JP2002170791A - Particle diffusion type mixedly functional fluid and machining method using the same - Google Patents

Particle diffusion type mixedly functional fluid and machining method using the same

Info

Publication number
JP2002170791A
JP2002170791A JP2000368307A JP2000368307A JP2002170791A JP 2002170791 A JP2002170791 A JP 2002170791A JP 2000368307 A JP2000368307 A JP 2000368307A JP 2000368307 A JP2000368307 A JP 2000368307A JP 2002170791 A JP2002170791 A JP 2002170791A
Authority
JP
Japan
Prior art keywords
particle
particles
processing
functional fluid
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000368307A
Other languages
Japanese (ja)
Other versions
JP4141634B2 (en
Inventor
Yoichi Akagami
陽一 赤上
Kunio Shimada
邦雄 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Original Assignee
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture filed Critical Akita Prefecture
Priority to JP2000368307A priority Critical patent/JP4141634B2/en
Publication of JP2002170791A publication Critical patent/JP2002170791A/en
Application granted granted Critical
Publication of JP4141634B2 publication Critical patent/JP4141634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particle diffusion type mixedly functional fluid capable of improving the efficiency of existing precision treatment such as various precision machining parts such as a semiconductor silicon wafer, removal of a foreign matter or burr adhered on a surface and in a hole, finish of a side face of a recessed part or finish and cleaning of a side part of the recessed part, and capable of being used for finish machining of a cut face of an optical fiber, and to provide a machining method using the same. SOLUTION: The fluid is obtained by diffusing, as diffusion particles, (a) ferromagnetic particles having diameters of 0.5-50 μm and either one or both of (b) grit fine particles such as semiconductor particles or metallic particles having diameters of 0.1-50 μm and (c) magnetic fine particles having diameters of 25 nm or less, in a diffusion medium such as kerosine or silicon oil having kinematic viscosity of some 1-10,000 mm2/s and having electric insulation property.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体シリコンウ
エハ等の各種精密加工部品の仕上げ研磨、表面や孔内に
付着した異物またはバリの除去、凹部側面の仕上げ等や
側部の仕上げや洗浄等、既存の精密仕上げ処理の効率を
改善したり、光ファイバーの切断面の仕上げ加工などに
利用できる粒子分散型混合機能性流体及びそれを用いた
加工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to finish polishing of various precision machined parts such as semiconductor silicon wafers, removal of foreign matter or burrs adhering to the surface or in holes, finishing of concave side surfaces, and finishing and cleaning of side portions. The present invention relates to a particle-dispersed mixed functional fluid that can be used for improving the efficiency of existing precision finishing processing, finishing a cut surface of an optical fiber, and the like, and a processing method using the same.

【0002】[0002]

【従来の技術】近年、磁界や電界に応答する磁性流体や
磁界応答性(MR)流体、或いは電界応答性(ER)流
体などの各種機能性流体における研究が活発化し、一部
で工業製品化されているものもあるが、応用開発の面で
新たな展開が求められている。例えば研磨や仕上げなど
の加工においては、磁性流体を用いる例が知られてい
る。この場合、磁性流体中の微細な磁性微粒子には研磨
作用が殆ど期待できないため、砥粒微粒子を分散させた
混合流体が用いられ、磁界により誘起させた磁性流体で
砥粒微粒子を保持する状態で研磨が行われる。しかし、
このような磁性流体による研磨は、被加工面が球面など
の特殊形状を有する場合には好適であるものの、磁化の
強さが小さいため、研磨効率が低く、長時間の研磨時間
を要するという問題があり、用途の拡大が進んでいない
という現状がある。また、MR流体は、鉄粉等の強磁性
粒子を分散しているものであるため、磁界の印加によっ
て分散していた強磁性粒子が速やかに誘起されて集合
し、機械的強度の高い針状(数珠状)のクラスター(磁
性針状体)を形成するため、高い研磨効率を有する。し
かし、このようなMR流体による研磨は、磁性針状体の
制御が困難であって、比較的太く且つ形状も強度も不均
一な磁性針状体が形成されるため、この状態で加工圧が
加わると、磁性針状体によって被加工面にスクラッチ痕
が形成される。即ちこのようなMR流体は、粗い一次研
磨(研削)には用いられ得るが、より精微な研磨、仕上
げなどの加工には到底利用できなかった。また、そもそ
もこのMR流体における分散質(分散粒子)には一般的
に粒子径の大きな鉄粉等が用いられることも精微な研
磨、仕上げなどの加工に不向きな原因であった。
2. Description of the Related Art In recent years, research on various functional fluids such as a magnetic fluid, a magnetic field responsive (MR) fluid, and an electric field responsive (ER) fluid which respond to a magnetic field or an electric field has been activated, and some of them have been commercialized. Some are being developed, but new developments are required in application development. For example, in processing such as polishing and finishing, an example using a magnetic fluid is known. In this case, since the polishing action can hardly be expected on the fine magnetic fine particles in the magnetic fluid, a mixed fluid in which the abrasive fine particles are dispersed is used, and the abrasive particles are held by the magnetic fluid induced by the magnetic field. Polishing is performed. But,
Polishing with such a magnetic fluid is suitable when the surface to be processed has a special shape such as a spherical surface. However, since the magnetization intensity is small, the polishing efficiency is low and a long polishing time is required. There is a current situation that the expansion of applications is not progressing. In addition, since the MR fluid has ferromagnetic particles such as iron powder dispersed therein, the ferromagnetic particles dispersed by the application of a magnetic field are promptly induced and aggregated to form an acicular shape having high mechanical strength. It has high polishing efficiency because it forms (beaded) clusters (magnetic needles). However, in the polishing using such an MR fluid, it is difficult to control the magnetic needles, and a magnetic needle having a relatively large thickness and a non-uniform shape and strength is formed. When added, scratch marks are formed on the surface to be processed by the magnetic needles. That is, such an MR fluid can be used for rough primary polishing (grinding), but cannot be used for processing such as finer polishing and finishing. Further, the fact that iron powder having a large particle diameter is generally used as a dispersoid (dispersed particles) in the MR fluid is also unsuitable for processing such as fine polishing and finishing.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明者ら
は、従来にない有効な特性を有する新たな機能性流体を
開発し、前述の磁性流体による研磨やMR流体による研
磨における問題を解消し、好適に研磨や仕上げなどの加
工に適用できるような加工法を提案することを目的とす
る。
Accordingly, the present inventors have developed a new functional fluid having unprecedented effective characteristics, and have solved the above-mentioned problems in polishing with a magnetic fluid and polishing with an MR fluid. It is an object of the present invention to propose a processing method that can be suitably applied to processing such as polishing and finishing.

【0004】[0004]

【課題を解決するための手段】本発明は前記に鑑み提案
されたものであって、動粘度1〜10000mm2/s
の電気絶縁性を有するケロシンやシリコーンオイル等の
分散媒中に、分散粒子として、(a)粒子径0.5〜50
μmの強磁性粒子10〜40wt%と、(b)粒子径0.
1〜50μmの半導体粒子や金属粒子の砥粒微粒子10
〜40wt%とを分散させた粒子分散型混合機能性流体
に関するものである。
The present invention has been proposed in view of the above and has a kinematic viscosity of 1 to 10,000 mm 2 / s.
In a dispersion medium such as kerosene or silicone oil having an electrical insulating property, as dispersed particles, (a) particle diameter of 0.5 to 50
10 to 40 wt% of ferromagnetic particles having a particle size of (b)
Abrasive fine particles 10 of semiconductor particles or metal particles of 1 to 50 μm
The present invention relates to a particle-dispersed mixed functional fluid in which 40 wt% is dispersed.

【0005】また、本発明は、前記分散媒中に、分散粒
子として、(a)粒子径0.5〜50μmの強磁性粒子1
0〜40wt%と、(c)粒子径25nm以下の磁性微粒
子5〜20wt%とを分散させた粒子分散型混合機能性
流体をも提案する。
[0005] The present invention also relates to the present invention, as the dispersion particles, (a) ferromagnetic particles 1 having a particle diameter of 0.5 to 50 µm in the dispersion medium.
The present invention also proposes a particle-dispersed mixed functional fluid in which 0 to 40 wt% and (c) 5 to 20 wt% of magnetic fine particles having a particle diameter of 25 nm or less are dispersed.

【0006】さらに、本発明は、前記分散媒中に、分散
粒子として、(a)粒子径0.5〜50μmの強磁性粒子
10〜40wt%と、(b)粒子径0.1〜50μmの半
導体粒子や金属粒子の砥粒微粒子10〜40wt%と
(c)粒子径25nm以下の磁性微粒子5〜20wt%と
を分散させた粒子分散型混合機能性流体をも提案する。
Further, the present invention provides a method for preparing a dispersion medium comprising: (a) 10 to 40 wt% of ferromagnetic particles having a particle diameter of 0.5 to 50 μm; 10-40 wt% of abrasive particles of semiconductor particles and metal particles
(c) Also proposed is a particle-dispersed mixed functional fluid in which 5 to 20 wt% of magnetic fine particles having a particle diameter of 25 nm or less are dispersed.

【0007】また、本発明は、これらの粒子分散型混合
機能性流体を加工試料の被加工面に臨ませた状態で繰り
返し極性が変化する変動磁界を与えながら加工を行うこ
とを特徴とする粒子分散型混合機能性流体を用いた加工
法をも提案する。
Further, the present invention is characterized in that the particles are processed while repeatedly applying a fluctuating magnetic field whose polarity changes in a state in which the particle-dispersed mixed functional fluid faces the surface of the sample to be processed. A processing method using a dispersed mixed functional fluid is also proposed.

【0008】[0008]

【発明の実施の形態】まず、本発明の粒子分散型混合機
能性流体を構成する材料について説明する。分散媒とし
ては、動粘度1〜10000mm2/s程度の電気絶縁
性を有する溶媒が用いられ、例えばケロシンやシリコー
ンオイル等が用いられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the materials constituting the particle-dispersed mixed functional fluid of the present invention will be described. As the dispersion medium, a solvent having a kinematic viscosity of about 1 to 10000 mm 2 / s having an electrical insulating property is used, and for example, kerosene, silicone oil, or the like is used.

【0009】分散粒子としては、前述のように(a)強磁
性粒子、(b)砥粒微粒子、(c)磁性微粒子が用いられる。 (a)強磁性粒子は、強磁性材料を素材とする粒子径0.
5〜50μmの粒子であって、好ましくは粒子径1〜1
0μmの粒子が用いられ、素材としては通常MR流体と
して用いられる分散質、例えば鉄や強磁性を示す金属等
が用いられる。 (b)砥粒微粒子は、半導体材料や金属材料を素材とする
粒子径0.1〜50μmの粒子であって、研磨対象物の
表面粗度によって適用する粒子径が異なる。素材として
は例えばダイヤモンドやコランダム、エメリー、ザクロ
石、珪石、焼成ドロマイト、溶融アルミナ、人造エメリ
ー、炭化珪素、ジルコニア、酸化クロム、酸化珪素、酸
化鉄、酸化カルシウム、酸化マグネシウム、酸化セリウ
ム、炭化マグネシウム、炭酸バリウム等が用いられ、被
加工面の素材及び加工精度に応じて硬さ(素材)、粒径
などを選択すれば良い。 (c)磁性微粒子は、粒子径25nm以下の、好ましくは
10nm程度の粒子が用いられる。通常磁性流体として
用いられる分散質、例えばマグネタイト等を用いても良
い。 また、分散性の向上を目的として各種界面活性剤等の分
散安定助剤を配合するようにしても良い。
As described above, (a) ferromagnetic particles, (b) abrasive particles, and (c) magnetic particles are used as the dispersed particles. (a) The ferromagnetic particles have a particle diameter of 0.
Particles having a particle size of 5 to 50 μm, preferably a particle size of 1 to 1
Particles of 0 μm are used, and as a material, a dispersoid usually used as an MR fluid, for example, iron or a metal exhibiting ferromagnetism is used. (b) The abrasive fine particles are particles having a particle diameter of 0.1 to 50 μm made of a semiconductor material or a metal material, and the particle diameter to be applied differs depending on the surface roughness of the object to be polished. Examples of the material include diamond, corundum, emery, garnet, silica, calcined dolomite, fused alumina, artificial emery, silicon carbide, zirconia, chromium oxide, silicon oxide, iron oxide, calcium oxide, magnesium oxide, cerium oxide, magnesium carbide, Barium carbonate or the like is used, and the hardness (material), particle size, and the like may be selected according to the material of the surface to be processed and the processing accuracy. (c) As the magnetic fine particles, particles having a particle diameter of 25 nm or less, preferably about 10 nm are used. A dispersoid usually used as a magnetic fluid, such as magnetite, may be used. Further, a dispersion stabilizing aid such as various surfactants may be blended for the purpose of improving dispersibility.

【0010】また、前記分散粒子の配合割合は以下のよ
うにして決定した。 (a)強磁性粒子の混合割合は、10〜40wt%である
が、10wt%より少ないと、砥粒を保持する能力が低
下するため、研磨効率が低下する。40wt%より多い
と、凝集を生じ易く、スクラッチ痕を発生し易くなるた
め、研磨特性が抑制される。 (b)砥粒微粒子の混合割合は、10〜40wt%である
が、10wt%より少ないと、研磨効率が低下する。4
0wt%より多いと、流動性が低下し、砥粒の転動性が
低下するため、研磨特性が抑制される。 (c)磁性微粒子の混合割合は、5〜20wt%である
が、5wt%より少ないと、(a)強磁性粒子を包みこめ
ず凝集を生じ易くなるため、研磨特性を低下させる。2
0wt%より多いと、(b)砥粒微粒子を保持する力が低
下するため、研磨効率が低下する。
[0010] The mixing ratio of the dispersed particles was determined as follows. (a) The mixing ratio of the ferromagnetic particles is 10 to 40% by weight. If the mixing ratio is less than 10% by weight, the ability to hold the abrasive grains is reduced, and the polishing efficiency is reduced. If the content is more than 40 wt%, aggregation easily occurs and scratch marks easily occur, so that the polishing characteristics are suppressed. (b) The mixing ratio of the abrasive particles is 10 to 40 wt%, but if it is less than 10 wt%, the polishing efficiency is reduced. 4
If it is more than 0 wt%, the fluidity is reduced and the rolling properties of the abrasive grains are reduced, so that the polishing characteristics are suppressed. (c) The mixing ratio of the magnetic fine particles is 5 to 20 wt%, but if it is less than 5 wt%, (a) the ferromagnetic particles are not wrapped and aggregation is easily caused, so that the polishing characteristics are deteriorated. 2
If the content is more than 0 wt%, (b) the force for holding the abrasive particles is reduced, so that the polishing efficiency is reduced.

【0011】前述のように本発明の粒子分散型混合機能
性流体は、分散粒子として(a)粒子径0.5〜50μm
の強磁性粒子を必須成分とし、(b)粒子径0.1〜50
μmの半導体粒子や金属粒子の砥粒微粒子と(c)粒子径
25nm以下の磁性微粒子との何れか一方或いは両方を
用いた構成であり、このような構成の流体に磁界を印加
させた場合の流体中の分散粒子の挙動について以下に説
明する。
As described above, the particle-dispersed mixed functional fluid of the present invention contains (a) a particle diameter of 0.5 to 50 μm as dispersed particles.
(B) particle size of 0.1 to 50
It is a configuration using one or both of abrasive fine particles of semiconductor particles and metal particles of μm and (c) magnetic fine particles having a particle diameter of 25 nm or less, and when a magnetic field is applied to a fluid having such a structure. The behavior of the dispersed particles in the fluid will be described below.

【0012】本発明の粒子分散型混合機能性流体に磁界
を印加すると、従来のMR流体と同様に(a)強磁性粒子
が相互に吸着し合い、磁性針状体を形成しようとする。
前述のように(a)強磁性粒子のみが分散されているMR
流体では、比較的太く且つ形状も強度も不均一な磁性針
状体が形成される。しかし、本発明の粒子分散型混合機
能性流体中には、(a)強磁性粒子ばかりでなくそれより
小さな(b)砥粒微粒子や(c)磁性微粒子も分散されている
ので、これらの(b)砥粒微粒子や(c)磁性微粒子が(a)強
磁性粒子の周囲を覆い、磁気シールド現象を呈している
ものと考えられ、(a)強磁性粒子同士の距離が広がり、
吸引力も低下し、平均化する。そのため、本発明の粒子
分散型混合機能性流体では、磁性針状体の太さや機械的
な強度並びに不均一な生成分布が改善され、相対的に細
く且つ形状も強度も分布も均一な磁性針状体が形成され
る。尚、この磁性針状体の機械的強度は、MR流体の場
合に比べて低く(柔軟に)なる。そして、これらの磁性
針状体は、被加工面に吸引されて集中する。一方、磁界
の印加が解除されれば、各分散粒子は一様に均一分散し
て流体化する。また、特に(b)砥粒微粒子は、形成され
た磁性針状体の表面に排出され(局在化し)、磁性針状
体の加工効率を促進する作用を果たすことが見出され
た。即ち、前述のように磁性針状体が柔らかく且つ相対
的に細くなったことによる加工の向上は認められるが、
磁性針状体を形成する(a)強磁性粒子としては一般的に
粒子径の大きな鉄粉等が用いられるので、より精度の高
い加工には十分満足できるものではない。粒子径が小さ
く且つ硬質な(b)砥粒微粒子が磁性針状体の表面に局在
化することにより、より一層加工効率は促進し、短時間
に、より高い加工精度にて加工を実施することができ
る。
When a magnetic field is applied to the particle-dispersed mixed functional fluid of the present invention, (a) the ferromagnetic particles are mutually adsorbed to form a magnetic needle like a conventional MR fluid.
As described above, (a) MR in which only ferromagnetic particles are dispersed
The fluid forms magnetic needles that are relatively thick and non-uniform in shape and strength. However, in the particle-dispersed mixed functional fluid of the present invention, not only (a) ferromagnetic particles but also smaller (b) abrasive particles and (c) magnetic particles are dispersed. b) abrasive grains and (c) magnetic fine particles cover the periphery of (a) ferromagnetic particles, it is considered that a magnetic shield phenomenon is exhibited, (a) the distance between ferromagnetic particles is widened,
The suction power is also reduced and averaged. Therefore, in the particle-dispersed mixed functional fluid of the present invention, the magnetic needles have improved thickness, mechanical strength, and non-uniform generation distribution, and are relatively thin and have uniform shape, strength, and uniform distribution. A shape is formed. The mechanical strength of the magnetic needles is lower (softer) than that of the MR fluid. These magnetic needles are attracted and concentrated on the surface to be processed. On the other hand, when the application of the magnetic field is cancelled, each dispersed particle is uniformly and uniformly dispersed and fluidized. In particular, it has been found that particularly (b) the abrasive fine particles are discharged (localized) to the surface of the formed magnetic needle-like body, and play an effect of promoting the processing efficiency of the magnetic needle-like body. That is, as described above, although the magnetic needle-shaped body is soft and relatively thin, an improvement in processing is recognized,
Generally, iron powder or the like having a large particle diameter is used as the ferromagnetic particles (a) forming the magnetic needle-shaped body, so that it is not sufficiently satisfactory for processing with higher precision. Small and hard (b) fine abrasive particles are localized on the surface of the magnetic needle-shaped body, thereby further promoting the processing efficiency and performing processing in a shorter time with higher processing accuracy. be able to.

【0013】但し、本発明の粒子分散型混合機能性流体
においても、直流磁場を与えたのでは十分に満足できる
加工が得られない。例えば仕上げ加工を例にすると、表
面粗さが鏡面に近似するような仕上げ面を得ることはで
きない。そこで、本発明の加工法は、前述のように適切
な変動磁界を与え、さらに被加工面と相対的に摺動させ
るようにしたので、被加工面に臨ませた粒子分散型混合
機能性流体中では、前記特性を有する磁性針状体の形成
(固体化)、その転動、液体化が連続的に繰り返される
こととなり、研磨や仕上げ等の加工において従来にない
優れた効果(満足できる加工)が得られる。
However, even with the particle-dispersed mixed functional fluid of the present invention, a sufficiently satisfactory processing cannot be obtained when a DC magnetic field is applied. For example, when finishing is taken as an example, it is not possible to obtain a finished surface whose surface roughness is close to a mirror surface. Therefore, the processing method of the present invention provides an appropriate fluctuating magnetic field as described above, and further slides relatively to the surface to be processed, so that the particle-dispersed mixed functional fluid facing the surface to be processed. Among them, the formation (solidification), rolling, and liquefaction of the magnetic needle-shaped body having the above characteristics are continuously repeated, and excellent effects (unsatisfactory processing) such as polishing and finishing have not been achieved in the past. ) Is obtained.

【0014】本発明の加工法では、前述のように直流磁
界を与えるのではなく、0.01〜10Hzの低周波数
磁場を繰り返し極性が変化する方形波を基本とし、繰り
返し極性またはパルス状の波形で変化させ、デュウティ
比は30から70%の変動磁界を与える。特に加工量が
大きい加工においては立ち上がりの良い方形波とし、加
工量の少ない加工においては、立ち上がりの緩やかな正
弦波とすることが望ましい。
In the processing method of the present invention, instead of applying a DC magnetic field as described above, a low-frequency magnetic field of 0.01 to 10 Hz is basically formed by a square wave whose polarity changes repeatedly, and a repetitive polarity or pulse-like waveform is formed. , Giving a fluctuating magnetic field of 30 to 70%. In particular, it is desirable to use a square wave with a good rise in machining with a large machining amount and a sine wave with a gentle rise in machining with a small machining amount.

【0015】このように本発明の加工法は、前記構成の
粒子分散型混合機能性流体に上述のような変動磁界を与
えながら加工を行うものであって、その際の流体として
は、前記分散媒に(a)強磁性粒子と(b)砥粒微粒子とを分
散させた二成分系の流体よりも、(a)強磁性粒子と(b)砥
粒微粒子と(c)磁性微粒子とを分散させた三成分系の流
体の方がより精微な加工を実施できる。即ち前記(a)強
磁性粒子の周囲を覆って距離を広げて吸引力を低下して
平均化する作用は、多少は(b)砥粒微粒子にも期待でき
るものの専ら(c)磁性微粒子(磁性流体)により得られ
るからである。
As described above, the processing method of the present invention performs the processing while applying the above-mentioned fluctuating magnetic field to the particle-dispersed mixed functional fluid having the above-mentioned structure. Disperse (a) ferromagnetic particles, (b) abrasive particles, and (c) magnetic particles more than a binary fluid in which (a) ferromagnetic particles and (b) abrasive particles are dispersed in a medium. The processed three-component fluid can perform finer processing. That is, the effect of (a) covering the periphery of the ferromagnetic particles, extending the distance and lowering the attraction force to average out is somewhat expected from (b) abrasive fine particles, but only (c) magnetic fine particles (magnetic Fluid).

【0016】そして、本発明の加工法は、被加工面が平
坦であるものは勿論、被加工面に段差形状を有するよう
なものでも或いは球面形状を有するようなものでも、或
いはどのような材質の被加工面にでも適用することがで
き、容易に且つ精微な加工が得られる。
The processing method of the present invention is applicable not only to a processing surface having a flat surface, but also to a processing surface having a stepped shape or a spherical shape, or any material. Can be applied to the surface to be processed, and easy and fine processing can be obtained.

【0017】尚、(b)砥粒微粒子を含まない本発明の粒
子分散型混合機能性流体は、所謂従来の磁性流体とMR
流体とを混合した構成を有する。この構成の流体は、磁
界を印加したとき、解除したときの応答性が磁性流体に
比べて明らかに優れており、しかも磁界印加時に磁性流
体よりも強固な構造を形成することができることが見出
された。また、磁界印加時の構造は、MR流体に比べて
極めて均質であることも見出された。即ち両者の利点を
共有する特性を有するものである。したがって、例えば
各種シール構造におけるシール材などとして多方面への
利用が期待される。
(B) The particle-dispersed mixed functional fluid of the present invention which does not contain abrasive particles is a so-called conventional magnetic fluid and an MR mixed fluid.
It has a configuration mixed with a fluid. It has been found that the fluid with this configuration has a clearly superior responsiveness when a magnetic field is applied and released when compared to a magnetic fluid, and can form a stronger structure than a magnetic fluid when a magnetic field is applied. Was done. It has also been found that the structure when a magnetic field is applied is extremely homogeneous as compared with the MR fluid. That is, they have the property of sharing both advantages. Therefore, it is expected to be used in various fields as a sealing material in various sealing structures, for example.

【0018】[0018]

【実施例】[研磨実施例1]ケロシン分散媒中に、表1
に示す分散粒子を分散させた流体を作製し、以下に示す
条件にて研磨を行った。結果は表1に併せて示した。 〈研磨試料〉 研磨前表面粗さ:Ry=2μm程度 材質:純チタン 〈研磨条件〉 回転加工面の回転数:15rpm 加工圧:5Kg 研磨時間:5分
EXAMPLES [Polishing Example 1] In a kerosene dispersion medium, Table 1 was used.
A fluid was prepared by dispersing the dispersed particles shown in Table 1 below, and was polished under the following conditions. The results are shown in Table 1. <Polishing sample> Surface roughness before polishing: Ry = approximately 2 μm Material: pure titanium <Polishing condition> Number of rotations of the rotating processing surface: 15 rpm Processing pressure: 5 kg Polishing time: 5 minutes

【0019】[0019]

【表1】 [Table 1]

【0020】[研磨実施例2]まず、表2に示す粒子分
散型混合機能性流体を作製した。
Polishing Example 2 First, a particle-dispersed mixed functional fluid shown in Table 2 was prepared.

【表2】 この粒子分散型混合機能性流体を用いて以下に示す条件
にて研磨を行った。
[Table 2] Polishing was performed using the particle-dispersed mixed functional fluid under the following conditions.

【0021】〈研磨条件a〉 磁場:変動磁場(方形波),磁場強度1300ガウス,
周波数0.1Hz 回転加工面の回転数:15rpm 加工圧:5Kg 研磨時間:5分 〈研磨試料a〉 材質:純チタン 研磨前表面粗さ:Ra=0.37μm,Ry=1.94
μm 〈試験結果a〉デュウティ比30% 研磨後表面粗さ:Ra=0.13μm,Ry=0.63
μm
<Polishing condition a> Magnetic field: fluctuating magnetic field (square wave), magnetic field strength 1300 gauss,
Frequency 0.1 Hz Number of rotations of the rotating processing surface: 15 rpm Processing pressure: 5 kg Polishing time: 5 minutes <Polishing sample a> Material: Pure titanium Surface roughness before polishing: Ra = 0.37 μm, Ry = 1.94
μm <Test result a> Duty ratio 30% Polished surface roughness: Ra = 0.13 μm, Ry = 0.63
μm

【0022】〈研磨条件b;比較例1〉 磁場:なし 回転加工面の回転数:15rpm 加工圧:5Kg 研磨時間:5分 〈研磨試料b〉 材質:純チタン 研磨前表面粗さ:Ra=0.36μm,Ry=1.98
μm 〈試験結果b〉 研磨後表面粗さ:Ra=0.29μm,Ry=1.18
μm
<Polishing condition b; Comparative example 1> Magnetic field: None Number of rotations of the rotating processing surface: 15 rpm Processing pressure: 5 kg Polishing time: 5 minutes <Polishing sample b> Material: Pure titanium Surface roughness before polishing: Ra = 0 .36 μm, Ry = 1.98
μm <Test result b> Surface roughness after polishing: Ra = 0.29 μm, Ry = 1.18
μm

【0023】〈研磨条件c;比較例2〉 磁場:直流磁場,磁場強度2300ガウス 回転加工面の回転数:15rpm 加工圧:5Kg 研磨時間:5分 〈研磨試料c〉 材質:純チタン 研磨前表面粗さ:Ra=0.37μm,Ry=1.96
μm 〈試験結果c〉 研磨後表面粗さ:Ra=0.33μm,Ry=1.34
μm
<Polishing condition c; Comparative example 2> Magnetic field: DC magnetic field, magnetic field strength 2300 gauss Number of rotations of the rotating processing surface: 15 rpm Processing pressure: 5 kg Polishing time: 5 minutes <Polishing sample c> Material: Pure titanium Surface before polishing Roughness: Ra = 0.37 μm, Ry = 1.96
μm <Test result c> Surface roughness after polishing: Ra = 0.33 μm, Ry = 1.34
μm

【0024】本発明の実施例である研磨条件aでは、適
切な低周波数の変動磁界を与えながら加工するので、短
時間で極めて研磨精度の高い加工が行われることが確認
された。これに対して、磁場を与えない研磨条件bや直
流磁場を与えた研磨条件cでは満足できる研磨加工が行
われなかった。
Under the polishing condition a, which is an embodiment of the present invention, it is confirmed that the processing is performed while applying an appropriate low-frequency fluctuating magnetic field, so that processing with extremely high polishing accuracy can be performed in a short time. On the other hand, under the polishing condition b in which no magnetic field was applied or the polishing condition c in which a DC magnetic field was applied, satisfactory polishing was not performed.

【0025】尚、前記研磨条件a〜cでは表面に研磨パ
ッドを取り付けた回転定盤を用いたが、研磨パッドがな
い以外は前記研磨条件aと全く同様にして5分間加工を
行った。その結果、研磨パッドを用いた研磨条件aより
も、表面粗さの改善が少なかった。
In the above polishing conditions a to c, a rotary platen having a polishing pad attached to the surface was used, but processing was carried out for 5 minutes in exactly the same manner as in the above polishing condition a except that there was no polishing pad. As a result, the improvement in the surface roughness was smaller than in the polishing condition a using the polishing pad.

【0026】また、前記研磨条件aでは印加磁界は、立
ち上がりの良い方形波としたが、立上りの緩やかな正弦
波と比較するため、表面粗さが異なる3種類の研磨試料
を準備し、研磨時間を10分間とした以外は、前記研磨
条件aと全く同様にして加工を行った。結果は、表3に
示した。
In the polishing condition a, the applied magnetic field was a square wave having a good rise, but three kinds of polishing samples having different surface roughnesses were prepared for comparison with a sine wave having a gentle rise, and the polishing time was changed. The processing was performed in exactly the same manner as the polishing condition a except that the time was changed to 10 minutes. The results are shown in Table 3.

【表3】 表3より明らかなように、印加磁界の波形は、加工量が
大きい加工においては立ち上がりの良い方形波の方が好
ましく、加工量の少ない加工においては立ち上がりの緩
やかな正弦波の方が好ましかった。
[Table 3] As is clear from Table 3, the waveform of the applied magnetic field is preferably a square wave with a good rise in machining with a large machining amount, and a sine wave with a slow rise is preferred in machining with a small machining amount. Was.

【0027】以上本発明の実施例を数例記載したが、本
発明は前記実施例に限定されるものではなく、特許請求
の範囲に記載の構成を変更しない限りどのようにでも実
施することが可能である。
Although several embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be implemented in any manner unless the configuration described in the claims is changed. It is possible.

【0028】[0028]

【発明の効果】以上説明したように本発明の粒子分散型
混合機能性流体及びそれを用いた加工法は、短時間に、
精微な研磨、仕上げなどの加工を十分に満足できる研磨
精度で実施できるものである。したがって、従来の磁性
流体やMR流体を用いた方法では適用できなかった半導
体シリコンウエハ等の各種精密加工部品の仕上げ研磨、
表面や孔内に付着した異物またはバリの除去、凹部側面
の仕上げ等や側部の仕上げや洗浄等、既存の精密仕上げ
処理の効率を改善したり、光ファイバーの切断面の仕上
げ加工などに好適に利用できる。
As described above, the particle-dispersed mixed functional fluid of the present invention and the processing method using the same can be performed in a short time.
Fine polishing and finishing can be performed with sufficiently high polishing accuracy. Therefore, finish polishing of various precision processed parts such as semiconductor silicon wafers, which cannot be applied by the method using the conventional magnetic fluid or MR fluid,
Suitable for improving the efficiency of existing precision finishing processes, such as removing foreign matter or burrs attached to the surface or inside of holes, finishing the side surfaces of concave portions, finishing or cleaning side portions, and finishing optical fiber cut surfaces. Available.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 3/14 550 C09K 3/14 550Z 550F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09K 3/14 550 C09K 3/14 550Z 550F

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 動粘度1〜10000mm2/sの電気
絶縁性を有するケロシンやシリコーンオイル等の分散媒
中に、分散粒子として、粒子径0.5〜50μmの強磁
性粒子10〜40wt%と、粒子径0.1〜50μmの
半導体粒子や金属粒子の砥粒微粒子10〜40wt%と
を分散させて成ることを特徴とする粒子分散型混合機能
性流体。
In a dispersion medium such as kerosene or silicone oil having an electrical insulating property with a kinematic viscosity of 1 to 10000 mm 2 / s, ferromagnetic particles having a particle diameter of 0.5 to 50 μm are dispersed in a dispersion medium of 10 to 40 wt%. And a particle-dispersed mixed functional fluid comprising 10 to 40% by weight of abrasive particles of semiconductor particles or metal particles having a particle diameter of 0.1 to 50 [mu] m.
【請求項2】 動粘度1〜10000mm2/sの電気
絶縁性を有するケロシンやシリコーンオイル等の分散媒
中に、分散粒子として、粒子径0.5〜50μmの強磁
性粒子10〜40wt%と、粒子径25nm以下の磁性
微粒子5〜20wt%とを分散させて成ることを特徴と
する粒子分散型混合機能性流体。
2. A ferromagnetic particle having a particle diameter of 0.5 to 50 μm as a dispersion particle in a dispersion medium such as kerosene or silicone oil having a kinematic viscosity of 1 to 10000 mm 2 / s and having electrical insulation properties. And 5 to 20 wt% of magnetic fine particles having a particle diameter of 25 nm or less.
【請求項3】 動粘度1〜10000mm2/sの電気
絶縁性を有するケロシンやシリコーンオイル等の分散媒
中に、分散粒子として、粒子径0.5〜50μmの強磁
性粒子10〜40wt%と、粒子径0.1〜50μmの
半導体粒子や金属粒子の砥粒微粒子10〜40wt%
と、粒子径25nm以下の磁性微粒子5〜20wt%
と、を分散させて成ることを特徴とする粒子分散型混合
機能性流体。
3. A ferromagnetic particle having a particle diameter of 0.5 to 50 μm as a dispersion particle in a dispersion medium such as kerosene or silicone oil having a kinematic viscosity of 1 to 10000 mm 2 / s and having electrical insulation properties. Abrasive fine particles of semiconductor particles or metal particles having a particle diameter of 0.1 to 50 μm 10 to 40 wt%
And 5 to 20 wt% of magnetic fine particles having a particle diameter of 25 nm or less.
And a particle-dispersed mixed functional fluid characterized by being dispersed.
【請求項4】 請求項1〜3の何れか一項に記載の粒子
分散型混合機能性流体を加工試料の被加工面に臨ませた
状態で繰り返し極性が変化する変動磁界を与えながら加
工を行うことを特徴とする粒子分散型混合機能性流体を
用いた加工法。
4. A process while repeatedly applying a fluctuating magnetic field whose polarity repeatedly changes while the particle-dispersed mixed functional fluid according to any one of claims 1 to 3 faces a surface to be processed of a processed sample. A processing method using a particle-dispersed mixed functional fluid, which is performed.
【請求項5】 請求項1〜3の何れか一項に記載の粒子
分散型混合機能性流体を、表面に加工パッドを取り付け
た回転定盤と加工試料の被加工面との間に介在させ、相
対的に摺動させながら変動磁場と共に加工面圧を与える
ようにして加工を行うことを特徴とする粒子分散型混合
機能性流体を用いた加工法。
5. The particle-dispersed mixed functional fluid according to any one of claims 1 to 3 is interposed between a rotary platen having a processing pad attached to a surface thereof and a processing surface of a processing sample. A process using a particle-dispersed mixed functional fluid, wherein the process is performed by applying a working surface pressure together with a fluctuating magnetic field while relatively sliding.
【請求項6】 印加磁界は加工部において磁場強度±1
〜3000ガウス、周波数0.01〜10Hz、立ち上
がり良好な繰り返し方形波またはパルス波としてそのデ
ュウティ比を30から70%の変動磁界を印加すること
を特徴とする請求項4又は5に記載の粒子分散型混合機
能性流体による加工法。
6. An applied magnetic field has a magnetic field strength of ± 1 at a processing portion.
The particle dispersion according to claim 4 or 5, wherein a fluctuating magnetic field having a duty ratio of 30 to 70% is applied as a repetitive square wave or a pulse wave having a frequency of 0.01 to 3000 gauss and a frequency of 0.01 to 10 Hz. Processing method using mold mixed functional fluid.
【請求項7】 印加磁界は、加工量が大きい加工におい
ては立ち上がりの良い方形波とし、加工量の少ない加工
においては、立ち上がりの緩やかな正弦波とすることを
特徴とする請求項4〜6の何れか一項に記載の粒子分散
型混合機能性流体による加工法。
7. The processing method according to claim 4, wherein the applied magnetic field is a square wave with a good rise in the processing with a large processing amount, and a sine wave with a gentle rising in the processing with a small processing amount. A processing method using the particle-dispersed mixed functional fluid according to any one of the above.
JP2000368307A 2000-12-04 2000-12-04 Particle dispersed mixed functional fluid and processing method using the same Expired - Fee Related JP4141634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368307A JP4141634B2 (en) 2000-12-04 2000-12-04 Particle dispersed mixed functional fluid and processing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368307A JP4141634B2 (en) 2000-12-04 2000-12-04 Particle dispersed mixed functional fluid and processing method using the same

Publications (2)

Publication Number Publication Date
JP2002170791A true JP2002170791A (en) 2002-06-14
JP4141634B2 JP4141634B2 (en) 2008-08-27

Family

ID=18838583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368307A Expired - Fee Related JP4141634B2 (en) 2000-12-04 2000-12-04 Particle dispersed mixed functional fluid and processing method using the same

Country Status (1)

Country Link
JP (1) JP4141634B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206624A (en) * 2004-01-20 2005-08-04 Toda Kogyo Corp Magnetic viscous fluid
JP2005347519A (en) * 2004-06-03 2005-12-15 Sony Corp Polishing device, polishing method, and slurry for polishing
WO2006030854A1 (en) * 2004-09-17 2006-03-23 Fdk Corporation Complex profile body polishing method and polishing apparatus
WO2008111194A1 (en) * 2007-03-14 2008-09-18 National University Corporation Fukushima University Conductive composite material and process for producing the same
EP2036695A2 (en) 2007-08-28 2009-03-18 Tokai Rubber Industries, Ltd. Urethane foam molded article, manufacturing method thereof, and magnetic induction foam molding apparatus
JP2010214505A (en) * 2009-03-16 2010-09-30 Akita Prefectural Univ Method for increasing form restoring force of particle dispersion type mixture functional fluid using varied magnetic field and polishing method and polishing device using the same
JP2014018875A (en) * 2012-07-12 2014-02-03 Institute Of National Colleges Of Technology Japan Magnetic polishing method
CN114599761A (en) * 2019-10-28 2022-06-07 3M创新有限公司 System and method for modifying metal surfaces

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206624A (en) * 2004-01-20 2005-08-04 Toda Kogyo Corp Magnetic viscous fluid
JP2005347519A (en) * 2004-06-03 2005-12-15 Sony Corp Polishing device, polishing method, and slurry for polishing
WO2006030854A1 (en) * 2004-09-17 2006-03-23 Fdk Corporation Complex profile body polishing method and polishing apparatus
WO2008111194A1 (en) * 2007-03-14 2008-09-18 National University Corporation Fukushima University Conductive composite material and process for producing the same
EP2036695A2 (en) 2007-08-28 2009-03-18 Tokai Rubber Industries, Ltd. Urethane foam molded article, manufacturing method thereof, and magnetic induction foam molding apparatus
JP2010214505A (en) * 2009-03-16 2010-09-30 Akita Prefectural Univ Method for increasing form restoring force of particle dispersion type mixture functional fluid using varied magnetic field and polishing method and polishing device using the same
JP2014018875A (en) * 2012-07-12 2014-02-03 Institute Of National Colleges Of Technology Japan Magnetic polishing method
CN114599761A (en) * 2019-10-28 2022-06-07 3M创新有限公司 System and method for modifying metal surfaces

Also Published As

Publication number Publication date
JP4141634B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
TW562845B (en) Hybrid polishing slurry
JP4141634B2 (en) Particle dispersed mixed functional fluid and processing method using the same
JP2015017259A (en) Polishing composition for nickel-phosphorous memory disks
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
JP2010052123A (en) Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
JP3975047B2 (en) Polishing method
JP2008137124A (en) Finishing method and finishing device using fluid having dielectric abrasive grain in electric field dispersed in water
Mutalib et al. Magnetorheological finishing on metal surface: A review
JP2000301459A (en) Grinding tool and polishing method using it
JPH07216345A (en) Abrasive composition
JP2006315110A (en) Abrasive material, manufacturing method and polishing method
KR101473367B1 (en) Preparation Method of Magnetic Particle Coated with Abrasive Anf The Abrasive Filler for Magnetic Abrasion
WO2006030854A1 (en) Complex profile body polishing method and polishing apparatus
WO2024045493A1 (en) Shape-controlled flexible polishing method for microarray mold
JP5977606B2 (en) Surface treatment sheet with abrasive particles for treating the surface of a workpiece
JP3117438B1 (en) Chemical mechanical texturing method
JP3531906B2 (en) Method for producing crystallized glass substrate for magnetic recording medium
JP2008254106A (en) Paste material
JP4263673B2 (en) Magnetic inner surface polishing method and apparatus
JP2006088283A (en) Method and device for polishing and coating mirror surface
JP2013121649A (en) Abrasive material
JP5569998B2 (en) Paste material
JPH1143791A (en) Cleaning agent composition for abrasive liquid
JP4024622B2 (en) Carrier particle composition for abrasive and abrasive
JP2005193319A (en) Grinding method free from control of working pressure, and abrasive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees