JPS60177870A - Magnetic polishing material - Google Patents

Magnetic polishing material

Info

Publication number
JPS60177870A
JPS60177870A JP3035784A JP3035784A JPS60177870A JP S60177870 A JPS60177870 A JP S60177870A JP 3035784 A JP3035784 A JP 3035784A JP 3035784 A JP3035784 A JP 3035784A JP S60177870 A JPS60177870 A JP S60177870A
Authority
JP
Japan
Prior art keywords
polishing
magnetic
powder
ferromagnetic
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3035784A
Other languages
Japanese (ja)
Inventor
Fumio Kagawa
香川 文男
Eijiyuu Hatano
波田野 栄十
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO KENMAZAI KOGYO KK
Resonac Holdings Corp
Original Assignee
TOYO KENMAZAI KOGYO KK
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO KENMAZAI KOGYO KK, Showa Denko KK filed Critical TOYO KENMAZAI KOGYO KK
Priority to JP3035784A priority Critical patent/JPS60177870A/en
Publication of JPS60177870A publication Critical patent/JPS60177870A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • C09K3/1445Composite particles, e.g. coated particles the coating consisting exclusively of metals

Abstract

PURPOSE:To improve the polishing efficiency and the accuracy of a polished surface by coating the surface of the individual particle of the ferromagnetic powder as basic core, with the grinding-grains such as fused alumina, silicon carbide as the conventional polishing material and the grinding-grains such as silica and garnet as natural polishing material, and preparing a polishing material through the joining of the above-described powder as basic core and ferromagnetic material. CONSTITUTION:The magnetic material such as iron powder and ferrochrome having a particle size of about 80-325 mesh is used as core material 1, and the minute polishing powder such as fused alumina is used as minute polishing powder 2, and sodium silicate, thermosetting phenol resin, etc. are used as binding agent 3, and these three components are sufficiently mixed, and heated if necessary, and a magnetic polishing material is formed. Through the above-described method, a variety of polishing material can be prepared in accordance with the working object, and the press-contact force of a polishing brush for a workpiece which is generated between N and S magnetic poles can be varied arbitrarily according to the magnitude of the particle size of the ferromagnetic material which forms the basic core. Since the rigidity of the polishing brush which is formed in the magnetic field is generally proportional to the square of the particle size of the ferromagnetic material which forms the basic core, the range of the working amount can be widened by adjusting the particle size of the ferromagnetic material.

Description

【発明の詳細な説明】 (発明の対象) 本発明は磁性研磨材、とくに磁界を利用する表面仕上げ
、またはパリ取シにおいて利用される磁性研磨材に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Object of the Invention) The present invention relates to a magnetic abrasive material, particularly to a magnetic abrasive material used in surface finishing or deburring using a magnetic field.

(従来技術) 従来、機械部品等、たとえばベアリング、ねぢ、時計枠
、金型などの研磨には、パブ研磨、ベルト研、磨、バレ
ル研磨、弾性砥石研磨等の機械的研磨のほか人的研磨が
知られてお9、ことに比較的最新の技術として磁気研磨
が知られているが研磨能率の低いことに欠点があった。
(Prior art) Conventionally, mechanical parts such as bearings, screws, clock frames, molds, etc. have been polished using manual polishing methods such as pub polishing, belt polishing, polishing, barrel polishing, and elastic grindstone polishing. Magnetic polishing is known as a relatively new technique, but it has the drawback of low polishing efficiency.

また磁気研磨として例えば対向するN−5磁極間に強磁
性体研磨材料を装入していわゆる研磨プランを形成し、
加工物体に対して圧接力を生せしめて表面を研磨仕上げ
することは公知であるがこの場合、強磁性体にはフェロ
クロム、センダスト、サーメット粉末等が使用されるが
、研磨性能が低く、またいづれも粉砕、分級過程を必要
とし、ことにサーメットにおいては更に焼成過程をも必
要とするため多大の時間、労力を要し製造コ、スト高を
招く欠点があった。
In addition, for magnetic polishing, for example, a ferromagnetic polishing material is inserted between opposing N-5 magnetic poles to form a so-called polishing plan.
It is known that the surface of the workpiece is polished by applying pressure to it. In this case, ferromagnetic materials such as ferrochrome, sendust, and cermet powder are used, but their polishing performance is low, and However, cermets also require a pulverization and classification process, and in particular, cermets require a firing process, which requires a great deal of time and labor, resulting in high manufacturing costs and labor costs.

(発明の目的) 本発明の目的は上記従来法の非能率、コスト高等を解消
すると共に研磨面精度および研磨方向上のため強磁性粉
粒体を中核とし、これに通常の研磨材たとえば溶融アル
ミナ質、炭化珪素質、炭化硼素、窒化硼素、合成ダイヤ
モンド等の砥粒あるいは天然研磨材たとえばシリカ、ガ
ーネット等の砥粒を上記中核強磁性粉粒体の個々の粒子
表面にコーティングし、該強磁性体と強固に結合させた
磁性研磨材を提供することにある。
(Objective of the Invention) The object of the present invention is to eliminate the inefficiency and high cost of the above-mentioned conventional methods, and to improve polishing surface accuracy and polishing direction, the core of the present invention is ferromagnetic powder, and a conventional polishing material such as fused aluminium is used as the core. Abrasive grains such as silicon carbide, boron carbide, boron nitride, synthetic diamond, etc. or abrasive grains of natural abrasive materials such as silica, garnet, etc. are coated on the surface of each particle of the core ferromagnetic powder, and the ferromagnetic An object of the present invention is to provide a magnetic abrasive material that is firmly bonded to the body.

(発明の構成) 本発明の磁性研磨材は強磁性体微粉を芯材とし、その周
囲に研磨微粉を結合剤(バインダー)によって固着した
磁性研磨材でちゃ、その態様は第1図に模式的に示した
通υである。
(Structure of the Invention) The magnetic abrasive material of the present invention is a magnetic abrasive material in which the core material is ferromagnetic fine powder, and the abrasive fine powder is fixed around the core material by a binder. Its mode is schematically shown in FIG. This is the general rule shown in .

芯材1には鉄粉、センダスト、フェロクロム、サーメッ
ト等が使用されるが磁性物質であれば上記物質に限定さ
れない。芯材の粒度は80〜325メツシーの範囲を適
当とし、80メソシ一以上の粗粒、325メ、ノー以下
の微粒は磁場における粒子の空隙率ひいては磁場内のブ
ラシ状粒子分布状態罠影響し、研磨効率低下の原因とな
るため極力避ける必要がある。また芯材粒子の形状は球
状あるいは多角形状のものかあシ被研磨物質の種類、材
質によりいづれも使用しうる。
The core material 1 may be made of iron powder, sendust, ferrochrome, cermet, etc., but is not limited to the above-mentioned materials as long as it is a magnetic material. The particle size of the core material is suitably in the range of 80 to 325 mesh. Coarse particles of 80 mesh or more, fine particles of 325 mesh or less will affect the porosity of the particles in the magnetic field and the brush-like particle distribution state in the magnetic field. This should be avoided as much as possible since it causes a decrease in polishing efficiency. The shape of the core material particles may be spherical or polygonal depending on the type and material of the material to be polished.

研磨微粉としては溶融アルミナ(質)、炭化珪素(質)
、炭化硼素、窒化硼素、合成ダイヤモンド等の合成砥粒
およびシリカ、ガーネット、エメリー等の天然砥粒が好
適である。
As polishing fine powder, fused alumina (quality) and silicon carbide (quality) are used.
Synthetic abrasive grains such as , boron carbide, boron nitride, and synthetic diamond, and natural abrasive grains such as silica, garnet, and emery are suitable.

芯材と研磨微粉2を結合する結合剤3には無機物質とし
ては珪酸ンコダ等、有機物質としては熱硬化性フェノー
ル樹脂、不飽和ポリエステル、エポキシ樹脂等、熱可塑
性Iリエチレン、コ6ム等が使用される。
The binder 3 that binds the core material and the abrasive fine powder 2 includes inorganic substances such as silicic acid, organic substances such as thermosetting phenol resin, unsaturated polyester, epoxy resin, thermoplastic I-lyethylene, and the like. used.

上記の芯材、研磨材微粉および結合剤を用いて本発明磁
性研磨剤の製法を次に述べる。
A method for producing the magnetic abrasive of the present invention using the above-mentioned core material, abrasive fine powder, and binder will be described below.

芯材たとえば還元鉄粉にまづ結合剤たとえば熱硬化性フ
ェノール樹脂を混合して充分に混練し、次いで研磨材た
とえばアルミナ粉末を添加して混線をつづけ、この際結
合剤が不足するときは更にこれを追加し三者が充分に混
和されるまでつづけ、必要に応じ三者の不足分を添加す
る。このようにして前記第1図に示すような芯材を研磨
材微粉がコーティングして固着した本発明磁性研磨材が
得られる。
First, a core material such as reduced iron powder is mixed with a binder such as a thermosetting phenol resin and thoroughly kneaded, and then an abrasive material such as alumina powder is added and mixing is continued. Add this and continue until the three ingredients are thoroughly mixed, and add the missing amount of the three ingredients as necessary. In this way, a magnetic abrasive of the present invention is obtained in which the core material is coated and fixed with abrasive fine powder as shown in FIG.

王者の、望ましい調合比の範囲は次の通りである。The desirable mixing ratio range for the champion is as follows.

芯 材 100重量% 微粉 15〜20〃 結合剤 5〜7 〃 上記混練に際し必要に応じて150〜180℃、20〜
40分間の混練物加熱を行い研磨材の硬化を行うことに
よ9本磁性研磨材の仕上げを十分にする。特に熱硬化性
樹脂を結合剤に使用する場合加熱混練は効果的である。
Core material 100% by weight Fine powder 15-20 Binder 5-7 150-180°C, 20-20°C as necessary during the above kneading
By heating the kneaded material for 40 minutes and hardening the abrasive, the nine magnetic abrasives were sufficiently finished. Heat kneading is particularly effective when a thermosetting resin is used as a binder.

上記の通り本磁性研磨材は強磁性体を中核とし、その表
面に研磨材をコーティングし両者を結合剤によって強固
に結合せしめるため研磨材の種類、粒度を、加工目的に
応じて選択する自由度が極めて広いのみならず中核とな
る強磁性体の粒度の大小によpN−8両磁極間に生ずる
研磨ブラシの、加工物体に対する圧接力を任意に変化さ
せることを可能とするので、かシにコーティングした研
磨材の粒度全一定とする場合においても磁場内で生ずる
研磨ブラシの剛さは中核強磁性体の粒度によ− って調
整することができ、強磁性体の粒度が大であるほど加工
量は増加することができる。一般に上記磁場内に生ずる
研磨ブラシの剛さけ中核となる強磁性体の粒度の2乗に
比例するため強磁性体の粒度調整によシ加工量の可能範
囲を広くとることができるのは本磁性研磨材の特徴であ
ると謂うことができる。
As mentioned above, this magnetic abrasive material has a core of ferromagnetic material, and its surface is coated with an abrasive material, and the two are firmly bonded by a binder, so there is flexibility in selecting the type and particle size of the abrasive material according to the processing purpose. Not only is it extremely wide, but it also makes it possible to arbitrarily change the pressing force of the polishing brush against the workpiece, which is generated between the two pN-8 magnetic poles, depending on the particle size of the core ferromagnetic material. Even when the grain size of the coated abrasive is constant, the stiffness of the polishing brush generated in the magnetic field can be adjusted by the grain size of the core ferromagnetic material, and the larger the grain size of the ferromagnetic material, the more The amount of processing can be increased. In general, the stiffness of the polishing brush that occurs in the magnetic field is proportional to the square of the grain size of the core ferromagnetic material, so by adjusting the grain size of the ferromagnetic material, the possible range of processing amount can be widened. This can be said to be a characteristic of abrasive materials.

本磁性研磨材の磁気特性を従来通常使用されるセンダス
トおよびフェロクロムに比較するに、同一励磁電流に対
する磁束密度、磁場内被研磨体引抜抵抗(磁場方向に直
角方向)において第1表に示す通シ、本磁性研磨材は実
用範囲(励磁電流−1,0〜3.0アンペア)において
フェロクロムの約3倍の磁束密度、引抜抵抗を示し、セ
ンダストの磁束密度、引抜抵抗にもまさることが実証さ
れた。
Comparing the magnetic properties of this magnetic abrasive with conventionally commonly used sendust and ferrochrome, the magnetic flux density for the same excitation current and the pull-out resistance of the polished object in the magnetic field (direction perpendicular to the magnetic field direction) are as shown in Table 1. It has been demonstrated that this magnetic abrasive exhibits approximately three times the magnetic flux density and pull-out resistance of ferrochrome in the practical range (excitation current -1.0 to 3.0 amperes), and is superior to the magnetic flux density and pull-out resistance of Sendust. Ta.

(第1表)磁束密度、引抜抵抗の比較 上段B−磁束密度(Te5la ) 下段F−引抜抵抗〔kg〕 また透磁率(磁気誘導/磁界強度)については第2表に
示す通り本磁性研磨材社センダストにほぼ匹敵するか、
これにまさる成績が得られた。
(Table 1) Comparison of magnetic flux density and withdrawal resistance Upper row B - Magnetic flux density (Te5la) Lower row F - Withdrawal resistance [kg] The magnetic permeability (magnetic induction/magnetic field strength) of this magnetic abrasive material is as shown in Table 2. Is it almost comparable to Sendust?
We obtained better results than this.

(第2表)透磁率の比較 更−一定時間における加工量についても本磁性研磨材は
センダスト、フェロクロムよりも格段にすぐれた成績を
収めたことは第3表に示す通りである。
(Table 2) Comparison of magnetic permeability - As shown in Table 3, the present magnetic abrasive achieved much better results than Sendust and Ferrochrome in terms of the amount of processing in a given period of time.

(第3表)加工量の比較 (但しA:純アルミニウム材、B:5US304ステン
レス鋼材。加工時間3分) 被研磨材の表面あらさについても本磁性研磨材使用によ
る仕上度は従来のセンダストおよびフェロクロム使用の
場合に比べ数段すぐれていることが判明した。
(Table 3) Comparison of machining amount (A: pure aluminum material, B: 5US304 stainless steel material. Machining time: 3 minutes) Regarding the surface roughness of the polished material, the finish using this magnetic abrasive is better than that of conventional sendust and ferrochrome. It was found that this method was much better than the case of using the method.

実施例1 芯材として還元鉄粉(幅圧金属箔粉工業(株)製、粒度
80〜120メ、シー0.8重量%、120〜145メ
ツシユ176重量%、145〜200メツシュ33.0
重量%、200〜250メツシユ17.6重量%、25
0〜350メツシユ108重量%、350メツシ一下2
02重量係)1kgに対し、アルミナ粉末(昭和軽金属
@)製JIS規格WA+2000 )80ノ、レゾール
型フェノール樹脂(昭和ユニオン合成(株)製BRL 
−20’7 ) 30ノを充分に混合し、さらにこの混
合物に対して再び上記と同一のアルミナ110y−、フ
ェノール樹脂35y−を添加して全体を充分に混練する
と共に170℃1,30分間の硬化を行い本発明の磁性
研磨材を製造した。木材は不定形を有する磁性研磨材で
あった。
Example 1 Reduced iron powder (manufactured by Hakuhan Metal Foil Powder Co., Ltd., particle size 80-120 mesh, sea 0.8% by weight, 120-145 mesh 176% by weight, 145-200 mesh 33.0% as core material)
Weight %, 200-250 mesh 17.6 weight %, 25
0 to 350 mesh 108% by weight, 350 mesh 1/2
02 weight section) 1 kg, alumina powder (JIS standard WA + 2000 manufactured by Showa Light Metal @) 80, resol type phenolic resin (BRL manufactured by Showa Union Gosei Co., Ltd.)
-20'7) 30g was thoroughly mixed, and the same alumina 110y- and phenolic resin 35y- as above were again added to this mixture, the whole was thoroughly kneaded, and the mixture was heated at 170°C for 1.30 minutes. The magnetic abrasive material of the present invention was manufactured by curing. The wood was a magnetic abrasive with an irregular shape.

本磁性研磨材の磁束密度および引抜抵抗と励磁電流との
関係は第2図に示す通シであシ、前記第1表に示す成績
とほぼ均等の成績を示すものであった。また透磁率は1
.51μsgであった。
The relationship between the magnetic flux density, drawing resistance, and excitation current of this magnetic abrasive material was as shown in FIG. 2, and the results were almost the same as those shown in Table 1 above. Also, the magnetic permeability is 1
.. It was 51 μsg.

木材を用いて純アルミニウム材および5US304ステ
ンレス鋼材(いづれも丸棒形状体)を回転数180 O
r、p、m、にて回転せしめ、励磁電流0.6Aの磁場
内にて3分間加工研磨した結果、加工量はそれぞれ26
0〜および48■であった。
Using wood, pure aluminum material and 5US304 stainless steel material (both round bar shapes) were rotated at 180 O.
As a result of rotating at r, p, m, and machining and polishing for 3 minutes in a magnetic field with an excitation current of 0.6A, the machining amount was 26.
It was 0 to 48 ■.

同一条件においてセンダストおよびフェロクロムを使用
して実施した加工試験においては加工量はセンダストに
おいてそれぞれ08〜および1.2W。
In machining tests carried out using Sendust and Ferrochrome under the same conditions, the machining amounts for Sendust were 08 to 1.2W and 1.2W, respectively.

フェロクロムにおいてそれぞれ0.3 myおよび0.
4岬を示すにすぎなかった。これにより木材の加工量の
卓越性は明らかである。
0.3 my and 0.3 my in ferrochrome, respectively.
It merely marked four capes. This clearly shows the outstanding amount of wood processing.

また上記加工において得られた被研磨材表面のあらさを
めた結果第3図に示すような表面あらさく断面凹凸によ
り示す)が得られた。これによれば木材使用による研磨
面は従来のセンダストおよびフェロクロム使用の場合に
比し平滑性においていちじるしくすぐれていることは明
らかである。
Further, as a result of measuring the roughness of the surface of the material to be polished obtained in the above processing, a surface roughness as shown in FIG. 3 was obtained (shown by unevenness in cross section). According to this, it is clear that the smoothness of the polished surface obtained by using wood is significantly superior to that obtained by using conventional sendust and ferrochrome.

実施例2 実施例1と同一の鉄粉1 kgに対しアルミナ粉(JI
S規格WA≠6000F、 ) 190 y−1熱硬化
性エポキシ樹脂55?を混和し180℃、40分間の硬
化を行い本磁性研磨材を得た。
Example 2 Alumina powder (JI
S standard WA≠6000F, ) 190 Y-1 thermosetting epoxy resin 55? were mixed and cured at 180° C. for 40 minutes to obtain the present magnetic abrasive material.

木材について磁束密度、引抜抵抗の励磁電流による変化
をめ、た結果第4図を得た。比較のためセンダストおよ
びフェロクロムの成績を同載したが本月の磁性の優位性
は明白である。透磁率は1.50μsgでありセンダス
トとほぼ均等のデータを得た。
Figure 4 was obtained as a result of measuring the changes in magnetic flux density and pulling resistance of wood due to excitation current. The results of Sendust and Ferrochrome are included for comparison, but the superiority of this month's magnetism is clear. The magnetic permeability was 1.50 μsg, which was almost the same as Sendust.

木材を用いて純アルミニウムおよび18−8ステンレス
鋼を実施例1と同一条件にて加工した′結果、加工量は
それぞれ27.5 mFおよび5.0 In?であった
。同一条件によるセンダストの場合にはそれぞれ0.9
 myおよび1.7 mW 、フェロクロムにおいては
それぞれ03mgおよび0.35■を得たにすぎなかっ
た。
Pure aluminum and 18-8 stainless steel were processed using wood under the same conditions as in Example 1, and the processed amounts were 27.5 mF and 5.0 In?, respectively. Met. In the case of Sendust under the same conditions, each is 0.9
my and 1.7 mW, and only 0.3 mg and 0.35 ■ were obtained for ferrochrome, respectively.

被研磨材表面のあらさけ第5図に示す通シであシ研磨面
の平滑性は従来のセンダストおよびフェロクロムに比較
して顕著な改善が認められる。
Roughness of the surface of the polished material The smoothness of the polished surface shown in FIG. 5 was significantly improved compared to conventional sendust and ferrochrome.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明磁性研磨材粒子モデル、第2図は木材(
実施例1)の磁束密度および引抜抵抗と励磁電流との関
係図、第3図は実施例工の被研磨材表面あらさ図、第4
図は木材(実施例2)の磁束密度および引抜抵抗と励磁
電流との関係図、第5図は実施例2の被研磨材表面あら
さ図。 1・・芯材、2 ・研磨材微粉、3・・結合剤特許出願
人 昭和電工株式会社 東洋研磨材工業株式会社 代理人弁理士 菊 地 精 − 第1図 熱実 1a線 第3図 5US304 加工後 加工う 5US304−一〜−一一一\−2 第4図
Figure 1 shows a model of the magnetic abrasive particles of the present invention, and Figure 2 shows wood (
Figure 3 is a diagram of the relationship between magnetic flux density, pull-out resistance, and excitation current in Example 1), Figure 3 is a diagram of the surface roughness of the material to be polished in Example work,
The figure is a diagram showing the relationship between magnetic flux density, extraction resistance, and excitation current of wood (Example 2), and FIG. 5 is a diagram showing the surface roughness of the material to be polished in Example 2. 1. Core material, 2. Fine abrasive powder, 3. Binder Patent applicant Showa Denko Co., Ltd. Toyo Abrasive Industry Co., Ltd. Representative patent attorney Sei Kikuchi - Figure 1 Atsushi 1a line Figure 3 5 US304 Processing Post-processing 5US304-1~-111\-2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 強磁性体を芯材とし、その周囲に研磨材微粉を結合剤に
よシ固着して成る磁性研磨材。
A magnetic abrasive material made by using a ferromagnetic material as a core material and surrounding it with fine abrasive powder fixed by a binder.
JP3035784A 1984-02-22 1984-02-22 Magnetic polishing material Pending JPS60177870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3035784A JPS60177870A (en) 1984-02-22 1984-02-22 Magnetic polishing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3035784A JPS60177870A (en) 1984-02-22 1984-02-22 Magnetic polishing material

Publications (1)

Publication Number Publication Date
JPS60177870A true JPS60177870A (en) 1985-09-11

Family

ID=12301602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3035784A Pending JPS60177870A (en) 1984-02-22 1984-02-22 Magnetic polishing material

Country Status (1)

Country Link
JP (1) JPS60177870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234166A (en) * 1988-03-15 1989-09-19 Showa Denko Kk Abrasive grain and manufacture thereof
JP2007302733A (en) * 2006-05-09 2007-11-22 Trial Corp Magnetic abrasive grain and method for producing the same
WO2018081044A1 (en) * 2016-10-25 2018-05-03 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
CN110256971A (en) * 2019-06-25 2019-09-20 常州精美特精密工具有限公司 A kind of carbide-base ceramics abrasive pastes and its preparation method and application method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532518A (en) * 1976-06-29 1978-01-11 Kamaya Kagaku Kogyo Co Ltd Method of applying matte coating on glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532518A (en) * 1976-06-29 1978-01-11 Kamaya Kagaku Kogyo Co Ltd Method of applying matte coating on glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234166A (en) * 1988-03-15 1989-09-19 Showa Denko Kk Abrasive grain and manufacture thereof
JP2652190B2 (en) * 1988-03-15 1997-09-10 昭和電工株式会社 Abrasive particles and method for producing the same
JP2007302733A (en) * 2006-05-09 2007-11-22 Trial Corp Magnetic abrasive grain and method for producing the same
WO2018081044A1 (en) * 2016-10-25 2018-05-03 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
US11597860B2 (en) 2016-10-25 2023-03-07 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
CN110256971A (en) * 2019-06-25 2019-09-20 常州精美特精密工具有限公司 A kind of carbide-base ceramics abrasive pastes and its preparation method and application method

Similar Documents

Publication Publication Date Title
CN100522487C (en) Porous abrasive tool and method for making the same
CN105538174B (en) A kind of emery wheel block and preparation method thereof, buffing wheel
JPS5882678A (en) Coarse tissue organic matter coupled grinding body
CN101745875A (en) Grinding tool mixed by abrasives
JPH0543462B2 (en)
CN108789187A (en) A kind of bronze base diamond grinding wheel and preparation method thereof
WO2023151245A1 (en) Surface friction treatment method for ceramic reinforced aluminum-based composite material brake disc
JPS60177870A (en) Magnetic polishing material
WO2014201272A1 (en) Abrasive tools and methods of forming the same
CN108818332A (en) A kind of superhard CBN grinding wheel and preparation method thereof
CN108818331A (en) A kind of bronze base CBN grinding wheel and preparation method thereof
CN110948407A (en) Preparation method of grinding tool
CN108818330A (en) A kind of grinding CBN grinding wheel and preparation method thereof
JP2884031B2 (en) Metal bond superabrasive grinding wheel and method of manufacturing the same
JPS62246474A (en) Manufacture of super abrasive grain grindstone for mirror-like surface finishing
JPS64183B2 (en)
CN208496776U (en) A kind of grinding rubber for preventing secondary scuffing technology based on absorption
JPS61182774A (en) Soft metal polishing wheel
USRE19318E (en) Abrasive article
JPH0215978A (en) Grinding tool
JPH0671554A (en) Magnetic polishing method
JP2005144653A (en) Resin bond diamond grinding wheel
JPS6224969A (en) Honing stick for aluminum alloy and its manufacture
Kumar et al. Modeling of Ceramic Bonded Grinding Wheel Structures
WO2022147432A1 (en) Abrasive article and method of use