JPH09168947A - Work periphery grinding method by ultrasonic micro vibration - Google Patents
Work periphery grinding method by ultrasonic micro vibrationInfo
- Publication number
- JPH09168947A JPH09168947A JP7348888A JP34888895A JPH09168947A JP H09168947 A JPH09168947 A JP H09168947A JP 7348888 A JP7348888 A JP 7348888A JP 34888895 A JP34888895 A JP 34888895A JP H09168947 A JPH09168947 A JP H09168947A
- Authority
- JP
- Japan
- Prior art keywords
- grinding
- ultrasonic
- work
- peripheral edge
- rotary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 23
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 35
- 239000010703 silicon Substances 0.000 claims abstract description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000006061 abrasive grain Substances 0.000 claims abstract description 31
- 230000002093 peripheral effect Effects 0.000 claims description 39
- 239000012530 fluid Substances 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 5
- 229910003460 diamond Inorganic materials 0.000 abstract description 23
- 239000010432 diamond Substances 0.000 abstract description 23
- 238000003754 machining Methods 0.000 abstract description 13
- 238000006748 scratching Methods 0.000 abstract description 3
- 230000002393 scratching effect Effects 0.000 abstract description 3
- 235000012431 wafers Nutrition 0.000 description 30
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シリコンウエハ・
ガラス等の脆性素材の物品の外周縁を超音波微振動を用
いて所要の形状に研削・整形する技術に関する。TECHNICAL FIELD The present invention relates to a silicon wafer
The present invention relates to a technique for grinding and shaping the outer peripheral edge of a brittle material such as glass into a desired shape by using ultrasonic microvibration.
【0002】[0002]
【従来の技術】半導体の基板には、シリコンウエハを多
く使用されている。このシリコンウエハは円板状に加工
されてIC生産工場に供給されて使用される。シリコン
ウエハは大変欠け易いため、円板状のシリコンウエハの
外周縁を一定形状に丸目加工される。従来のシリコンウ
エハ等の脆性素材の外周縁の加工方法は、エアースピン
ドルや超音速のスピンドルでダイヤモンド砥粒の砥石を
8,000〜80,000RPMの超高速に回転させて
加工する外周丸目加工機を使用していた。超高速で回転
させるため、機械に高い機械剛性が必要で大型となり、
装置空間を広く必要としていた。又、ダイヤモンド砥粒
20及びその脱粒は、ワーク9の加工面を深くひっかけ
て傷つけるものであり、加工面には深いひっかき傷の発
生は避けることができなかった。加えて、ダイヤモンド
砥粒20がワーク9の加工面に常時接触状態であるので
切粉21がダイヤモンド砥粒20間に滞留して目詰りを
起し、加工抵抗の増大と加工抵抗による圧力でクラック
22をワーク内部に発生させていた(図8参照)。研削
液23をワークの加工面に流し込んでもこの現象を充分
に解消できなかった。従って、砥石の砥粒の径を徐々に
落とす2〜3段階に粗研削から仕上げ研削の加工方法が
採られている。それでも砥石の目詰りや脱粒によって加
工工程が長くなっていた。2. Description of the Related Art Silicon wafers are often used as semiconductor substrates. This silicon wafer is processed into a disk shape and supplied to an IC production factory for use. Since a silicon wafer is very likely to be chipped, the outer peripheral edge of a disk-shaped silicon wafer is rounded into a fixed shape. A conventional method for processing the outer peripheral edge of a brittle material such as a silicon wafer is an outer peripheral rounding machine for processing by rotating an abrasive wheel of diamond abrasive grains at an ultra-high speed of 8,000 to 80,000 RPM with an air spindle or a supersonic spindle. Was using. Since it rotates at ultra-high speed, the machine needs high mechanical rigidity and becomes large in size.
It required a large device space. Further, the diamond abrasive grains 20 and the grain removal thereof deeply scratch the work surface of the work 9 and damage it, and the generation of deep scratches on the work surface cannot be avoided. In addition, since the diamond abrasive grains 20 are constantly in contact with the machined surface of the work 9, the chips 21 are accumulated between the diamond abrasive grains 20 and cause clogging, which increases the machining resistance and cracks due to the pressure due to the machining resistance. 22 was generated inside the work (see FIG. 8). Even if the grinding liquid 23 was poured into the processed surface of the work, this phenomenon could not be sufficiently solved. Therefore, a processing method of rough grinding to finish grinding is adopted in two or three steps in which the diameter of the abrasive grains of the grindstone is gradually reduced. Even so, the grinding process was lengthened due to the clogging of the whetstone and shattering.
【0003】[0003]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来のこれらの問題点を解決し、加工面に
欠け、ひっかき傷を与えずに高精度の加工ができ、又研
削工具の寿命を長くでき、加工機の剛性を低くでき、機
械を小型にでき、粗い砥粒で精密仕上げができるという
超音波微振動によるワークの周縁研削加工方法を提供す
る。SUMMARY OF THE INVENTION The problems to be solved by the present invention are to solve these conventional problems, enable high-precision machining without chipping and scratching of the machined surface, and a grinding tool. The present invention provides a method for grinding the periphery of a work by ultrasonic microvibration, which can increase the life of the machine, reduce the rigidity of the machine, reduce the size of the machine, and perform fine finishing with coarse abrasive grains.
