JP2007021660A - Method of mirror-polishing complicated shape body, and mirror-polishing device - Google Patents

Method of mirror-polishing complicated shape body, and mirror-polishing device Download PDF

Info

Publication number
JP2007021660A
JP2007021660A JP2005207886A JP2005207886A JP2007021660A JP 2007021660 A JP2007021660 A JP 2007021660A JP 2005207886 A JP2005207886 A JP 2005207886A JP 2005207886 A JP2005207886 A JP 2005207886A JP 2007021660 A JP2007021660 A JP 2007021660A
Authority
JP
Japan
Prior art keywords
polishing
magnetic
polishing liquid
fluid
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005207886A
Other languages
Japanese (ja)
Inventor
Keita Yamamoto
慶太 山本
Rei Hanamura
玲 花村
Yoshio Matsuo
良夫 松尾
Kunio Shimada
邦雄 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2005207886A priority Critical patent/JP2007021660A/en
Publication of JP2007021660A publication Critical patent/JP2007021660A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of mirror-polishing a complicated shape body, in which fluid polishing is implemented in a manner being out of contact with a polishing object, without generating stress over the entire area of the object immersed in polishing solution even if the polishing object has a complicated shape with bumps and dips, to thereby finish the polishing object with a mirror surface, and to provide a mirror-polishing device. <P>SOLUTION: According to the mirror-polishing method, magnetic field generating sources 7 for generating magnetic fields are arranged on a peripheral surface and an external bottom surface of a flow bath 2, and the magnetic polishing solution 1 is charged in the flow bath, followed by hanging a specimen 3 (polishing object) from a support portion 6 to be immersed in the solution. The magnetic polishing solution 1 is mixed with nonmagnetic abrasive grains and α-cellulose as a thickening agent. Then the specimen 3 is rotated by a driving motor 5 linked to the support portion 6, and the flow bath 2 is suitably oscillated by an oscillation stand 8 linked thereto, to thereby agitate the polishing solution in the bath. In this manner the specimen 3 is immersed in the magnetic polishing solution 1 over the overall area except for a mounted surface, and the magnetic field is exerted on the overall surface, followed by pressing the abrasive grains by magnetic clusters generated in the polishing solution, to thereby carry out polishing by relative movement of the abrasive grains. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、精密機械部品や金型などの複雑な凹凸形状を有する複雑形状体の鏡面研磨方法および鏡面研磨装置に関するもので、より具体的には、複雑形状体である研磨対象を運動可能に支持するともに、その周辺に磁気研磨液を存在させて流体研磨を行なうことの改良に関する。   The present invention relates to a mirror polishing method and a mirror polishing apparatus for complex shaped bodies having complicated uneven shapes such as precision machine parts and molds, and more specifically, a polishing object that is a complicated shaped body can be moved. Further, the present invention relates to an improvement in performing fluid polishing in the presence of a magnetic polishing liquid in the vicinity thereof.

研磨対象の表面を鏡面に仕上げる技術としては、一般に、遊離砥粒を分散させた研磨剤を研磨対象とラップ定盤との間に介在させた状態で両者を擦り合わせる動作を行なうラッピングや、ラッピングよりも微細な砥粒を用い、ポリッシングパッドと呼ばれる柔らかい工具により研磨対象との擦り合わせ動作を行なうポリシングなどが行なわれている。   As a technique for finishing the surface to be polished into a mirror surface, in general, lapping or lapping is performed in which an abrasive in which free abrasive grains are dispersed is rubbed between the object to be polished and a lapping surface. Polishing is performed by using a finer abrasive grain and performing a rubbing operation with a polishing object using a soft tool called a polishing pad.

非接触の研磨技術にはフロートポリシングがあり、これは錫定盤と研磨対象を、微細な研磨剤を混濁したポリシング液中で同時に回転させることにより両者間に介在するポリシング液の流動圧で研磨対象をわずかに浮上させ、そのポリシング液中の研磨剤により加工を進めるような技術である。   Non-contact polishing technology includes float polishing, which is performed by rotating the tin plate and the object to be polished simultaneously in a polishing solution in which a fine polishing agent is turbid, and polishing with the fluid pressure of the polishing solution interposed between them. This is a technique that slightly raises the object and proceeds with the polishing agent in the polishing liquid.

また、磁界を作用させることで研磨を行なう磁気研磨の技術もよく知られており、例えば特許文献1,2に開示された発明がある。特許文献1には、磁気研磨液における分散粒子を調整することにより研磨液の性能を改善し、精密な研磨、仕上げ加工に適用し得るような技術が提案されている。特許文献2には、磁性砥粒からなる粒子ブラシと研磨対象との間で適正に相対運動を行なわせること、および磁性砥粒に非磁性層を被覆することにより研磨の挙動を改善し、精密な研磨、仕上げ加工に適用し得るような技術が提案されている。このような磁気研磨を用いた方式は、いわゆる非接触の研磨が行なえるため強度が弱い研磨対象でも応力なく研磨が行なえるメリットがあり、精密仕上げの用途に好まれている。
特開2002−170791号公報 特開2002−283216号公報
In addition, magnetic polishing techniques that perform polishing by applying a magnetic field are well known. For example, there are inventions disclosed in Patent Documents 1 and 2. Patent Document 1 proposes a technique that improves the performance of the polishing liquid by adjusting dispersed particles in the magnetic polishing liquid and can be applied to precise polishing and finishing. In Patent Document 2, the behavior of polishing is improved by making the relative movement properly between the particle brush made of magnetic abrasive grains and the object to be polished, and by coating the magnetic abrasive grains with a nonmagnetic layer. Technologies that can be applied to smooth polishing and finishing have been proposed. Such a method using magnetic polishing has a merit that polishing can be performed without stress even on a polishing object with low strength because it can perform so-called non-contact polishing, and is preferred for precision finishing applications.
JP 2002-170791 A JP 2002-283216 A

しかしながら、従来の鏡面研磨の技術では以下に示すような問題がある。磁気研磨の技術の場合、磁性砥粒(粒子ブラシ)つまり研削工具は磁界により活性化するため、研磨対象の研磨は磁場発生源の磁極が向き合う対面部位については良好に進み、磁極と対面しない外周部位などは研磨が比較的に進まない特性を持つ。このため、研磨対象の表面全域を均一に仕上げることが難しく、部分的にムラができてしまう問題がある。   However, the conventional mirror polishing technique has the following problems. In the case of magnetic polishing technology, magnetic abrasive grains (particle brushes), that is, grinding tools, are activated by a magnetic field, so that the polishing of the object to be polished proceeds well on the facing part where the magnetic pole of the magnetic field source faces, and the outer periphery that does not face the magnetic pole The part has a characteristic that polishing does not proceed relatively. For this reason, it is difficult to finish the entire surface of the object to be polished uniformly, and there is a problem that unevenness is partially generated.

特に、研磨対象が溝などの凹凸を有する複雑形状(複雑形状体)である場合には、ワーク装着の都合から、その溝などの凹凸部位が磁極と対面しない姿勢で支持部に装着することが多く、このため、磁極と対面しない外周部位にある溝の底部など複雑な凹凸部位を適正に研磨できない問題が起きている。   In particular, when the object to be polished is a complex shape (complex shape body) having irregularities such as grooves, it is possible to mount the irregularities such as grooves on the support part in a posture that does not face the magnetic poles for the convenience of workpiece mounting. For this reason, there is a problem that complicated uneven portions such as the bottom of a groove in the outer peripheral portion that does not face the magnetic pole cannot be properly polished.

この発明は上記した課題を解決するもので、その目的は、研磨対象に非接触とする流体研磨を行ない、研磨対象が溝など凹凸を有する複雑形状体であっても研磨液に浸漬した表面全域について応力なく研磨が行なわれて、鏡面に仕上げることができる複雑形状体の鏡面研磨方法および鏡面研磨装置を提供することにある。   The object of the present invention is to solve the above-mentioned problems. The purpose of the present invention is to perform fluid polishing that is non-contact with the object to be polished, and the entire surface immersed in the polishing liquid even if the object to be polished is a complex shape having irregularities such as grooves It is an object of the present invention to provide a mirror polishing method and a mirror polishing apparatus for a complex-shaped body that can be polished without stress and finished into a mirror surface.

上記した目的を達成するために、本発明に係る鏡面研磨方法は、複雑形状体である研磨対象を運動可能に支持するともに、その周辺に磁気研磨液を存在させて流体研磨を行なう方法であって、磁場を発生する磁場発生源を流動槽の外周および底裏に設け、当該流動槽には磁気研磨液を満たし、研磨対象は支持部に取り付け、吊り下げ状態で流動槽内に位置させて、少なくとも当該取り付け面を除く表面全域を磁気研磨液に浸漬させる。そして、磁気研磨液には非磁性の砥粒を混合しておき、前記支持部に連係した回転手段を起動することにより研磨対象を回転動作するともに、磁場発生源により磁気研磨液に時間的に定常的あるいは変動的な磁場を加え、そして当該磁気研磨液を攪拌手段によりかき混ぜて非接触の状態で流体研磨を行なう。   In order to achieve the above-described object, the mirror polishing method according to the present invention is a method for supporting a polishing object having a complicated shape in a movable manner, and performing fluid polishing in the presence of a magnetic polishing liquid. A magnetic field generating source for generating a magnetic field is provided on the outer periphery and bottom bottom of the fluid tank, the fluid tank is filled with magnetic polishing liquid, the object to be polished is attached to the support, and is suspended and positioned in the fluid tank. Then, at least the entire surface except the mounting surface is immersed in the magnetic polishing liquid. Then, nonmagnetic abrasive grains are mixed in the magnetic polishing liquid, and the polishing object is rotated by activating the rotating means linked to the support portion, and the magnetic polishing liquid is temporally moved by the magnetic field generation source. A steady or fluctuating magnetic field is applied, and the magnetic polishing liquid is stirred by a stirring means to perform fluid polishing in a non-contact state.

また、本発明に係る鏡面研磨装置は、磁気研磨液を満たす流動槽と、当該流動槽の外周および底裏に組み付き磁場を発生する磁場発生源と、研磨対象を吊り下げ状態に支持する支持部と、当該支持部に連係してこれを回転する回転手段と、流動槽内の磁気研磨液をかき混ぜる攪拌手段とを備える。そして、研磨対象は流動槽内に位置させるとともに、少なくとも前記支持部との取り付け面を除く表面全域を磁気研磨液に浸漬させ、磁気研磨液には非磁性の砥粒を混合しておき、回転手段を起動することにより研磨対象を回転動作するともに、磁場発生源により磁気研磨液に時間的に定常的あるいは変動的な磁場を加え、そして攪拌手段を起動することにより磁気研磨液をかき混ぜる構成にする。   Further, the mirror polishing apparatus according to the present invention includes a fluid tank filled with a magnetic polishing liquid, a magnetic field generation source that generates a magnetic field assembled on the outer periphery and bottom of the fluid tank, and a support unit that supports the object to be polished in a suspended state. And rotating means for rotating the support portion in conjunction with the support section, and stirring means for stirring the magnetic polishing liquid in the fluidized tank. The polishing target is positioned in the fluidized tank, and at least the entire surface except the mounting surface with the support portion is immersed in a magnetic polishing liquid, and nonmagnetic abrasive grains are mixed in the magnetic polishing liquid and rotated. The configuration is such that the polishing object is rotated by starting the means, a magnetic field generation source applies a magnetic field that is constantly or fluctuating in time to the magnetic polishing liquid, and the magnetic polishing liquid is agitated by starting the stirring means. To do.

また、各発明に用いる磁気研磨液は、動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を10〜95wt%分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を5〜90wt%混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはホリビニルアルコール等の樹脂を5〜90wt%混合する構成のものが好ましい。 In addition, the magnetic polishing liquid used in each invention was obtained by dispersing 10 to 95 wt% of ferromagnetic particles having a particle diameter of 1 to 80 μm in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. A composite fluid in which 5 to 90 wt% of a fluid in which spherical magnetite particles having a particle diameter of 10 to 50 nm are uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties is mixed with the fluid is used. It is preferable to mix nonmagnetic abrasive grains of ˜100 μm and further mix 5 to 90 wt% of a fibrous substance such as α-cellulose or a resin such as polyvinyl alcohol as a thickener.

したがって本発明では、流動槽は外周および底裏に磁場発生源を有し、このため、流動槽内に位置させた研磨対象との間に磁場が作用し、磁気研磨液において磁気クラスタが生成する。具体的には請求項2,4に示す組成において、強磁性粒子(例えば鉄粒子),マグネタイト粒子が磁気吸引力により多数が凝集して磁気クラスタとなる。磁気クラスタは、磁束に沿うので研磨対象に対立して針状に多数が立ち並び、これにより磁気研磨液中に存在する砥粒が研磨対象の表面に抑えつけられる。また、磁気クラスタに絡み込まれた砥粒もあるので、それらも研磨対象の表面に抑えつけられる。   Accordingly, in the present invention, the fluid tank has a magnetic field generation source on the outer periphery and bottom, and therefore, a magnetic field acts between the object to be polished located in the fluid tank and a magnetic cluster is generated in the magnetic polishing liquid. . Specifically, in the compositions shown in claims 2 and 4, a large number of ferromagnetic particles (for example, iron particles) and magnetite particles are aggregated by a magnetic attractive force to form a magnetic cluster. Since the magnetic clusters follow the magnetic flux, a large number of needles are arranged in opposition to the object to be polished, whereby the abrasive grains present in the magnetic polishing liquid are suppressed on the surface of the object to be polished. In addition, since there are abrasive grains entangled in the magnetic cluster, they are also restrained on the surface to be polished.

こうした状態で回転手段により研磨対象が回転動作することから、相対運動によって低粒は研磨対象の表面を接触しつつ運動する。このため、研磨対象の表面の凸部を砥粒が研削し、より平滑な表面が得られる。   In this state, the polishing object is rotated by the rotating means, so that the low grains move while contacting the surface of the polishing object by relative movement. For this reason, an abrasive grain grinds the convex part of the surface of grinding | polishing object, and a smoother surface is obtained.

また、攪拌手段により磁気研磨液をかき混ぜることから、研磨対象の凹部でも磁気研磨液が入れ替わり、磁気研磨液中で砥粒が動き回るため研削の作用をし、研磨が進むことになる。   Further, since the magnetic polishing liquid is agitated by the stirring means, the magnetic polishing liquid is also exchanged in the recess to be polished, and the abrasive grains move around in the magnetic polishing liquid, so that the polishing action is performed and the polishing proceeds.

さらに、磁気クラスタは、磁場発生源(永久磁石)の磁場から飛び外れてしまうものもある。これらは磁気研磨液中に分散してやがて消失してしまうが、少しの間は形状を保持することから、磁気研磨液の流動運動のため研磨対象の側部など各部位に回り込むことになり、回り込んだ磁気クラスタが当該部位に当たり研削の作用をし、あるいは当該部位で近辺に存在した砥粒を動かす作用となり、その結果、回転軸と対面しない側部でも研磨が進むことになる。もちろん、この浮遊した磁気クラスタは、研磨対象の凹部でも動き回り研削の作用をし、研磨が進むことになる。   Furthermore, there are magnetic clusters that jump off the magnetic field of the magnetic field generation source (permanent magnet). These disperse in the magnetic polishing liquid and eventually disappear, but since the shape is maintained for a while, the magnetic polishing liquid flows around each part such as the side of the object to be polished, The wraparound magnetic cluster hits the part and acts as a grinding, or moves the abrasive grains present in the vicinity at the part, and as a result, polishing proceeds even on the side that does not face the rotation axis. Of course, the floating magnetic cluster also moves around the concave portion to be polished and acts as a grinding, and polishing proceeds.

また、磁気研磨液にはαセルロース等の増粘剤を含むので、添加した増粘剤は磁気クラスタを保持するように作用し、その結果、多数の砥粒が研磨対象の表面に接触する状況を促進でき、研磨を高効率に行なえる。   In addition, since the magnetic polishing liquid contains a thickener such as α-cellulose, the added thickener acts to retain the magnetic cluster, and as a result, a large number of abrasive grains come into contact with the surface to be polished. Can be promoted and polishing can be performed with high efficiency.

この場合、流動槽内に位置させた研磨対象は、支持部との取り付け面を除く表面全域が磁気研磨液に浸漬し、各表面に磁場発生源がそれぞれ対面するので、それら表面全域に対して磁場が作用し、したがって、研磨対象の取り付け面を除く表面全域を研磨することができる。   In this case, the polishing target located in the fluidized tank is immersed in the magnetic polishing liquid over the entire surface except for the mounting surface with the support, and the magnetic field generation source faces each surface. The magnetic field acts, and therefore, the entire surface except the mounting surface to be polished can be polished.

本発明に係る複雑形状体の鏡面研磨では、流動槽内に位置させた研磨対象は、支持部との取り付け面を除く表面全域が磁気研磨液に浸漬し、各表面に磁場発生源がそれぞれ対面するので、それら表面全域に対して磁場が作用し、したがって、研磨対象の取り付け面を除く表面全域を、磁気クラスタにより研磨することができる。   In the mirror polishing of the complex shaped body according to the present invention, the entire surface of the polishing object located in the fluidized tank is immersed in the magnetic polishing liquid except for the mounting surface with the support, and the magnetic field generation source faces each surface. As a result, a magnetic field acts on the entire surface, and therefore the entire surface excluding the mounting surface to be polished can be polished by the magnetic cluster.

これは、研磨対象に対しては非接触の流体研磨であり、このため強度が弱い研磨対象でも応力なく研磨が行なわれて、磁気研磨液を攪拌手段によりかき混ぜるので研磨の作用を促進できる。したがって、研磨対象が溝など凹凸を有する複雑形状体であっても研磨液に浸漬した表面全域について応力なく研磨が行なわれて、鏡面に仕上げることができる。   This is non-contact fluid polishing with respect to the object to be polished. Therefore, even a polishing object with low strength is polished without stress, and the magnetic polishing liquid is stirred by the stirring means, so that the polishing action can be promoted. Therefore, even if the object to be polished is a complex shape having irregularities such as grooves, the entire surface immersed in the polishing liquid can be polished without stress and finished to a mirror surface.

