JP2007167969A - Scratch machining method and machining device - Google Patents

Scratch machining method and machining device Download PDF

Info

Publication number
JP2007167969A
JP2007167969A JP2005364894A JP2005364894A JP2007167969A JP 2007167969 A JP2007167969 A JP 2007167969A JP 2005364894 A JP2005364894 A JP 2005364894A JP 2005364894 A JP2005364894 A JP 2005364894A JP 2007167969 A JP2007167969 A JP 2007167969A
Authority
JP
Japan
Prior art keywords
magnetic
polishing
polishing tool
polishing liquid
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005364894A
Other languages
Japanese (ja)
Inventor
Keita Yamamoto
慶太 山本
Rei Hanamura
玲 花村
Yoshio Matsuo
良夫 松尾
Kunio Shimada
邦雄 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Fukushima University NUC
Original Assignee
FDK Corp
Fukushima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp, Fukushima University NUC filed Critical FDK Corp
Priority to JP2005364894A priority Critical patent/JP2007167969A/en
Publication of JP2007167969A publication Critical patent/JP2007167969A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scratch machining method and machining device, forming a groove pattern at a level of several nm on the surface of a work, and performing polishing in a comparatively short time to be advantageous in cost. <P>SOLUTION: In this scratch machining method, a work (a sample 1) is fixed to a support bed 2, a polishing turning tool is confronted with the sample 1, and a magnetic polishing liquid 4 is supplied to a narrow gap between them. Non-magnetic abrasive is mixed with the magnetic polishing liquid 4 and a thickener such as α-cellulose is mixed. The polishing turning tool 3 is provided with a permanent magnet 31 opposite to the sample 1, and caused to perform motion in a predetermined locus on a plane by a driving means. A motion table 8 interlocking with the support bed 2 starts the motion in a reverse phase, thereby moving the sample 1 side in a reverse phase. The polishing liquid flows to enter mixing state, so that magnetic clusters generated by a magnetic field of the permanent magnet 31 press abrasives, the abrasives grind the surface of the sample 1 by relative motion to thereby suitably form a fine groove pattern. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加工対象の表面に微細な溝パターンを形成するためのスクラッチ加工方法およびその加工装置に関するもので、より具体的には、加工対象に対して研磨バイトを対面させるとともに、これらの周辺に磁気研磨液を存在させて流体研磨を行うことの改良に関する。   The present invention relates to a scratch processing method and a processing apparatus for forming a fine groove pattern on the surface of a processing target. More specifically, the present invention relates to a polishing tool facing a processing target and the periphery thereof. The present invention relates to an improvement in performing fluid polishing in the presence of a magnetic polishing liquid.

近年、微小電気機械システム、いわゆるMEMS(Micro Electro Mechanical Systems)と呼ばれる技術に注目があり、研究,開発が盛んに進められている。   In recent years, attention has been focused on a technique called a micro electro mechanical system, so-called MEMS (Micro Electro Mechanical Systems), and research and development have been actively promoted.

MEMSは、一般的に機械システムを極小レベルまでスケールダウンし、電子回路も含めた構成要素の全てが砂粒程度の大きさに収まる微小な機能素子を指す。例えば、半導体上のモータなど、半導体の内部に物理的に動く機械部分を含めたデバイスがあり、電子工学よりの技術概念が中心になっている。また、MEMSは広い技術範囲を指すものであり、バイオテクノロジ,医療,環境分析,自動車,科学プラント,情報通新機器など、幅広い分野への応用が期待できる。   MEMS generally refers to a small functional element that scales down a mechanical system to a minimum level, and that includes all components including an electronic circuit within a size of a sand grain. For example, there are devices including mechanical parts that physically move inside a semiconductor, such as a motor on a semiconductor, and the technical concept from electronics is central. In addition, MEMS refers to a wide range of technologies, and can be expected to be applied to a wide range of fields such as biotechnology, medical care, environmental analysis, automobiles, scientific plants, and information processing equipment.

このMEMSに関して、機械要素部品等の構成材料について機械的な加工が行われている。例えば、磁性を利用するための構成材料として永久磁石の薄膜(磁性体膜)を育成し、その磁性体膜の表面に傷を入れる加工を行い、その傷の方向に沿って異方性を与えることが行われている。つまり、磁性体膜に対して針のようなもので線状に掘ることで数μm程度の溝パターンを加工しており、それをスクラッチと呼んでいる。具体的にはこのスクラッチ加工には、電子ビームを使ってパターンニングすることが試みられている。   Regarding this MEMS, mechanical processing is performed on constituent materials such as machine element parts. For example, a thin film (magnetic film) of a permanent magnet is grown as a constituent material for using magnetism, a process is performed to scratch the surface of the magnetic film, and anisotropy is given along the direction of the scratch. Things have been done. That is, a groove pattern of about several μm is processed by digging in a linear shape with a needle like material on the magnetic film, which is called a scratch. Specifically, patterning using an electron beam has been attempted for this scratch processing.

しかしながら、そうした従来のスクラッチ加工の技術では以下に示すような問題がある。電子ビームによるパターンニングは、加工に時間がかかりコストが高くなる問題がある。また、電子工学技術の他の分野と同様に、MEMSにあってもデバイスの小型化,微細化の要求が常にある。このため、スクラッチ加工について、数nm程度の溝、すなわち数nmレベルの加工が求められている。   However, such conventional scratch processing techniques have the following problems. Patterning with an electron beam has a problem that processing takes time and costs increase. In addition, as in other fields of electronics technology, there is always a demand for miniaturization and miniaturization of devices even in MEMS. For this reason, about scratch processing, a groove of about several nm, that is, processing of several nm level is required.

この発明は上記した課題を解決するもので、その目的は、加工対象の表面に数nmレベルの溝パターンを形成することができ、研磨加工を比較的短時間で行え、コストの低減を図ることのできるにスクラッチ加工方法およびその加工装置を提供することにある。   SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and the object is to form a groove pattern of several nanometers on the surface to be processed, to perform polishing in a relatively short time, and to reduce costs. An object of the present invention is to provide a scratch processing method and a processing apparatus therefor.

上記した目的を達成するために、本発明に係るスクラッチ加工方法は、加工対象に対して研磨バイトを対面させるとともに、これらの周辺に磁気研磨液を存在させて流体研磨を行うことにより微細な溝パターンを形成するスクラッチ加工方法であって、研磨バイトは加工対象との対面に磁場を発生する磁場発生源を設け、研磨バイトと加工対象との間に磁気研磨液を存在させて当該磁気研磨液には非磁性の砥粒を混合しておき、平面上での所定軌跡の運動動作となる駆動を行う駆動手段により研磨バイトまたは加工対象の何れか一方に運動動作を行わせ、このとき磁場発生源により磁気研磨液に時間的に定常的あるいは変動的な磁場を加えて流体研磨により微細な溝パターンの形成を行うようにした。   In order to achieve the above-described object, the scratch processing method according to the present invention makes a fine groove by causing a polishing bite to face a processing target and performing fluid polishing in the presence of a magnetic polishing liquid around these tools. A scratch processing method for forming a pattern, wherein the polishing tool is provided with a magnetic field generating source for generating a magnetic field facing the processing object, and the magnetic polishing liquid is present between the polishing tool and the processing object. In this case, nonmagnetic abrasive grains are mixed, and either a polishing tool or an object to be processed is moved by a driving means that drives the moving motion of a predetermined locus on a plane, and at this time, a magnetic field is generated. A fine groove pattern was formed by fluid polishing by applying a temporally or fluctuating magnetic field to the magnetic polishing liquid by a source.

駆動手段は2つを研磨バイトと加工対象のそれぞれに連係し、研磨バイトと加工対象の両者を互いに逆相に運動動作させることもよい。   Two driving means may be linked to each of the polishing tool and the object to be processed, and both the polishing tool and the object to be processed may be moved in opposite phases.

また、本発明に係るスクラッチ加工装置は、加工対象との対面に磁場発生源を有する研磨バイトと、平面上での所定軌跡の運動動作を行わせる駆動手段と、前記研磨バイトと前記加工対象との狭間へ磁気研磨液を供給する供給手段とを備え、駆動手段は研磨バイトまたは加工対象の何れか一方に連係し、磁気研磨液には非磁性の砥粒を混合しておき、供給手段を起動して研磨バイトと加工対象との間に磁気研磨液を存在させ、駆動手段を起動して研磨バイトまたは加工対象の何れか一方に平面上で所定軌跡の運動動作を行わせ、磁場発生源により磁気研磨液に時間的に定常的あるいは変動的な磁場を加える構成にした。そして、駆動手段は2つとし、研磨バイトと加工対象のそれぞれに連係し、研磨バイトと加工対象の両者を互いに逆相に運動動作させる構成とするとよい。   Further, the scratch processing apparatus according to the present invention includes a polishing tool having a magnetic field generation source facing the processing object, a driving unit that performs a motion operation of a predetermined locus on a plane, the polishing tool, and the processing object. Supply means for supplying the magnetic polishing liquid to the gap between them, the driving means is linked to either the polishing tool or the object to be processed, the magnetic polishing liquid is mixed with non-magnetic abrasive grains, and the supply means is The magnetic polishing liquid is present between the polishing tool and the object to be processed, and the driving means is activated to cause either the polishing tool or the object to be processed to move in a predetermined path on the plane. Therefore, the magnetic polishing liquid is configured to apply a magnetic field that is constant or variable in time. And it is good to set it as the structure which makes two drive means, links | links with each of a grinding | polishing tool | tool, and each process object, and carries out the movement operation | movement of both a grinding | polishing tool | tool and a processing object in mutually opposite phases.

各発明に用いる磁気研磨液は、動粘度0.01〜100mm2/s程度の水やケロシン等の分散媒中に、粒子径1〜800μmの強磁性粒子を10〜95wt%分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が、電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を5〜90wt%混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはポリビニルアルコール等の樹脂を5〜90wt%混合する構成のものが好ましい。   The magnetic polishing liquid used in each invention is based on a fluid in which 10 to 95 wt% of ferromagnetic particles having a particle diameter of 1 to 800 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. In addition, spherical magnetite particles having a particle diameter of 10 to 50 nm are mixed with a composite fluid in which 5 to 90 wt% of a fluid uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties is mixed with a particle diameter of 0.01 to 100 μm. The non-magnetic abrasive grains are mixed, and a fibrous substance such as α-cellulose or a resin such as polyvinyl alcohol is mixed as a thickener in an amount of 5 to 90 wt%.

したがって本発明では、研磨バイトには磁場発生源を有し、基本的には研磨バイトまたは加工対象の何れか一方が、駆動手段により平面上で所定軌跡の運動動作を行う。研磨バイトと加工対象との間には磁気研磨液が存在し、当該磁気研磨液は非磁性の砥粒を含み、磁場発生源により磁気研磨液に時間的に定常的あるいは変動的な磁場が加わると、磁気研磨液において磁気クラスタが生成する。具体的には上記したような組成において、強磁性粒子(例えば鉄粒子),マグネタイト粒子が磁気吸引力により多数が凝集して磁気クラスタとなる。磁気クラスタは、磁束に沿うので加工対象に対立して針状に多数が立ち並び、これにより磁気研磨液中に存在する砥粒が加工対象の表面に押えつけられる。また、磁気クラスタに絡み込まれた砥粒もあるので、それらも加工対象の表面に押えつけられる。   Therefore, in the present invention, the polishing tool has a magnetic field generation source, and basically, either the polishing tool or the object to be processed performs a motion motion of a predetermined locus on the plane by the driving means. A magnetic polishing liquid exists between the polishing tool and the object to be processed. The magnetic polishing liquid contains non-magnetic abrasive grains, and a magnetic field generation source applies a time-dependent or variable magnetic field to the magnetic polishing liquid. Then, magnetic clusters are generated in the magnetic polishing liquid. Specifically, in the composition as described above, a large number of ferromagnetic particles (for example, iron particles) and magnetite particles are aggregated by a magnetic attractive force to form a magnetic cluster. Since the magnetic cluster is along the magnetic flux, a large number of needles stand in opposition to the object to be processed, whereby the abrasive grains present in the magnetic polishing liquid are pressed against the surface of the object to be processed. In addition, since there are abrasive grains entangled in the magnetic cluster, they are also pressed against the surface to be processed.

こうした状態で研磨バイトと加工対象とが相対的に運動し、これにより砥粒は加工対象の表面を接触しつつ運動する。このため、加工対象の表面を砥粒が研削し、微細な溝パターンを形成することができる。   In this state, the polishing tool and the object to be processed move relative to each other, whereby the abrasive grains move while contacting the surface of the object to be processed. For this reason, the abrasive grains are ground on the surface to be processed, and a fine groove pattern can be formed.

また、駆動手段を2つ用いて研磨バイトと加工対象の両者を互いに逆相に運動動作させるようにすると、両者の相対運動が増し、このため研磨速度が速くなり、スクラッチ加工にかかる時間をより短縮できる。   In addition, when two drive means are used to move both the polishing tool and the object to be processed in opposite phases to each other, the relative movement between the two increases, which increases the polishing speed and further increases the time required for scratch processing. Can be shortened.

溝パターンの形状は、駆動手段による平面上での所定軌跡の運動動作に対応し、例えば往復の直線運動では多数の直線が平行に並ぶ形状に形成することができる。そして、スクラッチ加工は磁気研磨液中の砥粒による研削なので、溝パターンの幅および深さは、砥粒の粒子径や磁気研磨液の濃度、そして磁場の強さや加工時間など、流体研磨の条件を適宜に設定することで調整でき、制御することができる。また、このスクラッチ加工は磁気研磨液中の砥粒による研削であることから、電子ビームによるパターンニングと違って加工が高速であり、電子ビーム発生装置といった高価な装置は必要ない。   The shape of the groove pattern corresponds to the motion movement of a predetermined locus on the plane by the driving means. For example, in a reciprocating linear motion, a large number of straight lines can be formed in parallel. And since scratch processing is grinding with abrasive grains in magnetic polishing liquid, the groove pattern width and depth depends on the conditions of fluid polishing such as abrasive grain diameter, magnetic polishing liquid concentration, magnetic field strength and processing time. Can be adjusted and controlled by appropriately setting. Further, since this scratch processing is grinding with abrasive grains in a magnetic polishing liquid, unlike the patterning with an electron beam, the processing is performed at a high speed, and an expensive device such as an electron beam generator is not required.

本発明に係るスクラッチ加工では、基本的には研磨バイトまたは加工対象の何れか一方が、駆動手段により平面上で所定軌跡の運動動作を行うので、磁気研磨液中に生じた磁気クラスタの作用により流体研磨が行えて微細な溝パターンを形成できる。このスクラッチ加工は磁気研磨液中の砥粒による研削なので、その流体研磨の条件を適宜に設定することで溝パターンの幅および深さを調整でき、制御することができる。また、このスクラッチ加工は磁気研磨液中の砥粒による研削であることから加工が高速であり、電子ビーム発生装置といった高価な装置は必要ない。その結果、加工対象の表面に数nmレベルの溝パターンを適宜に形成することができ、研磨加工を比較的に短時間で行え、コストの低下を図ることができる。   In the scratch processing according to the present invention, basically, either the polishing tool or the object to be processed performs a motion movement of a predetermined locus on the plane by the driving means, and therefore, due to the action of the magnetic cluster generated in the magnetic polishing liquid. Fluid polishing can be performed to form a fine groove pattern. Since this scratch processing is grinding with abrasive grains in the magnetic polishing liquid, the width and depth of the groove pattern can be adjusted and controlled by appropriately setting the conditions of the fluid polishing. Further, since this scratch processing is grinding with abrasive grains in the magnetic polishing liquid, the processing is performed at a high speed, and an expensive apparatus such as an electron beam generator is not required. As a result, a groove pattern with a level of several nanometers can be appropriately formed on the surface to be processed, and polishing can be performed in a relatively short time, thereby reducing the cost.

図1は、本発明の好適な一実施の形態を示している。本実施の形態のスクラッチ加工装置は、加工対象(試料1)を支持台2に固定し、その試料1に対して研磨バイト3を非接触に対面させるとともに、それら両者の間には磁気研磨液4を存在させ、研磨バイト3には磁場の発生と所定軌跡の運動とを行わせる。そして、支持台2は所定軌跡の運動を逆相で行わせ、磁気研磨液4に生成した磁気クラスタにより流体研磨し、微細な溝パターンの形成を行う構成になっている。   FIG. 1 shows a preferred embodiment of the present invention. The scratch processing apparatus according to the present embodiment fixes a processing target (sample 1) to a support base 2 and causes a polishing tool 3 to face the sample 1 in a non-contact manner, and a magnetic polishing liquid between them. 4 is provided, and the polishing tool 3 is caused to generate a magnetic field and move along a predetermined locus. The support base 2 is configured to perform a predetermined trajectory movement in reverse phase, fluidly polish with a magnetic cluster generated in the magnetic polishing liquid 4, and form a fine groove pattern.

磁気研磨液4は非磁性の砥粒を含有する。具体的には、動粘度0.01〜100mm2/s程度の水やケロシン等の分散媒中に、粒子径1〜800μmの強磁性粒子を10〜95wt%分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が、電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を5〜90wt%混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはポリビニルアルコール等の樹脂を5〜90wt%混合している。この磁気研磨液4は、図示しない供給手段により、試料1と研磨バイト3との狭間へ供給するようになっている。   The magnetic polishing liquid 4 contains nonmagnetic abrasive grains. Specifically, the particle diameter of a fluid in which 10 to 95 wt% of ferromagnetic particles having a particle diameter of 1 to 800 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. Non-magnetic particles having a particle diameter of 0.01 to 100 μm in a composite fluid in which 5 to 90 wt% of a fluid in which spherical magnetite particles of 10 to 50 nm are uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties are mixed. Abrasive grains are mixed, and a fibrous material such as α-cellulose or a resin such as polyvinyl alcohol is mixed as a thickener in an amount of 5 to 90 wt%. The magnetic polishing liquid 4 is supplied to a space between the sample 1 and the polishing tool 3 by a supply means (not shown).

支持台2はスプリングネジ5を介してトラバース装置6の基台7に組み付ける。そして、トラバース装置6を運動台8に組み付けるようにしている。スプリングネジ5の部位に、接触式のロードセル9を配置する。つまり、トラバース装置6の基台7を動かすことで支持台2の上下位置を初期設定し、運動台8により所定軌跡の運動を与え、例えば研磨バイト3との対立面において所定振幅で往復に動作(振動)するといった運動動作を与えるとともに、その動作状況をロードセル9により検出するようになっている。   The support 2 is assembled to the base 7 of the traverse device 6 via the spring screw 5. The traverse device 6 is assembled to the exercise table 8. A contact-type load cell 9 is disposed at the site of the spring screw 5. That is, by moving the base 7 of the traverse device 6, the vertical position of the support base 2 is initially set, and the movement of the predetermined trajectory is given by the exercise base 8, for example, reciprocating at a predetermined amplitude on the surface opposite to the polishing tool 3. A motion operation such as (vibration) is given, and the operation state is detected by the load cell 9.

支持台2に対しては上方から研磨バイト3を突き向けており、研磨バイト3は駆動モータ10に連係させ、これを駆動するようになっている。駆動モータ10には、例えばボール盤,旋盤,NC旋盤,フライス盤などの駆動機構を用いることができ、出力軸に連結したチャック部11に研磨バイト3の軸部を取り付ける。これにより、研磨バイト3は、チャック部11(駆動モータ10)に対して着脱が行える構成になっている。   A polishing tool 3 is directed toward the support base 2 from above, and the polishing tool 3 is linked to a drive motor 10 to drive it. The drive motor 10 may be a drive mechanism such as a drilling machine, a lathe, an NC lathe, or a milling machine, and the shaft portion of the polishing tool 3 is attached to the chuck portion 11 connected to the output shaft. Thereby, the grinding tool 3 is configured to be attachable to and detachable from the chuck portion 11 (drive motor 10).

研磨バイト3は、非磁性体からなる円柱体30に同心に永久磁石31を埋め込んであり、その永久磁石31が試料1(加工対象)に向き合う。つまり、永久磁石31は対面する試料1との間で磁気研磨液4に対して磁界を作用し、磁場を発生する磁場発生源となる。磁場発生源としては永久磁石31に限らず、例えば電磁石なども好ましく適用でき、磁気研磨液4に対して磁界を作用し得るものであればよい。磁場の発生は時間的に定常的である必要はなく、時間的に変動的な磁場を発生させるものでもよい。   In the polishing tool 3, a permanent magnet 31 is concentrically embedded in a cylindrical body 30 made of a nonmagnetic material, and the permanent magnet 31 faces the sample 1 (processing object). That is, the permanent magnet 31 acts as a magnetic field generating source that generates a magnetic field by acting a magnetic field on the magnetic polishing liquid 4 between the facing sample 1. The magnetic field generation source is not limited to the permanent magnet 31, and for example, an electromagnet can be preferably applied as long as it can act on the magnetic polishing liquid 4. The generation of the magnetic field does not need to be stationary in time, and may generate a magnetic field that varies in time.

運動台8は図示しない駆動源を有し、研磨バイト3との対立面において所定軌跡で運動するように構成される。その運動動作には複数の運動モードを設定している。運動台8による運動動作は、研磨バイト3の軸部との対立面において、一定方向で往復に運動する運動動作や定点を中心に単純に回転する運動動作など、複数の運動モードがあり、研磨作業の際は加工を必要とする微細な溝パターンに応じて適宜に選択することになる。また、運動台8は、研磨バイト3側の運動動作に対して逆相に運動動作を行わせるようになっている。   The exercise table 8 has a drive source (not shown) and is configured to move along a predetermined locus on the surface opposite to the polishing tool 3. A plurality of exercise modes are set for the exercise operation. There are a plurality of motion modes, such as a motion motion that reciprocates in a fixed direction and a motion motion that simply rotates around a fixed point on the surface opposite to the shaft portion of the polishing tool 3, and the motion motion by the motion table 8 is polishing. In the work, it is appropriately selected according to the fine groove pattern that requires processing. Further, the exercise table 8 is adapted to perform an exercise operation in a phase opposite to the exercise operation on the polishing tool 3 side.

試料1の研磨を行なうには、まず支持台2に試料1を固定し、上方の研磨バイト3に対して試料1の位置関係を初期設定する。そして、それら両者の狭間に対して磁気研磨液4の供給を開始し、次いで、駆動モータ10および運動台8を起動して、研磨バイト3および試料1(支持台2)の両者を互いに逆相に運動動作させ、磁気研磨液4を攪拌状態にする。このとき、磁気研磨液4には磁場発生源(永久磁石31)により磁場が作用し、試料1と研磨バイト3との間では、図2に示すように、磁束が生じて磁気研磨液4において磁気クラスタ12が生成する。   In order to polish the sample 1, first, the sample 1 is fixed to the support base 2, and the positional relationship of the sample 1 with respect to the upper polishing tool 3 is initially set. Then, the supply of the magnetic polishing liquid 4 to the gap between them is started, and then the drive motor 10 and the exercise table 8 are started, and both the polishing tool 3 and the sample 1 (support table 2) are reversed in phase. The magnetic polishing liquid 4 is brought into a stirring state. At this time, a magnetic field is applied to the magnetic polishing liquid 4 by a magnetic field generation source (permanent magnet 31), and a magnetic flux is generated between the sample 1 and the polishing tool 3 as shown in FIG. A magnetic cluster 12 is generated.

つまり、研磨バイト3には永久磁石31を埋め込んであるので磁場が作用し、永久磁石31と試料1との間で磁束が生じ、強磁性粒子(例えば鉄粒子),マグネタイト粒子が磁気吸引力により多数が凝集して磁気クラスタ12となる。磁気クラスタ12は、磁束に沿うので試料1に対立して針状に多数が立ち並ぶことになる。磁気研磨液4においては、増粘剤として加えたαセルロース13が磁気クラスタ12の相互間に織り込み状態に位置を占め、さらに非磁性の砥粒14を加えてあるので、これは磁気クラスタ12に絡み込まれるものもあるが、当該液が攪拌状態にあるため多くは試料1の表面に存在することになる。したがって、針状に立ち並ぶ磁気クラスタ12および織り込み状態のαセルロース13とによって、磁気研磨液4の中に存在する砥粒14が試料1の表面に押さえつけられる。また、磁気クラスタ12およびαセルロース13に絡み込まれた砥粒14もあるので、それらも試料1の表面に押えつけられる。   In other words, since the permanent magnet 31 is embedded in the polishing tool 3, a magnetic field acts, a magnetic flux is generated between the permanent magnet 31 and the sample 1, and ferromagnetic particles (for example, iron particles) and magnetite particles are attracted by magnetic attraction. Many aggregate to form magnetic clusters 12. Since the magnetic cluster 12 is along the magnetic flux, a large number of needles are arranged in opposition to the sample 1. In the magnetic polishing liquid 4, α-cellulose 13 added as a thickener occupies a position in a woven state between the magnetic clusters 12, and further, nonmagnetic abrasive grains 14 are added. Some are entangled, but many of them are present on the surface of the sample 1 because the liquid is in a stirred state. Therefore, the abrasive grains 14 present in the magnetic polishing liquid 4 are pressed against the surface of the sample 1 by the magnetic clusters 12 arranged in a needle shape and the α cellulose 13 in a woven state. In addition, since there are abrasive grains 14 entangled in the magnetic clusters 12 and α-cellulose 13, they are also pressed against the surface of the sample 1.

このような状態で研磨バイト3および試料1(支持台2)の両者が互いに逆相に運動動作することから、相対運動によって砥粒14は試料1の表面を接触しつつ運動し、このため試料1の表面を砥粒14が研削し、微細な溝パターンを形成することができる。つまり、スクラッチ加工が行える。   In this state, both the polishing tool 3 and the sample 1 (support base 2) move in opposite phases, so that the abrasive grains 14 move while contacting the surface of the sample 1 due to relative movement. The surface of 1 can be ground by the abrasive grains 14 to form a fine groove pattern. That is, scratch processing can be performed.

磁場が定常的の場合、磁気クラスタ12は磁束に沿って整列して立ち並び、磁力により整列状態が保持されるので砥粒14が試料1の表面(研磨面)に適度に当たって研磨が行える。また、磁場が変動的の場合、磁気クラスタ12は揺れ動き、このときも砥粒14が研磨面に適度に当たり研磨が行える。このように、研磨バイト3は試料1に対して見かけ上は有効な研削刃を持たないものの、磁気クラスタ12およびαセルロース13の押さえ作用により研磨することができ、流体研磨により微細な溝パターンの形成を行うことができる。   When the magnetic field is stationary, the magnetic clusters 12 stand in line along the magnetic flux, and the alignment state is maintained by the magnetic force, so that the abrasive grains 14 can hit the surface (polishing surface) of the sample 1 appropriately to perform polishing. Further, when the magnetic field is fluctuating, the magnetic cluster 12 swings, and at this time, the abrasive grains 14 hit the polishing surface appropriately and can be polished. Thus, although the polishing tool 3 does not have an apparently effective grinding blade with respect to the sample 1, it can be polished by the pressing action of the magnetic cluster 12 and the α cellulose 13, and a fine groove pattern can be formed by fluid polishing. Formation can be performed.

磁気研磨液4には増粘剤としてαセルロース13を含むので、添加した増粘剤は磁気クラスタ12を保持するように作用し、その結果、多数の砥粒14が試料1の表面に接触する状況を促進でき、研磨を高効率に行える。   Since the magnetic polishing liquid 4 contains α-cellulose 13 as a thickener, the added thickener acts to hold the magnetic cluster 12, and as a result, many abrasive grains 14 come into contact with the surface of the sample 1. The situation can be promoted and polishing can be performed with high efficiency.

なお本実施の形態では、研磨バイト3および試料1(支持台2)の両者を互いに逆相に運動動作させているが、何れか一方のみを運動させる構成にすることもよい。つまり、運動台8は取り外して試料1側は運動させずに固定状態とし、研磨バイト3だけを運動動作させるようにしてもよい。   In the present embodiment, both the polishing tool 3 and the sample 1 (support base 2) are moved in opposite phases, but only one of them may be moved. That is, the exercise table 8 may be removed, the sample 1 side may be fixed without being moved, and only the polishing tool 3 may be moved.

溝パターンの形状は、駆動手段による平面上での所定軌跡の運動動作に対応し、例えば往復の直線運動では多数の直線が平行に並ぶ形状に形成することができる。そして、スクラッチ加工は磁気研磨液中の砥粒14による研削なので、溝パターンの幅および深さは、砥粒14の粒子径や磁気研磨液4の濃度、そして磁場の強さや加工時間など、流体研磨の条件を適宜に設定することで調整でき、制御することができる。   The shape of the groove pattern corresponds to the motion movement of a predetermined locus on the plane by the driving means. For example, in a reciprocating linear motion, a large number of straight lines can be formed in parallel. Since the scratch processing is grinding with the abrasive grains 14 in the magnetic polishing liquid, the width and depth of the groove pattern are determined by the fluid size such as the particle diameter of the abrasive grains 14, the concentration of the magnetic polishing liquid 4, the strength of the magnetic field, and the processing time. It can be adjusted and controlled by appropriately setting the polishing conditions.

また、このスクラッチ加工は磁気研磨液中の砥粒14による研削であることから、電子ビームによるパターンニングと違って加工が高速であり、電子ビーム発生装置といった高価な装置は必要なく、コスト面に有利性がある。もちろん、磁気クラスタ12による研磨なので試料1に大きな応力をかけることなく研磨が行える。   In addition, since this scratch processing is grinding with the abrasive grains 14 in the magnetic polishing liquid, the processing is fast unlike the patterning by the electron beam, and an expensive device such as an electron beam generator is not required, and the cost is reduced. There is an advantage. Of course, since the polishing is performed by the magnetic cluster 12, the sample 1 can be polished without applying a large stress.

すなわち、本発明に係るスクラッチ加工によれば、磁気研磨液中の砥粒14により研削が行えて、その結果、加工対象の表面に数nmレベルの溝パターンを適宜に形成することができ、研磨加工は比較的に短時間で行えてるので、低コスト化けを図ることができる。これにより、例えばバイオメモリなどの培養行路を簡単に作ることができる。   That is, according to the scratch processing according to the present invention, grinding can be performed by the abrasive grains 14 in the magnetic polishing liquid, and as a result, a groove pattern of several nanometers can be appropriately formed on the surface to be processed. Since processing can be performed in a relatively short time, cost reduction can be achieved. Thereby, for example, a culture path such as a biomemory can be easily made.

図1に示すスクラッチ加工装置を用いて試料の研磨を行った。つまり、本発明の効果を実証するため、所定の研磨条件において試料(1)の研磨を行い、その試料(1)についてスクラッチの状態を評価した。磁気研磨液(4)は表1に示す組成とし、評価試験は研磨バイト(3)を単純に回転させる形態で行った。   The sample was polished using the scratch processing apparatus shown in FIG. That is, in order to demonstrate the effect of the present invention, the sample (1) was polished under predetermined polishing conditions, and the scratch state of the sample (1) was evaluated. The magnetic polishing liquid (4) had the composition shown in Table 1, and the evaluation test was performed in a form in which the polishing tool (3) was simply rotated.

Figure 2007167969
Figure 2007167969

ここで、磁気研磨液(4)はその組成に、非磁性の砥粒(14)として粒子径0.05μmのアルミナを含み、さらに増粘剤としてαセルロース(13)を含ませている。そして、試料(1)にはホウ酸系ガラス(BK7)の平板を用い、寸法は縦10mm,横10mm,厚さ3mmとした。磁場発生源である永久磁石(31)は直径5mm,高さ8mmの円柱形状のものとし、これは試料(1)とは間隔1mmで対面させた。そして、研磨バイト(3)は、試料(1)との狭間に磁気研磨液(4)を供給しつつ回転数500rpmで5分間だけ運転した。   Here, the magnetic polishing liquid (4) contains alumina having a particle diameter of 0.05 μm as nonmagnetic abrasive grains (14) and α-cellulose (13) as a thickener. The sample (1) was a boric acid glass (BK7) flat plate with dimensions of 10 mm in length, 10 mm in width, and 3 mm in thickness. The permanent magnet (31), which is a magnetic field generation source, had a cylindrical shape with a diameter of 5 mm and a height of 8 mm, and this was opposed to the sample (1) at an interval of 1 mm. The polishing tool (3) was operated for 5 minutes at a rotation speed of 500 rpm while supplying the magnetic polishing liquid (4) between the sample (1).

その結果、図3に示すように、試料(1)の表面には同心状に周回する溝パターン(スクラッチ)が得られた。図3は試料(1)の表面を原子力間顕微鏡(AFM:Atomic Force Microscope)によりイメージ測定した結果であり、多数の溝パターンが同心状に周回して形成できたことを確認でき、得られた溝パターンは図4に示すように、深さ約10nm,幅約0.2nmであることを確認した。   As a result, as shown in FIG. 3, a groove pattern (scratch) that concentrically circulates on the surface of the sample (1) was obtained. FIG. 3 shows the result of image measurement of the surface of the sample (1) using an atomic force microscope (AFM), and it was confirmed that a large number of groove patterns could be formed concentrically. As shown in FIG. 4, it was confirmed that the groove pattern had a depth of about 10 nm and a width of about 0.2 nm.

本実施例では、研磨バイト(3)を回転動作させたことから、溝パターンは同心状に周回する形状となったが、これはもちろん適宜な形状に形成することができる。例えば、研磨バイト(3)は往復に直線運動させる構成とすることにより、溝パターンは多数の直線が平行に並ぶ形状に形成することができる。   In this embodiment, since the polishing tool (3) is rotated, the groove pattern has a shape that concentrically circulates, but this can of course be formed in an appropriate shape. For example, when the polishing tool (3) is configured to reciprocate linearly, the groove pattern can be formed in a shape in which a number of straight lines are arranged in parallel.

スクラッチ加工は磁気研磨液中の砥粒(14)による研削なので、溝パターンの幅および深さは、砥粒(14)の粒子径や磁気研磨液(4)の濃度そして加工時間など、流体研磨の条件を適宜に設定することで調整でき、制御することができる。   Since the scratch processing is grinding with the abrasive grains (14) in the magnetic polishing liquid, the width and depth of the groove pattern are determined by fluid polishing such as the particle diameter of the abrasive grains (14), the concentration of the magnetic polishing liquid (4), and the processing time. It is possible to adjust and control by appropriately setting these conditions.

すなわち、本発明に係る構成では、磁気研磨液中の砥粒(14)により研削が行えて、その結果、加工対象の表面に数nmレベルの溝パターンを適宜に形成することができ、本実施例により本発明の有用性が確認できた。   That is, in the configuration according to the present invention, grinding can be performed with the abrasive grains (14) in the magnetic polishing liquid, and as a result, a groove pattern of several nm level can be appropriately formed on the surface to be processed. The usefulness of the present invention was confirmed by examples.

本発明に係るスクラッチ加工装置の好適な一実施の形態を示す構成図である。It is a block diagram which shows suitable one Embodiment of the scratch processing apparatus which concerns on this invention. 磁気クラスタによる流体研磨を示す説明図である。It is explanatory drawing which shows the fluid grinding | polishing by a magnetic cluster. 本発明に係るスクラッチ加工の結果を示し、原子力間顕微鏡(AFM)によるイメージ図である。It is an image figure which shows the result of the scratch processing which concerns on this invention, and uses an atomic force microscope (AFM). 図3に示すスクラッチの断面形状を示すグラフ図である。It is a graph which shows the cross-sectional shape of the scratch shown in FIG.

符号の説明Explanation of symbols

1 加工対象(試料)
2 支持台
3 研磨バイト
4 磁気研磨液
5 スプリングネジ
6 トラバース装置
7 基台
8 運動台
9 ロードセル
10 駆動モータ
11 チャック部
12 磁気クラスタ
13 αセルロース
14 砥粒
30 円柱体
31 永久磁石(磁場発生源)
1 Processing object (sample)
2 Support table 3 Polishing tool 4 Magnetic polishing solution 5 Spring screw 6 Traverse device 7 Base 8 Motor table 9 Load cell 10 Drive motor 11 Chuck part 12 Magnetic cluster 13 α cellulose 14 Abrasive grain 30 Cylindrical body 31 Permanent magnet (magnetic field source)

Claims (4)

加工対象に対して研磨バイトを対面させるとともに、これらの周辺に磁気研磨液を存在させて流体研磨を行うことにより微細な溝パターンを形成するスクラッチ加工方法であって、
前記研磨バイトは前記加工対象との対面に磁場を発生する磁場発生源を設け、前記研磨バイトと前記加工対象との間に前記磁気研磨液を存在させて当該磁気研磨液には非磁性の砥粒を混合しておき、平面上での所定軌跡の運動動作となる駆動を行う駆動手段により前記研磨バイトまたは前記加工対象の何れか一方に運動動作を行わせ、このとき前記磁場発生源により前記磁気研磨液に時間的に定常的あるいは変動的な磁場を加えて流体研磨により微細な溝パターンの形成を行うことを特徴とするスクラッチ加工方法。
It is a scratch processing method for forming a fine groove pattern by facing a polishing bite against a processing object and performing fluid polishing in the presence of a magnetic polishing liquid around these,
The polishing tool is provided with a magnetic field generation source that generates a magnetic field on the opposite side of the processing object, and the magnetic polishing liquid is present between the polishing tool and the processing object, so that the magnetic polishing liquid has a nonmagnetic abrasive. The particles are mixed, and a driving unit that performs a driving operation of a predetermined trajectory on a plane causes the polishing tool or the workpiece to perform a moving operation, and at this time, the magnetic field generation source A scratch processing method, wherein a fine groove pattern is formed by fluid polishing by applying a temporally steady or fluctuating magnetic field to a magnetic polishing liquid.
前記駆動手段は2つを前記研磨バイトと前記加工対象のそれぞれに連係し、前記研磨バイトと前記加工対象の両者を互いに逆相に運動動作させることを特徴とする請求項1に記載のスクラッチ加工方法。   2. The scratch processing according to claim 1, wherein two of the driving means are linked to the polishing tool and the processing object, respectively, and both the polishing tool and the processing object are moved in opposite phases. Method. 加工対象との対面に磁場発生源を有する研磨バイトと、平面上での所定軌跡の運動動作を行わせる駆動手段と、前記研磨バイトと前記加工対象との狭間へ磁気研磨液を供給する供給手段とを備え、
前記駆動手段は前記研磨バイトまたは前記加工対象の何れか一方に連係し、前記磁気研磨液には非磁性の砥粒を混合しておき、前記供給手段を起動して前記研磨バイトと前記加工対象との間に前記磁気研磨液を存在させ、前記駆動手段を起動して前記研磨バイトまたは前記加工対象の何れか一方に平面上で所定軌跡の運動動作を行わせ、前記磁場発生源により前記磁気研磨液に時間的に定常的あるいは変動的な磁場を加える構成であることを特徴とするスクラッチ加工装置。
A polishing tool having a magnetic field generation source facing the object to be processed, a driving means for performing a motion operation of a predetermined locus on a plane, and a supply means for supplying a magnetic polishing liquid to a space between the polishing tool and the object to be processed And
The driving means is linked to either the polishing tool or the object to be processed, and nonmagnetic abrasive grains are mixed in the magnetic polishing liquid, and the supply means is activated to start the polishing tool and the object to be processed. The magnetic polishing liquid is present between the two and the driving means is activated to cause either the polishing tool or the object to be processed to move in a predetermined locus on a plane, and the magnetic field generation source causes the magnetic A scratch processing apparatus characterized by applying a stationary or fluctuating magnetic field in time to a polishing liquid.
前記駆動手段は2つとし、前記研磨バイトと前記加工対象のそれぞれに連係し、前記研磨バイトと前記加工対象の両者を互いに逆相に運動動作させる構成であることを特徴とする請求項3に記載のスクラッチ加工装置。   4. The drive unit according to claim 3, wherein the number of driving means is two, the polishing tool and the workpiece are linked to each other, and both the polishing tool and the workpiece are moved in opposite phases. The scratch processing apparatus as described.
JP2005364894A 2005-12-19 2005-12-19 Scratch machining method and machining device Withdrawn JP2007167969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364894A JP2007167969A (en) 2005-12-19 2005-12-19 Scratch machining method and machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364894A JP2007167969A (en) 2005-12-19 2005-12-19 Scratch machining method and machining device

Publications (1)

Publication Number Publication Date
JP2007167969A true JP2007167969A (en) 2007-07-05

Family

ID=38295202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364894A Withdrawn JP2007167969A (en) 2005-12-19 2005-12-19 Scratch machining method and machining device

Country Status (1)

Country Link
JP (1) JP2007167969A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034924A1 (en) * 2007-09-10 2009-03-19 Bando Chemical Industries, Ltd. Magnetorheological polishing slurry composition
KR100909761B1 (en) 2007-08-10 2009-07-29 강창원 Scratch Pattern Forming Device of Decorative Frame
JP2009166199A (en) * 2008-01-18 2009-07-30 Fdk Corp Surface processing method using fine cutting action
CN108326638A (en) * 2018-01-09 2018-07-27 上海理工大学 Box magnetic coupling fluid polishing device
CN113043163A (en) * 2021-03-08 2021-06-29 天津职业技术师范大学(中国职业培训指导教师进修中心) Nano-fluid continuous controllable internal spraying low-temperature sintering grinding wheel grinding system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100909761B1 (en) 2007-08-10 2009-07-29 강창원 Scratch Pattern Forming Device of Decorative Frame
WO2009034924A1 (en) * 2007-09-10 2009-03-19 Bando Chemical Industries, Ltd. Magnetorheological polishing slurry composition
JP2009166199A (en) * 2008-01-18 2009-07-30 Fdk Corp Surface processing method using fine cutting action
CN108326638A (en) * 2018-01-09 2018-07-27 上海理工大学 Box magnetic coupling fluid polishing device
CN113043163A (en) * 2021-03-08 2021-06-29 天津职业技术师范大学(中国职业培训指导教师进修中心) Nano-fluid continuous controllable internal spraying low-temperature sintering grinding wheel grinding system

Similar Documents

Publication Publication Date Title
US5076026A (en) Microscopic grinding method and microscopic grinding device
KR940007405B1 (en) Micro-abrading method and tool
JP2682260B2 (en) Micro polishing method and micro polishing tool
JP2007167968A (en) Mirror finished surface polishing method and mirror finished surface polishing device
CN105458840A (en) Magnetostatic moving field magnetorheological polishing mechanism test device and processing method thereof
JP2009072901A (en) Magnetic spiral polishing device
JP2007167969A (en) Scratch machining method and machining device
CN205201209U (en) Magnetostatic moves a magnetic current and becomes polishing mechanism test device
JP4185987B2 (en) Magnetic-assisted fine polishing apparatus and magnetic-assisted fine polishing method
CN204546081U (en) Machining tool and based on magnetostrictive precision feeding drive unit
Gu et al. Non-resonant vibration-assisted magnetorheological finishing
JP2009034812A (en) Both-plane-face polishing method and both-plane-face polishing device
WO2006030854A1 (en) Complex profile body polishing method and polishing apparatus
JP2006224227A (en) Magnetic polishing method
US12083645B2 (en) Magnetic field-assisted vibratory finishing device for minute structure and finishing method
JP2007296598A (en) Magnetic polishing method and wafer polishing device
CN202162632U (en) Electromagnetic metallographic polishing machine
CN207155395U (en) A kind of magnetic flow liquid burnishing device
CN112476065B (en) Non-resonant vibration auxiliary magnetorheological polishing device and method for processing optical element
CN113172487A (en) Vibratory ferrofluid ultra-precision polishing device and method with micron-scale functional structure
JP4471197B2 (en) Polishing method that does not require processing pressure control
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
JP2006088283A (en) Method and device for polishing and coating mirror surface
JP5110678B2 (en) Magnetic polishing method
JP2003062747A (en) Processing method using magnetic fluid and device therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303