JP2009154276A - Apparatus and method for machining lens - Google Patents

Apparatus and method for machining lens Download PDF

Info

Publication number
JP2009154276A
JP2009154276A JP2007337889A JP2007337889A JP2009154276A JP 2009154276 A JP2009154276 A JP 2009154276A JP 2007337889 A JP2007337889 A JP 2007337889A JP 2007337889 A JP2007337889 A JP 2007337889A JP 2009154276 A JP2009154276 A JP 2009154276A
Authority
JP
Japan
Prior art keywords
pair
lens
molds
polishing
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007337889A
Other languages
Japanese (ja)
Inventor
Masahiro Sasaura
正弘 笹浦
Tadayuki Imai
欽之 今井
Kazuo Fujiura
和夫 藤浦
Hiroki Koda
拡樹 香田
Takayuki Komatsu
貴幸 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2007337889A priority Critical patent/JP2009154276A/en
Publication of JP2009154276A publication Critical patent/JP2009154276A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently manufacture many kinds and small amount of lens with desired polishing accuracy. <P>SOLUTION: In an apparatus for machining a lens by grinding and polishing a machined material 1, a surface shape of a semi-spherical portion of the lens is machined on an inner surface. This apparatus includes a pair of metal molds 2a, 2b for sandwiching the machined material 1 therebetween; a supply nozzle 6 for dropping a polishing liquid to a gap between the pair of metal molds 2a and 2b; and means 5a, 5b for adding ultrasonic wave vibration to the pair of metal molds 2a, 2b, and the supply nozzle 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レンズの加工装置およびその加工方法に関し、より詳細には、多品種少量のレンズを効率よく製造するためのレンズの加工装置およびその加工方法に関する。   The present invention relates to a lens processing apparatus and a processing method thereof, and more particularly, to a lens processing apparatus and a processing method thereof for efficiently manufacturing a large variety of small quantities of lenses.

従来、光学レンズの製作には、様々な加工方法が用いられてきた。例えば、金型を用いたプレス成形、微小回転工具による切削、研磨などの機械的な加工方法が知られている。また、球状レンズの加工方法として、バレル加工機、ラッピング装置、両面研磨装置等が知られている。バレル加工機は、回転するバレル内にレンズ加工片と研磨材とを投入し、加工片と研磨材の衝突により加工片の粗加工を行う。ラッピング装置は、砥粒が付着したラップ盤の上に、被加工材を保持するワークホルダを配置し、ラップ盤の回転とワークホルダの往復動とによりと被加工材の研削を行う(例えば、特許文献1参照)。両面研磨装置は、上下の定盤の間に被加工材を挟持し、研磨材を滴下しながら上下の定盤を回転させ、被加工材の両面研磨を行う(例えば、特許文献2参照)。   Conventionally, various processing methods have been used for manufacturing optical lenses. For example, mechanical processing methods such as press molding using a mold, cutting with a micro rotary tool, and polishing are known. As processing methods for spherical lenses, barrel processing machines, lapping apparatuses, double-side polishing apparatuses, and the like are known. A barrel processing machine throws a lens processed piece and an abrasive into a rotating barrel, and performs rough processing of the processed piece by collision between the processed piece and the abrasive. A wrapping apparatus arranges a work holder that holds a workpiece on a lapping machine to which abrasive grains are attached, and grinds the workpiece by rotating the lapping machine and reciprocating the work holder (for example, Patent Document 1). The double-side polishing apparatus sandwiches a workpiece between upper and lower surface plates, rotates the upper and lower surface plates while dropping the abrasive material, and performs double-side polishing of the workpiece (for example, see Patent Document 2).

一方、マイクロレンズの加工方法として、微小なポリッシャを被加工面に押しつけ、研磨砥粒を掛けながら超音波振動を付加する超音波援用研磨装置が知られている(例えば、非特許文献1参照)。超音波振動により、研磨加工痕の微小化が可能となり、口径0.5〜3mmφ程度のマイクロレンズを製作することができる。   On the other hand, as a microlens processing method, there is known an ultrasonic-assisted polishing apparatus that presses a fine polisher against a surface to be processed and applies ultrasonic vibration while applying polishing abrasive grains (see, for example, Non-Patent Document 1). . Ultrasonic vibration makes it possible to reduce the size of polishing marks, and a microlens having a diameter of about 0.5 to 3 mmφ can be manufactured.

ここでは、球状レンズを製作する工程を、レンズ材料から立方体の被加工材を切り出す(切削)第1工程と、立方体の角を除去して被加工材を略球形に研削する第2工程と、略球形に被加工材を所望の精度の球形に研磨する第3工程とに分ける。バレル加工機、ラッピング装置は主として第2工程に、両面研磨装置、超音波援用研磨装置は主として第3工程に用いられる。また、バレル加工機、ラッピング装置および両面研磨装置は、少品種大量生産に向いているが、超音波援用研磨装置は多品種少量の生産に向いている。   Here, the step of manufacturing a spherical lens is a first step of cutting a cubic workpiece from the lens material (cutting), a second step of removing the corners of the cube and grinding the workpiece into a substantially spherical shape, The workpiece is divided into a substantially spherical shape and a third step of polishing the workpiece into a spherical shape with a desired accuracy. The barrel processing machine and the lapping device are mainly used in the second step, and the double-side polishing device and the ultrasonic-assisted polishing device are mainly used in the third step. In addition, the barrel processing machine, the lapping apparatus, and the double-side polishing apparatus are suitable for small-quantity mass production, while the ultrasonic-assisted polishing apparatus is suitable for production of a variety of small quantities.

特開2003−232902号公報JP 2003-232902 A 特開2002−326154号公報JP 2002-326154 A 鈴木浩文、「超音波援用マイクロ非球面研磨法の開発」、日本機械学会誌、Vol.108, No.1040, p.36, 2005年7月Hirofumi Suzuki, “Development of Ultrasonic Assisted Micro Aspherical Polishing Method”, Journal of the Japan Society of Mechanical Engineers, Vol.108, No.1040, p.36, July 2005

第2工程における研削は、被加工材を略球形に加工するだけでよいので、レンズ表面の形状誤差は数μm〜十数μm程度でよい。一方、第3工程における研磨は、レンズ表面の形状誤差を所望の精度以下に加工する必要が有り、例えば、マイクロレンズの場合、0.1μm程度の研磨精度が必要と成る。従って、球状レンズの製作では、切削、研削および研磨のそれぞれに専用の工具を使用して加工するために、工程が複雑になり、製作コストが高いという問題があった。   Since the grinding in the second step only needs to process the workpiece into a substantially spherical shape, the shape error of the lens surface may be about several μm to several tens of μm. On the other hand, the polishing in the third step needs to process the shape error of the lens surface to a desired accuracy or less. For example, in the case of a microlens, a polishing accuracy of about 0.1 μm is required. Therefore, in the production of the spherical lens, there is a problem that the process becomes complicated and the production cost is high because the processing is performed using a dedicated tool for each of cutting, grinding and polishing.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、多品種少量のレンズを、所望の研磨精度で効率よく製造するためのレンズの加工装置およびその加工方法を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a lens processing apparatus and a processing method for efficiently manufacturing a small amount of various types of lenses with desired polishing accuracy. It is to provide.

本発明は、このような目的を達成するために、請求項1に記載の発明は、被加工材を研削および研磨してレンズを作製するレンズの加工装置において、前記レンズの半球分の表面形状が内面に加工され、前記被加工材を挟持する一対の金型と、該一対の金型の間隙に研磨液を滴下するための供給ノズルと、前記一対の金型と前記供給ノズルとに、超音波振動を加えるための手段とを備えたことを特徴とする。   In order to achieve such an object, the present invention provides a lens processing apparatus for manufacturing a lens by grinding and polishing a workpiece, and a hemispherical surface shape of the lens. A pair of molds that are processed on the inner surface and sandwich the workpiece, a supply nozzle for dropping a polishing liquid into a gap between the pair of molds, and the pair of molds and the supply nozzle, And a means for applying ultrasonic vibration.

請求項2に記載の発明は、請求項1に記載のレンズの加工装置において、前記研磨液は、研削加工に用いる砥粒と、研磨加工に用いる研磨材とを含み、前記研磨液を前記一対の金型の間隙から洗い流すための洗浄液が格納された複数のタンクを備え、前記複数のタンクが、切替弁を介して前記供給ノズルに接続されていることを特徴とする。   According to a second aspect of the present invention, in the lens processing apparatus according to the first aspect, the polishing liquid includes abrasive grains used for grinding and an abrasive used for polishing, and the polishing liquid is used as the pair. And a plurality of tanks in which cleaning liquid for washing from the gaps of the molds is stored, and the plurality of tanks are connected to the supply nozzles via switching valves.

請求項3に記載の発明は、請求項1および2に記載のレンズの加工装置において、前記一対の金型の対向する面が摺動するように回転し、前記被加工材を押し付けることにより、前記被加工材を擂潰する手段をさらに備えたことを特徴とする。   According to a third aspect of the present invention, in the lens processing apparatus according to the first and second aspects, by rotating the opposing surfaces of the pair of molds so as to slide and pressing the workpiece, The apparatus further includes means for crushing the workpiece.

請求項4に記載の発明は、レンズ材料から四角柱の複数の被加工材を切り出す第1工程と、該被加工材の角を除去して略球形の被加工材に研削する第2工程と、該略球形の被加工材を所望の精度の球形に研磨する第3工程とを含むレンズの加工方法において、前記第2工程は、前記レンズの半球分の表面形状が内面に加工され、前記略球形の被加工材を挟持する一対の金型の間隙に、供給ノズルから研削用の砥粒を滴下し、前記一対の金型の対向する面が摺動するように、前記一対の金型のそれぞれを回転させ、前記一対の金型と前記供給ノズルとに、超音波振動を加え、前記第3工程は、前記一対の金型の間隙に、前記供給ノズルから研磨用の研磨材を滴下し、前記一対の金型と前記供給ノズルとに、超音波振動を加えることを特徴とする。   According to a fourth aspect of the present invention, a first step of cutting out a plurality of quadrangular prism workpieces from a lens material, and a second step of removing the corners of the workpieces and grinding them into a substantially spherical workpiece. And a third step of polishing the substantially spherical workpiece into a spherical shape with a desired accuracy, wherein the second step includes processing the surface shape of the hemisphere of the lens into an inner surface, The pair of molds is arranged such that abrasive particles for grinding are dropped from a supply nozzle into a gap between the pair of molds sandwiching the substantially spherical workpiece, and the opposing surfaces of the pair of molds slide. Each of the two is rotated, ultrasonic vibration is applied to the pair of molds and the supply nozzle, and in the third step, an abrasive for polishing is dropped from the supply nozzle into the gap between the pair of molds. The ultrasonic vibration is applied to the pair of molds and the supply nozzle.

前記第2工程は、粒径が5〜50μmの砥粒を滴下し、周波数20kHz、出力30W〜200Wの超音波振動を加え、前記第3工程は、粒径が0.01〜1μmの研磨材を滴下し、周波数100kHz〜3MHz、出力30W〜200Wの超音波振動を加えることが望ましい。   In the second step, abrasive grains having a particle size of 5 to 50 μm are dropped, ultrasonic vibration having a frequency of 20 kHz and an output of 30 W to 200 W is applied, and in the third step, an abrasive having a particle size of 0.01 to 1 μm. It is desirable to add ultrasonic vibration having a frequency of 100 kHz to 3 MHz and an output of 30 W to 200 W.

以上説明したように、本発明によれば、多品種少量のレンズを、所望の研磨精度で効率よく製造することが可能となる。   As described above, according to the present invention, it is possible to efficiently manufacture a wide variety and a small amount of lenses with a desired polishing accuracy.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態では、研削および研磨を連続して行うことができ、多品種少量のレンズを効率よく製造することができるレンズの加工装置およびその加工方法を提供する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, a lens processing apparatus and a processing method for the same that can perform grinding and polishing continuously and can efficiently manufacture a wide variety and a small amount of lenses are provided.

図1に、本発明の一実施形態にかかるレンズの加工装置を示す。被加工材1は、超音波ホーン2a,2bに挟持されており、これを球状レンズに加工する方法を説明する。超音波ホーン2a,2bは、半球のお椀の形状を有し、その内面が球状レンズの表面形状に加工された金型である。ここで、所望の球状レンズの表面誤差を0.1μmとすると、お椀の内面の表面精度は、数μm程度でよい。超音波ホーン2a,2bは、回転擂潰機構3a,3bに接続され、回転軸4a,4bの軸中心の周りを回転する。すなわち、超音波ホーン2a,2bの対向する面が、挟持されている被加工材1に対して、摺動するように回転する。回転擂潰機構3a,3bは、超音波ホーン2a,2bを、被加工材1に適当な圧力で押し付けることにより、被加工材1を擂り潰すように研削する。   FIG. 1 shows a lens processing apparatus according to an embodiment of the present invention. The workpiece 1 is sandwiched between the ultrasonic horns 2a and 2b, and a method of processing this into a spherical lens will be described. The ultrasonic horns 2a and 2b have a hemispherical bowl shape, and are molds whose inner surfaces are processed into a spherical lens surface shape. Here, if the surface error of the desired spherical lens is 0.1 μm, the surface accuracy of the inner surface of the bowl may be about several μm. The ultrasonic horns 2a and 2b are connected to the rotary crushing mechanisms 3a and 3b and rotate around the axis centers of the rotation shafts 4a and 4b. That is, the opposing surfaces of the ultrasonic horns 2a and 2b rotate so as to slide with respect to the workpiece 1 that is sandwiched. The rotary crushing mechanisms 3a and 3b grind the workpiece 1 so as to crush the workpiece 1 by pressing the ultrasonic horns 2a and 2b against the workpiece 1 with an appropriate pressure.

また、回転擂潰機構3a,3bには、超音波振動発生機構5a,5bが接続されており、回転軸4a,4bを介して、超音波ホーン2a,2bに超音波振動を与えることができる。   Also, ultrasonic vibration generating mechanisms 5a and 5b are connected to the rotary crushing mechanisms 3a and 3b, and ultrasonic vibrations can be applied to the ultrasonic horns 2a and 2b via the rotary shafts 4a and 4b. .

図2に、超音波ホーンの詳細な構成を示す。金型材料は、例えば、チタン合金、ステンレス、黄銅鋼、鉄、スズ、鉛、およびそれらの合金を用いる。超音波ホーン2a,2bの内面は、図2(a)に示すように、それぞれ所望の球状レンズの半球分の形状を有する。超音波ホーン2a,2bの対向する面は、間隙21を有する。例えば、鋳鉄製のホーンと0.1mm径のコロイダルシリカを用いる場合は、約1mm程度である。この間隙は、ホーンの材質、研磨液の種類に応じて調整する。   FIG. 2 shows a detailed configuration of the ultrasonic horn. As the mold material, for example, titanium alloy, stainless steel, brass steel, iron, tin, lead, and alloys thereof are used. As shown in FIG. 2A, the inner surfaces of the ultrasonic horns 2a and 2b each have the shape of a desired hemisphere of a spherical lens. Opposing surfaces of the ultrasonic horns 2 a and 2 b have a gap 21. For example, when using a cast iron horn and 0.1 mm diameter colloidal silica, the thickness is about 1 mm. This gap is adjusted according to the material of the horn and the type of polishing liquid.

回転擂潰機構3a,3bに固定した際に、超音波ホーン2a,2bの上部の間隙から、供給ノズル6から滴下される研磨液が供給され、対向する下部の間隙から、研磨液が排出される(図2(b))。また、超音波ホーン2a,2bの内面には、図2(c)に示すように、研磨液が被加工材1を覆うように、スパイラル状の溝22を形成してもよい。   When fixed to the rotary crushing mechanisms 3a and 3b, the polishing liquid dripped from the supply nozzle 6 is supplied from the upper gaps of the ultrasonic horns 2a and 2b, and the polishing liquid is discharged from the lower gaps facing each other. (FIG. 2B). Further, spiral grooves 22 may be formed on the inner surfaces of the ultrasonic horns 2a and 2b so that the polishing liquid covers the workpiece 1 as shown in FIG.

砥粒タンク7、研磨材タンク8、水洗タンク9は、切替弁を介して、供給ノズル6に接続され、研磨液を供給する。砥粒タンク7には、研削用の砥粒と分散材が格納され、研磨材タンク8には、研磨用の研磨材と分散材が格納されている。水洗タンク9は、超音波ホーン2a,2bの間隙の中の研磨液を洗い流すための水または純水が格納されている。また、供給ノズル6にも超音波振動発生機構5a,5bが接続されており、供給する砥粒、研磨材に超音波振動を加えることができる。   The abrasive grain tank 7, the abrasive material tank 8, and the water washing tank 9 are connected to the supply nozzle 6 through a switching valve to supply the polishing liquid. The abrasive grain tank 7 stores abrasive grains and dispersing material for grinding, and the abrasive material tank 8 stores abrasive material and dispersing material for polishing. The washing tank 9 stores water or pure water for washing away the polishing liquid in the gap between the ultrasonic horns 2a and 2b. In addition, ultrasonic vibration generating mechanisms 5a and 5b are also connected to the supply nozzle 6, so that ultrasonic vibration can be applied to the supplied abrasive grains and polishing material.

さらに、レンズの加工装置には、超音波ホーン2a,2bから排出された研磨液を受ける受け皿9を備え、回収された研磨液を廃液タンク10に排出したり、再利用のために砥粒タンク7、または研磨材タンク8に戻すことができる。回転擂潰機構3a,3b、超音波振動発生機構5a,5bおよび切替弁は、制御機構11により制御される。   Further, the lens processing apparatus includes a receiving tray 9 that receives the polishing liquid discharged from the ultrasonic horns 2a and 2b, and the recovered polishing liquid is discharged to a waste liquid tank 10 or an abrasive tank for reuse. 7 or the abrasive tank 8 can be returned. The rotary crushing mechanisms 3a and 3b, the ultrasonic vibration generating mechanisms 5a and 5b, and the switching valve are controlled by the control mechanism 11.

最初に、上述した第2工程における研削について説明する。被加工材1は、レンズ材料から切り出された四角柱である。制御機構11は、砥粒タンク7から研削用の砥粒を供給ノズル6に供給し、回転擂潰機構3a,3bを制御して超音波ホーン2a,2bを回転させる。なお、砥粒タンク7を種類の異なる複数の砥粒に応じて用意し、研削の進行状況に応じて砥粒を変えてもよい。研削加工では、精度が要求されないことから、滴下される砥粒の粒径は5〜50μm程度のものを使用し、例えば、10〜50μm程度のカーボランダム、ダイヤモンド粉末等を使用することができる。   First, the grinding in the second step described above will be described. The workpiece 1 is a quadrangular prism cut out from a lens material. The control mechanism 11 supplies abrasive grains for grinding from the abrasive tank 7 to the supply nozzle 6, and controls the rotary crushing mechanisms 3a and 3b to rotate the ultrasonic horns 2a and 2b. The abrasive tank 7 may be prepared according to a plurality of different types of abrasive grains, and the abrasive grains may be changed according to the progress of grinding. In the grinding process, since accuracy is not required, the grain size of the dropped abrasive grains is about 5 to 50 μm, and for example, carborundum or diamond powder of about 10 to 50 μm can be used.

また、第2工程では研削能力を優先して加工する。制御機構11は、超音波振動発生機構5a,5bを制御して、超音波ホーン2a,2bに、周波数約20kHzの超音波振動を加える。超音波振動の周波数は、砥粒の径に応じて調整し、粒径が小さいほど周波数を高くするのが望ましい。超音波ホーン2a,2bを、被加工材1に100kPa以下の圧力で押し付け、超音波振動を加えることにより、被加工材1を擂り潰すように研削する。   In the second step, the grinding ability is given priority. The control mechanism 11 controls the ultrasonic vibration generating mechanisms 5a and 5b to apply ultrasonic vibration having a frequency of about 20 kHz to the ultrasonic horns 2a and 2b. The frequency of the ultrasonic vibration is preferably adjusted according to the diameter of the abrasive grains, and it is desirable to increase the frequency as the particle diameter decreases. The ultrasonic horns 2a and 2b are pressed against the workpiece 1 with a pressure of 100 kPa or less, and are subjected to grinding so as to crush the workpiece 1 by applying ultrasonic vibration.

また、供給ノズル6に超音波振動を加えることにより、研磨液に超音波振動を与え、これを超音波ホーン2a,2bの間隙22に滴下する。超音波振動を与えられた研磨液は、超音波ホーン2a,2bと被加工材1との間隙に浸透しやすく、超音波の衝撃力により、被加工材1の研削能力を高められる。   Further, by applying ultrasonic vibration to the supply nozzle 6, ultrasonic vibration is given to the polishing liquid, and this is dropped into the gap 22 between the ultrasonic horns 2a and 2b. The polishing liquid given ultrasonic vibration easily penetrates into the gap between the ultrasonic horns 2a, 2b and the workpiece 1 and the grinding ability of the workpiece 1 can be enhanced by the impact force of the ultrasonic waves.

次に、上述した第3工程における研磨について説明する。被加工材1は、第2工程において略球形に加工されている。制御機構11は、切替弁を砥粒タンク7から研磨材タンク8に切り替え、研磨用の研磨材を供給ノズル6に供給する。また、超音波振動発生機構5a,5bを制御して、超音波ホーン2a,2bおよび供給ノズル6に超音波振動を加える。研磨加工では、精度が要求されることから、滴下される研磨材の粒径は0.01〜1μm程度のものを使用し、例えば、0.05〜0.1μm程度のコロイド状研磨材であるコロイダルシリカを使用する。   Next, the polishing in the third step described above will be described. The workpiece 1 is processed into a substantially spherical shape in the second step. The control mechanism 11 switches the switching valve from the abrasive grain tank 7 to the abrasive tank 8 and supplies the abrasive for polishing to the supply nozzle 6. Further, the ultrasonic vibration generating mechanisms 5 a and 5 b are controlled to apply ultrasonic vibration to the ultrasonic horns 2 a and 2 b and the supply nozzle 6. Since accuracy is required in the polishing process, the particle size of the dropped abrasive is about 0.01 to 1 μm, for example, a colloidal abrasive of about 0.05 to 0.1 μm. Use colloidal silica.

第3工程では研磨精度を優先して加工するので、回転擂潰機構3a,3bが超音波ホーン2a,2bを被加工材1に押し付ける圧力、超音波ホーン2a,2bの回転速度は、第2工程よりも小さくする。制御機構11は、超音波振動発生機構5a,5bを制御して、超音波ホーン2a,2bに、周波数約3MHzの超音波振動を加える。超音波振動の周波数は、砥粒の径に応じて調整し、粒径が小さいほど周波数を高くするのが望ましく、第3工程では100kHz〜3MHzである。   In the third step, the grinding accuracy is prioritized for processing, so the pressure at which the rotary crushing mechanisms 3a, 3b press the ultrasonic horns 2a, 2b against the workpiece 1 and the rotational speed of the ultrasonic horns 2a, 2b are Make it smaller than the process. The control mechanism 11 controls the ultrasonic vibration generating mechanisms 5a and 5b to apply ultrasonic vibration having a frequency of about 3 MHz to the ultrasonic horns 2a and 2b. The frequency of the ultrasonic vibration is adjusted according to the diameter of the abrasive grains, and it is desirable to increase the frequency as the particle diameter is smaller. In the third step, the frequency is 100 kHz to 3 MHz.

制御機構11は、超音波ホーン2a,2bおよび供給ノズル6に、約3MHzの超音波振動を加えることにより、研磨材に超音波振動を与え、これを超音波ホーン2a,2bの間隙22に滴下する。超音波振動を与えられた研磨材が被加工材1に接触すると、メカノケミカル反応によって被加工材1が研磨される。研磨時間等を調整することにより、表面の形状誤差50nmを確保することができる。従って、超音波ホーン2a,2bの金型の精度は、所望の球状レンズの表面誤差を0.1μmに対して、数μm程度でよいことがわかる。   The control mechanism 11 applies ultrasonic vibration of about 3 MHz to the ultrasonic horns 2a and 2b and the supply nozzle 6, thereby applying ultrasonic vibration to the abrasive and dropping it into the gap 22 between the ultrasonic horns 2a and 2b. To do. When the abrasive material subjected to ultrasonic vibration comes into contact with the workpiece 1, the workpiece 1 is polished by a mechanochemical reaction. By adjusting the polishing time or the like, a surface shape error of 50 nm can be secured. Therefore, it can be seen that the accuracy of the molds of the ultrasonic horns 2a and 2b may be about several μm with respect to the surface error of the desired spherical lens of 0.1 μm.

本実施形態によれば、1台のレンズ加工装置により、研削および研磨を連続して行うことができ、多品種少量の球状レンズを効率よく製造することができる。また、本実施形態のレンズ加工装置は、球状レンズの加工だけではなく、超音波ホーンの内面形状を変更することによって、非球面レンズの加工にも適用できることは言うまでもない。以下に、KTaO3結晶を用いたレンズの製造に、本実施形態を適用した例を示す。なお、本実施例は例示であって、本発明の精神を逸脱しない範囲で種々の変更または改造を行うことができる。 According to the present embodiment, grinding and polishing can be continuously performed with one lens processing apparatus, and a large variety of small quantities of spherical lenses can be efficiently manufactured. Needless to say, the lens processing apparatus according to the present embodiment can be applied not only to processing a spherical lens but also to processing an aspherical lens by changing the inner surface shape of the ultrasonic horn. Hereinafter, an example in which the present embodiment is applied to manufacture of a lens using a KTaO 3 crystal will be described. In addition, a present Example is an illustration, Comprising: A various change or modification can be performed in the range which does not deviate from the mind of this invention.

球状レンズを製作する工程を、KTaO3結晶から四角柱または略立方体の被加工材を切り出す第1工程と、四角柱または略立方体の角を除去して被加工材を略球形に研削する第2工程と、略球形に研削された被加工材を所望の精度の球形に研磨する第3工程とを順次説明する。 A step of manufacturing a spherical lens includes a first step of cutting a quadrangular prism or a substantially cubic workpiece from a KTaO 3 crystal, and a second step of grinding the workpiece to a substantially spherical shape by removing the corners of the quadrangular prism or the substantially cube. The steps and the third step of polishing the workpiece ground into a substantially spherical shape into a spherical shape with a desired accuracy will be described in order.

第1工程では、広く用いられている内周刃式結晶切断装置を用いる。内周刃式結晶切断装置は、水または油を、被加工材の切断する部分に振りかけ、ブレードを回転させることにより、結晶を切断する。本実施例では、ブレード厚0.5mmの内周刃と、界面活性剤入りの水を使用する。   In the first step, a widely used inner edge type crystal cutting device is used. The inner peripheral type crystal cutting device sprinkles water or oil on a portion of a workpiece to be cut and rotates the blade to cut the crystal. In this embodiment, an inner peripheral blade having a blade thickness of 0.5 mm and water containing a surfactant are used.

約40mm角の立方体のKTaO3結晶を、内周刃式結晶切断装置のセラミックス台に、接着剤で固定し、2mm厚のウェハ、20枚に切断する。このウェハをセラミックス台ごと取り外し、ウェハを重ねて接着し、90度回転させて、さらに切断する。これにより、2mm角で長さ40mmの短冊状の結晶を得ることができる。短冊状の結晶をセラミックス台から取り外し、水平に重ねて再度セラミックス台に固定する。これを切断することにより、約2mm角の略立方体のKTaO3結晶が、8000個得られる。切断面の粗さは、内周刃のダイヤモンド径と切断速度とに依存し、本実施例における条件では、20〜80μmの範囲である。 About 40 mm square cubic KTaO 3 crystal is fixed to a ceramic base of an inner peripheral type crystal cutting apparatus with an adhesive, and is cut into 2 mm-thick wafers and 20 sheets. The wafer is removed together with the ceramic table, the wafers are stacked and bonded, rotated 90 degrees, and further cut. Thereby, a strip-like crystal having a length of 2 mm and a length of 40 mm can be obtained. Remove the strip-shaped crystals from the ceramic table and place them horizontally and fix them to the ceramic table again. By cutting this, approximately 8000 KTaO 3 crystals of approximately 2 mm square are obtained. The roughness of the cut surface depends on the diamond diameter of the inner peripheral blade and the cutting speed, and is in the range of 20 to 80 μm under the conditions in this example.

第2工程は、上述の約2mm角の略立方体のKTaO3結晶を、図1に示したレンズの加工装置を用いて研削する。KTaO3結晶1個を、超音波ホーン2a,2bに挟持させる。砥粒タンク7から平均粒径30μmのCG砥粒を水に分散させた研磨液を、供給ノズル6から供給する。超音波ホーン2a,2bに、周波数約20kHzの超音波振動を加え、回転擂潰機構3a,3bを制御して、超音波ホーン2a,2bをそれぞれ逆方向に10rpmで回転させる。 In the second step, the approximately 2 mm square KTaO 3 crystal is ground using the lens processing apparatus shown in FIG. One KTaO 3 crystal is sandwiched between the ultrasonic horns 2a and 2b. A polishing liquid in which CG abrasive grains having an average particle size of 30 μm are dispersed in water is supplied from the supply nozzle 6 from the abrasive grain tank 7. Ultrasonic vibration with a frequency of about 20 kHz is applied to the ultrasonic horns 2a and 2b, and the rotary crushing mechanisms 3a and 3b are controlled to rotate the ultrasonic horns 2a and 2b in opposite directions at 10 rpm.

15分間の研削加工で、角がとれた略球形ないし球状のKTaO3結晶を得ることができる。超音波振動発生機構5a,5bの出力は、加工初期が30W〜200Wの範囲で、被加工材1の形状によって調整する。超音波ホーン2a,2bの被加工材1に対する圧力は、100kPa以下の圧力に調整する。砥粒は、受け皿9から砥粒タンク7に回収して再利用することができるが、長時間の使用により、研削能力が落ちるので、所望の研削能力が維持できるように適宜交換する。研削加工が終了すると、研磨液を水洗タンク9からの水に切り換え、3分間後に超音波振動と回転を停止する。 By grinding for 15 minutes, a substantially spherical or spherical KTaO 3 crystal with rounded corners can be obtained. The outputs of the ultrasonic vibration generating mechanisms 5a and 5b are adjusted according to the shape of the workpiece 1 within the initial machining range of 30W to 200W. The pressure with respect to the workpiece 1 of the ultrasonic horns 2a and 2b is adjusted to a pressure of 100 kPa or less. Abrasive grains can be recovered from the tray 9 to the abrasive tank 7 and reused. However, since the grinding ability is reduced by long-term use, the abrasive grains are appropriately replaced so that the desired grinding ability can be maintained. When the grinding process is completed, the polishing liquid is switched to the water from the washing tank 9, and the ultrasonic vibration and rotation are stopped after 3 minutes.

第3工程は、図1に示したレンズの加工装置を用いて、第2工程で研削されたKTaO3結晶を所望の研磨精度で研磨する。研削されたKTaO3結晶1個を、超音波ホーン2a,2bに挟持させる。研磨材タンク8から平均粒径0.1μmのコロイダルシリカを水に分散させた研磨液を、供給ノズル6から供給する。超音波ホーン2a,2bに、周波数約100〜500kHzの超音波振動を加え、回転擂潰機構3a,3bを制御して、超音波ホーン2a,2bをそれぞれ逆方向に20rpmで回転させる。 In the third step, the KTaO 3 crystal ground in the second step is polished with a desired polishing accuracy using the lens processing apparatus shown in FIG. One ground KTaO 3 crystal is sandwiched between the ultrasonic horns 2a and 2b. A polishing liquid in which colloidal silica having an average particle size of 0.1 μm is dispersed in water is supplied from a supply nozzle 6 from an abrasive tank 8. Ultrasonic vibration with a frequency of about 100 to 500 kHz is applied to the ultrasonic horns 2a and 2b, and the rotary crushing mechanisms 3a and 3b are controlled to rotate the ultrasonic horns 2a and 2b in the opposite directions at 20 rpm, respectively.

20分間の研磨加工で、球状のKTaO3結晶を得ることができる。超音波振動発生機構5a,5bの出力は、加工初期が30W〜200Wの範囲で、被加工材1の形状によって調整する。コロイダルシリカは、受け皿9から研磨材タンク8に回収して再利用することができるが、長時間の使用により、pHが変化し研磨能力が落ちるので、所望の研磨能力が維持できるように適宜交換する。研磨加工が終了すると、研磨液を水洗タンク9からの水に切り換え、3分間後に超音波振動と回転を停止する。 A spherical KTaO 3 crystal can be obtained by polishing for 20 minutes. The outputs of the ultrasonic vibration generating mechanisms 5a and 5b are adjusted according to the shape of the workpiece 1 within the initial machining range of 30W to 200W. The colloidal silica can be recovered from the tray 9 to the abrasive tank 8 and reused. However, since the pH changes and the polishing ability decreases with long-term use, the colloidal silica is changed as necessary so that the desired polishing ability can be maintained. To do. When the polishing process is completed, the polishing liquid is switched to water from the washing tank 9, and the ultrasonic vibration and rotation are stopped after 3 minutes.

球状のKTaO3結晶を顕微鏡で観察すると、スクラッチは観測されず、表面の形状誤差50nmを確保することができる。 When the spherical KTaO 3 crystal is observed with a microscope, no scratch is observed, and a surface shape error of 50 nm can be secured.

研磨液は、所望する表面の形状誤差と経済性、生産性から選択するものであり、本実施形態のレンズの加工装置の性能、機械的損傷の影響がない範囲で、他の研磨液を用いることができる。また、超音波ホーンを被加工材に対して攪拌らいかい運動させることにより、より均一に研削および研磨できることは明らかである。さらに、複数の超音波ホーンを同時に駆動するように構成すれば、複数のレンズを同時に加工することもできる。   The polishing liquid is selected from the desired surface shape error, economy, and productivity. Other polishing liquids are used as long as the performance of the lens processing apparatus of the present embodiment and the influence of mechanical damage are not affected. be able to. It is also clear that the ultrasonic horn can be ground and polished more uniformly by moving the ultrasonic horn with respect to the workpiece. Further, if a plurality of ultrasonic horns are driven simultaneously, a plurality of lenses can be processed simultaneously.

本発明の一実施形態にかかるレンズの加工装置を示す構成図である。It is a block diagram which shows the processing apparatus of the lens concerning one Embodiment of this invention. 超音波ホーンの詳細な構成を示す図である。It is a figure which shows the detailed structure of an ultrasonic horn.

符号の説明Explanation of symbols

1 被加工材
2 超音波ホーン
3 回転機構
4 回転軸
5 超音波振動発生機構
6 供給ノズル
7 砥粒タンク
8 研磨材タンク
9 水洗タンク
10 廃液タンク
11 制御機構
DESCRIPTION OF SYMBOLS 1 Work material 2 Ultrasonic horn 3 Rotating mechanism 4 Rotating shaft 5 Ultrasonic vibration generating mechanism 6 Supply nozzle 7 Abrasive grain tank 8 Abrasive material tank 9 Flushing tank 10 Waste liquid tank 11 Control mechanism

Claims (6)

被加工材を研削および研磨してレンズを作製するレンズの加工装置において、
前記レンズの半球分の表面形状が内面に加工され、前記被加工材を挟持する一対の金型と、
該一対の金型の間隙に研磨液を滴下するための供給ノズルと、
前記一対の金型と前記供給ノズルとに、超音波振動を加えるための手段と
を備えたことを特徴とするレンズの加工装置。
In a lens processing apparatus for manufacturing a lens by grinding and polishing a workpiece,
A pair of molds in which the surface shape of the hemisphere of the lens is processed on the inner surface, and sandwiches the workpiece;
A supply nozzle for dripping the polishing liquid into the gap between the pair of molds;
A lens processing apparatus, comprising: means for applying ultrasonic vibration to the pair of molds and the supply nozzle.
前記研磨液は、研削加工に用いる砥粒と、研磨加工に用いる研磨材とを含み、
前記研磨液を前記一対の金型の間隙から洗い流すための洗浄液が格納された複数のタンクを備え、
前記複数のタンクが、切替弁を介して前記供給ノズルに接続されていることを特徴とする請求項1に記載のレンズの加工装置。
The polishing liquid includes abrasive grains used for grinding and an abrasive used for polishing,
A plurality of tanks storing cleaning liquid for washing the polishing liquid from the gap between the pair of molds;
The lens processing apparatus according to claim 1, wherein the plurality of tanks are connected to the supply nozzle via a switching valve.
前記一対の金型の対向する面が摺動するように回転し、前記被加工材を押し付けることにより、前記被加工材を擂潰する手段をさらに備えたことを特徴とする請求項1および2に記載のレンズの加工装置。   3. The apparatus according to claim 1, further comprising means for crushing the workpiece by rotating the opposing surfaces of the pair of molds so as to slide and pressing the workpiece. The lens processing apparatus described in 1. レンズ材料から四角柱の複数の被加工材を切り出す第1工程と、該被加工材の角を除去して略球形の被加工材に研削する第2工程と、該略球形の被加工材を所望の精度の球形に研磨する第3工程とを含むレンズの加工方法において、
前記第2工程は、
前記レンズの半球分の表面形状が内面に加工され、前記略球形の被加工材を挟持する一対の金型の間隙に、供給ノズルから研削用の砥粒を滴下し、
前記一対の金型の対向する面が摺動するように、前記一対の金型のそれぞれを回転させ、
前記一対の金型と前記供給ノズルとに、超音波振動を加え、
前記第3工程は、
前記一対の金型の間隙に、前記供給ノズルから研磨用の研磨材を滴下し、
前記一対の金型と前記供給ノズルとに、超音波振動を加えることを特徴とするレンズの加工方法。
A first step of cutting out a plurality of quadrangular prism workpieces from a lens material; a second step of removing corners of the workpieces to grind into a substantially spherical workpiece; and the substantially spherical workpieces. A lens processing method including a third step of polishing into a spherical shape with a desired accuracy;
The second step includes
The surface shape of the hemisphere of the lens is processed on the inner surface, and abrasive grains for grinding are dropped from a supply nozzle into a gap between a pair of molds sandwiching the substantially spherical workpiece,
Rotate each of the pair of molds so that the opposing surfaces of the pair of molds slide,
Apply ultrasonic vibration to the pair of molds and the supply nozzle,
The third step includes
An abrasive for polishing is dropped from the supply nozzle into the gap between the pair of molds,
A lens processing method, wherein ultrasonic vibration is applied to the pair of molds and the supply nozzle.
前記第2工程は、粒径が5〜50μmの砥粒を滴下し、周波数20kHz、出力30W〜200Wの超音波振動を加えることを特徴とする請求項4に記載のレンズの加工方法。   5. The lens processing method according to claim 4, wherein in the second step, abrasive grains having a particle diameter of 5 to 50 μm are dropped, and ultrasonic vibration having a frequency of 20 kHz and an output of 30 W to 200 W is applied. 前記第3工程は、粒径が0.01〜1μmの研磨材を滴下し、周波数100kHz〜3MHz、出力30W〜200Wの超音波振動を加えることを特徴とする請求項4または5に記載のレンズの加工方法。   6. The lens according to claim 4, wherein in the third step, an abrasive having a particle size of 0.01 to 1 μm is dropped, and ultrasonic vibration with a frequency of 100 kHz to 3 MHz and an output of 30 W to 200 W is applied. Processing method.
JP2007337889A 2007-12-27 2007-12-27 Apparatus and method for machining lens Pending JP2009154276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007337889A JP2009154276A (en) 2007-12-27 2007-12-27 Apparatus and method for machining lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007337889A JP2009154276A (en) 2007-12-27 2007-12-27 Apparatus and method for machining lens

Publications (1)

Publication Number Publication Date
JP2009154276A true JP2009154276A (en) 2009-07-16

Family

ID=40958838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007337889A Pending JP2009154276A (en) 2007-12-27 2007-12-27 Apparatus and method for machining lens

Country Status (1)

Country Link
JP (1) JP2009154276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384001B1 (en) * 2017-05-25 2018-09-05 株式会社三井E&Sマシナリー Abrasive recovery system in ultrasonic processing equipment
CN109605168A (en) * 2018-11-30 2019-04-12 中国兵器科学研究院宁波分院 A kind of system of processing of major diameter optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384001B1 (en) * 2017-05-25 2018-09-05 株式会社三井E&Sマシナリー Abrasive recovery system in ultrasonic processing equipment
JP2018199175A (en) * 2017-05-25 2018-12-20 株式会社三井E&Sマシナリー Abrasive grain collection system in ultrasonic working device
CN109605168A (en) * 2018-11-30 2019-04-12 中国兵器科学研究院宁波分院 A kind of system of processing of major diameter optical element
CN109605168B (en) * 2018-11-30 2021-09-14 中国兵器科学研究院宁波分院 Processing system of large-diameter optical element

Similar Documents

Publication Publication Date Title
KR101704811B1 (en) Method of processing synthetic quartz glass substrate for semiconductor
KR20010092732A (en) Method of processing semiconductor wafers to build in back surface damage
JP5373171B1 (en) Grinding wheel and grinding / polishing apparatus using the same
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
TWI737928B (en) Apparatus of chemical mechanical polishing and operating method thereof
CN108058066A (en) A kind of big method for processing surface of laser slab medium
JPH09168947A (en) Work periphery grinding method by ultrasonic micro vibration
JP2018062048A (en) Holding surface formation method of holding table, grinding device, and grinding wheel
TW202301524A (en) Polishing apparatus and polishing method
JP2011245574A (en) Two-dimensional (oval) ultrasonic-assisted chemical mechanical composite machining method and device
JP2009297862A (en) Polishing tool
TW202017695A (en) Carrier wafers and methods of forming carrier wafers
JP6145548B1 (en) Chamfering grinding method and chamfering grinding apparatus
JP2009154276A (en) Apparatus and method for machining lens
JPH09168953A (en) Semiconductor wafer edge polishing method and device
JP2008194771A (en) Method and device for grinding lens sphere
JP2008273777A (en) Method for polishing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium, and polishing device for glass substrate for magnetic recording medium
CN102528645A (en) Double-sided polishing method for large-sized ultra-thin quartz glass sheets
JP2018058198A (en) Chamfer grinding method and chamfer grinding device
WO2000024548A1 (en) Polishing apparatus and a semiconductor manufacturing method using the same
JP6493740B2 (en) Polishing tool for loose abrasive machining, method for producing the same, and loose abrasive polishing apparatus
JP6979607B2 (en) Grinding device and grinding method
JP6979608B2 (en) Grinding device and grinding method
JP2015064920A (en) Manufacturing method of glass substrate for magnetic disk
JP2005028513A (en) Spherical form finish-machining method for ball to be machined, and spherical form finish-machining device for ball to be machined