図1は、本発明の好適な一実施の形態を示している。本形態において、鏡面研磨装置は、磁気研磨液1を満たした流動槽2を有し、その流動槽2内に研磨対象(試料3)を位置させて回転するともに、流動槽2には磁場を作用させて適宜な振動を行なわせ、磁気研磨液1に生成した磁気クラスタにより流体研磨を行なう構成になっている。   FIG. 1 shows a preferred embodiment of the present invention. In this embodiment, the mirror polishing apparatus has a flow tank 2 filled with the magnetic polishing liquid 1, and rotates while positioning the polishing target (sample 3) in the flow tank 2, while applying a magnetic field to the flow tank 2. Appropriate vibrations are made to act, and fluid polishing is performed by magnetic clusters generated in the magnetic polishing liquid 1.

磁気研磨液1は非磁性の砥粒を混合してあり、具体的には、動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を10〜95wt%分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を5〜90wt%混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはホリビニルアルコール等の樹脂を5〜90wt%混合している。 The magnetic polishing liquid 1 is a mixture of non-magnetic abrasive grains. Specifically, the magnetic polishing liquid 1 is a strong particle having a particle diameter of 1 to 80 μm in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. 5 to 90 wt% of a fluid in which spherical magnetite particles having a particle diameter of 10 to 50 nm are uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulating properties is mixed with a fluid in which magnetic particles are dispersed in an amount of 10 to 95 wt%. The composite fluid is mixed with non-magnetic abrasive grains having a particle diameter of 0.01 to 100 μm, and further mixed with 5 to 90 wt% of a fibrous substance such as α-cellulose or a resin such as polyvinyl alcohol as a thickener. .

流動槽2に対しては上方から回転軸4を突き向けてあり、回転軸4の先端に試料3を取り付けて支持し、当該軸の他端に連結した駆動モータ5により回転させる。駆動モータ5には、例えばボール盤,旋盤,NC旋盤,フライス盤などの回転駆動機構を用いることができ、回転軸4の先端に連結した支持部6に試料3を取り付けし、その着脱が行なえる構成になっている。   A rotating shaft 4 faces the fluid tank 2 from above, and a sample 3 is attached to and supported by the tip of the rotating shaft 4 and rotated by a drive motor 5 connected to the other end of the shaft. The drive motor 5 may be a rotary drive mechanism such as a drilling machine, a lathe, an NC lathe, or a milling machine. The sample 3 is attached to the support 6 connected to the tip of the rotary shaft 4 and can be attached and detached. It has become.

流動槽2は、その外側に例えば永久磁石などの磁場発生源7を取り付けてあり、これと連係した振動台8により適宜な動作の振動を行なわせるようになっている。磁場発生源7は複数を流動槽2の外側全域に配置してあり、流動槽2の内側に対して磁場を一様に作用し得るようになっている。磁場発生源7としては永久磁石に限らず、例えば電磁石なども好ましく適用できる。要は、磁気研磨液1に対して磁場を作用し得るものであればよい。   The fluid tank 2 has a magnetic field generation source 7 such as a permanent magnet attached to the outside thereof, and a vibration of an appropriate operation is performed by a vibration table 8 linked thereto. A plurality of magnetic field generation sources 7 are arranged in the entire outside of the fluid tank 2 so that the magnetic field can be applied uniformly to the inside of the fluid tank 2. The magnetic field generation source 7 is not limited to a permanent magnet, and for example, an electromagnet can be preferably applied. The point is that any magnetic field can be applied to the magnetic polishing liquid 1.

試料3の研磨においては、まず流動槽2に対して試料3の位置関係を初期設定し、試料3が磁気研磨液1中に浸漬する状態にする。そして、駆動モータ5および振動台8を起動して、試料3を回転動作させるともに流動槽2は振動動作させ、磁気研磨液1には磁場発生源7により磁場を作用させる。   In polishing the sample 3, first, the positional relationship of the sample 3 with respect to the fluidized tank 2 is initially set so that the sample 3 is immersed in the magnetic polishing liquid 1. Then, the drive motor 5 and the vibration table 8 are activated to rotate the sample 3 and the fluid tank 2 is oscillated, and a magnetic field is applied to the magnetic polishing liquid 1 by the magnetic field generation source 7.

振動台8は図示しない駆動源を有し、回転軸4との対立面において運動動作(振動)する構成であり、その運動動作には複数の振動モードを設定してある。つまり、振動台8による振動動作は、例えば、回転軸4との対立面において、定点を中心とする単純な回転動作、あるいは8の字を描く回動動作、または定方向で往復する振動動作など、複数の振動モードがあり、研磨作業の際はこれらを適宜に選択あるいは組み合わせることになる。なお、振動台8は、回転軸4の軸方向に向かう縦振動を含む運動動作を行なうように構成することもよい。   The vibration table 8 has a drive source (not shown), and is configured to move (vibrate) in the plane opposite to the rotation shaft 4, and a plurality of vibration modes are set for the movement. That is, the vibration operation by the vibration table 8 is, for example, a simple rotation operation centered on a fixed point, a rotation operation for drawing a figure 8, or a vibration operation reciprocating in a fixed direction on the surface opposite to the rotation shaft 4. There are a plurality of vibration modes, and these are appropriately selected or combined during the polishing operation. Note that the vibration table 8 may be configured to perform a motion operation including longitudinal vibration in the axial direction of the rotary shaft 4.

このような構成によれば、流動槽2内にある試料3に対しては、図2に示すように、磁束が生じて磁気研磨液1において磁気クラスタ9が生成する。つまり、流動槽2の外側には磁場発生源7を取り付けてあるので磁場が作用し、磁場発生源7と試料3との間で磁束が生じ、強磁性粒子(例えば鉄粒子),マグネタイト粒子が磁気吸引力により多数が凝集して磁気クラスタ9となる。磁気クラスタ9は、磁束に沿うので試料3に対立して針状に多数が立ち並ぶことになる。   According to such a configuration, as shown in FIG. 2, magnetic flux is generated for the sample 3 in the fluidized tank 2, and a magnetic cluster 9 is generated in the magnetic polishing liquid 1. That is, since the magnetic field generation source 7 is attached to the outside of the fluidized tank 2, a magnetic field acts to generate a magnetic flux between the magnetic field generation source 7 and the sample 3, and ferromagnetic particles (for example, iron particles) and magnetite particles are generated. Many are aggregated by the magnetic attractive force to form a magnetic cluster 9. Since the magnetic clusters 9 are along the magnetic flux, a large number of needles are arranged in opposition to the sample 3.

このとき、磁気研磨液1においては、増粘剤として加えたαセルロース10が磁気クラスタ9の相互間に織り込み状態に位置を占め、さらに非磁性の砥粒11を加えてあるので、これは磁気クラスタ9に絡み込まれるものもあるが、当該液が攪拌状態にあるため多くは試料3の表面に存在することになる。したがって、針状に立ち並ぶ磁気クラスタ9および織り込み状態のαセルロース10とによって、磁気研磨液1の中に存在する砥粒11が試料3の表面に押さえつけられる。また、磁気クラスタ9およびαセルロース10に絡み込まれた砥粒11もあるので、それらも試料3の表面に抑えつけられる。   At this time, in the magnetic polishing liquid 1, the α-cellulose 10 added as a thickener occupies a position in a woven state between the magnetic clusters 9, and nonmagnetic abrasive grains 11 are further added. Some are entangled in the cluster 9, but many of them are present on the surface of the sample 3 because the liquid is in a stirring state. Therefore, the abrasive grains 11 present in the magnetic polishing liquid 1 are pressed against the surface of the sample 3 by the magnetic clusters 9 arranged in a needle shape and the α cellulose 10 in the woven state. In addition, since there are abrasive grains 11 entangled in the magnetic clusters 9 and α-cellulose 10, they are also suppressed to the surface of the sample 3.

こうした状態で回転軸4が回転し、すなわち試料3が回転動作することから、相対運動によって低粒11は試料3の表面を接触しつつ運動する。このため、試料3の表面の凸部を砥粒11が研削し、より平滑な表面が得られる。つまり、鏡面研磨が行なえる。   Since the rotating shaft 4 rotates in this state, that is, the sample 3 rotates, the low particle 11 moves while contacting the surface of the sample 3 by relative movement. For this reason, the abrasive grain 11 grinds the convex part of the surface of the sample 3, and a smoother surface is obtained. That is, mirror polishing can be performed.

磁場が定常的では、磁気クラスタ9は磁束に沿って整列して立ち並び、磁力により整列状態が保持されるので砥粒11が試料3の表面(研磨面)に適度に当たって研磨が行なえる。また、磁場が変動的では磁気クラスタ9は動揺し、このときも砥粒11が研磨面に適度に当たり研磨が行なえる。このように、試料3に対して非接触の状態であっても、磁気クラスタ9およびαセルロース10の押さえ作用により研磨することができ、流体研磨が行なえる。   When the magnetic field is stationary, the magnetic clusters 9 are aligned along the magnetic flux, and the aligned state is maintained by the magnetic force, so that the abrasive grains 11 can be properly applied to the surface (polishing surface) of the sample 3 for polishing. Further, when the magnetic field is fluctuating, the magnetic cluster 9 is shaken, and at this time, the abrasive grains 11 hit the polishing surface appropriately and polishing can be performed. Thus, even in a non-contact state with respect to the sample 3, it can be polished by the pressing action of the magnetic cluster 9 and the α cellulose 10, and fluid polishing can be performed.

この場合、流動槽2内に位置させた試料3は、支持部6との取り付け面を除く表面全域が磁気研磨液1に浸漬し、各表面に磁場発生源7がそれぞれ対面するので、それら表面全域に対して磁場が作用し、したがって、試料3の取り付け面を除く表面全域を研磨することができる。   In this case, the sample 3 positioned in the fluidized tank 2 is immersed in the magnetic polishing liquid 1 in the entire surface except for the mounting surface with the support portion 6, and the magnetic field generation source 7 faces each surface. A magnetic field acts on the entire region, and therefore, the entire surface except the mounting surface of the sample 3 can be polished.

また、流動槽2を動かすことで磁気研磨液1をかき混ぜることから、試料3の凹部でも磁気研磨液1が入れ替わり、磁気研磨液1の中で砥粒11が動き回るため研削の作用をし、研磨が進むことになる。   Further, since the magnetic polishing liquid 1 is agitated by moving the fluidizing tank 2, the magnetic polishing liquid 1 is also replaced in the concave portion of the sample 3, and the abrasive grains 11 move around in the magnetic polishing liquid 1, so that the polishing action is performed. Will proceed.

ところで、磁気クラスタ9は磁場発生源7の磁場から飛び外れてしまうものもある。これらは磁気研磨液1の中に分散してやがて消失してしまうが、少しの間は形状を保持することから、磁気研磨液1の流動運動のため試料3の凹部など各部位に入り込むことになり、入り込んだ磁気クラスタ9が当該部位に当たり研削の作用をし、あるいは当該部位で近辺に存在した砥粒11を動かす作用となる。その結果、試料3の表面全域はもちろん研磨が進み、複雑形状をなす凹部の奥底でも研磨が進むことになる。   By the way, the magnetic cluster 9 may be out of the magnetic field of the magnetic field generation source 7. These disperse in the magnetic polishing liquid 1 and eventually disappear. However, since the shape is maintained for a while, the magnetic polishing liquid 1 flows into each part such as the concave portion of the sample 3 due to the flow motion. Thus, the magnetic cluster 9 that has entered the region hits the part and acts as a grinding, or moves the abrasive grains 11 present in the vicinity at the part. As a result, the entire surface of the sample 3 is polished, and the polishing progresses even at the bottom of the concave portion having a complicated shape.

また、磁気研磨液1には増粘剤としてαセルロース10を含むので、添加した増粘剤は磁気クラスタ9を保持するように作用し、その結果、多数の砥粒11が試料3の表面に接触する状況を促進でき、研磨を高効率に行なえる。   In addition, since the magnetic polishing liquid 1 contains α-cellulose 10 as a thickener, the added thickener acts to hold the magnetic cluster 9, and as a result, a large number of abrasive grains 11 are formed on the surface of the sample 3. The contact situation can be promoted and polishing can be performed with high efficiency.

したがって、本発明に係る鏡面研磨によれば、磁気研磨液1において生成した磁気クラスタ9により、試料3(研磨対象)に対しては非接触の流体研磨を行なうことができ、磁気研磨液1を攪拌手段によりかき混ぜるので研磨の作用を促進できる。そして、試料3は支持部6との取り付け面を除く表面全域が磁気研磨液1に浸漬し、各表面に磁場発生源7がそれぞれ対面するので、それら表面全域に対して磁場が作用し、そのため、研磨対象が溝など凹凸を有する複雑形状体であっても表面全域をムラなく鏡面に仕上げることができる。そして、非接触の流体研磨であるため、強度が弱い研磨対象でも応力なく研磨が行なえる。   Therefore, according to the mirror polishing according to the present invention, the magnetic cluster 9 generated in the magnetic polishing liquid 1 can perform non-contact fluid polishing on the sample 3 (the object to be polished). Since the stirring is performed by the stirring means, the polishing action can be promoted. The entire surface of the sample 3 except for the mounting surface with the support portion 6 is immersed in the magnetic polishing liquid 1, and the magnetic field generation source 7 faces each surface, so that a magnetic field acts on the entire surface, and therefore Even if the object to be polished is a complex shape having irregularities such as grooves, the entire surface can be mirror-finished without unevenness. And since it is non-contact fluid grinding | polishing, it can grind | polish without stress even if it is a grinding | polishing object with weak intensity | strength.

研磨対象としては、図3に示すように溝を環状に持つ部品や、図4に示すように円柱の外周側面にカム溝を有するカム部品などがある。本実施の形態の研磨装置を用いることで、そうした複雑形状を有する部品を研磨でき、鏡面仕上げを行なえる。もちろん、研磨対象の形状・種類は図示したものに限るものではない。   As an object to be polished, there are a part having an annular groove as shown in FIG. 3 and a cam part having a cam groove on the outer peripheral side surface of a cylinder as shown in FIG. By using the polishing apparatus of the present embodiment, it is possible to polish a component having such a complicated shape and perform mirror finish. Of course, the shape and type of the object to be polished are not limited to those illustrated.

図1に示す鏡面研磨装置を用いて試料の研磨を行った。つまり、本発明の効果を実証するため、研磨の条件を替えて所定の試料を研磨し、その試料について表面粗さRa(算術平均粗さ)を評価した。磁気研磨液としては表1に示す組成とし、評価試験には図3(a),(b)に示す形状寸法の試料を用いた。   The sample was polished using the mirror polishing apparatus shown in FIG. That is, in order to demonstrate the effect of the present invention, a predetermined sample was polished under different polishing conditions, and the surface roughness Ra (arithmetic average roughness) was evaluated for the sample. As the magnetic polishing liquid, the composition shown in Table 1 was used, and samples having the shape and dimensions shown in FIGS. 3A and 3B were used for the evaluation test.

Figure 2007021660
Figure 2007021660

つまり、磁気研磨液はその組成に、非磁性の砥粒として粒子径0.05μmのアルミナを含み、さらに増粘剤としてαセルロースを含むものとする。そして、評価試験では、試料は図3(a),(b)に示すように、外径12mm,厚さ5mmの円板形状で同心に環状の溝部を有し、表2に示す諸条件により研磨を行っており、その結果、同表に合わせて示すような表面粗さRaが得られた。   In other words, the magnetic polishing liquid contains, in its composition, alumina having a particle diameter of 0.05 μm as non-magnetic abrasive grains and α-cellulose as a thickener. In the evaluation test, as shown in FIGS. 3 (a) and 3 (b), the sample has a disk shape with an outer diameter of 12 mm and a thickness of 5 mm and a concentric annular groove. Polishing was performed, and as a result, a surface roughness Ra as shown in the table was obtained.

Figure 2007021660
Figure 2007021660

試料は真鍮からなり、図1には模式的に示しているが、試料3を流動槽2内に位置させたとき、当該槽内面との隙間が1mm程度になる取り合い関係に設定した。そして、回転軸4(試料3)の回転数は800rpm、研磨時間は1時間、振動台8は回転軸4との対立面において逆方向に回転動作を行ない、その回転数は30rpmとした。   The sample is made of brass, and is schematically shown in FIG. 1. However, when the sample 3 is positioned in the fluidized tank 2, the relationship with the inner surface of the tank is set to be about 1 mm. The rotation speed of the rotating shaft 4 (sample 3) was 800 rpm, the polishing time was 1 hour, and the vibration table 8 was rotated in the opposite direction to the rotating shaft 4, and the rotating speed was 30 rpm.

その結果、表面粗さRaは、環状の溝部(凹部)では11nm、そして中央表面(凸部)でも同等に10nmを得ており、さらに外周側部でも8nmを得ることができた。試料3にあっては、外周側部を含めた全表面について表面仕上げが同程度に行なえることを確認した。   As a result, the surface roughness Ra was 11 nm at the annular groove portion (concave portion), 10 nm at the center surface (convex portion), and 8 nm at the outer peripheral side portion. In sample 3, it was confirmed that the surface finishing can be performed to the same extent on the entire surface including the outer peripheral side portion.

すなわち、本発明に係る鏡面研磨によれば、充分な表面粗さに鏡面研磨が行なえるものであり、これは支持部6に固定した底面を除く表面全域、つまり磁気研磨液に浸漬した表面全域を研磨することができ、もちろん複雑形状についてその凹部の奥底も適正に研磨でき、本発明の有用性が確認できた。   That is, according to the mirror polishing according to the present invention, the mirror polishing can be performed with a sufficient surface roughness. This is the entire surface except the bottom surface fixed to the support portion 6, that is, the entire surface immersed in the magnetic polishing liquid. As a matter of course, the depth of the concave portion of the complicated shape can be polished properly, and the usefulness of the present invention has been confirmed.

本発明に係る鏡面研磨装置の好適な一実施の形態を示す構成図である。1 is a configuration diagram showing a preferred embodiment of a mirror polishing apparatus according to the present invention. 磁気クラスタによる流体研磨を示す説明図である。It is explanatory drawing which shows the fluid grinding | polishing by a magnetic cluster. 研磨試験の試料とした複雑形状体の形状寸法を示す斜視図(a)および断面図(b)である。It is the perspective view (a) and sectional drawing (b) which show the geometric dimension of the complex shape body used as the sample of the grinding | polishing test. 複雑形状体の他例を示す斜視図である。It is a perspective view which shows the other examples of a complicated shape body.

符号の説明Explanation of symbols

1 磁気研磨液
2 流動槽
3 試料(研磨対象)
4 回転軸
5 駆動モータ
6 支持部
7 磁場発生源
8 振動台
9 磁気クラスタ
10 αセルロース
11 砥粒
1 Magnetic polishing liquid 2 Fluid tank 3 Sample (polishing object)
DESCRIPTION OF SYMBOLS 4 Rotating shaft 5 Drive motor 6 Support part 7 Magnetic field generation source 8 Shaking table 9 Magnetic cluster 10 Alpha cellulose 11 Abrasive grain

Claims (4)

複雑形状体である研磨対象を運動可能に支持するともに、その周辺に磁気研磨液を存在させて流体研磨を行なう複雑形状体の鏡面研磨方法あって、
磁場を発生する磁場発生源を流動槽の外周および底裏に設け、
当該流動槽には前記磁気研磨液を満たし、
前記研磨対象は支持部に取り付け、吊り下げ状態で前記流動槽内に位置させて、少なくとも当該取り付け面を除く表面全域を前記磁気研磨液に浸漬させ、
前記磁気研磨液には非磁性の砥粒を混合しておき、
前記支持部に連係した回転手段を起動することにより前記研磨対象を回転動作するともに、前記磁場発生源により前記磁気研磨液に時間的に定常的あるいは変動的な磁場を加え、当該磁気研磨液を攪拌手段によりかき混ぜて非接触の状態で流体研磨を行なうことを特徴とする複雑形状体の鏡面研磨方法。
There is a method of mirror polishing of a complex shape body that supports a polishing object that is a complex shape body so as to be movable, and performs fluid polishing in the vicinity of a magnetic polishing liquid,
A magnetic field generation source for generating a magnetic field is provided on the outer periphery and bottom of the fluid tank
The fluid tank is filled with the magnetic polishing liquid,
The object to be polished is attached to a support part, is placed in the fluidized tank in a suspended state, and at least the entire surface excluding the attachment surface is immersed in the magnetic polishing liquid,
Nonmagnetic abrasive grains are mixed in the magnetic polishing liquid,
The polishing object is rotated by activating a rotating means linked to the support part, and a magnetic field generating source applies a magnetic field that is temporally steady or fluctuating to the magnetic polishing liquid. A mirror polishing method for a complex-shaped body, characterized in that fluid polishing is performed in a non-contact state by stirring with a stirring means.
前記磁気研磨液は、
動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を10〜95wt%分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を5〜90wt%混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはホリビニルアルコール等の樹脂を5〜90wt%混合してなるものであることを特徴とする請求項1に記載の複雑形状体の鏡面研磨方法。
The magnetic polishing liquid is
With respect to a fluid in which 10 to 95 wt% of ferromagnetic particles having a particle size of 1 to 80 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s, the particle size is 10 to 50 nm. A non-magnetic abrasive particle having a particle diameter of 0.01 to 100 μm is mixed with a composite fluid in which 5 to 90 wt% of a fluid in which spherical magnetite particles are uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties is mixed. The method for mirror polishing a complex-shaped body according to claim 1, further comprising a fibrous material such as α-cellulose or a resin such as polyvinyl alcohol as a thickener mixed in an amount of 5 to 90 wt%. .
磁気研磨液を満たす流動槽と、当該流動槽の外周および底裏に組み付き磁場を発生する磁場発生源と、研磨対象を吊り下げ状態に支持する支持部と、当該支持部に連係してこれを回転する回転手段と、前記流動槽内の磁気研磨液をかき混ぜる攪拌手段とを備え、
前記研磨対象は、前記流動槽内に位置させるとともに、少なくとも前記支持部との取り付け面を除く表面全域を前記磁気研磨液に浸漬させるように設定し、
前記磁気研磨液には非磁性の砥粒を混合しておき、前記回転手段を起動することにより前記研磨対象を回転動作するともに、前記磁場発生源により前記磁気研磨液に時間的に定常的あるいは変動的な磁場を加え、前記攪拌手段を起動することにより前記磁気研磨液をかき混ぜるように構成したことを特徴とする複雑形状体の鏡面研磨装置。
A fluid tank that fills the magnetic polishing liquid, a magnetic field generation source that generates a magnetic field assembled on the outer periphery and bottom of the fluid tank, a support part that supports the polishing object in a suspended state, and a support part that is linked to the support part. Rotating means for rotating, and stirring means for stirring the magnetic polishing liquid in the fluidized tank,
The polishing object is positioned in the fluidized tank, and set so that at least the entire surface excluding the attachment surface with the support portion is immersed in the magnetic polishing liquid,
The magnetic polishing liquid is mixed with non-magnetic abrasive grains, and the polishing object is rotated by starting the rotating means. A mirror polishing apparatus for a complex shaped body, wherein the magnetic polishing liquid is agitated by applying a variable magnetic field and activating the stirring means.
前記磁気研磨液は、
動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を10〜95wt%分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を5〜90wt%混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはホリビニルアルコール等の樹脂を5〜90wt%混合してなるものであることを特徴とする請求項3に記載の複雑形状体の鏡面研磨装置。
The magnetic polishing liquid is
With respect to a fluid in which 10 to 95 wt% of ferromagnetic particles having a particle size of 1 to 80 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s, the particle size is 10 to 50 nm. A non-magnetic abrasive particle having a particle diameter of 0.01 to 100 μm is mixed with a composite fluid in which 5 to 90 wt% of a fluid in which spherical magnetite particles are uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties is mixed. 4. The mirror polishing apparatus for complex shaped bodies according to claim 3, further comprising a fibrous substance such as α-cellulose or a resin such as polyvinyl alcohol as a thickener mixed with 5 to 90 wt%. .
JP2005207886A 2005-07-15 2005-07-15 Method of mirror-polishing complicated shape body, and mirror-polishing device Pending JP2007021660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207886A JP2007021660A (en) 2005-07-15 2005-07-15 Method of mirror-polishing complicated shape body, and mirror-polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207886A JP2007021660A (en) 2005-07-15 2005-07-15 Method of mirror-polishing complicated shape body, and mirror-polishing device

Publications (1)

Publication Number Publication Date
JP2007021660A true JP2007021660A (en) 2007-02-01

Family

ID=37783073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207886A Pending JP2007021660A (en) 2005-07-15 2005-07-15 Method of mirror-polishing complicated shape body, and mirror-polishing device

Country Status (1)

Country Link
JP (1) JP2007021660A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093729A1 (en) 2007-01-31 2008-08-07 Advantest Corporation Measuring apparatus and measuring method
JP2009072901A (en) * 2007-09-20 2009-04-09 Southern Taiwan Univ Of Technology Magnetic spiral polishing device
KR101045530B1 (en) * 2008-09-26 2011-06-30 인하대학교 산학협력단 Polishing Method Of Using MR fluid and Abrasive
JP2015058378A (en) * 2013-09-18 2015-03-30 安田工業株式会社 Tool cleaning method and tool cleaning device for machine tool
CN108673247A (en) * 2018-05-21 2018-10-19 浙江工业大学 A kind of liquid metal burnishing device based on linkage rod slide block mechanism
TWI651159B (en) * 2017-11-23 2019-02-21 豪昱電子有限公司 Magnetic passivation grinder
CN111872837A (en) * 2020-07-16 2020-11-03 广州大学 Bearing steel ball surface strengthening processing device
CN112276779A (en) * 2019-12-03 2021-01-29 卢思雨 Marble carving surface polishing all-in-one
CN112917249A (en) * 2021-01-22 2021-06-08 济南大学泉城学院 Inside clean-up equipment of special-shaped part
CN113953896A (en) * 2021-10-29 2022-01-21 西北工业大学 Planetary polishing method driven by mixing of magnetic nanoparticles and non-magnetic nanoparticles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163057A (en) * 1981-03-25 1982-10-07 Toyo Kenmazai Kogyo Kk Surface polishing method
JPS6034264A (en) * 1983-08-06 1985-02-21 Toubu M X Kk Magnetic finishing method and device thereof
JPS6067057A (en) * 1983-09-21 1985-04-17 Taihoo Kogyo Kk Grinding
JPH0192060A (en) * 1987-10-02 1989-04-11 Inoue Japax Res Inc Barrel polishing device
JPH0734062A (en) * 1993-07-23 1995-02-03 Shigeo Yoda Abradant containing surfactant or de-fatting agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163057A (en) * 1981-03-25 1982-10-07 Toyo Kenmazai Kogyo Kk Surface polishing method
JPS6034264A (en) * 1983-08-06 1985-02-21 Toubu M X Kk Magnetic finishing method and device thereof
JPS6067057A (en) * 1983-09-21 1985-04-17 Taihoo Kogyo Kk Grinding
JPH0192060A (en) * 1987-10-02 1989-04-11 Inoue Japax Res Inc Barrel polishing device
JPH0734062A (en) * 1993-07-23 1995-02-03 Shigeo Yoda Abradant containing surfactant or de-fatting agent

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093729A1 (en) 2007-01-31 2008-08-07 Advantest Corporation Measuring apparatus and measuring method
JP2009072901A (en) * 2007-09-20 2009-04-09 Southern Taiwan Univ Of Technology Magnetic spiral polishing device
KR101045530B1 (en) * 2008-09-26 2011-06-30 인하대학교 산학협력단 Polishing Method Of Using MR fluid and Abrasive
JP2015058378A (en) * 2013-09-18 2015-03-30 安田工業株式会社 Tool cleaning method and tool cleaning device for machine tool
TWI651159B (en) * 2017-11-23 2019-02-21 豪昱電子有限公司 Magnetic passivation grinder
CN108673247A (en) * 2018-05-21 2018-10-19 浙江工业大学 A kind of liquid metal burnishing device based on linkage rod slide block mechanism
CN112276779A (en) * 2019-12-03 2021-01-29 卢思雨 Marble carving surface polishing all-in-one
CN111872837A (en) * 2020-07-16 2020-11-03 广州大学 Bearing steel ball surface strengthening processing device
CN112917249A (en) * 2021-01-22 2021-06-08 济南大学泉城学院 Inside clean-up equipment of special-shaped part
CN112917249B (en) * 2021-01-22 2021-11-30 济南大学泉城学院 Inside clean-up equipment of special-shaped part
CN113953896A (en) * 2021-10-29 2022-01-21 西北工业大学 Planetary polishing method driven by mixing of magnetic nanoparticles and non-magnetic nanoparticles

Similar Documents

Publication Publication Date Title
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
JP2007167968A (en) Mirror finished surface polishing method and mirror finished surface polishing device
JP5396025B2 (en) Magnetic spiral polishing machine
CN105458840A (en) Magnetostatic moving field magnetorheological polishing mechanism test device and processing method thereof
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
CN205201209U (en) Magnetostatic moves a magnetic current and becomes polishing mechanism test device
JPWO2006030854A1 (en) Polishing method and polishing apparatus for complex shapes
JP2007021661A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
JP6601909B2 (en) Magnetic polishing apparatus and magnetic polishing method
CN107470987B (en) A kind of ultra-smooth plane polishing device and polishing method based on magnetorheological glue
JP2006224227A (en) Magnetic polishing method
JPH04336954A (en) Minute grinding method and minute grinding tool
JP2007296598A (en) Magnetic polishing method and wafer polishing device
Deepak et al. Effect of rotational motion on the flat work piece magnetic abrasive finishing
JP2007167969A (en) Scratch machining method and machining device
JP2006082213A (en) Method of cutting work and cutting work/mirror polishing device
JP4471197B2 (en) Polishing method that does not require processing pressure control
CN113579987B (en) Method and device for polishing free-form surface by curvature self-adaptive cluster magneto-rheological process
CN207155395U (en) A kind of magnetic flow liquid burnishing device
JP2005001027A (en) Probe needle grinding device
JP2006088283A (en) Method and device for polishing and coating mirror surface
JP2002283216A (en) Magnetic polishing method utilizing ellipse vibration, device therefor and magnetic abrasive grain
JP5663733B2 (en) Flat double-sided finishing method and flat double-sided finishing apparatus
KR102116179B1 (en) Apparatus for polishing an object and method of polishing an object
JP2003062747A (en) Processing method using magnetic fluid and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100603