【0004】[0004]
【課題を解決するための手段】かかる課題を解決した本
発明の構成は、 1) ワークの周縁加工断面形状の雌型断面形状の凹部
を外周に環状に設け且つ同凹部の表面に砥粒を付着させ
た円盤状研削回転工具を回転させながらその凹部表面が
回転又は直線的に動かされているワークの周縁に接触す
るように研削回転工具とワークとを近づけ、同時に研削
回転工具の凹部表面の砥粒がワーク周縁の加工表面に向
けて直角に高速で微振動するように超音波微振動を研削
回転工具に与え、しかも研削流体をワークの周縁の加工
面に向けて流し、研削回転工具の凹部表面の砥粒が超音
波微振動によってワークの周縁表面への微小切り込み破
砕と後退を繰り返すことによってワークの周縁を研削回
転工具の凹部形状に研削加工することを特徴とする超音
波微振動によるワークの周縁研削加工方法 2) ワークが円枚状シリコンウエハであり、超音波微
振動するロータリースピンドル軸端に円盤状研削回転工
具を取付け、ワークの外周縁に円盤状研削回転工具の凹
部を押し付け、円盤状研削回転工具にロータリースピン
ドルによって回転と超音波微振動を重畳的に与えてシリ
コンウエハの周縁を丸目加工する前記1)記載の超音波
微振動によるワークの周縁研削加工方法 3) 超音波微振動が与えられた回転中の研削回転工具
に向けてワーク全体を動かし、研削回転工具によって少
しづつ切り込んでワークの周縁に半径方向に延びた溝を
成形研削する前記1)又は2)記載の超音波微振動によ
るワークの周縁研削加工方法 4) 超音波微振動による凹部表面の砥粒の微振動の巾
が0.1〜20ミクロンである前記1)〜3)何れか記
載の超音波微振動によるワークの周縁研削加工方法にあ
る。Means for Solving the Problems The constitution of the present invention which has solved the above problems is as follows: 1) A recess having a female cross-sectional shape, which is the cross-sectional shape of the periphery of a workpiece, is annularly provided on the outer periphery, and abrasive grains are provided on the surface of the recess. While rotating the attached disk-shaped grinding rotary tool, bring the grinding rotary tool and the work closer so that the concave surface contacts the periphery of the workpiece being rotated or linearly moved, and at the same time the concave surface of the grinding rotary tool Ultrasonic micro-vibration is applied to the grinding rotary tool so that the abrasive grains vibrate at high speed at a high speed at a right angle to the machining surface on the peripheral edge of the work, and moreover, the grinding fluid is caused to flow toward the machining surface on the peripheral edge of the work, Ultrasonic waves characterized by grinding the peripheral edge of a workpiece into the concave shape of a rotary grinding tool by repeating minute cutting and crushing of the abrasive grains on the concave surface to the peripheral surface of the workpiece by ultrasonic micro vibration Method of grinding peripheral edge of workpiece by vibration 2) The workpiece is a disk-shaped silicon wafer, and the disk-shaped grinding rotary tool is attached to the rotary spindle axis end that vibrates ultrasonically, and the concave part of the disk-shaped grinding rotary tool is attached to the outer peripheral edge of the workpiece. And the disk-shaped grinding rotary tool is superposed with rotation and ultrasonic micro-vibration by a rotary spindle so that the peripheral edge of the silicon wafer is rounded, and the peripheral micro-vibration method for the workpiece by ultrasonic micro-vibration 3) The whole work is moved toward the rotating rotary grinding tool to which ultrasonic microvibration is applied, and the rotary grinding tool cuts little by little to form and grind a groove extending in the radial direction on the peripheral edge of the workpiece 1) or 2). The peripheral edge grinding method of the work by the ultrasonic microvibration described in 4) The width of the microvibration of the abrasive grains on the recessed surface by the ultrasonic microvibration is 0.1 to 20 microns. The method for grinding a peripheral edge of a workpiece by ultrasonic microvibration according to any one of 1) to 3) above.
【0005】[0005]
【作用】本発明では、ワークをゆっくり直線的に送りな
がら、又は2〜4RPM程の低速で回転させながら、研
削回転工具の凹部をワークの周縁に押し当て、300〜
5,000RPM程で回転させ、しかも20〜60KH
zで0.1〜20ミクロン程の振巾(ピークピークの巾
で)超音波微振動を与える。研削回転工具は、ワークに
対して超音波微振動を与えられながら押し付けられるこ
とで、研削回転工具の凹部の砥粒はワークの周縁のワー
ク表面に向けて直交方向に微振動を高速に繰り返し、ワ
ーク表面を破砕するように微小切り込みと後退を多数回
行い、効率良く研削する。又、同時に破砕・脱落した砥
粒を超音波微振動で動かして加工部に流される液体又は
気体の研削流体が確実に捕捉して流体とともに加工部所
から排除する。これによって脱落砥粒による傷の発生、
切粉(破砕粉)による傷の発生、及び切粉による目詰り
による研削工具の機能低下を防ぎ、加工の精度を高め、
研削力を強める。特にワークがシリコンウエハの如く脆
性素材で欠け易いワークでも欠け・傷が少なく、丸目加
工・ノッチ成形加工が行える。又、粗い砥粒でも高精度
仕上げ加工できるものとした。In the present invention, while the work is slowly fed linearly or rotated at a low speed of about 2 to 4 RPM, the concave portion of the grinding rotary tool is pressed against the peripheral edge of the work, and 300 to
Rotate at about 5,000 RPM and 20 ~ 60KH
A zigzag of about 0.1 to 20 microns (with a peak-peak width) is applied to ultrasonic microvibration. The grinding rotary tool is pressed against the work while being subjected to ultrasonic micro-vibration, so that the abrasive grains in the recess of the grinding rotary tool repeat micro-vibration at high speed in the orthogonal direction toward the work surface at the periphery of the work, Efficiently grinds by performing many small cuts and recesses so as to crush the work surface. At the same time, the crushed and dropped abrasive grains are moved by ultrasonic micro-vibration to reliably capture the liquid or gaseous grinding fluid flowing in the machining portion and remove it together with the fluid from the machining portion. This causes scratches caused by the falling abrasive grains,
Prevents damage caused by cutting chips (crushed powder) and functional deterioration of grinding tools due to clogging by cutting chips, improving processing accuracy,
Increase grinding power. In particular, even if the work is a brittle material such as a silicon wafer and is easily chipped, there is little chipping or scratching, and rounding and notching can be performed. In addition, even rough abrasive grains can be processed with high precision.
【0006】[0006]
【発明の実施の形態】本発明に用いる超音波微振動の周
波数は20〜60KHz程でその振動は0.1〜20ミ
クロン程であり、工具の回転数は300〜5,000R
PM程でありワークの素材・加工程類等によってこれら
の値は適切なものが選ばれる。超音波回転工具の砥粒は
ダイヤモンド砥粒が高い研削力を有し好ましい。BEST MODE FOR CARRYING OUT THE INVENTION The frequency of ultrasonic microvibration used in the present invention is about 20 to 60 KHz, the vibration is about 0.1 to 20 microns, and the rotational speed of the tool is 300 to 5,000 R.
It is about PM, and appropriate values are selected for these values depending on the material of the work and the processing steps. The abrasive grains of the ultrasonic rotating tool are preferably diamond abrasive grains because they have a high grinding force.
【0007】[0007]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。 ;実施例1(図1〜5参照) 図1〜5に示す実施例1は、シリコンウエハの周縁の丸
目加工に使用し、用いる研削回転工具は、円盤外周縁に
丸目加工の凹部を有し、同凹部にダイヤモンド砥粒を付
着させたものを使用した例である。図1は実施例1の超
音波微振動研削装置を示す側面図、図2は同正面図、図
3は同平面図、図4は実施例1の研削加工工程を示す説
明図、図5は実施例1の研削状態を示す説明図である。
図中、1は装置本体ベース、2は超音波ロータリースピ
ンドル、3は研削回転工具である小径の超音波ダイヤモ
ンド砥石、3aは同超音波ダイヤモンド砥石の凹部、3
bは同凹部の表面に付着させたダイヤモンド砥粒、4は
超音波スピンドルモータ、5はコラム6に沿って超音波
ダイヤモンド砥石3を上下動する超音波スピンドルモー
タ4を取付けた上下高さ調整用スライド部、6はコラ
ム、7はワークであるシリコンウエハ9を載せるワーク
テーブル、8はワークテーブルY軸スライド部、Lは研
削液である。本実施例1では、シリコンウエハ9は2〜
4RPM程の回転速度でゆっくり回転させる。超音波ス
ピンドルモータ4をスライド部5で上下高さ調整した
後、作動させると超音波ダイヤモンド砥石3は300〜
5,000RPMで回転され、しかも20〜60KHz
で0.1〜20ミクロンの超音波微振動が与えられる。
ワークテーブルY軸スライド部8を動かし、シリコンウ
エハ9を超音波ダイヤモンド砥石3に押し当てると、超
音波ダイヤモンド砥石3の凹部3aがシリコンウエハ9
の周縁と接触し、高速回転する凹部3aのダイヤモンド
砥粒3bでシリコンウエハ9の周縁を研削する。凹部3
aは20〜60KHzの超音波微振動でシリコンウエハ
9の回転中心に向けて微小切り込み及び後退を繰り返す
ことでシリコンウエハの周縁を破砕するように強い研削
力を発生する。砥石3の砥粒が超音波微振動で伸縮す
る、その伸びた瞬間にシリコンウエハ9に衝突しワーク
周縁表面を微小に砕く、次の瞬間砥石3が縮みシリコン
ウエハ9の間の隙間0.1〜20ミクロンが広がり、隙
間に研削液Lが侵入し、破砕片・切屑が研削液Lに溶け
出すために、従来の加工方法で見られた砥石3のダイヤ
モンド砥粒3bの隙間に削り屑・切粉が溜まらないので
砥石3に目詰まりすることがない(図4,5参照)。よ
って、凹部3aによってシリコンウエハ9の周縁は効率
的に傷もなく高精度に研削され、シリコンウエハ9の周
縁の断面形状は凹部3aの形状通りに加工され、丸目加
工状態となる。例えば、本実施例1でダイヤモンド砥石
#800を使用して研削加工すると、従来の加工機のダ
イヤモンド砥石#2,000相当の仕上りとなった。こ
の実施例1に限らず本発明では、粗加工から精密な仕上
げ加工を一つの砥石で可能にでき、研削加工工程を省略
して迅速に加工できるようになった。又、研削回転工具
の超音波ダイヤモンド砥石3の回転数は、従来の如く
8,000〜80,000RPMの回転数に比べかなり
低く且つ研削加工抵抗が低いことから、装置本体ベース
1、超音波スピンドルモータ4、コラム6、上下高さ調
整用スライド部5等は小型にできた。 ;実施例2(図6,7参照) 図6,7に示す実施例2は、シリコンウエハのノッチの
溝加工に実施した例である。図6は実施例2を示す説明
図、図7は実施例2で加工されたシリコンウエハを示す
平面図である。図中、10は超音波スピンドル、11は
研削回転工具であるノッチ加工用の小径の超音波砥石、
11aは同超音波砥石11の凹部で、ダイヤモンド砥粒
を付着させている。12はシリコンウエハ、13はノッ
チの溝である。実施例2では、小径の超音波砥石11を
0.2〜10ミクロンの振巾で40〜60KHzの超音
波微振動を与えながら、300〜5,000RPMの回
転で回転させながら、シリコンウエハ12を超音波砥石
11の方向に移動させることで、超音波砥石11でシリ
コンウエハにノッチの溝13を研削する。この実施例2
でも超音波砥石11には超音波微振動が与えられること
で、実施例1同様にシリコンウエハ12の周縁を微小切
り込み破砕・後退を繰り返して超音波砥石11の凹部1
1aでシリコンウエハ12を中心方向に研削して、ノッ
チの溝13を成形するものである。この溝13の周縁の
断面形状は凹部11aの断面形状の通りに丸目が与えら
れる。Embodiments of the present invention will be described below with reference to the drawings. Example 1 (see FIGS. 1 to 5) Example 1 shown in FIGS. 1 to 5 is used for rounding the peripheral edge of a silicon wafer, and the grinding rotary tool used has a rounded concave portion on the outer peripheral edge of the disk. In this example, a diamond abrasive grain is attached to the recess. 1 is a side view showing an ultrasonic micro-vibration grinding apparatus according to a first embodiment, FIG. 2 is a front view of the same, FIG. 3 is a plan view of the same, FIG. 4 is an explanatory view showing a grinding process of the first embodiment, and FIG. 5 is an explanatory diagram showing a grinding state of Example 1. FIG.
In the figure, 1 is an apparatus main body base, 2 is an ultrasonic rotary spindle, 3 is a small-diameter ultrasonic diamond grindstone that is a grinding rotary tool, 3a is a concave portion of the ultrasonic diamond grindstone, 3
b is a diamond abrasive grain adhered to the surface of the recess, 4 is an ultrasonic spindle motor, 5 is an ultrasonic spindle motor 4 for moving the ultrasonic diamond grindstone 3 up and down along the column 6, for vertical height adjustment A slide portion, 6 is a column, 7 is a work table on which a silicon wafer 9 which is a work is placed, 8 is a work table Y-axis slide portion, and L is a grinding liquid. In the first embodiment, the silicon wafer 9 is 2 to
Slowly rotate at a rotation speed of about 4 RPM. When the ultrasonic spindle motor 4 is adjusted in vertical height with the slide portion 5 and then operated, the ultrasonic diamond grindstone 3 is 300 to
Rotated at 5,000 RPM and 20 to 60 KHz
Ultrasonic micro-vibration of 0.1 to 20 microns is applied at.
When the work table Y-axis slide portion 8 is moved and the silicon wafer 9 is pressed against the ultrasonic diamond grindstone 3, the concave portion 3a of the ultrasonic diamond grindstone 3 becomes the silicon wafer 9
The peripheral edge of the silicon wafer 9 is ground by the diamond abrasive grains 3b of the concave portion 3a which is in contact with the peripheral edge of and rotates at a high speed. Recess 3
a is ultrasonic microvibration of 20 to 60 KHz, and generates a strong grinding force so as to crush the peripheral edge of the silicon wafer by repeating fine cutting and retreating toward the rotation center of the silicon wafer 9. The abrasive grains of the grindstone 3 expand and contract due to ultrasonic microvibration, and at the moment when the grindstone 3 expands, it collides with the silicon wafer 9 and crushes the peripheral surface of the work into minute pieces. ~ 20 microns spread, grinding fluid L intrudes into the gap, and fragments and chips melt into the grinding fluid L. Since chips do not collect, the grindstone 3 will not be clogged (see FIGS. 4 and 5). Therefore, the peripheral edge of the silicon wafer 9 is efficiently and accurately ground by the concave portion 3a without any damage, and the cross-sectional shape of the peripheral edge of the silicon wafer 9 is processed in accordance with the shape of the concave portion 3a, resulting in a rounded state. For example, when the diamond grindstone # 800 was used for grinding in Example 1, the finish was equivalent to that of the conventional grinder # 2,000. The present invention is not limited to the first embodiment, and the roughing process to the precise finishing process can be performed with a single grindstone, and the grinding process can be omitted to enable rapid processing. Further, since the rotational speed of the ultrasonic diamond grindstone 3 of the grinding rotary tool is considerably lower than the conventional rotational speed of 8,000 to 80,000 RPM and the grinding processing resistance is low, the main body 1 of the apparatus, the ultrasonic spindle. The motor 4, the column 6, the vertical height adjusting slide portion 5 and the like can be made compact. Example 2 (see FIGS. 6 and 7) Example 2 shown in FIGS. 6 and 7 is an example in which a groove is formed in a notch of a silicon wafer. FIG. 6 is an explanatory view showing the second embodiment, and FIG. 7 is a plan view showing the silicon wafer processed in the second embodiment. In the figure, 10 is an ultrasonic spindle, 11 is a small-diameter ultrasonic grindstone for notching, which is a rotary grinding tool,
Reference numeral 11a is a concave portion of the ultrasonic grindstone 11, to which diamond abrasive grains are attached. Reference numeral 12 is a silicon wafer, and 13 is a notch groove. In the second embodiment, the silicon wafer 12 is rotated while rotating the small-diameter ultrasonic grindstone 11 at 300 to 5,000 RPM while applying 40 to 60 KHz ultrasonic microvibration with a vibration width of 0.2 to 10 microns. By moving in the direction of the ultrasonic grindstone 11, the notch groove 13 is ground in the silicon wafer by the ultrasonic grindstone 11. Example 2
However, since ultrasonic micro-vibration is applied to the ultrasonic grindstone 11, similar to the first embodiment, the peripheral edge of the silicon wafer 12 is finely cut and crushed / retracted repeatedly to repeat the recess 1 of the ultrasonic grindstone 11.
1a, the silicon wafer 12 is ground toward the center to form the notch groove 13. The cross-sectional shape of the peripheral edge of the groove 13 is rounded according to the cross-sectional shape of the recess 11a.
【0008】[0008]
【発明の効果】以上の様に、本発明によれば超音波微振
動を与えながら凹部を有する研削工具を回転させること
で、高い研削力を得るとともにワークの表面をひっかき
傷つけることなく高精度に研削でき、しかもその加工装
置を小型・軽量にできるものとした。更に詳しく説明す
ると、欠きの効果を得ることができた。よって、 1) 回転と超音波微振動の複合の重畳的な研削加工
は、従来加工方法の超高速成形研削加工と比較して、砥
石の砥粒先端に掛かる切り込みが極めて小さく、従って
砥粒の先端から徐々に摩滅するので砥粒の脱落による加
工面にひっかき傷を付けることがない。 2) 回転と超音波微振動の複合の研削加工は、従来加
工方法の超高速成形研削加工と比較して、砥粒の先端が
極めて小さく作用するので、加工面に与える加工傷が極
めて浅く、ダメージ層の深さは極めて浅くなる。例え
ば、シリコン加工砥石ダイヤモンド#400の場合、従
来研削加工方法ではダメージ層20〜100ミクロン以
上である所、本発明の超音波研削加工方法ではダメージ
層10ミクロン以内になり、大巾に軽減する。 3) 回転と超音波微振動の複合の研削加工は、従来加
工方法の超高速成形研削加工と比較して、同じ加工面積
を加工する場合、研削加工抵抗が従来加工方法と比べ5
〜20%以下になり、従って加工機の消費電力が30%
以下、加工機の軽量化が図れ設置面積が30%以下、ま
た超高速スピンドル用のエヤーの消費がない。という効
果を得ることができる。As described above, according to the present invention, by rotating the grinding tool having the concave portion while applying the ultrasonic micro-vibration, a high grinding force can be obtained and the surface of the work can be highly accurately without being scratched. Grinding is possible, and the processing equipment is compact and lightweight. More specifically, the effect of the lack can be obtained. Therefore, 1) The combined superposition grinding of rotation and ultrasonic micro-vibration has extremely small incision at the tip of the abrasive grain of the grindstone, as compared with the ultra-high speed forming grinding of the conventional machining method. Since it gradually wears off from the tip, scratches are not scratched on the machined surface due to the removal of abrasive grains. 2) The combined grinding of rotation and ultrasonic micro-vibration makes the tip of the abrasive grains act extremely small compared to the ultra-high speed forming grinding of the conventional processing method, so the processing scratches on the processed surface are extremely shallow, The depth of the damage layer becomes extremely shallow. For example, in the case of the silicon processing grindstone # 400, the damage layer is 20 to 100 μm or more in the conventional grinding method, but the damage layer is 10 μm or less in the ultrasonic grinding method of the present invention, which is greatly reduced. 3) Compared with the ultra-high-speed form grinding process of the conventional machining method, the combined grinding of rotation and ultrasonic micro-vibration has a grinding resistance of 5 compared with the conventional machining method when machining the same machining area.
~ 20% or less, so the power consumption of the processing machine is 30%
Hereafter, the weight of the processing machine can be reduced, the installation area is 30% or less, and the air consumption for the ultra-high speed spindle is not consumed. The effect can be obtained.
【図1】実施例1の超音波微振動研削装置を示す側面図
である。FIG. 1 is a side view showing an ultrasonic micro-vibration grinding apparatus according to a first embodiment.
【図2】実施例1の超音波微振動研削装置を示す正面図
である。FIG. 2 is a front view showing the ultrasonic micro-vibration grinding apparatus according to the first embodiment.
【図3】実施例1の超音波微振動研削装置を示す平面図
である。FIG. 3 is a plan view showing an ultrasonic micro-vibration grinding apparatus according to a first embodiment.
【図4】実施例1の研削加工工程を示す説明図である。FIG. 4 is an explanatory diagram showing a grinding process of Example 1.
【図5】実施例1の研削状態を示す説明図である。FIG. 5 is an explanatory diagram showing a grinding state of the first embodiment.
【図6】実施例2を示す説明図である。FIG. 6 is an explanatory diagram showing a second embodiment.
【図7】実施例2で加工されたシリコンウエハを示す平
面図である。7 is a plan view showing a silicon wafer processed in Example 2. FIG.
【図8】従来のダイヤモンド砥粒による研削加工の工程
を示す説明図である。FIG. 8 is an explanatory diagram showing a conventional grinding process using diamond abrasive grains.
1 装置本体ベース 2 緒音波ロータリースピンドル 3 超音波ダイヤモンド砥石 3a 凹部 3b ダイヤモンド砥粒 4 超音波スピンドルモータ 5 上下スライド部 6 コラム 7 ワークテーブル 8 ワークテーブルY軸スライド部 9 シリコンウエハ 10 超音波スピンドル 11 超音波砥石 11a 凹部 12 シリコンウエハ 13 ノッチ 1 Equipment main body base 2 Ultrasonic rotary spindle 3 Ultrasonic diamond grindstone 3a Recess 3b Diamond abrasive grains 4 Ultrasonic spindle motor 5 Vertical slide part 6 Column 7 Worktable 8 Worktable Y-axis slide part 9 Silicon wafer 10 Ultrasonic spindle 11 Ultra Sonic whetstone 11a Recess 12 Silicon wafer 13 Notch
Claims (4)
状の凹部を外周に環状に設け且つ同凹部の表面に砥粒を
付着させた円盤状研削回転工具を回転させながらその凹
部表面が回転又は直線的に動かされているワークの周縁
に接触するように研削回転工具とワークとを近づけ、同
時に研削回転工具の凹部表面の砥粒がワーク周縁の加工
表面に向けて直角に高速で微振動するように超音波微振
動を研削回転工具に与え、しかも研削流体をワークの周
縁の加工面に向けて流し、研削回転工具の凹部表面の砥
粒が超音波微振動によってワークの周縁表面への微小切
り込み破砕と後退を繰り返すことによってワークの周縁
を研削回転工具の凹部形状に研削加工することを特徴と
する超音波微振動によるワークの周縁研削加工方法。1. A surface of a recess is rotated while rotating a disk-shaped grinding rotary tool in which a recess having a female-shaped cross-section of a peripheral edge processed cross-section of a work is annularly formed on the outer periphery and abrasive grains are adhered to the surface of the recess. Or, the grinding rotary tool and the work are brought close to each other so as to come into contact with the peripheral edge of the workpiece which is linearly moved, and at the same time, the abrasive grains on the concave surface of the rotary rotary tool vibrate at a high speed at a right angle toward the processing surface of the peripheral edge of the workpiece. Micro-vibration is applied to the grinding rotary tool so that the grinding fluid is caused to flow toward the working surface of the peripheral edge of the work, and the abrasive grains on the concave surface of the grinding rotary tool are transferred to the peripheral surface of the work by ultrasonic micro-vibration. A method of grinding a peripheral edge of a work by ultrasonic micro-vibration, which grinds the peripheral edge of the work into a concave shape of a rotary grinding tool by repeating micro-cutting crushing and retreating.
超音波微振動するロータリースピンドル軸端に円盤状研
削回転工具を取付け、ワークの外周縁に円盤状研削回転
工具の凹部を押し付け、円盤状研削回転工具にロータリ
ースピンドルによって回転と超音波微振動を重畳的に与
えてシリコンウエハの周縁を丸目加工する請求項1記載
の超音波微振動によるワークの周縁研削加工方法。2. The work is a circular silicon wafer,
A rotary disc spindle grinding tool is attached to the rotary spindle axis where ultrasonic vibration is applied, and the concave portion of the rotary disk grinding tool is pressed against the outer peripheral edge of the workpiece. The rotary spindle superimposes rotation and ultrasonic vibration on the rotary disk grinding tool. 2. The method for grinding a peripheral edge of a work by ultrasonic micro-vibration according to claim 1, wherein the peripheral edge of the silicon wafer is rounded by being given to the workpiece.
回転工具に向けてワーク全体を動かし、研削回転工具に
よって少しづつ切り込んでワークの周縁に半径方向に延
びた溝を成形研削する請求項1又は2記載の超音波微振
動によるワークの周縁研削加工方法。3. The whole work is moved toward the rotating rotary grinding tool to which the ultrasonic microvibration is applied, and the rotary grinding tool cuts little by little to form and grind a groove extending in the radial direction on the peripheral edge of the work. Item 3. A method for grinding a peripheral edge of a work by ultrasonic microvibration according to Item 1 or 2.
振動の巾が0.1〜20ミクロンである請求項1〜3何
れか記載の超音波微振動によるワークの周縁研削加工方
法。4. The method for grinding a peripheral edge of a workpiece by ultrasonic micro-vibration according to claim 1, wherein the width of the micro-vibration of the abrasive grains on the surface of the recess due to the ultrasonic micro-vibration is 0.1 to 20 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7348888A JPH09168947A (en) | 1995-12-18 | 1995-12-18 | Work periphery grinding method by ultrasonic micro vibration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7348888A JPH09168947A (en) | 1995-12-18 | 1995-12-18 | Work periphery grinding method by ultrasonic micro vibration |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09168947A true JPH09168947A (en) | 1997-06-30 |
Family
ID=18400068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7348888A Pending JPH09168947A (en) | 1995-12-18 | 1995-12-18 | Work periphery grinding method by ultrasonic micro vibration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09168947A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100527459B1 (en) * | 2002-11-22 | 2005-11-09 | 한국생산기술연구원 | a micro cutting and grinding machine make use of ultrasonic vibration |
WO2009107567A1 (en) * | 2008-02-27 | 2009-09-03 | 住友電気工業株式会社 | Method for machining nitride semiconductor wafer, nitride semiconductor wafer, process for producing nitride semiconductor device, and nitride semiconductor device |
JP2009231833A (en) * | 2008-02-27 | 2009-10-08 | Sumitomo Electric Ind Ltd | Nitride semiconductor wafer |
WO2012077645A1 (en) * | 2010-12-08 | 2012-06-14 | 電気化学工業株式会社 | Method for processing hard substrate laminated body and method for manufacturing plate-shaped product |
CN103341794A (en) * | 2013-05-29 | 2013-10-09 | 南京航空航天大学 | Grinding device for surface machining and control method thereof |
KR101367737B1 (en) * | 2007-10-30 | 2014-02-26 | 가부시기가이샤 디스코 | Grinding wheel |
US8975643B2 (en) | 2012-04-10 | 2015-03-10 | Sumitomo Electric Industries, Ltd. | Silicon carbide single-crystal substrate and method for manufacturing same |
JP2015174180A (en) * | 2014-03-14 | 2015-10-05 | 株式会社東京精密 | ultrasonic chamfering machine |
CN105234798A (en) * | 2015-10-26 | 2016-01-13 | 昆山成兆贸易有限公司 | Hub polishing machine |
JP2017170541A (en) * | 2016-03-22 | 2017-09-28 | 株式会社東京精密 | Chamfering device and chamfering method |
CN107813192A (en) * | 2016-09-09 | 2018-03-20 | 萨奥有限公司 | For processing made of hard metal workpiece to produce the method for cutter body |
JP2018058129A (en) * | 2016-10-03 | 2018-04-12 | 株式会社東京精密 | Chamfer grinding method and chamfer grinding device |
JP2018058198A (en) * | 2016-10-03 | 2018-04-12 | 株式会社東京精密 | Chamfer grinding method and chamfer grinding device |
CN109129038A (en) * | 2018-11-02 | 2019-01-04 | 吉林大学 | The forming machine tool and control method of composite wheel roughing and ultrasonic wave added finishing |
CN110856900A (en) * | 2018-08-21 | 2020-03-03 | 株式会社冈本工作机械制作所 | Method and apparatus for manufacturing semiconductor device |
CN112621551A (en) * | 2020-12-19 | 2021-04-09 | 华中科技大学 | Ultra-precise wafer grinding equipment capable of being positioned quickly |
WO2025043839A1 (en) * | 2023-08-29 | 2025-03-06 | 江苏镌极特种设备有限公司 | Grinding machine having ultrasonic machining function |
-
1995
- 1995-12-18 JP JP7348888A patent/JPH09168947A/en active Pending
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100527459B1 (en) * | 2002-11-22 | 2005-11-09 | 한국생산기술연구원 | a micro cutting and grinding machine make use of ultrasonic vibration |
KR101367737B1 (en) * | 2007-10-30 | 2014-02-26 | 가부시기가이샤 디스코 | Grinding wheel |
WO2009107567A1 (en) * | 2008-02-27 | 2009-09-03 | 住友電気工業株式会社 | Method for machining nitride semiconductor wafer, nitride semiconductor wafer, process for producing nitride semiconductor device, and nitride semiconductor device |
JP2009231814A (en) * | 2008-02-27 | 2009-10-08 | Sumitomo Electric Ind Ltd | Method for machining nitride semiconductor wafer |
JP2009231833A (en) * | 2008-02-27 | 2009-10-08 | Sumitomo Electric Ind Ltd | Nitride semiconductor wafer |
JP2010010705A (en) * | 2008-02-27 | 2010-01-14 | Sumitomo Electric Ind Ltd | Nitride semiconductor wafer, method of manufacturing nitride semiconductor device, and nitride semiconductor device |
US7872331B2 (en) | 2008-02-27 | 2011-01-18 | Sumitomo Electric Industries, Ltd. | Nitride semiconductor wafer |
US8101523B2 (en) | 2008-02-27 | 2012-01-24 | Sumitomo Electric Industries, Ltd. | Method of processing of nitride semiconductor wafer, nitride semiconductor wafer, method of producing nitride semiconductor device and nitride semiconductor device |
US8183669B2 (en) | 2008-02-27 | 2012-05-22 | Sumitomo Electric Industries, Ltd. | Nitride semiconductor wafer having a chamfered edge |
CN101884094B (en) | 2008-02-27 | 2013-02-13 | 住友电气工业株式会社 | Method for machining nitride semiconductor wafer, nitride semiconductor wafer, process for producing nitride semiconductor device, and nitride semiconductor device |
WO2012077645A1 (en) * | 2010-12-08 | 2012-06-14 | 電気化学工業株式会社 | Method for processing hard substrate laminated body and method for manufacturing plate-shaped product |
JPWO2012077645A1 (en) * | 2010-12-08 | 2014-05-19 | 電気化学工業株式会社 | Method for processing hard substrate laminate and method for manufacturing plate-like product |
US8975643B2 (en) | 2012-04-10 | 2015-03-10 | Sumitomo Electric Industries, Ltd. | Silicon carbide single-crystal substrate and method for manufacturing same |
US9318563B2 (en) | 2012-04-10 | 2016-04-19 | Sumitomo Electric Industries, Ltd. | Silicon carbide single-crystal substrate |
US9324814B2 (en) | 2012-04-10 | 2016-04-26 | Sumitomo Electric Industries, Ltd. | Silicon carbide single-crystal substrate |
CN103341794A (en) * | 2013-05-29 | 2013-10-09 | 南京航空航天大学 | Grinding device for surface machining and control method thereof |
CN103341794B (en) * | 2013-05-29 | 2015-10-28 | 南京航空航天大学 | A kind of grinding tool for Surface Machining and control method thereof |
JP2015174180A (en) * | 2014-03-14 | 2015-10-05 | 株式会社東京精密 | ultrasonic chamfering machine |
CN105234798A (en) * | 2015-10-26 | 2016-01-13 | 昆山成兆贸易有限公司 | Hub polishing machine |
JP2017170541A (en) * | 2016-03-22 | 2017-09-28 | 株式会社東京精密 | Chamfering device and chamfering method |
CN107813192A (en) * | 2016-09-09 | 2018-03-20 | 萨奥有限公司 | For processing made of hard metal workpiece to produce the method for cutter body |
JP2018058129A (en) * | 2016-10-03 | 2018-04-12 | 株式会社東京精密 | Chamfer grinding method and chamfer grinding device |
JP2018058198A (en) * | 2016-10-03 | 2018-04-12 | 株式会社東京精密 | Chamfer grinding method and chamfer grinding device |
JP2022047538A (en) * | 2016-10-03 | 2022-03-24 | 株式会社東京精密 | Chamfer grinding method and chamfer grinding device |
CN110856900A (en) * | 2018-08-21 | 2020-03-03 | 株式会社冈本工作机械制作所 | Method and apparatus for manufacturing semiconductor device |
US11735411B2 (en) | 2018-08-21 | 2023-08-22 | Okamoto Machine Tool Works, Ltd. | Method and apparatus for manufacturing semiconductor device |
CN109129038A (en) * | 2018-11-02 | 2019-01-04 | 吉林大学 | The forming machine tool and control method of composite wheel roughing and ultrasonic wave added finishing |
CN112621551A (en) * | 2020-12-19 | 2021-04-09 | 华中科技大学 | Ultra-precise wafer grinding equipment capable of being positioned quickly |
CN112621551B (en) * | 2020-12-19 | 2021-10-08 | 华中科技大学 | An Ultra-Precision Wafer Grinding Equipment with Rapid Positioning |
WO2025043839A1 (en) * | 2023-08-29 | 2025-03-06 | 江苏镌极特种设备有限公司 | Grinding machine having ultrasonic machining function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09168947A (en) | Work periphery grinding method by ultrasonic micro vibration | |
JP4913517B2 (en) | Wafer grinding method | |
JP3620679B2 (en) | Chamfering device and chamfering method for wafer with loose abrasive grains | |
JPH0516070A (en) | Diamond grinding wheel, its truing method, truing device, and ground-finished magnetic head | |
KR20150045494A (en) | Grindstone and grinding/polishing device using same | |
JP2003273053A (en) | Surface grinding method | |
TWI804670B (en) | Method and apparatus for manufacturing semiconductor device | |
WO2018073905A1 (en) | Grindstone | |
JP6145548B1 (en) | Chamfering grinding method and chamfering grinding apparatus | |
JP2008155287A (en) | Work grinding apparatus and work grinding method | |
JP4336340B2 (en) | Polishing method and polishing apparatus | |
KR20150065722A (en) | Elastic grindstone dressing method | |
JP7592365B2 (en) | Method for grinding a workpiece | |
JP3895965B2 (en) | Surface treatment method for polycrystalline Si ingot | |
JPH11123365A (en) | Ultrasonic vibrating combined processing tool | |
US6866560B1 (en) | Method for thinning specimen | |
JPH09168948A (en) | Work periphery grinding method by ultrasonic micro vibration | |
JPH05285807A (en) | Ultra-precision processing method | |
JPH08257923A (en) | Grindstone with shaft and tool holder | |
JP2004058301A (en) | Cutting blade for brittle material and its manufacturing method | |
JPH03104567A (en) | Grinding wheel and grinding method | |
WO2000024548A1 (en) | Polishing apparatus and a semiconductor manufacturing method using the same | |
JP2018058198A (en) | Chamfer grinding method and chamfer grinding device | |
JP2012182366A (en) | Method of removing chamfering portion of wafer | |
JP2009154276A (en) | Lens processing apparatus and processing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |