Documents

Publication Publication Date Title
Mulik et al. Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives
Wang et al. Study on the inner surface finishing of tubing by magnetic abrasive finishing
JP2007268689A (en) Magnetic abrasive finishing device, method therefor, and machining tool used therefor
JP4423425B2 (en) Vibration magnetic polishing method and apparatus, and tool
JP4139906B2 (en) Polishing method and magnetic polishing apparatus for thin plate with opening pattern
JP2008071857A (en) Catalytic chemical processing method and apparatus using magnetic fine particles
JP6371645B2 (en) Magnetic polishing method and magnetic polishing apparatus using a magnet tool
JP2010052123A (en) Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
JP2007210073A (en) Magnetic grinding device and magnetic grinding tool
JPS59161262A (en) Magnetic attraction type method for abrasion
Singh et al. Internal finishing of cylindrical pipes using sintered magnetic abrasives
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
Singh et al. Performance of abrasives used in magnetically assisted finishing: a state of the art review
Wu et al. Nano-precision polishing of CVD SiC using MCF (magnetic compound fluid) slurry
JP4185986B2 (en) Magnetic deburring method
JP2007045878A (en) Magnetic abrasive grain
JP7026927B2 (en) Magnetic polishing method and magnetic polishing equipment
JP2008254106A (en) Paste material
Zou et al. Study on internal magnetic field assisted finishing process using a magnetic machining Jig for thick non-ferromagnetic tube
JP4185985B2 (en) Magnetically assisted processing
JP2021133450A (en) Fixed abrasive polishing method applying magnetism-assisted processing method and polishing apparatus
Zou et al. A study on the magnetic field assisted machining process for internal finishing using a magnetic machining jig
CN111843627A (en) Polishing method and polishing device based on magnetic composite fluid
JP2015168029A (en) magnetic polishing method and polishing slurry
Sato et al. Experimental Investigation of a Fixed-Abrasive Machining with Magnetic Brush for Ti-6Al-4V ELI Alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313