JP5061296B2 - Flat double-side polishing method and flat double-side polishing apparatus - Google Patents

Flat double-side polishing method and flat double-side polishing apparatus Download PDF

Info

Publication number
JP5061296B2
JP5061296B2 JP2008165189A JP2008165189A JP5061296B2 JP 5061296 B2 JP5061296 B2 JP 5061296B2 JP 2008165189 A JP2008165189 A JP 2008165189A JP 2008165189 A JP2008165189 A JP 2008165189A JP 5061296 B2 JP5061296 B2 JP 5061296B2
Authority
JP
Japan
Prior art keywords
polishing
surface plate
carrier
abrasive grains
side polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008165189A
Other languages
Japanese (ja)
Other versions
JP2009034812A (en
Inventor
一幸 松下
陽一 赤上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAICHI INDUSTRY CO.,LTD.
Akita Prefecture
Original Assignee
SAICHI INDUSTRY CO.,LTD.
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAICHI INDUSTRY CO.,LTD., Akita Prefecture filed Critical SAICHI INDUSTRY CO.,LTD.
Priority to JP2008165189A priority Critical patent/JP5061296B2/en
Publication of JP2009034812A publication Critical patent/JP2009034812A/en
Application granted granted Critical
Publication of JP5061296B2 publication Critical patent/JP5061296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、ITや医療機器産業に用いられるガラス等の脆性材に用いられる砥粒を分散させた流体を用いた研磨加工を行うことができ、大きな加工量を求められる粗研磨から高精度の平滑性が求められる精密仕上げ研磨まで連続的に適用できる平面両面研磨方法及び平面両面研磨装置に関する。   The present invention can perform polishing using a fluid in which abrasive grains used for brittle materials such as glass used in IT and the medical equipment industry are dispersed, and from high-precision to rough polishing that requires a large amount of processing. The present invention relates to a flat double-side polishing method and a flat double-side polishing apparatus that can be continuously applied to precision finish polishing that requires smoothness.

平面状の被加工物の研磨は粗研磨工程によって厚みを整え、さらに表面仕上げを精密研磨工程にて行なう。従来の両面研磨装置は中心軸が配備され、その周りを遊星回転するキャリア治具に被加工物が取り付けられ、上下の定盤に挟まれながら、相対速度を与えながら研磨運動されている。
例えば画像表示板用ガラス板や光学フィルターガラス板等の板厚性の確保と平坦度並びに平面度に高い精度を要求される平板状の被加工物を研磨する方法において、例えば特許文献1には、被加工物を保持したキャリアを円軌道に沿って並行移動回転するようにし、このキャリアを挟んでそれぞれ回転する研磨用円板を、キャリアの円軌道の中心を振分け点として互いに反対の向きに往復動させる方法が開示されている。
特公昭44−2277号公報
The planar workpiece is polished by adjusting the thickness by a rough polishing process, and further by surface finishing by a precision polishing process. A conventional double-side polishing apparatus is provided with a central axis, and a workpiece is attached to a carrier jig that rotates around the planet, and is sandwiched between upper and lower surface plates and is subjected to a polishing motion while giving a relative speed.
For example, in a method of polishing a flat plate-like workpiece that requires high accuracy in flatness and flatness, such as a glass plate for an image display plate or an optical filter glass plate, Patent Document 1 discloses, for example, The carrier holding the workpiece is rotated in parallel along the circular trajectory, and the polishing discs rotating with the carrier in between are placed in opposite directions with the center of the circular trajectory of the carrier as the distribution point. A reciprocating method is disclosed.
Japanese Examined Patent Publication No. 44-2277

しかしながら、前記方法では、固形状の砥石を用いる方法では、粗研磨としては一定の評価が与えられるが、微細なスクラッチ痕が発生するという欠点がある。また、砥石を用いる研削方法では、被加工物の加工は片面のため、被加工物加工面の反転作業は、人手が必要である等、能率的な問題点を有する。
一方、遊離砥粒(スラリー)を用いる研磨方法(例えば図4,5参照)では、研磨定盤によって発生する遠心力によって発生する遠心力で、砥粒が研磨領域から外側へと飛散するという問題が生じる。さらに遠心力で中央部から飛ばされた砥粒により被加工物の外縁部が大きく削られ(縁だれ)る場合もあった。また、前記のように各定盤と被加工物をそれぞれ制御するため、駆動部の機構が複雑であるという問題があった。さらに、被加工物を保持するキャリアを回転する態様では、回転軸付近では遠心力が殆ど作用しないため、相対的運動が最も少なく加工量も小さい。そのため、被加工物を配置できないエリア(回転軸付近)が存在することになり、キャリアに一度に保持できる枚数も少なかった。このように、遊離砥粒(スラリー)を用いる研磨方法は、加工効率の低い工法であることが知られていた。
However, in the above-described method, the method using a solid grindstone gives a certain evaluation as rough polishing, but has a disadvantage that fine scratch marks are generated. Further, in the grinding method using a grindstone, since the work piece is processed on one side, the work surface reversal operation requires an efficient problem such as requiring manual work.
On the other hand, in the polishing method using free abrasive grains (slurry) (for example, see FIGS. 4 and 5), the abrasive grains are scattered from the polishing area to the outside by the centrifugal force generated by the centrifugal force generated by the polishing surface plate. Occurs. Furthermore, the outer edge portion of the workpiece may be greatly shaved (edge fringed) by abrasive grains blown from the central portion by centrifugal force. Moreover, since each surface plate and the workpiece are controlled as described above, there is a problem that the mechanism of the drive unit is complicated. Furthermore, in the aspect of rotating the carrier that holds the workpiece, the centrifugal force hardly acts near the rotation axis, so that the relative movement is the smallest and the machining amount is also small. For this reason, there is an area where the work piece cannot be arranged (near the rotation axis), and the number of sheets that can be held on the carrier at a time is small. Thus, it has been known that a polishing method using loose abrasive grains (slurry) is a method with low processing efficiency.

そこで、前記従来の問題点を解消でき、加工量を求められる粗研磨から高精度の平滑性が求められる精密仕上げ研磨まで適宜に適用することができ、優れた研磨効果を実現する新たな装置や加工法の創出が望まれていた。   Therefore, the above-mentioned conventional problems can be solved, and can be appropriately applied from rough polishing requiring a processing amount to precision finishing polishing requiring high-precision smoothness, and a new apparatus that realizes an excellent polishing effect, Creation of processing methods was desired.

本発明は上記実状に鑑み、提案されたものであり、下面に研磨パッドを取り付けて上定盤とし、上面に研磨パッドを取り付けて下定盤とし、前記各定盤をそれぞれの研磨パッドを対向させた状態でそれぞれ面向きを一定とした偏芯旋回運動を可能とし、前記研磨パッドの対向空間に、面向きを一定として1軸又は2軸往復する摺動運動又は円軌道運動を可能とするキャリアに任意の枚数(複数枚)の被加工物を保持させて臨ませ、誘電性砥粒を分散させたスラリーを各定盤から加工面に供給しつつ、前記各定盤を偏芯旋回運動させると共に、前記キャリアを往復状に摺動させ、重力方向に対して垂直に10kHz〜100kHzの微振動を与え、砥粒に相対速度を供給することを特徴とする平面両面研磨方法に関するものである。
なお、「面向きを一定とした」とは、それ自体は回転(自転)しないで、旋回することを意味している。
The present invention has been proposed in view of the above situation, and a polishing pad is attached to the lower surface to form an upper surface plate, a polishing pad is attached to the upper surface to form a lower surface plate, and each surface plate is made to face each polishing pad. In a state where the surface orientation is constant, and a carrier that enables reciprocal sliding or circular orbital motion with one surface or two axes reciprocating in the space facing the polishing pad. An arbitrary number (multiple pieces) of workpieces are held and faced, and each surface plate is eccentrically swung while supplying slurry in which dielectric abrasive grains are dispersed to the processing surface from each surface plate. In addition, the present invention relates to a planar double-side polishing method characterized by sliding the carrier in a reciprocating manner, applying a slight vibration of 10 kHz to 100 kHz perpendicular to the direction of gravity, and supplying a relative speed to the abrasive grains .
Note that “the surface orientation is constant” means that the surface itself turns without rotating (spinning).

さらに、本発明は、前記研磨方法において、偏芯旋回運動は、外周部に設けたリング錘を回転させることにより、上下の定盤の平行バランスを保持しつつ偏芯旋回運動させるものであることを特徴とする平面両面研磨方法をも提案する。   Further, in the polishing method according to the present invention, the eccentric swivel movement is performed by rotating a ring weight provided on the outer peripheral portion to maintain an eccentric swivel movement while maintaining a parallel balance between the upper and lower surface plates. Also proposed is a planar double-side polishing method characterized by

また、本発明は、前記研磨方法において、研磨パッドは、ラッピング用又はポリシング用であることを特徴とする平面両面研磨装置をも提案する。   The present invention also proposes a planar double-side polishing apparatus characterized in that, in the polishing method, the polishing pad is used for lapping or polishing.

また、本発明は、下面に研磨パッドを取り付けて上定盤とし、上面に研磨パッドを取り付けて下定盤とし、前記各定盤をそれぞれの研磨パッドを対向させた状態でそれぞれ面向きを一定とした偏芯旋回運動を可能とする旋回機構と、前記研磨パッドの対向空間にて、任意の枚数(複数枚)の被加工物を保持させたキャリアを面向きを一定として1軸又は2軸往復させる摺動運動又は円軌道運動を可能とする摺動機構と、誘電性砥粒を分散させたスラリーを各定盤から加工面に供給する供給機構と、重力方向に対して垂直に10kHz〜100kHzの微振動を与え、砥粒に相対速度を供給する微振動機構と、を備えることを特徴とする砥粒を分散させた流体を用いた平面両面研磨装置をも提案するものである。 Further, the present invention provides an upper surface plate with a polishing pad attached to the lower surface, a lower surface plate with an abrasive pad attached to the upper surface, and each surface plate having a constant surface orientation with each polishing pad facing each other. One-axis or two-axis reciprocation of a carrier holding an arbitrary number of workpieces (a plurality of workpieces) in a facing space of the polishing pad with a constant surface orientation A sliding mechanism that enables a sliding motion or a circular orbital motion, a supply mechanism that supplies a slurry in which dielectric abrasive grains are dispersed from each surface plate to a processing surface, and 10 kHz to 100 kHz perpendicular to the direction of gravity. The present invention also proposes a flat double-side polishing apparatus using a fluid in which abrasive grains are dispersed, characterized by comprising a microvibration mechanism that provides the above-mentioned fine vibration and supplies a relative speed to the abrasive grains.

本発明の平面両面研磨方法では、上定盤、下定盤は、被加工物の研磨仕上げ加工に際し、面向きを一定とした偏芯旋回運動を行う。本発明の研磨装置では、この各定盤の偏芯旋回運動を制御する機構を旋回機構とする。また、キャリアは、加工空間にて任意の枚数(複数枚)の被加工物を保持し、面向きを一定として往復する摺動運動を行う。本発明の研磨装置では、このキャリアの1軸又は2軸往復状の摺動運動又は円軌道運動を制御する機構を摺動機構とする。さらに、前記各定盤を加工空間を隔てて対向させ、砥粒を分散させたスラリーを各定盤から加工面に供給できる。本発明の研磨装置では、このスラリーの供給を制御する機構を供給機構とする。
そして、前記3つの機構を適宜に制御することにより、砥粒を分散させたスラリーに好適な相対速度が与えられ、キャリアに保持された被加工物に対して上下の定盤が恰も偏芯旋回状に臨む挙動を示すので、この定盤から加工面に供給された砥粒により、粗研磨から精密仕上げ研磨まで適宜に被加工物の表裏面を高品位にさらに良好な研磨効率で仕上げることができる。
In the planar double-side polishing method of the present invention, the upper surface plate and the lower surface plate perform an eccentric swivel motion with the surface orientation being constant when the workpiece is polished and finished. In the polishing apparatus of the present invention, a mechanism for controlling the eccentric turning motion of each surface plate is a turning mechanism. The carrier holds an arbitrary number of workpieces (a plurality of workpieces) in the processing space, and performs a reciprocating sliding motion with a fixed surface orientation. In the polishing apparatus of the present invention, a mechanism for controlling the uniaxial or biaxial reciprocating sliding movement or circular orbital movement of the carrier is a sliding mechanism. Further, each of the surface plates can be opposed to each other with a processing space, and slurry in which abrasive grains are dispersed can be supplied from each surface plate to the processing surface. In the polishing apparatus of the present invention, a mechanism for controlling the supply of the slurry is a supply mechanism.
By appropriately controlling the three mechanisms, a suitable relative speed is given to the slurry in which abrasive grains are dispersed, and the upper and lower surface plates are swung eccentrically with respect to the workpiece held by the carrier. The surface of the workpiece can be finished with high quality and even better polishing efficiency from coarse polishing to precision finish polishing with the abrasive grains supplied from the surface plate to the processed surface. it can.

また、本発明の方法及び装置を前記従来の方法と比べると、以下の点で優れている。
第1に、前記従来の方法では、各定盤と被加工物をそれぞれ制御するため、駆動部の機構が複雑であるという問題がある。これに対し、本発明では各定盤及びキャリアの比較的容易な駆動による機構の簡易化を実現している。
第2に、前記従来の方法では、定盤の回転軸に相当するキャリアの中心エリアでは相対運動量が小さいが、円周に近づくほど相対運動量は大きくなり、砥粒による研磨量も不均一となる。これに対し、本発明では各定盤の摺動並びにキャリアの摺動は、面向きを一定として行われるので、基本的に相対速度が無い個所が発生しないため、キャリアに保持させる部位によって不均一な仕上がりになることが抑制され、キャリアの何れの場所に保持させた被加工物でも均一に研磨加工することができる。要するに、従来の方法では、被加工物が回転してしまうために、その試料中央部では周速がゼロになり砥粒が運動しなくなって削りにくくなる。これに対し、本発明では、被加工物が回転しないため、その周速の差が抑えられる。
第3に、前記従来の方法では、キャリアの回転軸周辺の著しく相対運動量が少ないエリアが存在するため、被加工物を配置できないエリアが存在し、そのため、一度に研磨できる枚数も少なかった。これに対し、本発明では、従来の方法のような運動量が著しく少ないエリアが存在しないので、キャリアの面積を有効に利用でき、多量の被加工物を保持させて研磨することができ、一度に研磨できる枚数が極めて多いものとなる。
In addition, the method and apparatus of the present invention are superior to the conventional method in the following points.
1stly, in the said conventional method, since each surface plate and a workpiece are each controlled, there exists a problem that the mechanism of a drive part is complicated. On the other hand, in the present invention, the mechanism is simplified by relatively easily driving each surface plate and the carrier.
Second, in the conventional method, the relative momentum is small in the center area of the carrier corresponding to the rotation axis of the surface plate, but the relative momentum increases as it approaches the circumference, and the polishing amount by the abrasive grains becomes non-uniform. . On the other hand, in the present invention, the sliding of each surface plate and the sliding of the carrier are performed with the surface orientation being constant, so that there is basically no portion where there is no relative speed. Therefore, it is possible to uniformly polish a workpiece held in any place on the carrier. In short, in the conventional method, since the workpiece is rotated, the peripheral speed becomes zero at the center portion of the sample, and the abrasive grains do not move and are difficult to cut. On the other hand, in the present invention, since the workpiece does not rotate, the difference in peripheral speed is suppressed.
Third, in the conventional method, there is an area where the relative momentum around the rotation axis of the carrier is remarkably small, so there is an area where the work piece cannot be arranged, and therefore, the number of sheets that can be polished at one time is small. On the other hand, in the present invention, there is no area having a remarkably small momentum as in the conventional method, so the area of the carrier can be used effectively, and a large amount of workpiece can be held and polished at a time. The number of sheets that can be polished is extremely large.

また、本発明の平面両面研磨方法は、重力方向に対して垂直に10kHz 〜100kHzの微振動を与え、砥粒に相対速度を供給することにより、より効率的、高能率な研磨が可能となる。このような超音波振動は、砥粒に転動が生じるものであれば、上下の各定盤とキャリアのどちらに作用させてもよく、両方に作用させてもよい。   Further, the planar double-side polishing method of the present invention enables more efficient and highly efficient polishing by applying a slight vibration of 10 kHz to 100 kHz perpendicular to the direction of gravity and supplying a relative speed to the abrasive grains. . Such ultrasonic vibration may be applied to either the upper or lower surface plate or the carrier, or may be applied to both, as long as rolling occurs in the abrasive grains.

さらに、本発明の平面両面研磨方法は、外周部に設けたリング錘を回転させることにより、上下の定盤の平行バランスを保持しつつ偏芯旋回運動させることができる。即ちバネやワイヤーで平行度を保持しようとすると、環境温度によって伸縮するため精度を保持することが困難となる場合があるが、このように外周部に設けたリング錘が回転運動するように構成することで、上下の定盤の平行バランスを容易に保持させることができる。   Furthermore, in the planar double-side polishing method of the present invention, an eccentric swiveling motion can be performed while maintaining the parallel balance of the upper and lower surface plates by rotating a ring weight provided on the outer peripheral portion. In other words, when trying to maintain parallelism with a spring or wire, it may become difficult to maintain accuracy because it expands and contracts depending on the environmental temperature, but the ring weight provided on the outer peripheral part is configured to rotate in this way. By doing so, the parallel balance of the upper and lower surface plates can be easily maintained.

また、本発明の平面両面研磨方法は、上定盤の下面及び下定盤の上面に、それぞれラッピング用又はポリシング用の研磨パッドを取り付けて研磨の更なる効率化を図ることができ、粗研磨から精密仕上げまで一つの装置にて連続的に加工を実施することができる。   Further, the planar double-side polishing method of the present invention can further improve the efficiency of polishing by attaching lapping or polishing polishing pads to the lower surface of the upper surface plate and the upper surface of the lower surface plate, respectively. Processing can be carried out continuously with a single device until precision finishing.

本発明では、上定盤の下面及び下定盤の上面を加工空間を隔てて対向させるので、上定盤は下方へ向かって臨むように配置され、下定盤は上方へ向かって臨むように配置され、これらの挙動(運動)を制御する機構(機械・装置)はそれぞれ加工空間の反対側(上定盤では上方、下定盤では下方)に設けられる。
また、各定盤の加工面側にはラッピング用(粗研磨用)パッドやポリシング(精密研磨用)パッドを適宜に取り付けるようにしてもよい。
In the present invention, since the lower surface of the upper surface plate and the upper surface of the lower surface plate are opposed to each other with a processing space therebetween, the upper surface plate is disposed so as to face downward, and the lower surface plate is disposed so as to face upward. The mechanisms (machines and devices) that control these behaviors (movements) are provided on the opposite sides of the machining space (upper on the upper platen and lower on the lower platen).
Further, a lapping (rough polishing) pad or a polishing (precision polishing) pad may be appropriately attached to the processing surface side of each surface plate.

本発明における各定盤の偏芯旋回運動は、定盤自体は回転することなくXY平面に平行に円軌道を描くように偏芯旋回運動する、即ち面向きを一定にして旋回するものであって、具体的には回転運動を公知の偏心カムやエキセンシャフトなどを用いた機構を適用して面向きを一定にした偏芯旋回運動に変換する。この「面向きを一定とした」とは、前述のように、それ自体は回転(自転)しないで、旋回することを意味している。また、この偏芯旋回運動を制御する旋回機構における各定盤の旋回速度は特に限定するものではないが、各々の定盤の駆動を独立させることを特徴とする。例えば5〜200rpm程度の旋回速度が望ましい。   The eccentric turning motion of each surface plate in the present invention is that the surface plate itself does not rotate but rotates eccentrically so as to draw a circular orbit parallel to the XY plane, that is, turns with a constant surface orientation. Specifically, the rotational motion is converted into an eccentric swivel motion with a fixed surface orientation by applying a mechanism using a known eccentric cam or eccentric shaft. The phrase “the surface orientation is constant” means that, as described above, the surface itself turns without rotating (spinning). Further, the turning speed of each surface plate in the turning mechanism for controlling the eccentric turning motion is not particularly limited, but the drive of each surface plate is made independent. For example, a turning speed of about 5 to 200 rpm is desirable.

本発明におけるキャリアは、面向きを一定として前記定盤の前記旋回軌道の径方向、例えばX軸1軸方向に直線的に往復摺動してもよいし、XY軸2軸方向に同時に往復摺動させてもよいし、円軌道を描くように運動させるようにしてもよく、具体的には公知の機構を適用することができる。
前述のように何れの場合にも砥粒は十分に転動して研磨に寄与するが、キャリアを1軸又は2軸往復状の摺動運動をさせる場合には、砥粒が一直線上を動く堀込み加工のような挙動を示すこともあるのに対し、キャリアを円軌道運動をさせる場合には、砥粒は絶えず異なる点で運動するので、砥粒の転動が全体的に十分に且つ均一に起こり、この砥粒による研磨量がより均一になる。キャリアの駆動においても各定盤と独立に駆動させることを特徴とする。
また、この摺動運動又は円軌道運動を制御する摺動機構におけるキャリアの移動速度は特に限定するものではないが、例えば10〜300mm/秒程度の移動速度が望ましい。なお、このキャリアには1枚或いは複数枚の任意の枚数の被加工物を保持させればよい。そして、本発明の仕上げ方法及び仕上げ装置におけるキャリアには、従来の両面研磨装置における中心エリア(回転軸付近)のような運動量が極めて小さい領域が存在しないので、平坦度のばらつき発生が抑制され効率よく研磨でき、多くの枚数の被加工物を保持することが可能である。
The carrier in the present invention may be reciprocally slid linearly in the radial direction of the turning track of the surface plate, for example, the X-axis one axis direction, or may be simultaneously reciprocated in the XY-axis two axis directions, with the surface orientation being constant. It may be moved, or may be moved so as to draw a circular orbit, and specifically, a known mechanism can be applied.
As described above, in any case, the abrasive grains sufficiently roll and contribute to the polishing. However, when the carrier is uniaxially or biaxially reciprocated, the abrasive grains move in a straight line. In some cases, such as excavation, the carrier moves in a circular orbit, and the abrasive grains constantly move at different points. It occurs uniformly and the amount of polishing by the abrasive becomes more uniform. The carrier is also driven independently from each surface plate.
Further, the moving speed of the carrier in the sliding mechanism for controlling the sliding motion or the circular orbital motion is not particularly limited, but a moving speed of about 10 to 300 mm / second is desirable, for example. In addition, what is necessary is just to hold | maintain the one or several arbitrary number of workpieces to this carrier. The carrier in the finishing method and the finishing apparatus of the present invention does not have a region having a very small momentum such as the central area (near the rotation axis) in the conventional double-side polishing apparatus, so that the occurrence of variations in flatness is suppressed and efficiency is improved. It can be polished well and can hold a large number of workpieces.

本発明の仕上げ方法及び仕上げ装置に用いる砥粒を分散させたスラリーは、誘電性砥粒を水に分散させたスラリーを使用することが望ましいが、特にこれに限定するものではなく、例えばシリコーンオイルに分散させたものでもよい。
分散媒としての水は、廃液の処理の容易さ、安定性に優れているため、環境に配慮したものであって、被加工物としてのガラスと親和性が高い点でも好適である。
The slurry in which the abrasive grains used in the finishing method and the finishing apparatus of the present invention are dispersed is preferably a slurry in which dielectric abrasive grains are dispersed in water, but is not particularly limited thereto. It may be dispersed.
Since water as a dispersion medium is excellent in the ease and stability of waste liquid treatment, it is environmentally friendly and is also suitable in terms of high affinity with glass as a workpiece.

さらに、系に電界を掛けることを将来的に考えているが、その点でもシリコーンオイルは誘電率が3程度であるが、水は誘電率80と高く、メカノケミカル効果を出すことにより、研磨効率の向上が見込まれた。即ち水と砥粒を混合したスラリーを研磨に用いることで、メカノケミカル現象による研磨援用効果と砥粒による研磨現象により、合理的な研磨効果が得られることが見込まれた。また、砥粒を含んだスラリーは、電界を用いることにより誘電率が高い水に支配され、この水自体で砥粒の飛散を抑えることが見込まれた。そして、スラリーの水に代えてシリコーンオイルを用いた場合には、ガラスと同じ成分Siを含むため、シリコーンオイルのSiがガラスに付着し、砥粒の飛散は抑えられるが、研磨効率が低下することが予想される。   In addition, we are considering applying an electric field to the system in the future. In this respect, silicone oil has a dielectric constant of about 3, but water has a high dielectric constant of 80. Improvement was expected. That is, by using a slurry in which water and abrasive grains are mixed for polishing, it is expected that a reasonable polishing effect can be obtained by the polishing assistance effect by the mechanochemical phenomenon and the polishing phenomenon by the abrasive grains. In addition, the slurry containing abrasive grains is dominated by water having a high dielectric constant by using an electric field, and it is expected that the water itself suppresses scattering of the abrasive grains. And when silicone oil is used instead of slurry water, since it contains the same component Si as glass, Si of silicone oil adheres to the glass, and scattering of abrasive grains is suppressed, but polishing efficiency decreases. It is expected that.

誘電性砥粒としては、硬度が被加工物の硬度と同等或いはそれ以上であるか、被加工物とメカノケミカル作用を有するものが用いられる。具体的にはダイアモンドやコランダム、エメリー、ザクロ石、珪石、焼成ドロマイト、溶融アルミナ、人造エメリー、炭化珪素、酸化ジルコニウムなど、或いはメカノケミカル研磨に使用される酸化クロムや酸化珪素、酸化鉄、酸化カルシウム、酸化マグネシウム、酸化セリウム、炭化マグネシウム、炭酸バリウムなどが挙げられる。   As the dielectric abrasive grains, those having a hardness equal to or higher than the hardness of the workpiece or having a mechanochemical action with the workpiece are used. Specifically, diamond, corundum, emery, garnet, silica, calcined dolomite, fused alumina, artificial emery, silicon carbide, zirconium oxide, etc., or chromium oxide, silicon oxide, iron oxide, calcium oxide used for mechanochemical polishing , Magnesium oxide, cerium oxide, magnesium carbide, barium carbonate and the like.

以下、図面の実施例に基づいて説明する。
図1〜3は、本発明の仕上げ方法を実施する仕上げ装置の原理模式図である。
上定盤1は、図1及び図2の中央に示した加工空間A(キャリア7が配置されている)の上方に位置し、下方へ向かって臨むように配置されている。この上定盤1の下面には図2に示すように多数の微細孔が形成された研磨パッド2が取り付けられ、その内部には、砥粒を分散させたスラリー3の貯留部4が形成されている。このスラリー貯留部4には、図示しないポンプ等から構成される供給機構から偏心カム軸5を通じて随時砥粒を分散させたスラリー3が供給される。
尚、前記研磨パッド2としては、粗研磨に際してはラッピング用パッドを用いればよいし、精密仕上げに際してはポリシング用パッドを用いればよい。
前記上定盤1に対し、加工空間Aを隔てて下方に対向するように位置する下定盤6は、前記上定盤1と上下が逆であるが、ほぼ同様の構造を有しており、図面に同一符号を付して説明を省略する。
Hereinafter, description will be given based on the embodiments of the drawings.
1 to 3 are schematic views showing the principle of a finishing apparatus for carrying out the finishing method of the present invention.
The upper surface plate 1 is positioned above the processing space A (where the carrier 7 is disposed) shown in the center of FIGS. 1 and 2 and is disposed so as to face downward. As shown in FIG. 2, a polishing pad 2 having a large number of fine holes is attached to the lower surface of the upper surface plate 1, and a storage portion 4 for slurry 3 in which abrasive grains are dispersed is formed therein. ing. The slurry reservoir 4 is supplied with the slurry 3 in which abrasive grains are dispersed at any time through an eccentric cam shaft 5 from a supply mechanism including a pump (not shown).
As the polishing pad 2, a lapping pad may be used for rough polishing, and a polishing pad may be used for precision finishing.
The lower surface plate 6 positioned so as to face the lower surface across the processing space A with respect to the upper surface plate 1 is upside down from the upper surface plate 1, but has substantially the same structure. The same reference numerals are attached to the drawings and the description is omitted.

前記上下の定盤1,6の運動は、図3にて示されるように、面向きを一定として偏芯旋回運動を行う。即ち図3の左右方向がX軸方向で、上下方向がY軸方向とすると、定盤1,6自体は回転することなくXY平面に平行に円軌道を描くように旋回する。尚、図1〜図3ではX軸方向は何れも左右方向である。これらの定盤1,6の旋回は、公知の偏心カムを用いた機構にて回転が偏芯旋回に変換、制御されている。   As shown in FIG. 3, the upper and lower surface plates 1 and 6 perform an eccentric swivel motion with the surface orientation being constant. That is, if the left-right direction in FIG. 3 is the X-axis direction and the up-down direction is the Y-axis direction, the surface plates 1 and 6 themselves rotate so as to draw a circular orbit parallel to the XY plane without rotating. In FIGS. 1 to 3, the X-axis direction is the left-right direction. The turning of these surface plates 1 and 6 is controlled by converting the rotation into eccentric turning by a known mechanism using an eccentric cam.

また、前記加工空間Aに配されて上定盤1と下定盤6間に位置するように配置されるキャリア7は、図3に示すようにX軸方向に長い矩形状であって、略正方形状を有する複数の嵌合空部8を備え、この嵌合空部8に光学フィルターガラス板等の被加工物9を嵌め込むことができる。   Further, the carrier 7 disposed in the processing space A so as to be positioned between the upper surface plate 1 and the lower surface plate 6 has a rectangular shape that is long in the X-axis direction as shown in FIG. A plurality of fitting empty portions 8 having a shape are provided, and a workpiece 9 such as an optical filter glass plate can be fitted into the fitting empty portions 8.

このキャリア7の運動は、図3に示されるように、前記円軌道の径方向、例えばX軸方向に面向きを一定として往復する摺動運動を行う。すなわちキャリア7は、図3の矢印で示す左右方向に、面向きを一定として往復する摺動運動を行う。
また、キャリア7は、XY平面をX・Y2軸方向に往復摺動運動又は円軌道運動を行うように制御してもよい。
このようなキャリア7の運動は、公知の往復機構を適用して制御している。
As shown in FIG. 3, the movement of the carrier 7 is a sliding movement that reciprocates with a constant surface orientation in the radial direction of the circular orbit, for example, the X-axis direction. That is, the carrier 7 performs a sliding motion that reciprocates in the left-right direction indicated by the arrows in FIG.
Further, the carrier 7 may be controlled so as to perform a reciprocating sliding motion or a circular orbit motion on the XY plane in the XY direction.
Such movement of the carrier 7 is controlled by applying a known reciprocating mechanism.

尚、前記図3にて各定盤1,6の摺道運動の軌道が楕円状、偏心状となっているのは、定盤1,6の偏芯旋回運動にキャリア7の往復運動が重なるから、仮にキャリア7が固定(停止)しているとすると、恰も定盤1,6が楕円状、偏心状を描くように旋回することを意味している。   In FIG. 3, the path of the sliding motion of the surface plates 1 and 6 is elliptical and eccentric. The reciprocating motion of the carrier 7 overlaps the eccentric turning motion of the surface plates 1 and 6. Thus, if the carrier 7 is fixed (stopped), it means that the surface plates 1 and 6 are swung so as to draw an elliptical shape and an eccentric shape.

次に、上下の定盤が面向きを一定にして偏芯旋回運動を行う機構について説明する。図4は全体斜面図、図5は研磨定盤の分解図である。
図4に関して、16は被加工物17を保持するキャリアを示す。このキャリア16はガラスエポキシ樹脂の平板に、被加工物17をはめ込むための矩形状の抜き穴加工を施したものであり、XY平面をY軸方向(同図面では右前から左奥方向)に繰り返し往復運動する。またキャリア16は、XY平面をX・Y2軸方向に往復するように制御してもよい。或いは円軌道運動を行うように制御してもよい。これを研磨パッド(同図では図示せず)を貼った上定盤15と下定盤18で挟み込む。この上研磨定盤15を加圧方向に下降させることで研磨に必要な加工圧を与える。定盤支持シャフト11はそれぞれ上下エキセンシャフトホルダ14に組み込まれたエキセンシャフト12を通って固定されており、このエキセン部が駆動用ギヤ13により面回転移動することで定盤支持シャフト11はエキセンシャフト12中心から距離Rの線上を移動する。それに伴い、定盤15,18も距離Rの線上を移動する。また、定盤支持シャフト11に垂直方向に連結した自転制御シャフト19をレール21上の自転制御ブロック20に通すことで、エキセンシャフト12の回転に連動して前述のブロック20がレール21上を往復運動し、定盤支持シャフト11の自転を制御する。この機構により、エキセンシャフト12回転時に、常に斜線部の上定盤15の側面Aがキャリア16の側面A'と平行関係を保ったまま被加工物17に対して全体面回転運動する。
Next, a description will be given of a mechanism in which the upper and lower surface plates perform an eccentric turning motion with the surface orientation being constant. 4 is an overall slope view, and FIG. 5 is an exploded view of the polishing surface plate.
With reference to FIG. 4, reference numeral 16 denotes a carrier for holding a workpiece 17. This carrier 16 is a glass epoxy resin flat plate with a rectangular punched hole for fitting the workpiece 17, and the XY plane is repeated in the Y-axis direction (from the right front to the left back direction in the drawing). Reciprocate. The carrier 16 may be controlled so as to reciprocate in the XY plane in the X · Y2 axis direction. Or you may control to perform circular orbital motion. This is sandwiched between an upper surface plate 15 and a lower surface plate 18 to which a polishing pad (not shown in the figure) is attached. The upper polishing platen 15 is lowered in the pressurizing direction to give a processing pressure necessary for polishing. The surface plate support shaft 11 is fixed through an eccentric shaft 12 incorporated in each of the upper and lower eccentric shaft holders 14, and this surface portion is rotated by a driving gear 13 so that the surface plate support shaft 11 is an eccentric shaft. 12 Move on the line of distance R from the center. Accordingly, the surface plates 15 and 18 also move on the line of the distance R. Further, by passing the rotation control shaft 19, which is vertically connected to the surface plate support shaft 11, through the rotation control block 20 on the rail 21, the block 20 reciprocates on the rail 21 in conjunction with the rotation of the eccentric shaft 12. It moves and controls the rotation of the platen support shaft 11. By this mechanism, when the eccentric shaft 12 rotates, the entire side surface A of the upper surface plate 15 of the shaded portion rotates with respect to the workpiece 17 while maintaining a parallel relationship with the side surface A ′ of the carrier 16.

図5は(上)定盤15の分解図である。上定盤15は図示するように内部が中空構造となっており、側面からの砥粒の漏れを防ぐため底部に絶縁材ならびに除震材(2つの機能を有する)22をはめ込んでいる。定盤支持シャフト11を通ってきた砥粒は上定盤15内に溜まり、上定盤15底部の砥粒供給穴23から研磨領域へと供給される。また、上定盤15には超音波振動機連結軸(加震軸)24が取り付けてあり、この軸を介して上定盤15自体を25kHz〜50kHzの間で微振動(超音波振動)させる。
前述の定盤支持シャフト11の自転制御機構、上定盤15構造・微振動機構は上下とも相同である。つまり、上下の定盤15,18の同位相同偏心運動(旋回運動)による摺動と超音波による微振動、キャリア16の往復運動という相対運動により高能率な研磨が可能となる。
FIG. 5 is an exploded view of the (upper) surface plate 15. As shown in the drawing, the upper surface plate 15 has a hollow structure, and an insulating material and a vibration isolating material (having two functions) 22 are fitted to the bottom to prevent leakage of abrasive grains from the side surface. Abrasive grains that have passed through the surface plate support shaft 11 accumulate in the upper surface plate 15 and are supplied from the abrasive particle supply holes 23 at the bottom of the upper surface plate 15 to the polishing region. Further, the upper surface plate 15 is provided with an ultrasonic vibrator connecting shaft (shaking shaft) 24, and the upper surface plate 15 itself is finely vibrated (ultrasonic vibration) between 25 kHz and 50 kHz via this shaft. .
The above-mentioned rotation control mechanism of the surface plate support shaft 11 and the structure of the upper surface plate 15 and the fine vibration mechanism are the same in both the upper and lower sides. In other words, high-efficiency polishing can be achieved by relative movement of sliding between the upper and lower surface plates 15 and 18 by the isotope-homogeneous eccentric movement (turning movement), fine vibration by ultrasonic waves, and reciprocating movement of the carrier 16.

これに対し、従来の研磨方法を実施する研磨装置を図6,7に示した。
図6に示す研磨装置は、上下の定盤31,32が、それぞれ図示するように逆方向に回転するものとする。これらの定盤31,32間に挟持されるように配されるキャリア33には、中心部に太陽歯車(中心軸)を持ち、この太陽歯車の駆動と内歯車の駆動により、キャリア33を公転、自転させているが、この中央部に太陽歯車があるために研磨領域が狭くなる。すなわち図7では、前記太陽歯車が存在する中心部を中心エリア35としているが、その存在により、円縁に近い部分に合計5箇所の嵌合空部が設けられるに過ぎず、一度に研磨できる被加工物34の枚数も少ない。さらに、各被加工物34においても、中心軸に近い部分と円周に近い部分とでは定盤31,32との相対運動でやはり差異が生じて均一な加工を行うことができない。
さらに、嵌合空部に嵌め込まれた各被加工物34を、嵌合空部内にてそれぞれ回転するようにする場合には、駆動部の機構が極めて複雑となり、しかもその回転の中心軸が存在するため、新たな差異が生ずるばかりで、均一な加工を行うことができない。
In contrast, FIGS. 6 and 7 show a polishing apparatus for performing a conventional polishing method.
In the polishing apparatus shown in FIG. 6, it is assumed that the upper and lower surface plates 31 and 32 rotate in opposite directions as illustrated. The carrier 33 arranged so as to be sandwiched between the surface plates 31 and 32 has a sun gear (center axis) at the center, and the carrier 33 is revolved by driving the sun gear and the internal gear. However, since the sun gear is in the center, the polishing region is narrowed. That is, in FIG. 7, although the center part where the said sun gear exists is made into the center area 35, by the presence, only a total of five fitting empty parts are provided in the part near a circle edge, and it can grind at once. The number of workpieces 34 is also small. Further, even in each workpiece 34, a difference between the portion close to the central axis and the portion near the circumference is caused by relative movement with the surface plates 31 and 32, and uniform processing cannot be performed.
Further, when each work piece 34 fitted in the fitting empty part is rotated in the fitting empty part, the mechanism of the driving part becomes extremely complicated, and the center axis of the rotation exists. Therefore, only a new difference occurs and uniform processing cannot be performed.

前記図1〜3の本発明の装置と、前記図6,7の従来の装置を比べると、以下のような相違がある。
前記従来の装置では、中心部の太陽歯車の駆動によりキャリア33を公転、自転させているので、被加工物34を配置できない中央エリア35が存在し、そのため、一度に研磨できる枚数も少なかった。
これに対し、前述のように本発明ではキャリア7を回転するものではないため、相対運動量が著しく少ないエリアが存在しない。したがって、キャリア7の面積を有効に利用でき、多量の被加工物9を保持させて研磨することができ、一度に研磨できる枚数が極めて多いものとなる。
When the apparatus of the present invention shown in FIGS. 1 to 3 is compared with the conventional apparatus shown in FIGS. 6 and 7, there are the following differences.
In the conventional apparatus, since the carrier 33 is revolved and rotated by driving the sun gear at the center, there is a central area 35 where the workpiece 34 cannot be disposed, and therefore, the number of sheets that can be polished at one time is small.
On the other hand, as described above, in the present invention, the carrier 7 is not rotated, and therefore there is no area with a relatively small relative momentum. Therefore, the area of the carrier 7 can be used effectively, a large amount of the workpiece 9 can be held and polished, and the number of sheets that can be polished at one time is extremely large.

また、前記従来の装置では、キャリア33を回転させるので、その中心軸に相当するキャリア33の中心エリア35では相対運動量が小さく、円周に近づくほど相対運動量は大きくなる。しかもそれらの相対運動量の違いにより、中心エリア35付近と円周に近い付近とでは、砥粒の運動量が研磨量に影響し,そのため研磨試料位置によって研磨量に相違が生じて不均一となる。
これに対し、前述のように本発明では、各定盤1,6の摺動並びにキャリア7の摺動が面向きを一定として行われるので、基本的に遠心力等が作用することがないため、遠心力が小さい中心軸付近といったエリアも形成されず、キャリア7に保持させる部位(嵌合空部8)によって不均一な仕上がりになることがなく、キャリア7の何れの場所に保持させた被加工物9でも均一に仕上げ研磨することができる。
In the conventional apparatus, since the carrier 33 is rotated, the relative momentum is small in the central area 35 of the carrier 33 corresponding to the central axis thereof, and the relative momentum is increased as it approaches the circumference. Moreover, due to the difference in the relative momentum, the momentum of the abrasive grains affects the polishing amount in the vicinity of the central area 35 and the vicinity of the circumference, and therefore, the polishing amount varies depending on the polishing sample position and becomes non-uniform.
On the other hand, as described above, in the present invention, the sliding of each of the surface plates 1 and 6 and the sliding of the carrier 7 are performed with the surface direction being constant, so that centrifugal force or the like basically does not act. In addition, an area such as the vicinity of the central axis where the centrifugal force is small is not formed, and the portion held by the carrier 7 (the fitting empty portion 8) does not produce a non-uniform finish, and the object held in any place on the carrier 7 Even the workpiece 9 can be finished and polished uniformly.

また、前記従来の装置では、キャリア33と被加工物34をそれぞれ回転制御するため、駆動部の機構が複雑になる。特に研磨効率の向上の観点では、一つのキャリア7に多くの嵌合空部を設けることが望まれているが、図示実施例のように5箇所であってもそれぞれが回転できるようにすることは、極めて駆動部の機構が複雑になる。
これに対し、前述のように本発明の装置では、定盤1,6を、公知の偏心カムを用いた機構にて制御し、キャリア7を公知の往復機構にて制御し、何れも比較的容易な駆動であるから、機構の簡易化が実現される。
Moreover, in the said conventional apparatus, since the rotation of the carrier 33 and the workpiece 34 is controlled, the mechanism of a drive part becomes complicated. In particular, from the viewpoint of improving the polishing efficiency, it is desired to provide a large number of fitting empty portions in one carrier 7, but each of them can be rotated even in five places as in the illustrated embodiment. The mechanism of the drive unit is extremely complicated.
On the other hand, as described above, in the apparatus of the present invention, the surface plates 1 and 6 are controlled by a mechanism using a known eccentric cam, and the carrier 7 is controlled by a known reciprocating mechanism. Since the drive is easy, the mechanism can be simplified.

図8は、外周部に設けたリング錘25を回転させることにより、上下の定盤26の平行バランスを保持しつつ偏芯旋回運動させる原理図を示すものであり、27はオフセット中心位置からの距離が半径の70%以内を示し、28は回転ローターを示す。バネやワイヤーで平行度を保持した場合には環境温度によって伸縮するため精度の保持が困難となることもあるが、このように外周部に設けたリング錘25が回転運動するように構成することで、上下の定盤26の平行バランスを容易に保持させることができる。   FIG. 8 is a diagram showing the principle of eccentric turning while maintaining the parallel balance of the upper and lower surface plates 26 by rotating the ring weight 25 provided on the outer peripheral portion. The distance indicates within 70% of the radius, 28 indicates a rotating rotor. When the parallelism is maintained with a spring or wire, it may become difficult to maintain accuracy because it expands and contracts depending on the environmental temperature. In this way, the ring weight 25 provided on the outer peripheral portion is configured to rotate. Thus, the parallel balance of the upper and lower surface plates 26 can be easily maintained.

[実施例1]
前記図1〜5、8に示した本発明の平面両面研磨装置を用いて粗研磨を実施した。
前記キャリア7の動作、定盤1,6について以下に示す。
キャリア7の摺動範囲は、2軸同時駆動にてX軸方向、Y軸方向ともに、中心位置より片側5〜50mm、計100mmの範囲での移動可能とした。
キャリア7の摺動速度としては、X軸方向、Y軸方向ともに、10〜200mm/secの範囲とした。
また、研磨加工圧としては0〜500Nの範囲とした。
さらに、定盤1,6の旋回スピードは、上下ともに5〜200rpmとした。
また、定盤1,6の大きさは250×250mmとした。
そして、上下定盤を偏芯旋回運動させると共に被加工物を保持するキャリアを1軸往復状に摺動させることにより、被加工物として、ガラス板(材質BK−7)40×40×2mmを一度に15枚(15枚/回)以上を研磨可能であり、30分間程度の実施にて粗さ200nmRa→1.6nmRaに仕上げることが可能であった。
さらに被加工物を保持するキャリアをX・Y軸2軸往復状円軌道運動させることにより、被加工物として、ガラス板(材質BK−7)40×40×2mmを一度に15枚(15枚/回)以上を研磨可能であり、30分間程度の実施にて粗さ200nmRa→0,8nmRaに仕上げることが可能であった。
また、ステンレス材で構成したキャリアを用意し、被加工物としてガラス板(材質BK−7)を用いて重力方向に垂直に微振動を与える実験を行った。印加周波数として50KHzを与えたところ、印加前が2.0nmRa→印加後1.2nmRaに仕上げ粗さを抑制することが可能となった。このように良好な仕上げ効果をさらに優れた面に仕上げる効果を見出すことが確認された。
さらに、リング錘回転数は100rpmで回転させながら、研磨するとリング錘回転前が60.5nmPV→20.2nmPVとなり、形状精度を良好にすることが可能となり、すなわち研磨定盤面のばたつきを抑制できるものと期待される。
なお、研磨パッドは、ラッピング用又はポリシング用でもよく、現状の砥粒は平均粒径を1.5μmとしてポリシング用としているが、砥粒サイズを3μm程度の大きなラッピング用の砥粒でも同様の効果は得られ、何れのタイプでも採用が可能であった。
これに対し、本発明の装置における上下研磨定盤と同等寸法の定盤の大きさを有する既存の4waY両面研磨装置では、研磨領域直径300mmにおいてキャリアの占有面積の関係上、5枚/回程度しか研磨できなかった。
また、研磨除去量については、既存の両面研磨装置では、30分で10μm程度の除去量が得られたのに対し、本発明の装置に電界を印加しながら研磨することで、30分で20μm以上の研磨除去量が得られることを確認できた。よって、研磨能力としては、4倍以上の能力を有する両面研磨方法ならびに装置であることが確認された。
[Example 1]
Rough polishing was performed using the flat double-side polishing apparatus of the present invention shown in FIGS.
The operation of the carrier 7 and the surface plates 1 and 6 will be described below.
The sliding range of the carrier 7 can be moved within a total range of 100 mm from 5 to 50 mm on one side from the center position in both the X-axis direction and the Y-axis direction by two-axis simultaneous driving.
The sliding speed of the carrier 7 was set to a range of 10 to 200 mm / sec in both the X-axis direction and the Y-axis direction.
The polishing pressure was in the range of 0 to 500N.
Furthermore, the turning speed of the surface plates 1 and 6 was set to 5 to 200 rpm in both the upper and lower sides.
The size of the surface plates 1 and 6 was 250 × 250 mm.
Then, the glass plate (material BK-7) 40 × 40 × 2 mm is formed as a workpiece by reciprocating the upper and lower surface plate in an eccentric manner and sliding the carrier holding the workpiece in a single-axis reciprocating manner. It was possible to polish 15 sheets (15 sheets / time) or more at a time, and it was possible to finish with a roughness of 200 nmRa → 1.6 nmRa in about 30 minutes.
Furthermore, by moving the carrier holding the workpiece in a reciprocating circular orbit along the X and Y axes, 15 sheets (15 sheets) of glass plate (material BK-7) 40 × 40 × 2 mm at a time. The above can be polished, and it was possible to finish with a roughness of 200 nmRa → 0,8 nmRa in about 30 minutes.
Moreover, the carrier comprised with the stainless steel material was prepared and the experiment which gives a minute vibration perpendicular | vertical to a gravity direction using the glass plate (material BK-7) as a to-be-processed object was done. When 50 KHz was applied as the applied frequency, it was possible to suppress the finishing roughness from 2.0 nmRa before application to 1.2 nmRa after application. Thus, it was confirmed that an effect of finishing a good finishing effect into a more excellent surface was found.
Furthermore, when polishing while rotating the ring weight at 100 rpm, the shape before rotation of the ring weight becomes 60.5 nm PV → 20.2 nm PV, and the shape accuracy can be improved, that is, the fluctuation of the polishing surface can be suppressed. It is expected.
The polishing pad may be used for lapping or polishing, and the current abrasive grains are used for polishing with an average particle diameter of 1.5 μm, but the same effect can be obtained with large lapping abrasive grains having an abrasive grain size of about 3 μm. It was possible to adopt any type.
On the other hand, in the existing 4-waY double-side polishing apparatus having the same size as the upper and lower polishing surface plates in the apparatus of the present invention, about 5 sheets / time due to the occupation area of the carrier at the polishing area diameter of 300 mm. I could only polish.
As for the removal amount of polishing, the removal amount of about 10 μm was obtained in 30 minutes with the existing double-side polishing apparatus, whereas it was 20 μm in 30 minutes by polishing while applying an electric field to the apparatus of the present invention. It was confirmed that the above polishing removal amount was obtained. Therefore, it was confirmed that the polishing ability is a double-side polishing method and apparatus having a capability of 4 times or more.

以上本発明を図面の実施の形態に基づいて説明したが、本発明は前記実施の形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない限りどのようにでも実施することができる。   Although the present invention has been described based on the embodiments of the drawings, the present invention is not limited to the above-described embodiments, and may be implemented in any way as long as the configuration described in the claims is not changed. Can do.

本発明の平面両面研磨装置の一例を原理的に示す分解斜視図である。It is a disassembled perspective view which shows an example of the planar double-side polish apparatus of this invention in principle. 図1の平面両面研磨装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the planar double-side polish apparatus of FIG. 図1の平面両面研磨装置の定盤及びキャリアの運動の状況を示す平面図である。It is a top view which shows the condition of the surface plate of the planar double-side polish apparatus of FIG. 1, and the movement of a carrier. 上下の定盤の偏芯旋回運動の機構の一例を原理的に示す斜視図である。It is a perspective view which shows in principle an example of the mechanism of the eccentric turning motion of an up-and-down surface plate. 上下の定盤の供給機構の一例を示す斜視図である。It is a perspective view which shows an example of the supply mechanism of an upper and lower surface plate. 従来の平面研磨装置の一例を示す正面図である。It is a front view which shows an example of the conventional plane polishing apparatus. 図6の平面研磨装置のキャリアを示す平面図である。It is a top view which shows the carrier of the planar polishing apparatus of FIG. (a)本発明の平面両面研磨装置における旋回機構の一例を原理的に示す平面図、(b)側面図である。(A) The top view which shows in principle an example of the turning mechanism in the planar double-side polish apparatus of this invention, (b) It is a side view.

符号の説明Explanation of symbols

1 上定盤
2 研磨パッド
3 スラリー
4 貯留部
5 偏心カム軸
6 下定盤
7 キャリア
8 嵌合空部
9 被加工物
11 定盤支持シャフト
12 エキセンシャフト
13 駆動用ギア
14 エキセンシャフトホルダ
15 上定盤
16 試料保持キャリア
17 被加工物
18 下定盤
19 制御シャフト
20 ブロック
21 レール
22 絶縁材ならびに除震材(2つの機能を有する)
23 スラリーまたは洗浄水供給穴
24 加震軸
25 リング錘
26 定盤
27 オフセット中心位置からの距離が半径の70%以内を示す
28 回転ローター
DESCRIPTION OF SYMBOLS 1 Upper surface plate 2 Polishing pad 3 Slurry 4 Storage part 5 Eccentric cam shaft 6 Lower surface plate 7 Carrier 8 Fitting empty part 9 Workpiece 11 Surface plate support shaft 12 Exen shaft 13 Drive gear 14 Exen shaft holder 15 Upper surface plate 16 Sample holding carrier 17 Work piece 18 Lower surface plate 19 Control shaft 20 Block 21 Rail 22 Insulating material and vibration isolator (having two functions)
23 Slurry or washing water supply hole 24 Shaking shaft 25 Ring weight 26 Surface plate 27 Distance from offset center position indicates within 70% of radius 28 Rotating rotor

Claims (4)

下面に研磨パッドを取り付けて上定盤とし、上面に研磨パッドを取り付けて下定盤とし、前記各定盤をそれぞれの研磨パッドを対向させた状態でそれぞれ面向きを一定とした偏芯旋回運動を可能とし、前記研磨パッドの対向空間に、面向きを一定として1軸又は2軸往復することで摺動運動又は円軌道運動を可能とするキャリアに任意の枚数の被加工物を保持させて臨ませ、誘電性砥粒を分散させたスラリーを各定盤から加工面に供給しつつ、前記各定盤を偏芯旋回運動させると共に、前記キャリアを往復状に摺動させ、重力方向に対して垂直に10kHz〜100kHzの微振動を与え、砥粒に相対速度を供給することを特徴とする平面両面研磨方法。 Equipped with a polishing pad attached to the lower surface to make an upper surface plate, and attached to the upper surface to make a lower surface plate. An arbitrary number of workpieces can be held on a carrier that enables sliding motion or circular orbital motion by reciprocating in one or two axes with a fixed surface orientation in the space facing the polishing pad. While supplying the slurry in which the dielectric abrasive grains are dispersed from each surface plate to the processing surface, the surface plate is eccentrically swung and the carrier is slid in a reciprocating manner to A flat double-side polishing method characterized by vertically applying a fine vibration of 10 kHz to 100 kHz and supplying a relative speed to the abrasive grains . 偏芯旋回運動は、外周部に設けたリング錘を回転させることにより、上下の定盤の平行バランスを保持しつつ偏芯旋回運動させるものであることを特徴とする請求項1に記載の平面両面研磨方法。 2. The flat surface according to claim 1, wherein the eccentric turning motion is an eccentric turning motion while maintaining a parallel balance between the upper and lower surface plates by rotating a ring weight provided on an outer peripheral portion. 3. Double-side polishing method. 研磨パッドは、ラッピング用又はポリシング用であることを特徴とする請求項1又は2に記載の平面両面研磨方法。 The planar double-side polishing method according to claim 1 or 2, wherein the polishing pad is used for lapping or polishing . 下面に研磨パッドを取り付けて上定盤とし、上面に研磨パッドを取り付けて下定盤とし、前記各定盤をそれぞれの研磨パッドを対向させた状態でそれぞれ面向きを一定とした偏芯旋回運動を可能とする旋回機構と、前記研磨パッドの対向空間にて、任意の枚数の被加工物を保持させたキャリアを面向きを一定として1軸又は2軸往復させる摺動運動又は円軌道運動を可能とする摺動機構と、誘電性砥粒を分散させたスラリーを各定盤から加工面に供給する供給機構と、重力方向に対して垂直に10kHz〜100kHzの微振動を与え、砥粒に相対速度を供給する微振動機構と、を備えることを特徴とする砥粒を分散させた流体を用いた平面両面研磨装置。Equipped with a polishing pad attached to the lower surface to make an upper surface plate, and attached to the upper surface to make a lower surface plate. Enables a revolving mechanism and a circular orbital motion in which the carrier holding an arbitrary number of workpieces is reciprocated in one or two axes with a fixed surface orientation in the space facing the polishing pad. A sliding mechanism, a supply mechanism for supplying slurry in which dielectric abrasive grains are dispersed from each surface plate to the processing surface, and a slight vibration of 10 kHz to 100 kHz perpendicular to the direction of gravity, A flat double-side polishing apparatus using a fluid in which abrasive grains are dispersed, comprising a fine vibration mechanism for supplying a speed.
JP2008165189A 2007-07-11 2008-06-25 Flat double-side polishing method and flat double-side polishing apparatus Expired - Fee Related JP5061296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165189A JP5061296B2 (en) 2007-07-11 2008-06-25 Flat double-side polishing method and flat double-side polishing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007181882 2007-07-11
JP2007181882 2007-07-11
JP2008165189A JP5061296B2 (en) 2007-07-11 2008-06-25 Flat double-side polishing method and flat double-side polishing apparatus

Publications (2)

Publication Number Publication Date
JP2009034812A JP2009034812A (en) 2009-02-19
JP5061296B2 true JP5061296B2 (en) 2012-10-31

Family

ID=40437204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165189A Expired - Fee Related JP5061296B2 (en) 2007-07-11 2008-06-25 Flat double-side polishing method and flat double-side polishing apparatus

Country Status (1)

Country Link
JP (1) JP5061296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101912345B1 (en) * 2016-12-28 2018-12-28 (주)넥스디스플레이 Apparatus for polishing surface of a curved cover glass

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095535B1 (en) * 2009-10-09 2011-12-19 엘지이노텍 주식회사 Substrate polishing apparatus and substrate polishing method
CN101947749B (en) * 2010-09-14 2011-11-16 西安理工大学 Numerical control machine tool capable of grinding two sides of plane by dislocation self-rotation and ultrasonic vibration
KR20120139021A (en) * 2011-06-16 2012-12-27 주식회사 엘지화학 Apparatus for rotation and revolution of polishing plate, and operation methods for the same
CN103433842A (en) * 2013-09-23 2013-12-11 南通龙源电站阀门有限公司 Eccentric grinding tool of valve body
KR101913496B1 (en) 2017-02-24 2018-11-01 한국표준과학연구원 Polishing tool apparatus for computer controlled optical surfacing
CN113496870B (en) * 2020-04-03 2022-07-26 重庆超硅半导体有限公司 Method for controlling edge morphology of silicon chip for integrated circuit
CN111843686B (en) * 2020-08-03 2021-11-19 诸暨市开翎工业设计有限公司 Air purifier filter panel production and processing equipment
CN113714860A (en) * 2021-09-09 2021-11-30 抚州联创恒泰光电有限公司 Polishing method of 3D glass

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164774A (en) * 1985-01-09 1986-07-25 Canon Inc Vibration polishing machine
JPH0622791B2 (en) * 1988-09-20 1994-03-30 旭硝子株式会社 Continuous polishing equipment for glass plates
JPH10329013A (en) * 1997-05-30 1998-12-15 Shin Etsu Handotai Co Ltd Carrier for double polishing and double lapping
JPH11309669A (en) * 1998-04-28 1999-11-09 Joichi Takada Both-surface polishing machine
JP3753569B2 (en) * 1999-08-24 2006-03-08 株式会社荏原製作所 Polishing device
JP2004090098A (en) * 2002-08-29 2004-03-25 Hamai Co Ltd Parallel surface polishing device
JP3906165B2 (en) * 2003-02-21 2007-04-18 秋田県 Cutting edge polishing method using electric abrasive grains, and manufacturing method of fine parts having cutting edge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101912345B1 (en) * 2016-12-28 2018-12-28 (주)넥스디스플레이 Apparatus for polishing surface of a curved cover glass

Also Published As

Publication number Publication date
JP2009034812A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
US8366518B2 (en) Orbital smoothing device
KR20120061203A (en) Abrasion device and method of roll mold using mangetorheological fluid
JP2745725B2 (en) Electrolytic polishing / grinding method and apparatus
JP2006224227A (en) Magnetic polishing method
JP2007167968A (en) Mirror finished surface polishing method and mirror finished surface polishing device
JPH11291165A (en) Polishing device and polishing method
CN114833683A (en) Ultra-smooth polishing device and method for finish machining of laser gyroscope optical element
US6537139B2 (en) Apparatus and method for ELID grinding a large-diameter workpiece to produce a mirror surface finish
KR20190007867A (en) Abrasive apparatus
JP5663733B2 (en) Flat double-sided finishing method and flat double-sided finishing apparatus
JP2009279741A (en) Polishing device and method for spherical body and plate
JP2006082213A (en) Method of cutting work and cutting work/mirror polishing device
JPH1126404A (en) Polishing apparatus
KR101756431B1 (en) Apparatus for polishing
JP6493740B2 (en) Polishing tool for loose abrasive machining, method for producing the same, and loose abrasive polishing apparatus
WO2000024548A1 (en) Polishing apparatus and a semiconductor manufacturing method using the same
JPH1126405A (en) Polishing device
JP4162567B2 (en) Wafer notch mirror finishing machine
JPH11333702A (en) Device and method for generating spherical surface
CN211073188U (en) Grinding wheel repairing tool
JP5628563B2 (en) Polishing equipment
JP2009154276A (en) Apparatus and method for machining lens
JPH09150364A (en) Surface finishing method for ceramics-made columnar part
JPH09225814A (en) Machining method for surface of cylindrical ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

R150 Certificate of patent or registration of utility model

Ref document number: 5061296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees