JP2015064920A - Manufacturing method of glass substrate for magnetic disk - Google Patents

Manufacturing method of glass substrate for magnetic disk Download PDF

Info

Publication number
JP2015064920A
JP2015064920A JP2013198902A JP2013198902A JP2015064920A JP 2015064920 A JP2015064920 A JP 2015064920A JP 2013198902 A JP2013198902 A JP 2013198902A JP 2013198902 A JP2013198902 A JP 2013198902A JP 2015064920 A JP2015064920 A JP 2015064920A
Authority
JP
Japan
Prior art keywords
glass substrate
polishing
main surface
polishing pad
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013198902A
Other languages
Japanese (ja)
Inventor
弘康 杉原
Hiroyasu Sugihara
弘康 杉原
大介 長
Daisuke Cho
大介 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2013198902A priority Critical patent/JP2015064920A/en
Publication of JP2015064920A publication Critical patent/JP2015064920A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To maintain quality of a glass substrate while satisfying a surface roughness required in a polishing process.SOLUTION: In a manufacturing method of a glass substrate for a magnetic disk, a polishing device includes a carrier for holding the glass substrate and a surface table on which a polishing pad is stuck while facing a principal surface of the glass substrate held by the carrier. The manufacturing method of the glass substrate for the magnetic disk includes a polishing process in which a polishing liquid containing abrasive grains is supplied between the principal surface of the glass substrate held by the carrier and the polishing pad, and the glass substrate and the polishing pad are relatively moved so as to polish the principal surface of the glass substrate. After completion of the polishing, the polishing pad is removed from the principal surface of the glass substrate while relatively moving the carrier and the surface table on a plane parallel to the principal surface of the glass substrate held by the carrier.

Description

本発明は、磁気ディスク用ガラス基板の製造方法に関する。   The present invention relates to a method for manufacturing a glass substrate for a magnetic disk.

従来、情報記録媒体の1つとして用いられる磁気ディスクには、ガラス基板が好適に用いられている。今日、ハードディスクドライブ装置における記憶容量の増大の要請を受けて、磁気記録の高密度化が図られている。これに伴って、磁気ヘッドの磁気記録面からの浮上距離を極めて短くして磁気記録情報エリアを微細化することが行われている。このような磁気ディスクに用いるガラス基板の寸法及び形状は目標通り精度高く作製されていることが好ましい。   Conventionally, a glass substrate is suitably used for a magnetic disk used as one of information recording media. Today, in response to a request for an increase in storage capacity in a hard disk drive device, the density of magnetic recording has been increased. Along with this, the magnetic recording information area is miniaturized by extremely shortening the flying distance from the magnetic recording surface of the magnetic head. It is preferable that the size and shape of the glass substrate used for such a magnetic disk be manufactured with high accuracy as intended.

ガラス基板の寸法及び形状を精度高く作製するために、ガラス基板の主表面の研磨を行う。ガラス基板の研磨の処理では、研磨パッドが貼り付けられた2つの定盤間に挟まれて研磨されるガラス基板を、研磨中保持するための板状の研磨用キャリアが用いられる。このキャリアには、ガラス基板を保持するための保持穴が設けられている。
従来、キャリアの保持穴内に保持されたガラス基板の主表面と定盤との接触を開始させた後、キャリアに保持されたガラス基板の主表面に対して平行な面上で、ガラス基板と定盤とを相対的に移動させることで、ガラス基板の主表面の研磨を行う。このとき、定盤によってガラス基板の主表面に荷重を掛けた後、ガラス基板の主表面に研磨パッドを押圧することで、効率的に研磨を行うことができる。
The main surface of the glass substrate is polished in order to manufacture the glass substrate with high accuracy in size and shape. In the polishing process of the glass substrate, a plate-shaped polishing carrier for holding the glass substrate that is sandwiched between two surface plates to which a polishing pad is attached and is polished during polishing is used. The carrier is provided with a holding hole for holding the glass substrate.
Conventionally, after the contact between the main surface of the glass substrate held in the holding hole of the carrier and the surface plate is started, the glass substrate is fixed on the surface parallel to the main surface of the glass substrate held by the carrier. The main surface of the glass substrate is polished by relatively moving the board. At this time, after applying a load to the main surface of the glass substrate with the surface plate, the polishing can be efficiently performed by pressing the polishing pad against the main surface of the glass substrate.

特開2002−150548号公報JP 2002-150548 A

しかしながら、従来の研磨処理では、ガラス基板の主表面の研磨が終了すると、ガラス基板の主表面から研磨パッドを引き離す前に、キャリアに保持されたガラス基板の主表面に対して平行な面上でのガラス基板と定盤との相対運動を停止させるので、相対運動が停止してから、ガラス基板の主表面が研磨パッドから離れるまでの間、ガラス基板の主表面には、定盤からの荷重による押圧力が垂直方向のみに掛かる。そのため、ガラス基板の主表面と定盤との間に異物が存在する場合には、ガラス基板の主表面に対する押圧力が異物や研磨砥粒の凝集体などを介して局所的に垂直方向のみに掛かるので、ガラス基板の主表面から垂直方向に深いクラックやピットが生じる。   However, in the conventional polishing process, after the polishing of the main surface of the glass substrate is completed, the surface is parallel to the main surface of the glass substrate held by the carrier before the polishing pad is pulled away from the main surface of the glass substrate. Since the relative motion between the glass substrate and the surface plate is stopped, the load from the surface plate is not applied to the main surface of the glass substrate until the main surface of the glass substrate moves away from the polishing pad after the relative motion stops. The pressing force is applied only in the vertical direction. Therefore, when there is foreign matter between the main surface of the glass substrate and the surface plate, the pressing force on the main surface of the glass substrate is locally only in the vertical direction through foreign matter or aggregates of abrasive grains. Therefore, deep cracks and pits are generated in the vertical direction from the main surface of the glass substrate.

従来、研磨処理において要求される表面粗さが大きかったため、このクラックやピットに起因するガラス基板の品質への影響(例えば、欠陥のレベル)は小さかった。しかし、近年、研磨処理において要求される表面粗さが小さくなったため、このクラックやピットに起因するガラス基板の品質への影響は無視できなくなってきた。その結果、研磨処理において要求される表面粗さを満たしながら、ガラス基板の品質を保つことができなくなった。   Conventionally, since the surface roughness required in the polishing process is large, the influence (for example, the level of defects) on the quality of the glass substrate due to the cracks and pits is small. However, in recent years, since the surface roughness required in the polishing process has been reduced, the influence on the quality of the glass substrate due to the cracks and pits cannot be ignored. As a result, the quality of the glass substrate cannot be maintained while satisfying the surface roughness required in the polishing process.

そこで、本発明は、研磨処理において要求される表面粗さを満たしながら、ガラス基板の品質を保つことができる、磁気ディスク用ガラス基板の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the glass substrate for magnetic discs which can maintain the quality of a glass substrate, satisfy | filling the surface roughness requested | required in grinding | polishing processing.

本発明の第1態様は、上定盤および下定盤に貼り付けられた研磨パッドとガラス基板の主表面との間に研磨砥粒を含む研磨液を供給し、ガラス基板と研磨パッドとを相対的に移動させることで、ガラス基板の主表面を研磨する研磨処理を含む磁気ディスク用ガラス基板の製造方法であって、前記研磨処理は、研磨を終了した後に、ガラス基板に対する押圧力がガラス基板の主表面に対して斜めに掛かるように、ガラス基板と研磨パッドとを相対的に移動させながら、研磨パッドをガラス基板の主表面から引き離すことを特徴とする磁気ディスク用ガラス基板の製造方法である。   According to the first aspect of the present invention, a polishing liquid containing abrasive grains is supplied between a polishing pad affixed to an upper surface plate and a lower surface plate and a main surface of the glass substrate, and the glass substrate and the polishing pad are relative to each other. The method of manufacturing a glass substrate for a magnetic disk including a polishing process for polishing the main surface of the glass substrate by moving the glass substrate, wherein after the polishing process is finished, the pressing force against the glass substrate is a glass substrate. A method of manufacturing a glass substrate for a magnetic disk, wherein the polishing pad is separated from the main surface of the glass substrate while moving the glass substrate and the polishing pad relatively so as to be inclined with respect to the main surface of the glass substrate. is there.

本発明の第2態様は、ガラス基板を保持するキャリアと、前記キャリアに保持されたガラス基板の主表面に対向する研磨パッドが貼り付けられた定盤を備える研磨装置とを用いて、前記キャリアに保持されたガラス基板の主表面と前記研磨パッドとの間に研磨砥粒を含む研磨液を供給し、ガラス基板と研磨パッドとを相対的に移動させることで、ガラス基板の主表面を研磨する研磨処理を含む磁気ディスク用ガラス基板の製造方法であって、研磨の終了時、前記キャリアに保持されたガラス基板の主表面に対して平行な面上で、前記キャリアと前記定盤とを相対的に移動させながら、ガラス基板の主表面から前記研磨パッドを引き離すことを特徴とする、磁気ディスク用ガラス基板の製造方法である。   According to a second aspect of the present invention, the carrier includes: a carrier that holds a glass substrate; and a polishing apparatus that includes a surface plate on which a polishing pad facing the main surface of the glass substrate held by the carrier is attached. A polishing liquid containing abrasive grains is supplied between the main surface of the glass substrate held on the surface and the polishing pad, and the main surface of the glass substrate is polished by relatively moving the glass substrate and the polishing pad. A method of manufacturing a glass substrate for a magnetic disk including a polishing process, wherein the carrier and the surface plate are placed on a plane parallel to the main surface of the glass substrate held by the carrier at the end of polishing. A method for producing a glass substrate for a magnetic disk, wherein the polishing pad is pulled away from a main surface of the glass substrate while being relatively moved.

本発明の第2態様において、前記研磨処理は、前記キャリアを停止させ、且つ、前記定盤を前記平行な面上で回転させながら、ガラス基板の主表面から前記研磨パッドを引き離すことが好ましい。   2nd aspect of this invention WHEREIN: It is preferable that the said grinding | polishing process pulls the said polishing pad away from the main surface of a glass substrate, stopping the said carrier and rotating the said surface plate on the said parallel surface.

上述の磁気ディスク用ガラス基板の製造方法では、研磨処理において要求される表面粗さを満たしながら、ガラス基板の品質を保つことができる。   In the above-described method for manufacturing a glass substrate for a magnetic disk, the quality of the glass substrate can be maintained while satisfying the surface roughness required in the polishing process.

本実施形態の両面研磨装置の一例の分解斜視図である。It is a disassembled perspective view of an example of the double-side polish apparatus of this embodiment. 図1に示す両面研磨装置の一例の断面図である。It is sectional drawing of an example of the double-side polish apparatus shown in FIG. 従来の研磨処理及び本実施形態の第2研磨処理におけるガラス基板に対する押圧力の説明図である。It is explanatory drawing of the pressing force with respect to the glass substrate in the conventional grinding | polishing process and the 2nd grinding | polishing process of this embodiment.

以下、本発明の磁気ディスク用ガラス基板の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the glass substrate for magnetic disks of this invention is demonstrated in detail.

[研磨装置]
本実施形態のキャリアを用いるガラス基板の研磨装置について図1及び図2を参照して説明する。図1は、両面研磨装置の分解斜視図である。図2は、両面研磨装置の断面図である。
[Polishing equipment]
A glass substrate polishing apparatus using the carrier of this embodiment will be described with reference to FIGS. FIG. 1 is an exploded perspective view of a double-side polishing apparatus. FIG. 2 is a sectional view of the double-side polishing apparatus.

図1に示すように、両面研磨装置は、定盤の移動方向(例えば、垂直方向(Z方向))に対向する上下一対の定盤(すなわち、上定盤40および下定盤60)を有している。上定盤40および下定盤60の間に円環状のガラス基板Gが狭持され、上定盤40または下定盤60のいずれか一方、または、双方を移動操作することにより、キャリア30に保持されたガラス基板Gの主表面に対して平行な面(例えば、水平面(XY平面))上で、ガラス基板Gと各定盤とを相対的に移動させることで、このガラス基板Gの両主表面を研磨することができる。なお、ガラス基板と定盤との間には、研磨砥粒を含む水溶液(以下「研磨液」又は「研磨スラリー」という)が供給される。以降、上定盤40及び下定盤60を総称して説明するとき、単に定盤という。   As shown in FIG. 1, the double-side polishing apparatus has a pair of upper and lower surface plates (that is, an upper surface plate 40 and a lower surface plate 60) that face the moving direction of the surface plate (for example, the vertical direction (Z direction)). ing. An annular glass substrate G is sandwiched between the upper surface plate 40 and the lower surface plate 60, and is held by the carrier 30 by moving one or both of the upper surface plate 40 and the lower surface plate 60. The main surfaces of the glass substrate G are moved relative to each other on a plane parallel to the main surface of the glass substrate G (for example, a horizontal plane (XY plane)). Can be polished. An aqueous solution containing abrasive grains (hereinafter referred to as “polishing liquid” or “polishing slurry”) is supplied between the glass substrate and the surface plate. Hereinafter, when the upper surface plate 40 and the lower surface plate 60 are collectively described, they are simply referred to as a surface plate.

図1及び図2を参照して研磨装置の構成をさらに具体的に説明する。
研磨装置において、下定盤60の上面および上定盤40の底面には、研磨パッドPが貼り付けられている。
キャリア30は、円板状のガラス基板Gを2つの定盤で挟んでガラス基板Gの主表面を研磨する際に、ガラス基板Gを保持するための保持穴を有する。具体的には、キャリア30は、外周部に設けられて太陽歯車61及び内歯車62に噛合する歯部31と、ガラス基板Gを収容し保持するための1または複数の保持穴32とを有する。太陽歯車61、外縁に設けられた内歯車62および円板状のキャリア30は全体として、中心軸CTRを中心とする遊星歯車機構を構成する。円板状のキャリア30は、内周側で太陽歯車61に噛合し、かつ外周側で内歯車62に噛合するともに、1または複数のガラス基板G(ワーク)を収容して保持する。下定盤60上では、キャリア30が遊星歯車として自転しながら公転し、ガラス基板Gと下定盤60とが水平面(XY平面)上で相対的に移動する。例えば、太陽歯車61がCCW(反時計回り)の方向に回転すれば、キャリア30はCW(時計回り)の方向に回転し、内歯車62はCCWの方向に回転する。その結果、下定盤60とガラス基板Gの間に水平面(XY平面)上での相対運動が生じる。同様にして、ガラス基板Gと上定盤40とを水平面(XY平面)上で相対的に移動させてもよい。
The configuration of the polishing apparatus will be described more specifically with reference to FIGS.
In the polishing apparatus, a polishing pad P is attached to the upper surface of the lower surface plate 60 and the bottom surface of the upper surface plate 40.
The carrier 30 has a holding hole for holding the glass substrate G when the disk-shaped glass substrate G is sandwiched between two surface plates and the main surface of the glass substrate G is polished. Specifically, the carrier 30 includes a tooth portion 31 provided on the outer peripheral portion and meshing with the sun gear 61 and the internal gear 62, and one or a plurality of holding holes 32 for receiving and holding the glass substrate G. . The sun gear 61, the internal gear 62 provided on the outer edge, and the disk-shaped carrier 30 constitute a planetary gear mechanism centered on the central axis CTR as a whole. The disc-shaped carrier 30 meshes with the sun gear 61 on the inner peripheral side and meshes with the internal gear 62 on the outer peripheral side, and accommodates and holds one or more glass substrates G (workpieces). On the lower surface plate 60, the carrier 30 revolves while rotating as a planetary gear, and the glass substrate G and the lower surface plate 60 relatively move on the horizontal plane (XY plane). For example, if the sun gear 61 rotates in the CCW (counterclockwise) direction, the carrier 30 rotates in the CW (clockwise) direction, and the internal gear 62 rotates in the CCW direction. As a result, a relative motion on the horizontal plane (XY plane) occurs between the lower surface plate 60 and the glass substrate G. Similarly, the glass substrate G and the upper surface plate 40 may be relatively moved on a horizontal plane (XY plane).

水平面(XY平面)上での相対運動の動作中には、上定盤40が、キャリア30に保持されたガラス基板Gに対して垂直方向(Z方向)に荷重を掛けることにより押圧する。これによりガラス基板Gに対して、研磨パッドPが押圧される。また、ポンプ(不図示)によって研磨スラリーが、ガラス基板Gと研磨パッドPとの間に供給される。   During relative motion on the horizontal plane (XY plane), the upper surface plate 40 presses the glass substrate G held by the carrier 30 by applying a load in the vertical direction (Z direction). As a result, the polishing pad P is pressed against the glass substrate G. A polishing slurry is supplied between the glass substrate G and the polishing pad P by a pump (not shown).

(磁気ディスク用ガラス基板の製造方法の説明)
本実施形態の製造方法では、まず、一対の主表面を有する板状の磁気ディスク用ガラス基板の素材となるガラスブランクの成形処理が行われる。次に、このガラスブランクの粗研削処理が行われる。この後、ガラスブランクに形状加工処理及び端面研磨処理が施される。この後、ガラスブランクから得られたガラス基板に固定砥粒を用いた精研削処理が行われる。この後、第1研磨処理、化学強化処理、及び、第2研磨処理がガラス基板に施される。なお、本実施形態では、上記流れに沿って説明するが、上記処理の全てが必須ではなく、これらの処理は適宜省略可能である。以下、各処理について、説明する。
(Description of manufacturing method of glass substrate for magnetic disk)
In the manufacturing method of the present embodiment, first, a glass blank that is a material for a plate-shaped magnetic disk glass substrate having a pair of main surfaces is formed. Next, the rough grinding process of this glass blank is performed. Thereafter, the glass blank is subjected to a shape processing treatment and an end surface polishing treatment. Then, the precise grinding process which uses a fixed abrasive for the glass substrate obtained from the glass blank is performed. Thereafter, a first polishing process, a chemical strengthening process, and a second polishing process are performed on the glass substrate. In the present embodiment, description will be made along the above flow, but all of the above processing is not essential, and these processing can be omitted as appropriate. Hereinafter, each process will be described.

(a)ガラスブランクの成形処理
ガラスブランクの成形では、例えばプレス成形法を用いることができる。プレス成形法により、円形状のガラスブランクを得ることができる。さらに、ダウンドロー法、リドロー法、フュージョン法などの公知の製造方法を用いて製造することができる。これらの公知の製造方法で作られた板状ガラスブランクに対し、適宜形状加工を行うことによって磁気ディスク用ガラス基板の元となる円板状のガラス基板が得られる。
(A) Glass blank molding process In the molding of a glass blank, for example, a press molding method can be used. A circular glass blank can be obtained by the press molding method. Furthermore, it can manufacture using well-known manufacturing methods, such as a downdraw method, a redraw method, and a fusion method. A disk-shaped glass substrate serving as a base of the magnetic disk glass substrate can be obtained by appropriately performing shape processing on the plate-shaped glass blanks produced by these known production methods.

(b)粗研削処理
粗研削処理では、具体的には、ガラスブランクを、周知の両面研削装置(例えば、図2と同様の構成を有する両面研削装置)に装着される保持部材(例えば、図1と同様の構成を有するキャリア)に設けられた保持穴内に保持しながらガラスブランクの両側の主表面の研削が行われる。研削材として、例えば遊離砥粒が用いられる。粗研削処理では、ガラスブランクが目標とする板厚寸法及び主表面の平坦度に略近づくように研削される。なお、粗研削処理は、成形されたガラスブランクの寸法精度あるいは表面粗さに応じて行われるものであり、場合によっては行われなくてもよい。
(B) Rough grinding process In the rough grinding process, specifically, a holding member (for example, a figure) is mounted on a well-known double-side grinding apparatus (for example, a double-side grinding apparatus having the same configuration as in FIG. 2). The main surface on both sides of the glass blank is ground while being held in a holding hole provided in a carrier having the same configuration as in FIG. For example, loose abrasive grains are used as the abrasive. In the rough grinding process, the glass blank is ground so as to approximate the target plate thickness dimension and the flatness of the main surface. The rough grinding process is performed according to the dimensional accuracy or surface roughness of the molded glass blank, and may not be performed depending on the case.

(c)形状加工処理
次に、形状加工処理が行われる。形状加工処理では、ガラスブランクの成形処理後、公知の加工方法を用いて円孔を形成することにより、円孔があいた円盤形状のガラス基板を得る。その後、ガラス基板の端面の面取りを実施する。これにより、ガラス基板の端面には、主表面と直交している側壁面と、側壁面と主表面を繋ぐ面取り面(介在面)が形成される。
(C) Shape processing processing Next, shape processing processing is performed. In the shape processing, after forming the glass blank, a circular hole is formed using a known processing method to obtain a disk-shaped glass substrate having a circular hole. Thereafter, the end surface of the glass substrate is chamfered. Thereby, a side wall surface orthogonal to the main surface and a chamfered surface (intervening surface) connecting the side wall surface and the main surface are formed on the end surface of the glass substrate.

(d)端面研磨処理
次にガラス基板の端面研磨処理が行われる。端面研磨処理は、研磨ブラシとガラス基板の端面との間に遊離砥粒を含む研磨液を供給して研磨ブラシとガラス基板とを相対的に移動させることにより研磨を行う処理である。端面研磨では、ガラス基板の内周側端面及び外周側端面を研磨対象とし、内周側端面及び外周側端面を鏡面状態にする。
(D) End surface polishing treatment Next, an end surface polishing treatment of the glass substrate is performed. The end surface polishing process is a process for performing polishing by supplying a polishing liquid containing loose abrasive grains between the polishing brush and the end surface of the glass substrate and relatively moving the polishing brush and the glass substrate. In the end surface polishing, the inner peripheral side end surface and the outer peripheral side end surface of the glass substrate are to be polished, and the inner peripheral side end surface and the outer peripheral side end surface are in a mirror state.

(e)精研削処理
次に、ガラス基板の主表面に精研削処理が施される。具体的には、固定砥粒を貼り付けた定盤を用い、図1,2と同様の構成を有する両面研削装置を用いて、ガラス基板の主表面に対して研削を行う。具体的には、ガラス基板を、両面研削装置の保持部材であるキャリア30に設けられた保持穴32内に保持しながらガラス基板の両側の主表面の研削を行う。研削による取代量は、例えば10μm〜200μm程度である。このとき、上定盤40あるいは下定盤60がガラス基板Gを押圧する圧力は10〜200g/cm2であることが、研削を効果的に行う点で好ましい。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤及び下定盤の表面に例えばダイヤモンドの砥粒を含む固定砥粒が貼り付けられている。砥粒として例えば平均粒径が5μm〜50μmの砥粒が用いられる。なお、砥粒としては、ダイヤモンド等の粒子や、複数の粒子をガラス、セラミック、金属、または樹脂などのバインダーで固めた凝集体を用いることができる。そして、例えば、それらの砥粒を樹脂などの支持材を用いて固定したペレットをシートに貼り付けたものを固定砥粒とすることができる。このような上定盤及び下定盤の間にガラス基板が狭持される。そして、クーラントを供給しつつ、上定盤または下定盤のいずれか一方、または、双方を移動操作させることで、ガラス基板と各定盤とを相対的に移動させることにより、このガラス基板の両主表面を研削することができる。
本実施形態の研削処理では、固定砥粒を含んだ研削面とガラス基板の主表面とを接触させてガラス基板の主表面を研削するが、遊離砥粒を用いた研削を行ってもよい。
(E) Fine grinding process Next, a fine grinding process is performed on the main surface of the glass substrate. Specifically, grinding is performed on the main surface of the glass substrate using a double-side grinding apparatus having a configuration similar to that shown in FIGS. Specifically, the main surfaces on both sides of the glass substrate are ground while holding the glass substrate in the holding hole 32 provided in the carrier 30 which is a holding member of the double-side grinding apparatus. The machining allowance by grinding is, for example, about 10 μm to 200 μm. At this time, the pressure with which the upper surface plate 40 or the lower surface plate 60 presses the glass substrate G is preferably 10 to 200 g / cm 2 from the viewpoint of effective grinding. The double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and fixed abrasive grains containing, for example, diamond abrasive particles are attached to the surfaces of the upper surface plate and the lower surface plate. As the abrasive grains, for example, abrasive grains having an average particle diameter of 5 μm to 50 μm are used. Note that as the abrasive grains, particles such as diamond or an aggregate obtained by solidifying a plurality of particles with a binder such as glass, ceramic, metal, or resin can be used. And, for example, a fixed abrasive can be obtained by sticking a pellet obtained by fixing these abrasive grains using a support material such as a resin to a sheet. The glass substrate is sandwiched between the upper surface plate and the lower surface plate. Then, while supplying the coolant, by moving either the upper surface plate or the lower surface plate, or both, the glass substrate and each surface plate are moved relatively to each other. The main surface can be ground.
In the grinding process of the present embodiment, the grinding surface containing the fixed abrasive and the main surface of the glass substrate are brought into contact with each other to grind the main surface of the glass substrate. However, grinding using loose abrasive grains may be performed.

(f)第1研磨処理
次に、ガラス基板の主表面に第1研磨処理が施される。具体的には、ガラス基板の外周側端面を、図1,2に示した両面研磨装置のキャリアに設けられた保持穴内に保持しながらガラス基板の両側の主表面の研磨が行われる。第1研磨処理は、遊離砥粒を用いて、定盤に貼り付けられた研磨パッドを用いる。第1研磨は、例えば固定砥粒による研削を行った場合に主表面に残留したクラックや歪みの除去、あるいは、結晶化処理により主表面に生じた微小な表面凹凸の除去をする。取代量を上記範囲内とすることで、主表面端部の形状が過度に落ち込んだり突出したりすることを防止しつつ、主表面の表面粗さ、例えば算術平均粗さRaを低減することができる。
第1研磨に用いる遊離砥粒は特に制限されないが、例えば、酸化セリウム砥粒、あるいはジルコニア砥粒などが用いられる。
研磨パッドの種類は特に制限されないが、例えば、硬質発泡ウレタン樹脂ポリッシャが用いられる。
(F) First polishing treatment Next, a first polishing treatment is performed on the main surface of the glass substrate. Specifically, the main surface on both sides of the glass substrate is polished while holding the outer peripheral side end surface of the glass substrate in a holding hole provided in the carrier of the double-side polishing apparatus shown in FIGS. The first polishing process uses a polishing pad attached to a surface plate using loose abrasive grains. In the first polishing, for example, cracks and distortions remaining on the main surface when grinding with fixed abrasive grains is performed, or minute surface irregularities generated on the main surface by crystallization treatment are removed. By making the machining allowance within the above range, it is possible to reduce the surface roughness of the main surface, for example, the arithmetic average roughness Ra, while preventing the shape of the end portion of the main surface from excessively dropping or protruding. .
The free abrasive grains used for the first polishing are not particularly limited. For example, cerium oxide abrasive grains or zirconia abrasive grains are used.
Although the kind in particular of a polishing pad is not restrict | limited, For example, a hard foaming urethane resin polisher is used.

(g)化学強化処理
ガラス基板は適宜化学強化することができる。化学強化液として、例えば硝酸カリウム,硝酸ナトリウム、またはそれらの混合物を加熱して得られる溶融液を用いることができる。そして、ガラス基板を化学強化液に浸漬することによって、ガラス基板の表層にあるガラス組成中のリチウムイオンやナトリウムイオンが、それぞれ化学強化液中のイオン半径が相対的に大きいナトリウムイオンやカリウムイオンにそれぞれ置換されることで表層部分に圧縮応力層が形成され、ガラス基板が強化される。
化学強化処理を行うタイミングは、適宜決定することができるが、化学強化処理の後に研磨処理を行うようにすると、表面の平滑化とともに化学強化処理によってガラス基板の表面に固着した異物を取り除くことができるので特に好ましい。また、化学強化処理は、必要に応じて行われればよく、行われなくてもよい。
(G) Chemical strengthening treatment The glass substrate can be appropriately chemically strengthened. As the chemical strengthening liquid, for example, a molten liquid obtained by heating potassium nitrate, sodium nitrate, or a mixture thereof can be used. Then, by immersing the glass substrate in the chemical strengthening solution, lithium ions and sodium ions in the glass composition on the surface of the glass substrate are converted into sodium ions and potassium ions having relatively large ion radii in the chemical strengthening solution, respectively. By replacing each, a compressive stress layer is formed in the surface layer portion, and the glass substrate is strengthened.
The timing of performing the chemical strengthening treatment can be determined as appropriate. However, if the polishing treatment is performed after the chemical strengthening treatment, the foreign matter fixed to the surface of the glass substrate by the chemical strengthening treatment can be removed together with the smoothing of the surface. This is particularly preferable because it can be performed. Further, the chemical strengthening treatment may be performed as necessary, and may not be performed.

(h)第2研磨(鏡面研磨)処理
次に、化学強化処理後のガラス基板に第2研磨が施される。第2研磨は、主表面の鏡面研磨を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する両面研磨装置が用いられる。こうすることで主表面の端部の形状が過度に落ち込んだり突出したりすることを防止しつつ、主表面の粗さを低減することができる。第2研磨処理が第1研磨処理と異なる点は、遊離砥粒の種類が異なり及び粒子サイズが小さくなることと、研磨パッドの樹脂ポリッシャの硬度が軟らかくなることである。
(H) Second polishing (mirror polishing) treatment Next, the glass substrate after the chemical strengthening treatment is subjected to second polishing. The second polishing is intended for mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. By doing so, it is possible to reduce the roughness of the main surface while preventing the shape of the end portion of the main surface from excessively dropping or protruding. The second polishing process is different from the first polishing process in that the kind of loose abrasive grains is different and the particle size is reduced, and the hardness of the resin polisher of the polishing pad is softened.

第2研磨処理に用いる遊離砥粒として、例えばコロイダルシリカ等の微粒子が用いられる。研磨されたガラス基板を洗浄することで、磁気ディスク用ガラス基板が得られる。
第2研磨処理により、ガラス基板の主表面の表面凹凸のレベルをさらに良好なものとすることができる点で実施することが好ましい。このようにして、第2研磨の施されたガラス基板は磁気ディスク用ガラス基板となる。
As the free abrasive grains used for the second polishing treatment, for example, fine particles such as colloidal silica are used. By cleaning the polished glass substrate, a glass substrate for a magnetic disk can be obtained.
The second polishing treatment is preferably performed in that the level of surface irregularities on the main surface of the glass substrate can be further improved. Thus, the glass substrate subjected to the second polishing becomes a glass substrate for a magnetic disk.

第2研磨による取代量は、例えば2.0μm以下である。このとき、キャリア30の回転数は、20rpmであり、且つ、ガラス基板Gに対する押圧力は0.05kg/cmであることが、研磨を効率的に行う点で好ましい。また、ガラス基板G及び研磨パッドPの少なくとも一方の角速度は、ガラス基板Gと研磨パッドPとの相対速度が0.3m/s〜10m/sの範囲に含まれることが好ましい。 The machining allowance by the second polishing is, for example, 2.0 μm or less. At this time, the rotational speed of the carrier 30 is preferably 20 rpm, and the pressing force against the glass substrate G is preferably 0.05 kg / cm 2 from the viewpoint of efficient polishing. In addition, the angular velocity of at least one of the glass substrate G and the polishing pad P is preferably within the range where the relative velocity between the glass substrate G and the polishing pad P is 0.3 m / s to 10 m / s.

図3は、従来の研磨処理及び本実施形態の第2研磨処理におけるガラス基板に対する押圧力の説明図である。   FIG. 3 is an explanatory diagram of the pressing force on the glass substrate in the conventional polishing process and the second polishing process of the present embodiment.

従来の研磨処理では、ガラス基板Gの主表面の研磨を終了すると、ガラス基板Gの主表面から研磨パッドPを引き離す前に、ガラス基板Gと定盤との水平面上の相対的な移動を停止させる。従って、図3(a)に示すように、ガラス基板Gと定盤との相対運動が停止してから、ガラス基板Gの主表面が研磨パッドPから離れるまでの間、ガラス基板Gの主表面に対する押圧力は、定盤からの荷重Lに応じた垂直方向(Z方向)の力Fzになる。その結果、ガラス基板Gの主表面と研磨パッドPとの間に異物が存在する場合に生じるクラックやピットの深さは、力Fzに応じた深さになる。   In the conventional polishing process, when the polishing of the main surface of the glass substrate G is finished, the relative movement of the glass substrate G and the surface plate on the horizontal plane is stopped before the polishing pad P is pulled away from the main surface of the glass substrate G. Let Accordingly, as shown in FIG. 3A, the main surface of the glass substrate G from when the relative movement between the glass substrate G and the surface plate stops until the main surface of the glass substrate G moves away from the polishing pad P. Is a force Fz in the vertical direction (Z direction) corresponding to the load L from the surface plate. As a result, the depth of cracks and pits generated when foreign matter exists between the main surface of the glass substrate G and the polishing pad P becomes a depth corresponding to the force Fz.

一方、本実施形態の第2研磨処理では、ガラス基板Gの主表面の研磨を終了すると、定盤をキャリア30に対して水平面(XY平面)上で相対的に移動させながら、ガラス基板Gの主表面から研磨パッドPを引き離す。従って、図3(b)に示すように、ガラス基板Gと定盤との相対運動が停止してから、ガラス基板Gの主表面が研磨パッドPから離れるまでの間、ガラス基板Gの主表面に対する押圧力は、斜め方向の力F´になる。この斜め方向の力F´は、水平面成分F´xyと垂直成分F´z(但し、F´z<Fz)とに分解される。その結果、ガラス基板Gの主表面と研磨パッドPとの間に異物や研磨砥粒の凝集体などが存在する場合に生じるクラックやピットの深さは、従来の研磨処理より浅くなる。これにより、研磨処理において要求される表面粗さを満たしながら、ガラス基板Gの品質を保つことができる。   On the other hand, in the second polishing process of the present embodiment, when the polishing of the main surface of the glass substrate G is finished, the surface plate is moved relative to the carrier 30 on the horizontal plane (XY plane) while the glass substrate G The polishing pad P is pulled away from the main surface. Therefore, as shown in FIG. 3B, the main surface of the glass substrate G after the relative movement between the glass substrate G and the surface plate stops until the main surface of the glass substrate G moves away from the polishing pad P. The pressing force against is an oblique force F ′. This oblique force F ′ is decomposed into a horizontal plane component F′xy and a vertical component F′z (where F′z <Fz). As a result, the depth of cracks and pits generated when foreign matter, aggregates of abrasive grains, etc. are present between the main surface of the glass substrate G and the polishing pad P becomes shallower than in the conventional polishing process. Thereby, the quality of the glass substrate G can be maintained while satisfying the surface roughness required in the polishing process.

ここで、第2研磨処理における両面研磨装置の動作の例(第1例〜第4例)について説明する。   Here, an example of operation of the double-side polishing apparatus in the second polishing process (first to fourth examples) will be described.

(第2研磨処理における両面研磨装置の動作の第1例)
第2研磨処理における両面研磨装置の動作の第1例では、研磨が終了した後に、上定盤40及び下定盤60をCCWの方向に回転させ、且つ、キャリア30を停止させながら、定盤を垂直方向(Z方向)に移動させることで、ガラス基板Gの主表面から研磨パッドPを引き離す。
この例では、研磨が終了してから、ガラス基板Gの主表面が研磨パッドPから離れるまでの間、ガラス基板Gが停止し、且つ、研磨パッドPが回転している状態(すなわち、ガラス基板Gと研磨パッドPとが水平面(XY平面)上で相対運動している状態)にある。従って、ガラス基板Gの主表面に対する押圧力は、ガラス基板Gと研磨パッドPとの相対運動により、垂直成分と水平面成分とに分解される。その結果、ガラス基板Gの主表面と研磨パッドPとの間に異物があっても、ガラス基板Gの主表面から垂直方向に生じるクラックやピットの深さが浅くなる。
一般に、キャリアを回転させることはキャリアからガラス基板が離脱する危険を伴うが、特に、この例では、キャリアを回転させることなく、ガラス基板Gと研磨パッドPとを水平面(XY平面)上で相対運動させるので、上記危険を伴うことなく、研磨処理において要求される表面粗さを満たしながら、ガラス基板Gの品質を保つことができる。
(First example of operation of double-side polishing apparatus in second polishing process)
In the first example of the operation of the double-side polishing apparatus in the second polishing process, after the polishing is finished, the upper surface plate 40 and the lower surface plate 60 are rotated in the CCW direction, and the carrier 30 is stopped while the surface plate is stopped. By moving in the vertical direction (Z direction), the polishing pad P is pulled away from the main surface of the glass substrate G.
In this example, the glass substrate G is stopped and the polishing pad P is rotating (that is, the glass substrate) until the main surface of the glass substrate G leaves the polishing pad P after the polishing is finished. G and polishing pad P are in relative motion on a horizontal plane (XY plane). Therefore, the pressing force against the main surface of the glass substrate G is decomposed into a vertical component and a horizontal plane component by the relative movement between the glass substrate G and the polishing pad P. As a result, even if there is a foreign object between the main surface of the glass substrate G and the polishing pad P, the depth of cracks and pits generated in the vertical direction from the main surface of the glass substrate G is reduced.
Generally, rotating the carrier involves a risk that the glass substrate is detached from the carrier. In particular, in this example, the glass substrate G and the polishing pad P are relatively relative to each other on the horizontal plane (XY plane) without rotating the carrier. Since it is moved, the quality of the glass substrate G can be maintained while satisfying the surface roughness required in the polishing process without causing the above danger.

(第2研磨処理における両面研磨装置の動作の第2例)
第2研磨処理における両面研磨装置の動作の第2例では、研磨が終了した後に、上定盤40及び下定盤60をCCWの方向に第1角速度ω1で回転させ、且つ、キャリア30をCCWの方向に第2画速度ω2(但し、ω2<ω1)で回転させながら、定盤を垂直方向(Z方向)に移動させることで、ガラス基板Gの主表面から研磨パッドPを引き離す。
この例では、研磨が終了してから、ガラス基板Gの主表面が研磨パッドPから離れるまでの間、ガラス基板Gと研磨パッドPとが互いに異なる角速度で回転している状態(すなわち、ガラス基板Gと研磨パッドPとが水平面(XY平面)上で相対運動している状態)にある。従って、ガラス基板Gの主表面に対する押圧力は、ガラス基板Gと研磨パッドPとの相対運動により、垂直成分と水平面成分とに分解される。その結果、ガラス基板Gの主表面と研磨パッドPとの間に異物があっても、ガラス基板Gの主表面から垂直方向に生じるクラックやピットの深さが浅くなる。
特に、この例では、上定盤40及び下定盤60の角速度(第1角速度ω1)の分だけキャリア30の角速度(第2角速度ω2)を低く抑えて、ガラス基板Gと研磨パッドPとを水平面(XY平面)上で相対運動させるので、キャリア30からガラス基板Gが離脱する確率を低減し、且つ、研磨処理において要求される表面粗さを満たしながら、ガラス基板Gの品質を保つことができる。
(Second example of operation of double-side polishing apparatus in second polishing process)
In the second example of the operation of the double-side polishing apparatus in the second polishing process, after the polishing is completed, the upper surface plate 40 and the lower surface plate 60 are rotated in the CCW direction at the first angular velocity ω1, and the carrier 30 is made of CCW. The polishing pad P is pulled away from the main surface of the glass substrate G by moving the surface plate in the vertical direction (Z direction) while rotating in the direction at the second image speed ω2 (where ω2 <ω1).
In this example, the state in which the glass substrate G and the polishing pad P are rotated at different angular velocities from when the polishing is finished until the main surface of the glass substrate G is separated from the polishing pad P (that is, the glass substrate). G and polishing pad P are in relative motion on a horizontal plane (XY plane). Therefore, the pressing force against the main surface of the glass substrate G is decomposed into a vertical component and a horizontal plane component by the relative movement between the glass substrate G and the polishing pad P. As a result, even if there is a foreign object between the main surface of the glass substrate G and the polishing pad P, the depth of cracks and pits generated in the vertical direction from the main surface of the glass substrate G is reduced.
In particular, in this example, the angular velocity (second angular velocity ω2) of the carrier 30 is kept low by the angular velocity (first angular velocity ω1) of the upper surface plate 40 and the lower surface plate 60, and the glass substrate G and the polishing pad P are placed in a horizontal plane. Since the relative movement is performed on the (XY plane), the probability that the glass substrate G is detached from the carrier 30 is reduced, and the quality of the glass substrate G can be maintained while satisfying the surface roughness required in the polishing process. .

(第2研磨処理における両面研磨装置の動作の第3例)
第2研磨処理における両面研磨装置の動作の第3例では、研磨が終了した後に、上定盤40及び下定盤60をCCWの方向に第1角速度ω1で回転させ、且つ、キャリア30をCWの方向に第3角速度ω3(但し、ω3<ω2<ω1)で回転させながら、定盤を垂直方向(Z方向)に移動させることで、ガラス基板Gの主表面から研磨パッドPを引き離す。
この例では、研磨が終了してから、ガラス基板Gの主表面が研磨パッドPから離れるまでの間、ガラス基板Gと研磨パッドPとが互いに異なる方向に回転している状態(すなわち、ガラス基板Gと研磨パッドPとが水平面(XY平面)上で相対運動している状態)にある。従って、ガラス基板Gの主表面に対する押圧力は、ガラス基板Gと研磨パッドPとの相対運動により、垂直成分と水平面成分とに分解される。その結果、ガラス基板Gの主表面と研磨パッドPとの間に異物があっても、ガラス基板Gの主表面から垂直方向に生じるクラックやピットの深さが浅くなる。
特に、この例では、上定盤40及び下定盤60と逆方向にキャリア30を回転させることで、キャリア30の角速度(第3角速度ω3)を第2例より低く抑えて、ガラス基板Gと研磨パッドPとを水平面(XY平面)上で相対運動させるので、キャリア30からガラス基板Gが離脱する確率を第2例よりも低減し、且つ、研磨処理において要求される表面粗さを満たしながら、ガラス基板Gの品質を保つことができる。
(Third example of operation of double-side polishing apparatus in second polishing process)
In the third example of the operation of the double-side polishing apparatus in the second polishing process, after the polishing is finished, the upper surface plate 40 and the lower surface plate 60 are rotated in the CCW direction at the first angular velocity ω1, and the carrier 30 is made of CW. The polishing pad P is pulled away from the main surface of the glass substrate G by moving the surface plate in the vertical direction (Z direction) while rotating in the direction at the third angular velocity ω3 (where ω3 <ω2 <ω1).
In this example, the state in which the glass substrate G and the polishing pad P are rotated in different directions from the end of polishing until the main surface of the glass substrate G is separated from the polishing pad P (that is, the glass substrate). G and polishing pad P are in relative motion on a horizontal plane (XY plane). Therefore, the pressing force against the main surface of the glass substrate G is decomposed into a vertical component and a horizontal plane component by the relative movement between the glass substrate G and the polishing pad P. As a result, even if there is a foreign object between the main surface of the glass substrate G and the polishing pad P, the depth of cracks and pits generated in the vertical direction from the main surface of the glass substrate G is reduced.
In particular, in this example, by rotating the carrier 30 in the opposite direction to the upper surface plate 40 and the lower surface plate 60, the angular velocity (third angular velocity ω3) of the carrier 30 is suppressed to be lower than that in the second example, and the glass substrate G and the polishing plate are polished. Since the pad P is relatively moved on the horizontal plane (XY plane), the probability that the glass substrate G is detached from the carrier 30 is reduced as compared with the second example, and the surface roughness required in the polishing process is satisfied. The quality of the glass substrate G can be maintained.

(第2研磨処理における両面研磨装置の動作の第4例)
第2研磨処理における両面研磨装置の動作の第4例では、研磨が終了した後に、上定盤40及び下定盤60を停止させ、且つ、キャリア30をCCWの方向に回転させながら、定盤を垂直方向(Z方向)に移動させることで、ガラス基板Gの主表面から研磨パッドPを引き離す。
この例では、研磨が終了してから、ガラス基板Gの主表面が研磨パッドPから離れるまでの間、ガラス基板Gが回転し、且つ、研磨パッドPが停止している状態(すなわち、ガラス基板Gと研磨パッドPとが水平面(XY平面)上で相対運動している状態)にある。従って、ガラス基板Gの主表面に対する押圧力は、ガラス基板Gと研磨パッドPとの相対運動により、垂直成分と水平面成分とに分解される。その結果、ガラス基板Gの主表面と研磨パッドPとの間に異物や研磨砥粒の凝集体などがあっても、ガラス基板Gの主表面から垂直方向に生じるクラックやピットの深さが浅くなる。
(Fourth example of operation of double-side polishing apparatus in second polishing process)
In the fourth example of the operation of the double-side polishing apparatus in the second polishing process, after the polishing is finished, the upper surface plate 40 and the lower surface plate 60 are stopped, and the carrier 30 is rotated in the CCW direction while rotating the surface plate. By moving in the vertical direction (Z direction), the polishing pad P is pulled away from the main surface of the glass substrate G.
In this example, the glass substrate G is rotating and the polishing pad P is stopped (that is, the glass substrate) until the main surface of the glass substrate G leaves the polishing pad P after the polishing is finished. G and polishing pad P are in relative motion on a horizontal plane (XY plane). Therefore, the pressing force against the main surface of the glass substrate G is decomposed into a vertical component and a horizontal plane component by the relative movement between the glass substrate G and the polishing pad P. As a result, even if foreign matter or aggregates of abrasive grains are present between the main surface of the glass substrate G and the polishing pad P, the depth of cracks and pits generated in the vertical direction from the main surface of the glass substrate G is shallow. Become.

(その他の変形例)
上記第2研磨処理における両面研磨装置の動作の第1例〜第4例のいずれかの処理において、研磨が終了してから、ガラス基板Gの主表面が研磨パッドPから離れるまでの間、研磨スラリー中の砥粒濃度を上げてもよい(例えば、より高濃度の研磨スラリーを供給してもよい)。研磨スラリー中の砥粒濃度を上げることにより、ガラス基板Gに対する押圧力は、砥粒濃度の増加分だけ垂直成分と水平面成分にさらに分解される。従って、ガラス基板Gに対する押圧力の垂直成分は、さらに減少する。その結果、ガラス基板Gの主表面と研磨パッドPとの間に異物や研磨砥粒の凝集体などがあっても、ガラス基板Gの主表面から垂直方向に生じるクラックやピットの深さがさらに浅くなる。
(Other variations)
In the process of any one of the first to fourth examples of the operation of the double-side polishing apparatus in the second polishing process, polishing is performed until the main surface of the glass substrate G is separated from the polishing pad P after the polishing is finished. The abrasive concentration in the slurry may be increased (for example, a higher concentration polishing slurry may be supplied). By increasing the abrasive grain concentration in the polishing slurry, the pressing force on the glass substrate G is further decomposed into a vertical component and a horizontal plane component by an increase in the abrasive grain concentration. Accordingly, the vertical component of the pressing force with respect to the glass substrate G is further reduced. As a result, even if there is a foreign substance or an aggregate of abrasive grains between the main surface of the glass substrate G and the polishing pad P, the depth of cracks and pits generated in the vertical direction from the main surface of the glass substrate G is further increased. It becomes shallower.

また、上述した化学強化処理及び第2研磨処理を省略する場合には、上述した第1研磨処理において、上記第2研磨処理における両面研磨装置の動作の第1例〜第4例のいずれかの処理を実行してもよい。   When the chemical strengthening process and the second polishing process are omitted, any of the first to fourth examples of the operation of the double-side polishing apparatus in the second polishing process in the first polishing process described above. Processing may be executed.

このように、本実施形態における研磨処理では、上定盤40および下定盤60に貼り付けられた研磨パッドPとガラス基板Gの主表面との間に研磨砥粒を含む研磨液を供給し、ガラス基板Gと研磨パッドPとを相対的に移動させることで、ガラス基板Gの主表面を研磨する研磨処理を含む磁気ディスク用ガラス基板Gの製造方法であって、前記研磨処理は、研磨を終了した後に、ガラス基板Gに対する押圧力がガラス基板Gの主表面に対して斜めに掛かるように、ガラス基板Gと研磨パッドPとを相対的に移動させながら、研磨パッドPをガラス基板Gの主表面から引き離す。その結果、ガラス基板Gの主表面から垂直方向に生じるクラックやピットの深さが浅くなる。従って、研磨処理において要求される表面粗さを満たしながら、ガラス基板の品質を保つことができる。   Thus, in the polishing process in the present embodiment, a polishing liquid containing abrasive grains is supplied between the polishing pad P attached to the upper surface plate 40 and the lower surface plate 60 and the main surface of the glass substrate G, A method of manufacturing a glass substrate for a magnetic disk G including a polishing process for polishing the main surface of the glass substrate G by relatively moving the glass substrate G and the polishing pad P, wherein the polishing process includes polishing After the completion, the polishing pad P of the glass substrate G is moved while the glass substrate G and the polishing pad P are moved relative to each other so that the pressing force against the glass substrate G is obliquely applied to the main surface of the glass substrate G. Pull away from the main surface. As a result, the depth of cracks and pits generated in the vertical direction from the main surface of the glass substrate G becomes shallow. Therefore, the quality of the glass substrate can be maintained while satisfying the surface roughness required in the polishing process.

以上、本発明の磁気ディスク用ガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As mentioned above, although the manufacturing method of the glass substrate for magnetic discs of this invention was demonstrated in detail, this invention is not limited to the said embodiment and Example, In the range which does not deviate from the main point of this invention, various improvement and a change are carried out. Of course.

30 キャリア
31 歯部
32 保持穴
40 上定盤
42 上定盤支持部
44 上定盤軸
60 下定盤
61 太陽歯車
62 内歯車
30 Carrier 31 Tooth part 32 Holding hole 40 Upper surface plate 42 Upper surface plate support portion 44 Upper surface plate shaft 60 Lower surface plate 61 Sun gear 62 Internal gear

Claims (3)

上定盤および下定盤に貼り付けられた研磨パッドとガラス基板の主表面との間に研磨砥粒を含む研磨液を供給し、ガラス基板と研磨パッドとを相対的に移動させることで、ガラス基板の主表面を研磨する研磨処理を含む磁気ディスク用ガラス基板の製造方法であって、
前記研磨処理は、研磨を終了した後に、ガラス基板に対する押圧力がガラス基板の主表面に対して斜めに掛かるように、ガラス基板と研磨パッドとを相対的に移動させながら、研磨パッドをガラス基板の主表面から引き離すことを特徴とする磁気ディスク用ガラス基板の製造方法。
By supplying a polishing liquid containing abrasive grains between the polishing pad affixed to the upper surface plate and the lower surface plate and the main surface of the glass substrate, and moving the glass substrate and the polishing pad relatively, the glass A method for manufacturing a glass substrate for a magnetic disk including a polishing process for polishing a main surface of a substrate,
After the polishing process is finished, the polishing pad is moved to the glass substrate while relatively moving the glass substrate and the polishing pad so that the pressing force against the glass substrate is applied obliquely to the main surface of the glass substrate. A method for producing a glass substrate for a magnetic disk, characterized by being separated from the main surface of the magnetic disk.
ガラス基板を保持するキャリアと、前記キャリアに保持されたガラス基板の主表面に対向する研磨パッドが貼り付けられた定盤を備える研磨装置とを用いて、前記キャリアに保持されたガラス基板の主表面と前記研磨パッドとの間に研磨砥粒を含む研磨液を供給し、ガラス基板と研磨パッドとを相対的に移動させることで、ガラス基板の主表面を研磨する研磨処理を含む磁気ディスク用ガラス基板の製造方法であって、
研磨の終了時、前記キャリアに保持されたガラス基板の主表面に対して平行な面上で、前記キャリアと前記定盤とを相対的に移動させながら、ガラス基板の主表面から前記研磨パッドを引き離すことを特徴とする、磁気ディスク用ガラス基板の製造方法。
The main body of the glass substrate held by the carrier using a carrier that holds the glass substrate and a polishing apparatus that includes a surface plate to which a polishing pad facing the main surface of the glass substrate held by the carrier is attached. For a magnetic disk including a polishing process for polishing a main surface of a glass substrate by supplying a polishing liquid containing abrasive grains between a surface and the polishing pad and relatively moving the glass substrate and the polishing pad. A method of manufacturing a glass substrate,
At the end of polishing, the polishing pad is moved from the main surface of the glass substrate while relatively moving the carrier and the surface plate on a plane parallel to the main surface of the glass substrate held by the carrier. A method for producing a glass substrate for a magnetic disk, characterized by being pulled apart.
前記研磨処理は、前記キャリアを停止させ、且つ、前記定盤を前記平行な面上で回転させながら、ガラス基板の主表面から前記研磨パッドを引き離す、
請求項2に記載の磁気ディスク用ガラス基板の製造方法。
The polishing process stops the carrier and pulls the polishing pad away from the main surface of the glass substrate while rotating the surface plate on the parallel plane.
The manufacturing method of the glass substrate for magnetic discs of Claim 2.
JP2013198902A 2013-09-25 2013-09-25 Manufacturing method of glass substrate for magnetic disk Pending JP2015064920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013198902A JP2015064920A (en) 2013-09-25 2013-09-25 Manufacturing method of glass substrate for magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198902A JP2015064920A (en) 2013-09-25 2013-09-25 Manufacturing method of glass substrate for magnetic disk

Publications (1)

Publication Number Publication Date
JP2015064920A true JP2015064920A (en) 2015-04-09

Family

ID=52832685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198902A Pending JP2015064920A (en) 2013-09-25 2013-09-25 Manufacturing method of glass substrate for magnetic disk

Country Status (1)

Country Link
JP (1) JP2015064920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131431A1 (en) * 2017-12-27 2019-07-04 Hoya株式会社 Disk-shaped glass substrate manufacturing method, sheet glass substrate manufacturing method, light guide plate manufacturing method, and disk-shaped glass substrate
JP2020124804A (en) * 2020-04-21 2020-08-20 Hoya株式会社 Manufacturing method of disk-shaped glass substrate, manufacturing method of thin sheet glass substrate, manufacturing method of light guide plate, and disk-shaped glass substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131431A1 (en) * 2017-12-27 2019-07-04 Hoya株式会社 Disk-shaped glass substrate manufacturing method, sheet glass substrate manufacturing method, light guide plate manufacturing method, and disk-shaped glass substrate
JP2019115952A (en) * 2017-12-27 2019-07-18 Hoya株式会社 Disk-shaped glass substrate manufacturing method, sheet glass substrate manufacturing method, light guide plate manufacturing method, and disk-shaped glass substrate
JP2020124804A (en) * 2020-04-21 2020-08-20 Hoya株式会社 Manufacturing method of disk-shaped glass substrate, manufacturing method of thin sheet glass substrate, manufacturing method of light guide plate, and disk-shaped glass substrate

Similar Documents

Publication Publication Date Title
JP5005645B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5305698B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate for magnetic disk
US20100247978A1 (en) Method of manufacturing a substrate for a magnetic disk
JP6280355B2 (en) Manufacturing method of magnetic disk substrate and carrier for polishing treatment
JP2015064920A (en) Manufacturing method of glass substrate for magnetic disk
JP4894678B2 (en) Manufacturing method of glass substrate for information recording medium
JP6148345B2 (en) Manufacturing method of non-magnetic substrate
JP2015069671A (en) Production method of magnetic disk glass substrate
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6177603B2 (en) Grinding / polishing carrier and substrate manufacturing method
JP2015069665A (en) Production method of magnetic disk glass substrate
JP2011225436A (en) Method for manufacturing glass substrate for information recording medium
JP2015069674A (en) Manufacturing method of magnetic disk glass substrate, and polishing treatment carrier
JP6637944B2 (en) Polishing pad material, polishing pad manufacturing method, magnetic disk substrate manufacturing method, and magnetic disk manufacturing method
JP6307407B2 (en) Manufacturing method of glass substrate
JP2015069676A (en) Production method of magnetic disk glass substrate and polish device
JP2010231835A (en) Method for manufacturing glass substrate, glass substrate and magnetic recording medium
JP6199047B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6353524B2 (en) Substrate manufacturing method
WO2021193970A1 (en) Carrier and method for manufacturing substrate
JP2015164084A (en) Magnetic disk substrate manufacturing method and polishing processing apparatus
JP5701938B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6280349B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and method for manufacturing substrate for magnetic disk
JP6392634B2 (en) Nonmagnetic substrate manufacturing method and polishing apparatus
JP2014180709A (en) Manufacturing method of grindstone, and glass substrate for magnetic disk