JP2008071857A - Catalytic chemical processing method and apparatus using magnetic fine particles - Google Patents

Catalytic chemical processing method and apparatus using magnetic fine particles Download PDF

Info

Publication number
JP2008071857A
JP2008071857A JP2006247659A JP2006247659A JP2008071857A JP 2008071857 A JP2008071857 A JP 2008071857A JP 2006247659 A JP2006247659 A JP 2006247659A JP 2006247659 A JP2006247659 A JP 2006247659A JP 2008071857 A JP2008071857 A JP 2008071857A
Authority
JP
Japan
Prior art keywords
fine particles
magnetic fine
workpiece
processing
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006247659A
Other languages
Japanese (ja)
Other versions
JP4982742B2 (en
Inventor
Akihisa Kubota
章亀 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Original Assignee
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC filed Critical Kumamoto University NUC
Priority to JP2006247659A priority Critical patent/JP4982742B2/en
Publication of JP2008071857A publication Critical patent/JP2008071857A/en
Application granted granted Critical
Publication of JP4982742B2 publication Critical patent/JP4982742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic chemical processing method and apparatus using magnetic fine particles capable of processing a difficult-to-process workpiece, especially SiC, GaN, etc. with high processing efficiency and with high precision based on a processing principle utilizing a catalytic action enabling the chemical reaction introducing no lattice defect into the surface of the workpiece, and capable of obtaining a crystallographically excellent processed surface. <P>SOLUTION: The workpiece 7 is provided in a solution of an oxidizer 2 and is constrained to a surface plate 4 or a processing head by a magnetic field, and the spatially controlled magnetic fine particles 9 of a transition metal are brought into contact with the processed surface of the workpiece under a very low load and the processed surface and the magnetic fine particles are relatively displaced to remove or elute the compound formed by the chemical reaction between the active species having an oxidizing power formed on the surface of the magnetic fine particles and the surface atoms of the workpiece caused by the catalytic action of the magnetic fine particles, thereby the workpiece is processed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁性微粒子を用いた触媒化学加工方法及び装置に係わり、更に詳しくは処理液中の分子を触媒で分解して生成した活性種を用いて被加工物を加工する磁性微粒子を用いた触媒化学加工方法及び装置に関するものである。   The present invention relates to a catalytic chemical processing method and apparatus using magnetic fine particles, and more particularly, uses magnetic fine particles for processing a workpiece using active species generated by decomposing molecules in a processing solution with a catalyst. The present invention relates to a catalytic chemical processing method and apparatus.

従来から、被加工物の被加工面に格子欠陥や熱的変質層を導入することなく、高精度に加工する方法が提案されている。例えば、超微粉体を分散した懸濁液を被加工物の被加工面に沿って流動させて、該超微粉体を被加工面上にほぼ無荷重の状態で接触させ、その際の超微粉体と被加工面界面での相互作用(一種の化学結合)により、被加工面原子を原子単位に近いオーダで除去して加工する、いわゆるEEM(Elastic Emission Machining)による加工は既に知られている(特許文献1〜3)。   Conventionally, a method of processing with high accuracy without introducing lattice defects or a thermally deteriorated layer on a processing surface of a workpiece has been proposed. For example, a suspension in which ultra fine powder is dispersed is caused to flow along the work surface of the work piece, and the ultra fine powder is brought into contact with the work surface in a substantially unloaded state. We already know the processing by so-called EEM (Elastic Emission Machining), which removes and processes the workpiece surface atoms on the order of atomic units by the interaction (a kind of chemical bond) at the interface between the ultrafine powder and the workpiece surface. (Patent Documents 1 to 3).

EEMは、その加工原理から考えて高周波の空間波長に対して非常に平滑な面を得ることが可能である。EEMは、超純水により粒径0.1μm程度のSiO2等の微粒子を表面に供給し、微粒子の表面の原子と加工物表面の原子が化学的に結合することで加工が進むことが特徴である。このとき、微粒子は被加工面に沿って超純水の剪断流によって供給され、被加工面の微小突起が選択的に除去されるため、原子配列を乱すことなく、原子サイズのオーダで平坦な表面を作ることが可能となる。 The EEM can obtain a very smooth surface with respect to a high-frequency spatial wavelength in view of its processing principle. EEM is characterized in that ultra-pure water supplies fine particles such as SiO 2 with a particle size of about 0.1 μm to the surface, and the processing proceeds as atoms on the surface of the fine particles and atoms on the surface of the workpiece are chemically bonded. It is. At this time, the fine particles are supplied along the surface to be processed by the shear flow of ultrapure water, and the fine protrusions on the surface to be processed are selectively removed, so that the atomic arrangement is flat without disturbing the atomic arrangement. It is possible to create a surface.

一方、化学機械研磨(CMP)は、SiO2やCr23を砥粒として用い、機械的作用を小さくし、化学的作用によって無擾乱表面を形成しようとするものである。例えば、特許文献4に示すように、酸化触媒作用のある砥粒を分散させた酸化性研磨液にダイヤモンド薄膜を浸漬し、砥粒で薄膜表面を擦過しながらダイヤモンド薄膜を研磨する方法が開示されている。ここで、砥粒として酸化クロムや酸化鉄を用い、この砥粒を過酸化水素水、硝酸塩水溶液又はそれらの混合液に分散させた研磨液を用いることが開示されている。 On the other hand, chemical mechanical polishing (CMP) uses SiO 2 or Cr 2 O 3 as abrasive grains to reduce the mechanical action and to form a non-disturbed surface by the chemical action. For example, as shown in Patent Document 4, a method of polishing a diamond thin film while immersing a diamond thin film in an oxidizing polishing liquid in which abrasive grains having an oxidation catalytic action are dispersed and rubbing the surface of the thin film with abrasive grains is disclosed. ing. Here, it is disclosed that chromium oxide or iron oxide is used as abrasive grains, and a polishing liquid in which the abrasive grains are dispersed in a hydrogen peroxide solution, a nitrate aqueous solution or a mixture thereof is disclosed.

また、特許文献5には、CMPを行う際に用いられる研磨布にCMP用スラリーに含まれる酸化剤の酸化力を促進させる触媒機能を持たせる点が記載されている。この触媒作用は、スラリーと研磨布とが接触した瞬間からスラリーが被処理物に到達するまで触媒効果を発揮するものであり、具体的には、酸化剤として過酸化水素、過硫酸塩、過ヨウ素塩酸の少なくとも1種類用い、触媒作用のある成分として鉄、銀、チタン、ルテニウム、白金からなる金属を用いるのである。ここで、触媒作用のある成分は、研磨布の所定の領域に格子状、ドーナツ状に存在させるか、あるいは研磨布の全ての領域に均一に存在させている。   Further, Patent Document 5 describes that a polishing cloth used for CMP has a catalytic function for promoting the oxidizing power of an oxidizing agent contained in a CMP slurry. This catalytic action exhibits a catalytic effect from the moment when the slurry and the polishing cloth come into contact until the slurry reaches the object to be processed. Specifically, hydrogen peroxide, persulfate, excess At least one kind of iodine hydrochloric acid is used, and a metal composed of iron, silver, titanium, ruthenium and platinum is used as a component having a catalytic action. Here, the catalytic component is present in a predetermined shape of the polishing cloth in the form of a lattice or a donut, or is uniformly present in all areas of the polishing cloth.

また、特許文献6には、酸化剤として過酸化水素と、研磨剤としてアルミナやシリカ等を含む溶液を用い、複数の酸化状態を有する少なくとも1つの可溶性金属触媒を含む研磨パッドを用いてCMPを行う点が記載されている。具体的には、最も好ましい触媒は、複数の酸化状態をもつ鉄、銅、銀の化合物及びこれらのいずれかの組み合わせであり、特に好ましい触媒は硝酸第二鉄であることが開示されている。
特公平2−25745号公報 特公平7−16870号公報 特開2000−167770号公報 特許第3734722号公報 特開2002−299294号公報 特表2004−526302号公報
Patent Document 6 discloses that CMP is performed using a polishing pad containing at least one soluble metal catalyst having a plurality of oxidation states, using a solution containing hydrogen peroxide as an oxidizing agent and alumina or silica as an abrasive. The points to do are described. Specifically, it is disclosed that the most preferable catalyst is a compound of iron, copper, silver having a plurality of oxidation states and any combination thereof, and a particularly preferable catalyst is ferric nitrate.
Japanese Patent Publication No. 2-25745 Japanese Patent Publication No. 7-16870 JP 2000-167770 A Japanese Patent No. 3734722 JP 2002-299294 A Special table 2004-526302 gazette

前述のEEM加工法は、結晶学的に優れた加工面が得られるが、微粒子と被加工物の表面原子との一種の化学反応による非常にソフトな加工法であるため、加工速度が遅く、特に近年電子デバイスの材料として重要性が高まっているSiCやGaNの加工には適してない。また、CMPは、基本的には研磨パッドで被加工面を押圧して研磨するので、砥粒やスラリーによってスクラッチが生じることは避けられない。   The above-mentioned EEM processing method provides a crystallographically excellent processing surface, but is a very soft processing method by a kind of chemical reaction between the fine particles and the surface atoms of the workpiece, so the processing speed is slow, In particular, it is not suitable for the processing of SiC and GaN, which are becoming increasingly important as materials for electronic devices in recent years. Further, in CMP, polishing is basically performed by pressing the work surface with a polishing pad, so that it is inevitable that scratches are caused by abrasive grains or slurry.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、難加工物、特にSiCやGaN等を、加工効率が高く且つ高精度に加工することが可能な新しい加工法を提案することを目的とする。つまり、本発明は、被加工物表面に格子欠陥が導入されない化学的な反応が可能な触媒作用を利用した加工原理に基づき、結晶学的に優れた加工面が得られる磁性微粒子を用いた触媒化学加工方法及び装置を提案する。   Therefore, in view of the above-mentioned situation, the present invention is to propose a new processing method capable of processing difficult work, particularly SiC, GaN, etc., with high processing efficiency and high accuracy. With the goal. That is, the present invention is a catalyst using magnetic fine particles that can obtain a crystallographically excellent processed surface based on a processing principle using a catalytic action capable of chemical reaction without introducing lattice defects on the surface of the workpiece. A chemical processing method and apparatus are proposed.

本発明は、前述の課題解決のために、酸化剤の溶液中に被加工物を配し、定盤若しくは加工ヘッドに磁場により拘束し、空間的に制御された遷移金属の磁性微粒子を、被加工物の被加工面に極低荷重のもとで接触させるとともに、被加工面と磁性微粒子とを相対的に変位させ、前記磁性微粒子の触媒作用により、磁性微粒子表面上で生成した酸化力を持つ活性種と被加工物の表面原子との化学反応で生成した化合物を除去、あるいは溶出させることによって被加工物を加工することを特徴とする磁性微粒子を用いた触媒化学加工方法を提供する(請求項1)。   In order to solve the above-described problems, the present invention provides a workpiece to be placed in an oxidizer solution, restrained by a magnetic field on a surface plate or a machining head, and magnetic particles of a transition metal controlled spatially. The work surface of the workpiece is brought into contact with the workpiece under an extremely low load, and the work surface and the magnetic fine particles are relatively displaced, and the oxidizing power generated on the surface of the magnetic fine particles is generated by the catalytic action of the magnetic fine particles. Provided is a catalytic chemical processing method using magnetic fine particles characterized in that a workpiece is processed by removing or eluting a compound generated by a chemical reaction between an active species having and a surface atom of the workpiece ( Claim 1).

ここで、前記酸化剤がH22であることが好ましい(請求項2)。また、前記磁性微粒子が、Fe、Ni、Coから選択した1種又は2種以上の組み合わせ、あるいはFe、Ni又はCoを含む化合物若しくは合金からなることが好ましい(請求項3)。そして、前記被加工物が、結晶性SiC、焼結SiC、GaN、サファイヤ、ルビー、ダイヤモンド、ガラスの内から選ばれた1種であることが好ましい(請求項4)。 Here, it is preferable that the oxidizing agent is H 2 O 2 (claim 2). The magnetic fine particles are preferably made of one or a combination of two or more selected from Fe, Ni and Co, or a compound or alloy containing Fe, Ni or Co. (Claim 3) The workpiece is preferably one selected from crystalline SiC, sintered SiC, GaN, sapphire, ruby, diamond, and glass.

そして、前記酸化剤がH22、磁性微粒子がFe、被加工物がSiC、GaN又はダイヤモンドであり、フェントン反応を利用して加工することがより好ましい(請求項5)。 More preferably, the oxidizing agent is H 2 O 2 , the magnetic fine particles are Fe, the workpiece is SiC, GaN, or diamond, and processing is performed using the Fenton reaction.

また、本発明は、酸化剤を入れた加工槽と、前記加工槽内の底面部に設け、回転あるいは偏心運動が可能なマグネット定盤と、前記加工槽内に前記マグネット定盤と対面させて配し、前記マグネット定盤の回転軸に対して偏心した回転軸を有する被加工物のホルダーと、前記マグネット定盤の表面に遷移金属の磁性微粒子を磁場により拘束し、前記ホルダーに保持した被加工物の被加工面を前記磁性微粒子に極低荷重のもとで接触させ、前記マグネット定盤とホルダーの双方又は一方を回転させて、被加工物の被加工面を平坦化加工することを特徴とする磁性微粒子を用いた触媒化学加工装置を構成した(請求項6)。   The present invention also provides a processing tank containing an oxidant, a magnet surface plate that is provided on the bottom surface of the processing tank and capable of rotating or eccentric movement, and the magnet surface plate facing the magnet surface plate in the processing tank. A workpiece holder having a rotation axis that is eccentric with respect to the rotation axis of the magnet surface plate, and a magnetic fine particle of a transition metal constrained on the surface of the magnet surface plate by a magnetic field, and held by the holder. The work surface of the work piece is brought into contact with the magnetic fine particles under an extremely low load, and both or one of the magnet surface plate and the holder is rotated to flatten the work surface of the work piece. A catalytic chemical processing apparatus using the characteristic magnetic fine particles was constructed (claim 6).

また、本発明は、酸化剤を入れた加工槽と、前記加工槽内の底面部に設け、被加工物を保持するとともに、平面内で往復移動あるいは回転可能な被加工物のホルダーと、前記加工槽内に前記ホルダーと対面させて配し、回転可能なマグネット加工ヘッドと、前記マグネット加工ヘッドの表面に遷移金属の磁性微粒子を磁場により拘束し、前記ホルダーに保持した被加工物の被加工面を前記磁性微粒子に極低荷重のもとで接触させ、前記マグネット加工ヘッドを回転させながら前記ホルダーを往復移動あるいは回転させて、被加工物の被加工面を任意の自由曲面形状に加工することを特徴とする磁性微粒子を用いた触媒化学加工装置を構成した(請求項7)。   In addition, the present invention provides a processing tank containing an oxidant, a bottom of the processing tank, a workpiece holding holder, and a workpiece holder that can reciprocate or rotate in a plane, A magnet processing head that is arranged to face the holder in a processing tank and is rotatable, and a magnetic fine particle of a transition metal is constrained by a magnetic field on the surface of the magnet processing head, and a workpiece to be processed held by the holder is processed. A surface is brought into contact with the magnetic fine particles under an extremely low load, and the holder is reciprocated or rotated while rotating the magnet processing head to process the workpiece surface of the workpiece into an arbitrary free-form surface shape. A catalytic chemical processing apparatus using magnetic fine particles is configured (claim 7).

尚、加工装置においても、前記酸化剤、磁性微粒子に対する選択条件は加工方法と同様であり、また加工対象の被加工物の種類も同様である。   In the processing apparatus, the selection conditions for the oxidizing agent and the magnetic fine particles are the same as those in the processing method, and the types of workpieces to be processed are also the same.

以上にしてなる本発明の磁性微粒子を用いた触媒化学加工方法及び装置は、定盤若しくは加工ヘッドに磁場により拘束し、空間的に制御された遷移金属の磁性微粒子を、被加工物の被加工面に極低荷重のもとで接触させるので、被加工面に磁性微粒子によるスクラッチは全く生じず、そして微粒子表面で酸化剤から生成された強力な酸化力をもつ活性種を、この微粒子に接触した被加工物の極近傍の表面原子と化学反応させ、それにより生成した化合物を除去、あるいは溶出させて加工するので、結晶学的に優れた被加工面が得られるのである。   The catalytic chemical processing method and apparatus using the magnetic fine particles according to the present invention as described above is a processing method for processing a magnetic fine particle of a transition metal, which is constrained by a magnetic field on a platen or a processing head, and which is spatially controlled. Since the surface is brought into contact under an extremely low load, no scratches are caused by the magnetic fine particles on the surface to be processed, and active species having a strong oxidizing power generated from an oxidizing agent on the fine particle surface are brought into contact with the fine particles. Since a chemical reaction is performed with surface atoms in the immediate vicinity of the processed workpiece, and the compound formed thereby is removed or eluted, the processed surface excellent in crystallography can be obtained.

本発明は、遷移金属からなる微粒子による触媒作用と、磁性微粒子を用いることによる磁場での拘束、空間制御性を利用することに最大の特徴がある。磁性微粒子は、定盤若しくは加工ヘッドから出てくる磁力線に沿って穂立ちのように自己整列し、定盤若しくは加工ヘッドの表面を覆い、このような状態の磁性微粒子に被加工物を接触させるので、極低荷重の接触状態を実現することができる。   The present invention has the greatest feature in utilizing the catalytic action by fine particles made of a transition metal, the restriction by a magnetic field by using magnetic fine particles, and the space controllability. The magnetic fine particles are self-aligned like a spike along the magnetic field lines coming out from the surface plate or processing head, cover the surface of the surface plate or processing head, and bring the workpiece into contact with the magnetic fine particles in such a state. Therefore, a contact state with an extremely low load can be realized.

更に、被加工面と磁性微粒子とを相対的に変位させることにより、被加工面における加工量が空間的に平均化されるので、極めて平坦な被加工面が得られるとともに、表面原子と活性種との化学反応で生成した被加工面の酸化物が除去されて、常に新しい被加工面が出現するので、加工速度が速くなるのである。ここで、触媒表面で生成された活性種は、触媒表面から離れると急激に不活性化するので、活性種は基準面となる触媒表面上、若しくは表面の極近傍のみにしか存在せず、それにより空間的に制御された状態で加工できるのである。   Further, by relatively displacing the work surface and the magnetic fine particles, the amount of work on the work surface is spatially averaged, so that a very flat work surface can be obtained, and surface atoms and active species can be obtained. Since the oxide of the work surface generated by the chemical reaction with the above is removed and a new work surface always appears, the processing speed is increased. Here, since the active species generated on the catalyst surface are inactivated rapidly when they are separated from the catalyst surface, the active species are present only on the catalyst surface as a reference surface or in the immediate vicinity of the surface. Therefore, it can be processed in a spatially controlled state.

本発明の磁性微粒子を用いた触媒化学加工方法及び装置は、これまで加工が難しかったSiCやGaN、更にはサファイヤ、ルビー、ダイヤモンド、ガラスの高精度な加工ができるようになり、更に半導体製造工程において半導体や金属層若しくは金属薄膜を平坦化するためにも使用できる可能性がある。   The catalytic chemical processing method and apparatus using the magnetic fine particles of the present invention enables high-precision processing of SiC, GaN, sapphire, ruby, diamond, and glass, which has been difficult to process so far, and further provides a semiconductor manufacturing process. May also be used to planarize semiconductors, metal layers or metal thin films.

次に、実施形態に基づき、本発明を更に詳細に説明する。本発明の加工原理は、被加工物と遷移金属からなる触媒を酸化剤中に配置し、被加工物と触媒を接触させ、そのときに触媒上で酸化剤中の分子から生成された活性種によって被加工物の被加工面を酸化し、その酸化物を除去、あるいは溶出させることによって加工するというものである。ここで、触媒として遷移金属からなる磁性微粒子を用い、磁場によって磁性微粒子を拘束し、空間的に制御することに本発明の最大の特徴がある。   Next, the present invention will be described in more detail based on embodiments. The processing principle of the present invention is that a catalyst composed of a workpiece and a transition metal is placed in an oxidizer, the workpiece and the catalyst are brought into contact, and at that time, active species generated from molecules in the oxidizer on the catalyst. The surface to be processed is oxidized by removing the oxide and the oxide is removed or eluted. Here, the greatest feature of the present invention resides in that magnetic fine particles made of a transition metal are used as a catalyst, the magnetic fine particles are constrained by a magnetic field, and spatially controlled.

つまり、本発明の磁性微粒子を用いた触媒化学加工方法は、酸化剤の溶液中に被加工物を配し、定盤若しくは加工ヘッドに磁場により拘束し、空間的に制御された遷移金属の磁性微粒子を、被加工物の被加工面に極低荷重のもとで接触させるとともに、被加工面と磁性微粒子とを相対的に変位させ、前記磁性微粒子の触媒作用により、磁性微粒子表面上で生成した酸化力を持つ活性種と被加工物の表面原子との化学反応で生成した化合物を除去、あるいは溶出させることによって被加工物を加工することを特徴としている。   In other words, the catalytic chemical processing method using the magnetic fine particles of the present invention includes a workpiece in an oxidant solution, restrained by a magnetic field on a surface plate or processing head, and spatially controlled transition metal magnetism. The fine particles are brought into contact with the work surface of the work piece under an extremely low load, and the work surface and the magnetic fine particles are relatively displaced and generated on the surface of the magnetic fine particles by the catalytic action of the magnetic fine particles. It is characterized in that the workpiece is processed by removing or eluting a compound generated by a chemical reaction between the active species having the oxidizing power and the surface atoms of the workpiece.

本発明の磁性微粒子を用いた触媒化学加工装置(ポリッシング装置)を図1に示す。このポリッシング装置1は、酸化剤2を入れた加工槽3と、前記加工槽3内の底面部に設け、回転可能なマグネット定盤4と、前記加工槽3内に前記マグネット定盤4と対面させて配し、前記マグネット定盤4の回転軸5に対して偏心した回転軸6を有する被加工物7のホルダー8と、前記マグネット定盤4の表面に遷移金属の磁性微粒子9を磁場により拘束し、前記ホルダー8に保持した被加工物7の被加工面を前記磁性微粒子9に極低荷重のもとで接触させ、前記マグネット定盤4とホルダー8の双方又は一方を回転、揺動させて、被加工物7の被加工面を平坦化加工するものである。ここで、前記マグネット定盤4は、回転のみならず、偏心運動が可能であっても良い。   FIG. 1 shows a catalytic chemical processing apparatus (polishing apparatus) using the magnetic fine particles of the present invention. The polishing apparatus 1 includes a processing tank 3 containing an oxidant 2, a magnet surface plate 4 which is provided on the bottom surface of the processing tank 3, a rotatable surface plate 4, and the magnet surface plate 4 facing the inside of the processing tank 3. The holder 8 of the workpiece 7 having the rotating shaft 6 eccentric with respect to the rotating shaft 5 of the magnet surface plate 4 and the magnetic fine particles 9 of the transition metal on the surface of the magnet surface plate 4 by a magnetic field. The work surface of the work 7 held by the holder 8 is brought into contact with the magnetic fine particles 9 under an extremely low load, and both or one of the magnet surface plate 4 and the holder 8 is rotated and swung. Thus, the work surface of the work 7 is flattened. Here, the magnet surface plate 4 may be capable of eccentric movement as well as rotation.

更に詳しくは、本実施形態では、前記マグネット定盤4は、前記加工槽3の底面部と一体的に設けられ、加工槽3を底面部の回転軸5で回転させる構造となっている。前記マグネット定盤4は、永久磁石を加工槽3の底面部に固定して構成している。ここで、前記加工槽3及び前記ホルダー8は、前記マグネット定盤4の磁力線を乱さないようにするために、非磁性体材料で作製することが好ましい。そして、前記加工槽3の底面部内に、前記マグネット定盤4に平行に、表裏方向へ磁化した永久磁石板10あるいは鉄等の強磁性体板を配して、前記マグネット定盤4による磁場強度を増強することも好ましい。   More specifically, in the present embodiment, the magnet surface plate 4 is provided integrally with the bottom surface portion of the processing tank 3 and has a structure in which the processing tank 3 is rotated by the rotating shaft 5 of the bottom surface portion. The magnet surface plate 4 is configured by fixing a permanent magnet to the bottom surface of the processing tank 3. Here, the processing tank 3 and the holder 8 are preferably made of a non-magnetic material so as not to disturb the magnetic lines of force of the magnet surface plate 4. A permanent magnet plate 10 magnetized in the front and back direction or a ferromagnetic plate such as iron is disposed in the bottom surface of the processing tank 3 in parallel with the magnet surface plate 4, and the magnetic field strength of the magnet surface plate 4 is increased. It is also preferable to enhance the ratio.

このように、酸化剤2を満たした加工槽3内で、マグネット定盤4の表面に、磁性微粒子9を適量振り掛けると、磁性微粒子9は磁力線密度分布に沿って整列し、隣接する磁性微粒子列は同極となるので互に反発し合い、穂立ちのように自立するのである。この状態で、被加工物7を保持したホルダー8を上方から降下させ、被加工物7が磁性微粒子9の穂立ちの先端部に接触するように位置設定し、それから前記加工槽3と共にマグネット定盤4を回転、揺動させるとともに、前記ホルダー8を回転させる。   As described above, when an appropriate amount of the magnetic fine particles 9 are sprinkled on the surface of the magnet surface plate 4 in the processing tank 3 filled with the oxidant 2, the magnetic fine particles 9 are aligned along the magnetic line density distribution, and adjacent magnetic fine particles are arranged. Since the columns are of the same polarity, they repel each other and become independent like a head. In this state, the holder 8 holding the workpiece 7 is lowered from above, the position is set so that the workpiece 7 contacts the tip of the head of the magnetic fine particle 9, and then the magnet is fixed together with the processing tank 3. The panel 4 is rotated and swung, and the holder 8 is rotated.

また、図1とは、マグネット定盤4とホルダー8の位置を上下逆にした形態でもよい。その場合には、加工槽3は静止させておき、酸化剤2中でマグネット定盤4とホルダー8をそれぞれ異なる回転軸で回転させるようにする。この場合、上方に配置されたマグネット定盤4から磁性微粒子9の穂立ちが垂れ下がるので、その先端を被加工物7の被加工面で受けて軽く接触させる形態になる。   Moreover, the form which turned the position of the magnet surface plate 4 and the holder 8 upside down with respect to FIG. 1 may be sufficient. In that case, the processing tank 3 is kept stationary, and the magnet surface plate 4 and the holder 8 are rotated by different rotating shafts in the oxidant 2. In this case, since the spikes of the magnetic fine particles 9 hang down from the magnet surface plate 4 disposed above, the tip of the magnetic fine particles 9 is received by the processing surface of the workpiece 7 and lightly brought into contact therewith.

また、任意な自由曲面形状の加工が可能なNC加工装置11の概念図を図2に示す。本加工装置11は、酸化剤12を入れた加工槽13と、前記加工槽13内の底面部に設け、被加工物7を保持するとともに、平面内で往復移動あるいは回転可能な被加工物7のホルダー14と、前記加工槽13内に前記ホルダー14と対面させて配し、回転可能なマグネット加工ヘッド15と、前記マグネット加工ヘッド15の表面に遷移金属の磁性微粒子9を磁場により拘束し、前記ホルダー14に保持した被加工物7の被加工面を前記磁性微粒子9に極低荷重のもとで接触させ、前記マグネット加工ヘッド15を回転させながら前記ホルダー14を往復移動あるいは回転させて、被加工物7の被加工面を任意の自由曲面形状に加工するものである。   Moreover, the conceptual diagram of NC processing apparatus 11 which can process arbitrary free-form surface shape is shown in FIG. The processing apparatus 11 is provided in a processing tank 13 containing an oxidant 12 and a bottom surface in the processing tank 13, holds the workpiece 7, and can be reciprocated or rotated in a plane. The holder 14, the holder 14 in the processing tank 13 so as to face the holder 14, the magnet processing head 15 that can be rotated, and the magnetic fine particles 9 of transition metal on the surface of the magnet processing head 15 are restrained by a magnetic field, The processing surface of the workpiece 7 held by the holder 14 is brought into contact with the magnetic fine particles 9 under an extremely low load, and the holder 14 is reciprocated or rotated while rotating the magnet processing head 15. The processing surface of the workpiece 7 is processed into an arbitrary free-form surface shape.

更に具体的には、本実施形態では前記ホルダー14は、水平面内で往復移動するXYステージで構成し、前記マグネット加工ヘッド15は回転対称形であり、回転軸16の先端に円柱形の永久磁石を固定して構成している。前記マグネット加工ヘッド15の表面に磁性微粒子9を吸着させると、該ヘッドから垂れ下がり、その先端部に前記ホルダー14に保持した被加工物7の被加工面を接触させる。そして、前記マグネット加工ヘッド15を回転させながら、前記ホルダー14で被加工物7を水平に移動させ、磁性微粒子9との接触時間を制御して空間的に加工量を調節し、任意の自由曲面形状に加工するのである。   More specifically, in the present embodiment, the holder 14 is constituted by an XY stage that reciprocates in a horizontal plane, the magnet processing head 15 is rotationally symmetric, and a cylindrical permanent magnet at the tip of the rotating shaft 16. Is fixed. When the magnetic fine particles 9 are attracted to the surface of the magnet processing head 15, the magnetic fine particles 9 hang down from the head, and the processing surface of the processing object 7 held by the holder 14 is brought into contact with the tip portion thereof. Then, while rotating the magnet processing head 15, the workpiece 7 is moved horizontally by the holder 14, the contact time with the magnetic fine particles 9 is controlled to adjust the processing amount spatially, and an arbitrary free-form surface It is processed into a shape.

本実施形態では、触媒としての磁性微粒子に鉄粉を用い、酸化剤には濃度が40%の過酸化水素水の原液を使用した。この場合、Fe表面では、下記の[化1]及び[化2]で表されるフェントン(Fenton)反応により活性種としてOHラジカル(ヒドロキシルラジカル)が発生する。OHラジカル(化学式中にOHの右側にドットを表示)は、寿命は短いが、酸化力は非常に強い。   In this embodiment, iron powder is used for the magnetic fine particles as the catalyst, and a hydrogen peroxide solution stock solution having a concentration of 40% is used as the oxidizing agent. In this case, OH radicals (hydroxyl radicals) are generated as active species on the Fe surface by the Fenton reaction represented by the following [Chemical Formula 1] and [Chemical Formula 2]. OH radicals (dots are displayed on the right side of OH in the chemical formula) have a short lifetime but a very strong oxidizing power.

一般的に、H22のレドックス分解によってOHラジカルが生成されることが知られている。つまり、ハーバー−ワイス(Harber−Waiss)機構によるH22の分解であり、低原子価の遷移金属(Fe2+、Ti3+、Cr2+、Cu+等)による一電子還元によりOHラジカルが生成する。特に、Fe2+による反応は、フェントン反応としてよく知られている。H22はレドックス反応を行い得る低原子価金属イオンと反応し、OHラジカルを生成するのである。ここで、Fe2+は触媒的な作用をするのである。 In general, it is known that OH radicals are generated by redox decomposition of H 2 O 2 . That is, the decomposition of H 2 O 2 by the Harber-Waiss mechanism, and OH by one-electron reduction with low-valent transition metals (Fe 2+ , Ti 3+ , Cr 2+ , Cu + etc.). A radical is generated. In particular, the reaction with Fe 2+ is well known as the Fenton reaction. H 2 O 2 reacts with a low-valent metal ion capable of performing a redox reaction to generate OH radicals. Here, Fe 2+ has a catalytic action.

ここで、被加工物がSiCの場合には、以下の[化3]に示すように、OHラジカルとH22中の溶存酸素によってSiC表面が酸化され、その部分が優先的に加工されるものと推測する。 Here, when the workpiece is SiC, as shown in the following [Chemical Formula 3], the SiC surface is oxidized by OH radicals and dissolved oxygen in H 2 O 2 , and the portion is preferentially processed. I guess.

このような本発明の特徴として、触媒上でのみ反応種が作られ、触媒から離れると、急激に反応種は不活性化することが挙げられる。それにより、化学エッチングとは異なり表面の面指数に影響されずに加工することが可能となり、また加工領域を空間的に制御でき、EEMで見られたような原子スケールでの平坦化が期待できる。また、自由な磁性微粒子を磁場で拘束し、空間的に制御するので、被加工物の必要な部分のみに極低荷重で磁性微粒子を接触させることができる。つまり、本発明の磁性微粒子を用いた触媒化学加工方法及び装置は、効率的な超精密加工法となりうる可能性があると考えられる。   Such a feature of the present invention is that reactive species are created only on the catalyst, and the reactive species are rapidly deactivated when separated from the catalyst. As a result, unlike chemical etching, processing can be performed without being affected by the surface index of the surface, and the processing region can be controlled spatially, and flattening at the atomic scale as seen in EEM can be expected. . In addition, since free magnetic fine particles are constrained by a magnetic field and spatially controlled, the magnetic fine particles can be brought into contact with only a necessary portion of the workpiece with an extremely low load. That is, it is considered that the catalytic chemical processing method and apparatus using the magnetic fine particles of the present invention may be an efficient ultraprecision processing method.

ここで、前記酸化剤としては、H22が挙げられるが、H22に限らず、被加工物、触媒、加工条件等の組合せにより、過硫酸塩、過ヨウ素塩酸も使用できる。また、前記磁性微粒子9として、Fe、Ni、Coから選択した1種又は2種以上の組み合わせ、あるいはFe、Ni又はCoを含む化合物若しくは合金からなるものを用いることも可能である。そして、加工対象物としては、結晶性SiC、焼結SiC、GaN、サファイヤ、ルビー、ダイヤモンド、ガラス等が挙げられる。 Here, examples of the oxidizing agent include H 2 O 2, but are not limited to H 2 O 2 , and persulfate and periodic hydrochloric acid can also be used depending on a combination of a workpiece, a catalyst, processing conditions, and the like. Further, the magnetic fine particles 9 may be made of one or a combination of two or more selected from Fe, Ni and Co, or a compound or alloy containing Fe, Ni or Co. Examples of the object to be processed include crystalline SiC, sintered SiC, GaN, sapphire, ruby, diamond, and glass.

図1に示したポリッシング装置1によって、市販のSiCウエハ(単結晶SiC(0001)、as-slice面)を平滑化加工した。その加工条件を次の表1に示している。   A commercially available SiC wafer (single crystal SiC (0001), as-slice plane) was smoothed by the polishing apparatus 1 shown in FIG. The processing conditions are shown in Table 1 below.

一般にデバイス用として市販されている単結晶4H−SiC(0001)面、及び本加工法によって得られた単結晶SiC(0001)の表面をAFM(原子間力顕微鏡)を用いて観察した結果を図3及び図4に示す。図3(a)は、デバイス用として市販されている単結晶SiC(0001)の表面のAFM像であり、図3(b)は図3(a)に示した観察線(中央部)における断面プロファイルを示している。また、図4(a)は、加工後の単結晶SiC(0001)の表面のAFM像であり、図4(b)は図4(a)に示した観察線(中央部)における断面プロファイルを示している。これらの両表面の表面粗さについての測定結果を表2に示す。   Figure 1 shows the results of observing the surface of single crystal 4H-SiC (0001) that is generally marketed for devices and the surface of single crystal SiC (0001) obtained by this processing method using an AFM (atomic force microscope). 3 and FIG. FIG. 3A is an AFM image of the surface of single crystal SiC (0001) commercially available for a device, and FIG. 3B is a cross section taken along the observation line (center portion) shown in FIG. Shows the profile. 4A is an AFM image of the surface of the processed single crystal SiC (0001), and FIG. 4B shows a cross-sectional profile along the observation line (center portion) shown in FIG. Show. Table 2 shows the measurement results of the surface roughness of both surfaces.

図5は、単結晶SiC(0001)表面(as-slice面)の加工前後のデジタル顕微鏡像を示したものであり、図5(a)は加工前の表面、図5(b)は加工後の表面をそれぞれ示している。   FIG. 5 shows digital microscope images of the single crystal SiC (0001) surface (as-slice plane) before and after processing. FIG. 5 (a) is the surface before processing, and FIG. 5 (b) is after processing. The surface of each is shown.

これらの結果より、一般的に化学エッチングが困難とされているSiCをH22中で鉄粉に接触させて擦るだけで容易に加工することができた。しかも、加工後の表面粗さは、各評価とも1桁程度の改善が見られ、本発明の有効性を示すことができた。また、H22は、安価で比較的取扱いが容易であるので、本発明は実用的な観点からも有益であると言える。 From these results, it was possible to easily process SiC, which is generally difficult to chemically etch, by simply contacting and rubbing SiC in H 2 O 2 . Moreover, the surface roughness after processing was improved by about one digit in each evaluation, and the effectiveness of the present invention could be shown. Moreover, since H 2 O 2 is inexpensive and relatively easy to handle, it can be said that the present invention is useful from a practical viewpoint.

本発明の磁性微粒子を用いた触媒化学加工装置の簡略断面図を示している。1 shows a simplified cross-sectional view of a catalytic chemical processing apparatus using magnetic fine particles of the present invention. 加工ヘッドを数値制御して任意な自由曲面形状の加工が可能な加工装置の概念図である。It is a conceptual diagram of the processing apparatus which can process an arbitrary free-form surface shape by numerically controlling the processing head. デバイス用として市販されている単結晶SiC(0001)の表面状態を示し、(a)は表面のAFM像を示し、(b)は(a)に示した観察線における断面プロファイルを示している。The surface state of single crystal SiC (0001) marketed for devices is shown, (a) shows the AFM image of the surface, and (b) shows the cross-sectional profile along the observation line shown in (a). 単結晶SiC(0001)をH22中でFe微粒子を使って加工した後の表面状態を示し、(a)は表面のAFM像を示し、(b)は(a)に示した観察線における断面プロファイルを示している。The surface state after processing single crystal SiC (0001) in H 2 O 2 using Fe fine particles is shown, (a) shows the AFM image of the surface, (b) shows the observation line shown in (a). The cross-sectional profile in is shown. 単結晶SiC(0001)表面(as-slice面)の加工前後のデジタル顕微鏡像を示し、(a)は加工前の表面、(b)は加工後の表面をそれぞれ示している。The digital microscope image before and after processing of the single crystal SiC (0001) surface (as-slice plane) is shown, (a) shows the surface before processing, and (b) shows the surface after processing.

符号の説明Explanation of symbols

1 ポリッシング装置、
2 酸化剤、
3 加工槽、
4 マグネット定盤、
5 回転軸、
6 回転軸、
7 被加工物、
8 ホルダー、
9 磁性微粒子、
10 永久磁石板、
11 NC加工装置、
12 酸化剤、
13 加工槽、
14 ホルダー、
15 マグネット加工ヘッド、
16 回転軸。
1 Polishing device,
2 oxidizing agents,
3 Processing tank,
4 Magnet surface plate,
5 rotation axis,
6 rotation axis,
7 Workpiece,
8 holders,
9 Magnetic fine particles,
10 Permanent magnet plate,
11 NC processing equipment,
12 Oxidizing agent,
13 Processing tank,
14 holders,
15 Magnet processing head,
16 Axis of rotation.

Claims (11)

酸化剤の溶液中に被加工物を配し、定盤若しくは加工ヘッドに磁場により拘束し、空間的に制御された遷移金属の磁性微粒子を、被加工物の被加工面に極低荷重のもとで接触させるとともに、被加工面と磁性微粒子とを相対的に変位させ、前記磁性微粒子の触媒作用により、磁性微粒子表面上で生成した酸化力を持つ活性種と被加工物の表面原子との化学反応で生成した化合物を除去、あるいは溶出させることによって被加工物を加工することを特徴とする磁性微粒子を用いた触媒化学加工方法。   A workpiece is placed in an oxidizer solution, restrained by a magnetic field on a platen or machining head, and magnetic particles of a spatially controlled transition metal are applied to the workpiece surface with a very low load. The surface of the work piece and the active species having the oxidizing power generated on the surface of the magnetic fine particle by the catalytic action of the magnetic fine particle are displaced by relatively displacing the work surface and the magnetic fine particle. A catalytic chemical processing method using magnetic fine particles, wherein a workpiece is processed by removing or eluting a compound generated by a chemical reaction. 前記酸化剤がH22である請求項1記載の磁性微粒子を用いた触媒化学加工方法。 The catalytic chemical processing method using magnetic fine particles according to claim 1, wherein the oxidizing agent is H 2 O 2 . 前記磁性微粒子が、Fe、Ni、Coから選択した1種又は2種以上の組み合わせ、あるいはFe、Ni又はCoを含む化合物若しくは合金からなる請求項1又は2記載の磁性微粒子を用いた触媒化学加工方法。   3. Catalytic chemical processing using magnetic fine particles according to claim 1 or 2, wherein the magnetic fine particles comprise one or a combination of two or more selected from Fe, Ni and Co, or a compound or alloy containing Fe, Ni or Co. Method. 前記被加工物が、結晶性SiC、焼結SiC、GaN、サファイヤ、ルビー、ダイヤモンド、ガラスの内から選ばれた1種である請求項1〜3何れかに記載の磁性微粒子を用いた触媒化学加工方法。   The catalytic chemistry using magnetic fine particles according to any one of claims 1 to 3, wherein the workpiece is one selected from crystalline SiC, sintered SiC, GaN, sapphire, ruby, diamond, and glass. Processing method. 前記酸化剤がH22、磁性微粒子がFe、被加工物がSiC、GaN又はダイヤモンドであり、フェントン反応を利用して加工する請求項1記載の磁性微粒子を用いた触媒化学加工方法。 The catalytic chemical processing method using magnetic fine particles according to claim 1, wherein the oxidizing agent is H 2 O 2 , the magnetic fine particles are Fe, the workpiece is SiC, GaN, or diamond, and processing is performed using the Fenton reaction. 酸化剤を入れた加工槽と、
前記加工槽内の底面部に設け、回転あるいは偏心運動が可能なマグネット定盤と、
前記加工槽内に前記マグネット定盤と対面させて配し、前記マグネット定盤の回転軸に対して偏心した回転軸を有する被加工物のホルダーと、
前記マグネット定盤の表面に遷移金属の磁性微粒子を磁場により拘束し、前記ホルダーに保持した被加工物の被加工面を前記磁性微粒子に極低荷重のもとで接触させ、前記マグネット定盤とホルダーの双方又は一方を回転させて、被加工物の被加工面を平坦化加工することを特徴とする磁性微粒子を用いた触媒化学加工装置。
A processing tank containing an oxidizing agent,
A magnet surface plate that is provided on the bottom surface in the processing tank and is capable of rotating or eccentric movement;
A holder for a workpiece having a rotation axis that is eccentric with respect to the rotation axis of the magnet surface plate, arranged facing the magnet surface plate in the processing tank,
The magnetic fine particles of transition metal are restrained by the magnetic field on the surface of the magnet surface plate, the work surface of the work piece held by the holder is brought into contact with the magnetic fine particles under an extremely low load, and the magnet surface plate A catalytic chemical processing apparatus using magnetic fine particles, characterized in that both or one of the holders is rotated to flatten a processing surface of a workpiece.
酸化剤を入れた加工槽と、
前記加工槽内の底面部に設け、被加工物を保持するとともに、平面内で往復移動あるいは回転可能な被加工物のホルダーと、
前記加工槽内に前記ホルダーと対面させて配し、回転可能なマグネット加工ヘッドと、
前記マグネット加工ヘッドの表面に遷移金属の磁性微粒子を磁場により拘束し、前記ホルダーに保持した被加工物の被加工面を前記磁性微粒子に極低荷重のもとで接触させ、前記マグネット加工ヘッドを回転させながら前記ホルダーを往復移動あるいは回転させて、被加工物の被加工面を任意の自由曲面形状に加工することを特徴とする磁性微粒子を用いた触媒化学加工装置。
A processing tank containing an oxidizing agent,
Provided on the bottom surface in the processing tank, holding the workpiece, holder of the workpiece that can be reciprocated or rotated in a plane,
A magnet processing head that is arranged to face the holder in the processing tank and is rotatable;
A magnetic fine particle of a transition metal is constrained by a magnetic field on the surface of the magnet machining head, a work surface of a work piece held on the holder is brought into contact with the magnetic fine particle under an extremely low load, and the magnet machining head is A catalytic chemical processing apparatus using magnetic fine particles, wherein the processing surface of a workpiece is processed into an arbitrary free-form surface shape by reciprocating or rotating the holder while rotating.
前記酸化剤がH22である請求項6又は7記載の磁性微粒子を用いた触媒化学加工装置。 The catalytic chemical processing apparatus using magnetic fine particles according to claim 6 or 7, wherein the oxidizing agent is H 2 O 2 . 前記磁性微粒子が、Fe、Ni、Coから選択した1種又は2種以上の組み合わせ、あるいはFe、Ni又はCoを含む化合物若しくは合金からなる請求項1〜3何れかに記載の磁性微粒子を用いた触媒化学加工装置。   The magnetic fine particles according to any one of claims 1 to 3, wherein the magnetic fine particles comprise one or a combination of two or more selected from Fe, Ni, and Co, or a compound or alloy containing Fe, Ni, or Co. Catalytic chemical processing equipment. 前記被加工物が、結晶性SiC、焼結SiC、GaN、サファイヤ、ルビー、ダイヤモンド、ガラスの内から選ばれた1種である請求項6〜10何れかに記載の磁性微粒子を用いた触媒化学加工装置。   The catalytic chemistry using magnetic fine particles according to any one of claims 6 to 10, wherein the workpiece is one selected from crystalline SiC, sintered SiC, GaN, sapphire, ruby, diamond, and glass. Processing equipment. 前記酸化剤がH22、磁性微粒子がFe、被加工物がSiC、GaN又はダイヤモンドであり、フェントン反応を利用して加工する請求項6又は7記載の磁性微粒子を用いた触媒化学加工装置。
The catalytic chemical processing apparatus using magnetic fine particles according to claim 6 or 7, wherein the oxidizing agent is H 2 O 2 , the magnetic fine particles are Fe, the workpiece is SiC, GaN, or diamond, and is processed using a Fenton reaction. .
JP2006247659A 2006-09-13 2006-09-13 Catalytic chemical processing method and apparatus using magnetic fine particles Active JP4982742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247659A JP4982742B2 (en) 2006-09-13 2006-09-13 Catalytic chemical processing method and apparatus using magnetic fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247659A JP4982742B2 (en) 2006-09-13 2006-09-13 Catalytic chemical processing method and apparatus using magnetic fine particles

Publications (2)

Publication Number Publication Date
JP2008071857A true JP2008071857A (en) 2008-03-27
JP4982742B2 JP4982742B2 (en) 2012-07-25

Family

ID=39293211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247659A Active JP4982742B2 (en) 2006-09-13 2006-09-13 Catalytic chemical processing method and apparatus using magnetic fine particles

Country Status (1)

Country Link
JP (1) JP4982742B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243838A (en) * 2007-03-23 2008-10-09 Sharp Corp Method of processing workpiece and wiring formation method, and method of manufacturing semiconductor substrate
JP2009099609A (en) * 2007-10-12 2009-05-07 Kumamoto Univ Processing device and processing method
JP2009117782A (en) * 2007-10-15 2009-05-28 Ebara Corp Flattening method and flattening apparatus
WO2011074691A1 (en) * 2009-12-15 2011-06-23 Osaka University Polishing method, polishing apparatus and polishing tool
JP2011129596A (en) * 2009-12-15 2011-06-30 Osaka Univ Polishing tool and polishing apparatus
JP2011146695A (en) * 2009-12-15 2011-07-28 Osaka Univ Polishing method and apparatus
JP2011176243A (en) * 2010-02-25 2011-09-08 Osaka Univ Precise processing method and device of hard-to-process material
WO2014104009A1 (en) * 2012-12-27 2014-07-03 Hoya株式会社 Mask blank substrate processing device, mask blank substrate processing method, mask blank substrate fabrication method, mask blank fabrication method, and transfer mask fabrication method
WO2014112409A1 (en) * 2013-01-18 2014-07-24 Hoya株式会社 Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
US8877082B2 (en) 2010-03-24 2014-11-04 National University Corporation Kumamoto University Method of processing surface of high-performance materials which are difficult to process
JP2015028629A (en) * 2013-07-04 2015-02-12 Hoya株式会社 Method of producing substrate, method of producing substrate for mask blank, method of producing mask blank, method of producing mask for transfer and substrate production apparatus
CN104745095A (en) * 2015-04-03 2015-07-01 清华大学 GaN thick membrane CMP composition and preparation method thereof
CN104838478A (en) * 2012-12-12 2015-08-12 昭和电工株式会社 Method for producing SIC substrate
JP2017100280A (en) * 2014-12-31 2017-06-08 東邦エンジニアリング株式会社 Flatness processing method and flatness processing device
CN108436749A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of the liquid metal burnishing device and method of electrode up and down motion
US10297475B2 (en) 2007-10-15 2019-05-21 Ebara Corporation Flattening method and flattening apparatus
EP4131343A4 (en) * 2020-04-03 2023-05-31 Mitsubishi Electric Corporation Polishing method, and production method for semiconductor substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202270A (en) * 1989-12-28 1991-09-04 Isuzu Motors Ltd Magnetic lapping machine
JP2001205555A (en) * 1999-11-16 2001-07-31 Denso Corp Mechanochemical polishing method and device
JP2002299294A (en) * 2001-03-30 2002-10-11 Toshiba Corp Chemical mechanical polishing processing system and method for manufacturing semiconductor device
JP2004327952A (en) * 2003-03-03 2004-11-18 Fujimi Inc Polishing composition
JP2005186239A (en) * 2003-12-26 2005-07-14 Hinomoto Kenmazai Kk Grinding method using magnetic abrasive grain, and grinder
JP2007283410A (en) * 2006-04-12 2007-11-01 Kumamoto Univ Catalyst support type chemical machining method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202270A (en) * 1989-12-28 1991-09-04 Isuzu Motors Ltd Magnetic lapping machine
JP2001205555A (en) * 1999-11-16 2001-07-31 Denso Corp Mechanochemical polishing method and device
JP2002299294A (en) * 2001-03-30 2002-10-11 Toshiba Corp Chemical mechanical polishing processing system and method for manufacturing semiconductor device
JP2004327952A (en) * 2003-03-03 2004-11-18 Fujimi Inc Polishing composition
JP2005186239A (en) * 2003-12-26 2005-07-14 Hinomoto Kenmazai Kk Grinding method using magnetic abrasive grain, and grinder
JP2007283410A (en) * 2006-04-12 2007-11-01 Kumamoto Univ Catalyst support type chemical machining method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243838A (en) * 2007-03-23 2008-10-09 Sharp Corp Method of processing workpiece and wiring formation method, and method of manufacturing semiconductor substrate
JP2009099609A (en) * 2007-10-12 2009-05-07 Kumamoto Univ Processing device and processing method
JP2012064972A (en) * 2007-10-15 2012-03-29 Ebara Corp Flattening method
JP2009117782A (en) * 2007-10-15 2009-05-28 Ebara Corp Flattening method and flattening apparatus
US10297475B2 (en) 2007-10-15 2019-05-21 Ebara Corporation Flattening method and flattening apparatus
US10916455B2 (en) 2007-10-15 2021-02-09 Ebara Corporation Flattening method and flattening apparatus
KR20120102109A (en) * 2009-12-15 2012-09-17 가부시키가이샤 에바라 세이사꾸쇼 Polishing method and polishing apparatus
JP2011146695A (en) * 2009-12-15 2011-07-28 Osaka Univ Polishing method and apparatus
JP2011129596A (en) * 2009-12-15 2011-06-30 Osaka Univ Polishing tool and polishing apparatus
US8912095B2 (en) 2009-12-15 2014-12-16 Osaka University Polishing method, polishing apparatus and polishing tool
WO2011074691A1 (en) * 2009-12-15 2011-06-23 Osaka University Polishing method, polishing apparatus and polishing tool
KR101754550B1 (en) 2009-12-15 2017-07-05 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Polishing tool and polishing apparatus
KR101692574B1 (en) 2009-12-15 2017-01-03 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Polishing method and polishing apparatus
JP2011176243A (en) * 2010-02-25 2011-09-08 Osaka Univ Precise processing method and device of hard-to-process material
US8877082B2 (en) 2010-03-24 2014-11-04 National University Corporation Kumamoto University Method of processing surface of high-performance materials which are difficult to process
US9502230B2 (en) 2012-12-12 2016-11-22 Showa Denko K.K. Method for producing SiC substrate
CN104838478A (en) * 2012-12-12 2015-08-12 昭和电工株式会社 Method for producing SIC substrate
TWI614568B (en) * 2012-12-27 2018-02-11 Hoya Corp Substrate processing apparatus for mask base, substrate processing method for mask base, method for manufacturing substrate for mask base, method for producing photomask substrate, and method for producing transfer mask
US10481488B2 (en) 2012-12-27 2019-11-19 Hoya Corporation Mask blank substrate processing device, mask blank substrate processing method, mask blank substrate fabrication method, mask blank fabrication method, and transfer mask fabrication method
JP5980957B2 (en) * 2012-12-27 2016-08-31 Hoya株式会社 Mask blank substrate processing apparatus, mask blank substrate processing method, mask blank substrate manufacturing method, mask blank manufacturing method, and transfer mask manufacturing method
WO2014104009A1 (en) * 2012-12-27 2014-07-03 Hoya株式会社 Mask blank substrate processing device, mask blank substrate processing method, mask blank substrate fabrication method, mask blank fabrication method, and transfer mask fabrication method
TWI609234B (en) * 2013-01-18 2017-12-21 Hoya Corp Method for producing substrate for mask base, method for producing photomask substrate, and method for producing transfer mask
KR20150108354A (en) * 2013-01-18 2015-09-25 호야 가부시키가이샤 Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
KR102228638B1 (en) * 2013-01-18 2021-03-16 호야 가부시키가이샤 Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
JPWO2014112409A1 (en) * 2013-01-18 2017-01-19 Hoya株式会社 Mask blank substrate manufacturing method, mask blank manufacturing method, and transfer mask manufacturing method
JP2016128377A (en) * 2013-01-18 2016-07-14 Hoya株式会社 Method for manufacturing mask blank substrate, method for manufacturing mask blank, and method for manufacturing mask for transfer
JP5882504B2 (en) * 2013-01-18 2016-03-09 Hoya株式会社 Mask blank substrate manufacturing method, mask blank manufacturing method, and transfer mask manufacturing method
WO2014112409A1 (en) * 2013-01-18 2014-07-24 Hoya株式会社 Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
US10310373B2 (en) 2013-01-18 2019-06-04 Hoya Corporation Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
JP2015028629A (en) * 2013-07-04 2015-02-12 Hoya株式会社 Method of producing substrate, method of producing substrate for mask blank, method of producing mask blank, method of producing mask for transfer and substrate production apparatus
JP2017100280A (en) * 2014-12-31 2017-06-08 東邦エンジニアリング株式会社 Flatness processing method and flatness processing device
CN104745095A (en) * 2015-04-03 2015-07-01 清华大学 GaN thick membrane CMP composition and preparation method thereof
CN104745095B (en) * 2015-04-03 2017-06-06 清华大学 A kind of GaN thick films piece CMP composition and preparation method thereof
CN108436749A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of the liquid metal burnishing device and method of electrode up and down motion
CN108436749B (en) * 2018-05-21 2024-03-12 浙江工业大学 Liquid metal polishing device and method with electrode moving up and down
EP4131343A4 (en) * 2020-04-03 2023-05-31 Mitsubishi Electric Corporation Polishing method, and production method for semiconductor substrate

Also Published As

Publication number Publication date
JP4982742B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4982742B2 (en) Catalytic chemical processing method and apparatus using magnetic fine particles
JP4873694B2 (en) Catalyst-assisted chemical processing method
JP5963223B2 (en) Glass material processing method and apparatus
US20080073222A1 (en) Catalyst-aided chemical processing method and apparatus
US10163645B2 (en) Method for processing wide-bandgap semiconductor substrate and apparatus therefor
JP2008081389A (en) Catalyst-aided chemical processing method and apparatus
JP5343250B2 (en) Catalyst-assisted chemical processing method and processing apparatus using the same
JP2008121099A (en) Catalyst-aided chemical processing method and apparatus
JP2006114632A (en) Catalyst-assisted chemical processing method
JP2008136983A (en) Catalyst-aided chemical processing method and apparatus
JP2011200944A (en) Machining method
Yin et al. Effect of using high-pressure gas atmosphere with UV photocatalysis on the CMP characteristics of a 4H-SiC substrate
JP6188152B2 (en) Method and apparatus for planarizing Si substrate
JP5315573B2 (en) Processing apparatus and processing method
JP6797409B2 (en) Catalyst surface standard etching method and its equipment
JP2015127078A (en) Processing method and processing device
JP2013121649A (en) Abrasive material
JP2001237203A (en) Silicon wafer polishing liquid and polishing method by use thereof
JP2005131755A (en) Polishing device and polishing method for hard material
JP2006000962A (en) Polishing device and polishing method
JP2023103839A (en) Semiconductor wafer surface processing method
JP2005255881A (en) Magnetic abrasive grain and magnetic abrasive fluid
JP2005158759A (en) Alkaline processing technique for silicon material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090907

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120228

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20120321

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150