JP2009166199A - Surface processing method using fine cutting action - Google Patents

Surface processing method using fine cutting action Download PDF

Info

Publication number
JP2009166199A
JP2009166199A JP2008008913A JP2008008913A JP2009166199A JP 2009166199 A JP2009166199 A JP 2009166199A JP 2008008913 A JP2008008913 A JP 2008008913A JP 2008008913 A JP2008008913 A JP 2008008913A JP 2009166199 A JP2009166199 A JP 2009166199A
Authority
JP
Japan
Prior art keywords
magnetic
peripheral speed
magnetic field
surface treatment
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008008913A
Other languages
Japanese (ja)
Inventor
Teruhisa Nakamura
輝久 中村
Toshitaka Hashimoto
敏隆 橋本
Rei Hanamura
玲 花村
Yoshio Matsuo
良夫 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2008008913A priority Critical patent/JP2009166199A/en
Publication of JP2009166199A publication Critical patent/JP2009166199A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface processing method using fine cutting action in which non-contact fine cutting action is ensured without fail by determining an index for properly and satisfactorily completing surface finish and utilizing the index. <P>SOLUTION: Surface processing using the fine cutting action of particle swarm generated from a magnetic field by non-contactly putting a magnetic field source (a permanent magnet 20) against an object 1, and continuously moving a magnetic paste 3 allowed to exist therearound. A gap g between the object 1 and the permanent magnet 20 is in the range of 0.1 to 2.0 mm. Circumferential velocity of the rotational movement of the permanent magnet 20 is calculated from the following relational expression: V [m/sec]=0.0178g+0.0637, and used as a lower limit. An upper limit of the circumferential velocity V is a maximum circumferential velocity, Vmax=0.534 m/sec, causing no sputtering of the magnetic paste 3. The surface processing is carried out so that the circumferential velocity V ranges between the lower limit and the upper limit. Thereby, the circumferential velocity V can be utilized as the index. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微細な削り作用による表面処理方法に関するもので、より具体的には、金型やモックアップあるいはフィルム状の対象物に対して、非接触で微細な削り作用による表面処理を行うことでの仕上げを適正,良好に完了し得るための指標の改良に関する。   The present invention relates to a surface treatment method using a fine cutting action, and more specifically, to perform a surface treatment using a fine cutting action in a non-contact manner on a mold, mock-up or film-like object. It is related to the improvement of the index so that finishing can be completed properly and satisfactorily.

金型やモックアップあるいはフィルム状の対象物などは、製造の際には表面性状の改質を行う表面処理が必要であり、その表面について研磨や洗浄および清浄等の表面処理が行われている。そうした対象物の表面の仕上げを行う表面処理の技術として、いわゆる磁気研磨法と呼ばれる技術がよく知られている。これは、磁性流体(MF:Magnetic Fluid)や磁気粘性流体(MRF:Magneto Rheological Fluid)を研磨粒子と混合させ、磁界により混合液を運動させることで研磨を行っている。   Molds, mock-ups, film-like objects, etc. require surface treatment to modify the surface properties during production, and the surface is subjected to surface treatment such as polishing, washing and cleaning. . As a surface treatment technique for finishing the surface of such an object, a so-called magnetic polishing technique is well known. This is performed by mixing a magnetic fluid (MF) or a magnetorheological fluid (MRF) with abrasive particles and moving the mixed liquid by a magnetic field.

研磨バイトには永久磁石を備えて磁界発生源とし、その研磨バイトの周りに磁気研磨液(ペースト材料)を付着させると、磁気吸引力によりMFやMRF中の強磁性粒子(例えば、鉄粒子),マグネタイト粒子が、多数凝集して磁気クラスタを形成する。この磁気クラスタは、磁束に沿うので対象物に対立して針状に多数が立ち並ぶ態様を採る。これにより、磁気研磨液が研磨バイトに付着して磁気ブラシとなる。   The polishing tool is equipped with a permanent magnet to serve as a magnetic field source. When a magnetic polishing liquid (paste material) is attached around the polishing tool, ferromagnetic particles (for example, iron particles) in MF or MRF are generated by magnetic attraction. , Many magnetite particles aggregate to form a magnetic cluster. Since this magnetic cluster is along the magnetic flux, it takes a form in which a large number of needles stand in opposition to the object. As a result, the magnetic polishing liquid adheres to the polishing bite to form a magnetic brush.

磁気ブラシあるいは対象物が回転動作することにより、両者間の相対運動により磁気ブラシが対象物の表面を接触した状態で移動する。その結果、対象物の表面の凹凸は研磨粒子を伴う磁気ブラシが研磨し、より平滑な表面を得ることができ、非接触の流体研磨が行える。   When the magnetic brush or the object rotates, the magnetic brush moves in contact with the surface of the object due to relative movement between the two. As a result, the unevenness of the surface of the object is polished by a magnetic brush with abrasive particles, a smoother surface can be obtained, and non-contact fluid polishing can be performed.

ところで、磁気研磨法による非接触で微細な削り作用による表面処理を行うには、考慮すべき条件要素が多数あり、設定が不十分では表面の仕上げを期待したレベルには得ることができない問題がある。   By the way, there are a number of condition factors to be considered in order to perform surface treatment by a non-contact and fine cutting action by the magnetic polishing method, and there is a problem that if the setting is insufficient, the surface finish cannot be obtained to the expected level. is there.

つまりこの場合、磁界発生源の磁束密度はどの程度がよいか、対象物と磁界発生源との隙間はどの程度がよいか、対象物の硬度はどの程度なのか、磁気ペーストの流動性および研削力はどの程度がよいか、などを適切に考えあわせる必要があり、設定を誤ると表面の仕上げを良好に得られなく不良品を製造してしまうことになる。   In other words, in this case, what is the magnetic flux density of the magnetic field source, what is the gap between the object and the magnetic field source, what is the hardness of the object, the fluidity and grinding of the magnetic paste It is necessary to properly consider the level of force, etc. If the setting is incorrect, the surface finish cannot be obtained satisfactorily and defective products are produced.

このため、表面の仕上げを適正,良好に完了し得るための指標が求められており、設定が容易で確実性が高い指標が望まれている。   For this reason, there is a demand for an index that can properly and satisfactorily finish the surface, and an index that is easy to set and highly reliable is desired.

この発明は上述した課題を解決するもので、その目的は、表面の仕上げを適正,良好に完了し得るための指標を定め、その指標を利用することにより非接触による微細な削り作用を失敗なく確実に得ることができる微細な削り作用による表面処理方法を提供することにある。   The present invention solves the above-mentioned problems, and its purpose is to establish an index for properly and satisfactorily finishing the surface, and by using the index, a fine cutting action by non-contact can be achieved without failure. An object of the present invention is to provide a surface treatment method by a fine shaving action that can be obtained reliably.

上述した目的を達成するために、本発明に係る微細な削り作用による表面処理方法は、(1)対象物に対して磁界発生源を非接触に対面させ、周辺に存在させた磁気ペーストを連動し、磁界により生じた粒子集団の微細な削り作用による表面処理を行う表面処理方法であって、対象物と磁界発生源との隙間gは0.1mmから2.0mmの範囲とし、磁界発生源の回転動作の周速Vは、
V[m/sec]=0.0178g+0.0637
という関係式により算出して下限値とし、周速Vが下限値以上となる表面処理を行う。
In order to achieve the above-described object, the surface treatment method using a fine shaving action according to the present invention is as follows: (1) A magnetic field generation source is brought into contact with an object in a non-contact manner, and a magnetic paste existing in the vicinity is linked. And a surface treatment method for performing a surface treatment by a fine shaving action of a particle population generated by a magnetic field, wherein a gap g between the object and the magnetic field generation source is in a range of 0.1 mm to 2.0 mm, and the magnetic field generation source The peripheral speed V of the rotation operation of
V [m / sec] = 0.178 g + 0.0637
The surface treatment is performed so that the peripheral speed V is equal to or higher than the lower limit value.

また、(2)周速Vは上限値を、磁気ペーストが飛散を起こさない最大周速Vmax=0.534m/secとし、周速Vが下限値および上限値の範囲内となる表面処理を行う。   (2) The peripheral speed V is subjected to a surface treatment in which the upper limit value is set to the maximum peripheral speed Vmax = 0.534 m / sec at which the magnetic paste does not scatter, and the peripheral speed V falls within the range between the lower limit value and the upper limit value. .

磁界発生源の回転動作の周速Vは表面処理の仕上げ品質を左右する重要な要因である。本発明では、磁界発生源の周速Vは対象物との隙間gに関して関係式を決定しており、その関係式により求めた値を下限値とし、周速Vが下限値以上となる表面処理を行うので、表面の仕上げが良好に行える。したがって、隙間gに関して決定した周速Vの関係式は、表面の仕上げを適正,良好に完了し得るための指標にすることができる。   The peripheral speed V of the rotating operation of the magnetic field generation source is an important factor that determines the finishing quality of the surface treatment. In the present invention, the peripheral speed V of the magnetic field generating source has a relational expression determined with respect to the gap g with the object, and the surface treatment in which the peripheral speed V is equal to or higher than the lower limit value is set to a lower limit value. As a result, the surface can be satisfactorily finished. Therefore, the relational expression of the peripheral speed V determined with respect to the gap g can be used as an index for completing the surface finishing properly and satisfactorily.

また、周速Vの上限値を、磁気ペーストが飛散を起こさない最大周速Vmax=0.534m/secとし、周速Vが下限値および上限値の範囲内となる表面処理を行うので、表面の仕上げを失敗なく確実に行える。   Further, the upper limit value of the peripheral speed V is set to the maximum peripheral speed Vmax = 0.534 m / sec at which the magnetic paste does not scatter, and the surface treatment is performed so that the peripheral speed V falls within the range between the lower limit value and the upper limit value. Can be finished without failure.

本発明に係る微細な削り作用による表面処理方法では、磁気ペーストに発生させた磁気クラスタにより流体研磨を行うものであり、磁界発生源の回転動作の周速Vの関係式を対象物との隙間gに関して決定して、その関係式により求めた値を下限値とし、周速Vが下限値以上となる表面処理を行うので、表面の仕上げが良好に行える。したがって、この周速Vの関係式は、表面の仕上げを適正,良好に完了し得るための指標にすることができる。また、周速Vが下限値と、磁気ペーストが飛散を起こさない最大周速Vmax=0.534m/secとの範囲内となる表面処理を行うので、表面の仕上げを失敗なく確実に行える。   In the surface treatment method using a fine shaving action according to the present invention, fluid polishing is performed by a magnetic cluster generated in a magnetic paste, and the relational expression of the peripheral speed V of the rotation operation of the magnetic field generation source is expressed as a gap between the object and the object. Since the surface treatment is performed in which the value determined by g and the value obtained from the relational expression is set as the lower limit value and the peripheral speed V is equal to or higher than the lower limit value, the surface can be satisfactorily finished. Therefore, the relational expression of the peripheral speed V can be used as an index for completing the surface finishing properly and satisfactorily. Further, since the surface treatment is performed so that the peripheral speed V is within the range of the lower limit value and the maximum peripheral speed Vmax = 0.534 m / sec at which the magnetic paste does not scatter, the surface finish can be reliably performed without failure.

すなわち、表面の仕上げを適正,良好に完了し得るための指標を周速Vとし、その指標を利用することにより、非接触による微細な削り作用を失敗なく確実に得ることができる。   That is, by using the peripheral speed V as an index for completing the surface finishing properly and satisfactorily, and using the index, it is possible to reliably obtain a fine cutting action by non-contact without failure.

図1は本発明の好適な一実施の形態を示している。本形態において、微細な削り作用による表面処理を行う構成には、磁界発生源(永久磁石20)を有する研磨バイト2を備え、対象物1に対して研磨バイト2を非接触に対面させ、周辺に存在させた磁気研磨液(磁気ペースト3)を連動し、磁界により生じた磁気クラスタ(粒子集団)の微細な削り作用による表面処理を行うようになっている。   FIG. 1 shows a preferred embodiment of the present invention. In the present embodiment, the configuration for performing the surface treatment by the fine shaving action includes a polishing bit 2 having a magnetic field generation source (permanent magnet 20), the polishing bit 2 faces the object 1 in a non-contact manner, and the periphery In conjunction with the magnetic polishing liquid (magnetic paste 3), the surface treatment is performed by a fine shaving action of the magnetic clusters (particle population) generated by the magnetic field.

対象物1としては、金属材料から形成した金型や樹指材料から形成したモックアップなど、あるいは厚さ数十μmから数百μm程度の薄膜で所定幅のフィルム状の対象物を想定している。この対象物1は、支持台4の上に載せて支持する。支持台4は、所定方向への移動動作を行う移動ステージに構成している。   As the object 1, assuming a film-like object having a predetermined width with a thin film having a thickness of several tens to several hundreds of μm, such as a mold formed from a metal material, a mock-up formed from a finger material, or the like. Yes. This object 1 is placed on and supported on a support base 4. The support table 4 is configured as a moving stage that performs a moving operation in a predetermined direction.

研磨バイト2は、先端に永久磁石20を設けて磁界の発生源とし、他方端の軸部を駆動手段5と連係し、その駆動手段5の駆動により回転動作させるようになっている。そして回転動作に伴って、対象物1と対面した姿勢で移動動作を行い、対象物1の表面に対して走査動作する構成になっている。研磨バイト2には、単に回転動作を行わせるのではなく、例えば正転,逆転の動作を繰り返す反転動作や、当該軸方向に振動動作を行わせるなど、適宜な運動動作を行うようにしてもよい。   The polishing tool 2 is provided with a permanent magnet 20 at its tip to serve as a magnetic field generation source, and the shaft at the other end is linked to the drive means 5 and is rotated by the drive of the drive means 5. Then, in accordance with the rotation operation, the moving operation is performed in a posture facing the object 1, and the scanning operation is performed on the surface of the object 1. The polishing tool 2 is not simply rotated, but may be appropriately moved, for example, a reversing operation that repeats forward and reverse operations and a vibrating operation in the axial direction. Good.

磁界発生源は、永久磁石20には限らず、例えば電磁石なども好ましく適用でき、磁気ペースト3に対して磁界を作用するものであればよい。磁界の発生は時間的に定常的である必要はなく、時間的に変動的な磁界を発生させることもよい。   The magnetic field generation source is not limited to the permanent magnet 20, and for example, an electromagnet can be preferably applied as long as it applies a magnetic field to the magnetic paste 3. The generation of the magnetic field does not have to be stationary in time, and a magnetic field that varies in time may be generated.

駆動手段5には例えばNC工作機を用いればよく、ボール盤,旋盤,NC旋盤,フライス盤などの回転軸(チャック部)に研磨バイト2の軸部を取り付けし、着脱を行うようにする。駆動手段5は、支持台4の表面に沿う直交方向をx軸,y軸とするとき、少なくともx軸およびx,y平面に直交するz軸について多軸制御の機能を有するものとし、当該駆動手段5を起動することにより研磨バイト2には回転動作およびx軸,z軸について所定に移動する運動動作を行わせる。そして、移動ステージの支持台4にはy軸への移動動作を行わせる。もちろん、これら多軸制御の運動動作は適宜であり、例えば移動ステージ(支持台4)は固定として駆動手段5はy軸にも運動動作させるなど、3軸以上の多軸制御が行えるようにしてもよい。   For example, an NC machine tool may be used as the driving means 5, and the shaft portion of the polishing tool 2 is attached to and detached from a rotating shaft (chuck portion) of a drilling machine, lathe, NC lathe, milling machine or the like. The drive means 5 has a multi-axis control function for at least the x-axis and the z-axis orthogonal to the x and y plane when the orthogonal direction along the surface of the support base 4 is the x-axis and y-axis. By starting the means 5, the polishing tool 2 is caused to perform a rotational operation and a motion operation that moves in a predetermined manner with respect to the x-axis and z-axis. Then, the moving stage support 4 is moved to the y axis. Of course, these multi-axis control motions are appropriate. For example, the movable stage (support 4) is fixed, and the drive means 5 is also moved in the y-axis so that multi-axis control of three or more axes can be performed. Also good.

対象物1と磁界発生源20との隙間gは、0.1mmから2.0mmの範囲とする。磁界発生源20の回転動作の周速Vは、

V[m/sec]=0.0178g+0.0637 …(1)

という関係式により算出して下限値とする。そして、周速Vが下限値以上となる表面処理を行うことにする。なお、周速Vは円周上の1点の速度であり、その直径d[mm],回転数N[rpm]に関して、

V[m/sec]=π×d×N/(60×1000) …(2)

という式で表すことができ、算出することができる。上記式(2)のπは円周率である。
A gap g between the object 1 and the magnetic field generation source 20 is in a range of 0.1 mm to 2.0 mm. The peripheral speed V of the rotating operation of the magnetic field source 20 is

V [m / sec] = 0.178 g + 0.0637 (1)

The lower limit value is calculated by the relational expression. Then, surface treatment is performed so that the peripheral speed V is equal to or higher than the lower limit value. The peripheral speed V is the speed of one point on the circumference, and with respect to the diameter d [mm] and the rotational speed N [rpm],

V [m / sec] = π × d × N / (60 × 1000) (2)

And can be calculated. In the above formula (2), π is a circumference ratio.

研磨バイト2の回転動作では、先端の永久磁石20をむやみと高速回転させることは研磨が過剰になり逆にムラに仕上がる等の不良を起こす問題があるため、平滑面を良好に得るには、当該回転における周速を所定範囲内とすることがよい。つまり、周速Vは上限値を、磁気ペースト3が飛散を起こさない最大周速Vmax=0.534m/secとし、周速Vが下限値および上限値の範囲内となる表面処理を行うことが好ましい。   In the rotating operation of the polishing tool 2, since rotating the permanent magnet 20 at the tip excessively causes a problem such as excessive polishing and conversely non-uniform finish, in order to obtain a smooth surface well, It is preferable that the peripheral speed in the rotation is within a predetermined range. In other words, the upper limit of the peripheral speed V is set to the maximum peripheral speed Vmax = 0.534 m / sec at which the magnetic paste 3 does not scatter, and the surface treatment is performed so that the peripheral speed V falls within the range between the lower limit value and the upper limit value. preferable.

磁気ペースト3は、磁性粒子および溶媒との2成分を含む。溶媒には植物油脂などを用いている。この磁気ペースト3は対象物1と研磨バイト2との狭間へ供給手段により供給するようになっている。   The magnetic paste 3 contains two components of magnetic particles and a solvent. Vegetable oil or the like is used as the solvent. The magnetic paste 3 is supplied by a supply means between the object 1 and the polishing tool 2.

磁性粒子には、フェライト粒子などの軟磁性焼結体や鉄粉等の金属粒子などを用いることができる。フェライト粒子は酸化鉄を主成分とするセラミックスであり大半が強磁性を示し、磁化を持つため磁界をかけることで当該粒子は磁気クラスタを形成する。鉄粉等の磁化し得る金属粒子でも同様であり、磁界をかけることで当該粒子は磁気クラスタを形成する。そして、セラミックスであるフェライト粒子や鉄粉等の金属粒子は、対象物1に対しては十分に硬く、したがって研磨のための砥粒として機能させることができ、磁気クラスタそのものが、微細な削り作用による表面処理を行うための磁気ブラシとなる。   As the magnetic particles, soft magnetic sintered bodies such as ferrite particles, metal particles such as iron powder, and the like can be used. Ferrite particles are ceramics mainly composed of iron oxide, and most of them are ferromagnetic and have magnetization so that the particles form magnetic clusters by applying a magnetic field. The same applies to magnetizable metal particles such as iron powder. When a magnetic field is applied, the particles form magnetic clusters. Further, metal particles such as ferrite particles and iron powder, which are ceramics, are sufficiently hard for the object 1 and thus can function as abrasive grains for polishing, and the magnetic cluster itself has a fine cutting action. It becomes a magnetic brush for performing surface treatment by.

磁気ペースト3には樹脂粒子をさらに混在させるようにしてもよい。この場合、樹脂粒子は溶媒に溶解しない不溶解性で低融点の樹脂材料から形成する。そして、樹脂粒子の形状は、例えば球形状としたり、繊維状等の非球形状に形成すしたりすることができる。植物油脂に溶解しない樹脂材料は、例えばポリエチレン(PE),ポリスチレン(PS),ポリメチルメタクリレート(PMMA),ポリエチレンテレフタレート(PET),ポリ塩化ビニル(PVC)などが利用できる。この樹脂粒子の形状は、球形の他に繊維状等の非球形粒子でもよい。   The magnetic paste 3 may be further mixed with resin particles. In this case, the resin particles are formed from an insoluble and low melting point resin material that does not dissolve in the solvent. The shape of the resin particles can be, for example, a spherical shape or a non-spherical shape such as a fibrous shape. For example, polyethylene (PE), polystyrene (PS), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and the like can be used as the resin material that does not dissolve in vegetable oils. The shape of the resin particles may be non-spherical particles such as fibers in addition to the spherical shape.

研磨バイト2の運動動作は上記したように、単なる回転動作や正転,逆転を繰り返す反転動作など、所定の運動動作を行わせる。そして、研磨バイト2には、対面する対象物1に対しては表面を順次になぞっていく移動動作を行わせ、通常の一般的な走査動作を行う。このとき、研磨バイト2(永久磁石20)の近辺には、磁気ペースト3を供給しておく。   As described above, the movement operation of the polishing tool 2 causes a predetermined movement operation such as a simple rotation operation or a reversal operation that repeats normal rotation and reverse rotation. Then, the polishing tool 2 is caused to perform a moving operation of sequentially tracing the surface of the object 1 that faces the polishing tool 2, and a normal general scanning operation is performed. At this time, the magnetic paste 3 is supplied in the vicinity of the polishing tool 2 (permanent magnet 20).

研磨バイト2と対象物1との間には、磁気ペースト3が存在する。当該磁気ペースト3は、フェライト粒子や鉄粉など磁性粒子を含み、永久磁石20により磁気ペースト3に時間的に定常的あるいは変動的な磁界が加わると磁気クラスタが生成する。つまり、磁気研磨液中のフェライト粒子や鉄粉など磁性粒子が、磁気吸引力により多数凝集して磁気クラス夕となる。そして、フェライト粒子や鉄粉など磁性粒子は研磨のための砥粒として機能し、磁気クラスタそのものが、微細な削りを行う磁気ブラシとなる。磁気ブラシは、磁束に沿って対象物1に対立して針状に多数が立ち並び、砥粒作用を行うフェライト粒子が対象物1の表面に抑えつけられる。このとき、研磨バイト2は走査動作することから、フェライト粒子は対象物1の表面上を接触しつつ運動して微細な削りを行う。これにより、非接触の微細な削り作用による表面処理を行うことができる。   A magnetic paste 3 exists between the polishing tool 2 and the object 1. The magnetic paste 3 includes magnetic particles such as ferrite particles and iron powder, and a magnetic cluster is generated when a permanent or variable magnetic field is applied to the magnetic paste 3 with time by the permanent magnet 20. That is, a large number of magnetic particles such as ferrite particles and iron powder in the magnetic polishing liquid are aggregated by the magnetic attractive force to form a magnetic class. Magnetic particles such as ferrite particles and iron powder function as abrasive grains for polishing, and the magnetic cluster itself becomes a magnetic brush that performs fine cutting. A large number of magnetic brushes are arranged in a needle shape in opposition to the object 1 along the magnetic flux, and ferrite particles that perform an abrasive action are suppressed on the surface of the object 1. At this time, since the polishing tool 2 performs a scanning operation, the ferrite particles move while making contact with the surface of the object 1 to perform fine cutting. Thereby, the surface treatment by a non-contact fine cutting action can be performed.

磁界発生源(永久磁石20)の回転動作の周速Vは、表面処理の仕上げ品質を左右する重要な要因であることが分かっている。本発明では、永久磁石20の周速Vは対象物1との隙間gに関して関係式(1)を決定しており、その関係式(1)により求めた値を下限値とし、周速Vが下限値以上となる表面処理を行うので、表面の仕上げが良好に行える。したがって、隙間gに関して決定した周速Vの関係式(1)は、表面の仕上げを適正,良好に完了し得るための指標にすることができる。   It has been found that the peripheral speed V of the rotating operation of the magnetic field generation source (permanent magnet 20) is an important factor affecting the finishing quality of the surface treatment. In the present invention, the peripheral speed V of the permanent magnet 20 determines the relational expression (1) with respect to the gap g with the object 1, the value obtained by the relational expression (1) is set as the lower limit value, and the peripheral speed V is Since the surface treatment is performed at a value not less than the lower limit, the surface can be finished satisfactorily. Therefore, the relational expression (1) of the peripheral speed V determined with respect to the gap g can be used as an index for completing the surface finishing properly and satisfactorily.

また、周速Vの上限値を、磁気ペースト3が飛散を起こさない最大周速Vmax=0.534m/secとし、周速Vが下限値および上限値の範囲内となる表面処理を行うので、表面の仕上げを失敗なく確実に行える。   Further, the upper limit value of the peripheral speed V is set to the maximum peripheral speed Vmax = 0.534 m / sec at which the magnetic paste 3 does not scatter, and the surface treatment is performed so that the peripheral speed V falls within the range between the lower limit value and the upper limit value. The finish of the surface can be performed reliably without failure.

つまり本発明にあっては、表面の仕上げを適正,良好に完了し得るための指標を周速Vとし、その指標を利用することにより、非接触による微細な削り作用を失敗なく確実に得ることができる。   In other words, in the present invention, the index for enabling the surface finish to be completed properly and satisfactorily is set as the peripheral speed V, and by using the index, a fine cutting action by non-contact can be reliably obtained without failure. Can do.

(ドーム状凸面での検証)
図1に示す微細な削り処理のための構成を用いて試料の表面処理(研磨)を行った。試料は、アクリル材料から形成し、図2に示すように、上面にドーム状の凸部を設けたブロック体としてある。
(Verification on a dome-shaped convex surface)
The surface treatment (polishing) of the sample was performed using the structure for fine shaving shown in FIG. The sample is made of an acrylic material, and as shown in FIG. 2, the sample is a block body provided with a dome-shaped convex portion on the upper surface.

表面処理の条件は、研磨バイト2は永久磁石20を球状のネオジウム磁石とし、外径10mm,角アール5mm(φ10R5)のものを用い、磁束密度は800mTとした。研磨バイト2と対象物1との隙間gは0.3mm,0.5mm,1.0mmの3値を選択し、回転数Nは300rpm,500rpmの2値を選択し、走査動作は移動速度120mm/min,移動ピッチ0.1mmとした。磁気ペースト3は、磁性粉末75%,植物油脂25%に調製したものを使用した。   As for the surface treatment conditions, the polishing tool 2 was a permanent magnet 20 having a spherical neodymium magnet, an outer diameter of 10 mm, an angular radius of 5 mm (φ10R5), and a magnetic flux density of 800 mT. The gap g between the polishing tool 2 and the object 1 is selected from three values of 0.3 mm, 0.5 mm, and 1.0 mm, the rotation speed N is selected from two values of 300 rpm and 500 rpm, and the scanning operation is performed at a moving speed of 120 mm. / Min, moving pitch 0.1 mm. As the magnetic paste 3, a powder prepared to 75% magnetic powder and 25% vegetable oil was used.

試料の表面処理(研磨)において、ドーム状凸面に沿って上昇させる走査を行うことでは、図3に示すように仕上げが良好とは言えなくなる境界Lがある。この仕上げの境界Lでは測定したところ、隙間g=0.3mmにおいて永久磁石20の実効直径deは、
4.33mm(回転数N=300rpm)
2.58mm(回転数N=500rpm)
となっている。ここで、周速Vは円周上の1点の速度なので、前述した式(2)により算出することができる。直径dは磁界発生源の永久磁石20の外径、あるいは実効直径deであり、上記した実効直径deでは周速Vは式(2)から、
0.068m/sec(回転数N=300rpm)
0.068m/sec(回転数N=500rpm)
と求まる。
In the surface treatment (polishing) of the sample, when scanning is performed along the dome-shaped convex surface, there is a boundary L where the finish cannot be said to be satisfactory as shown in FIG. When measured at the boundary L of the finish, the effective diameter de of the permanent magnet 20 in the gap g = 0.3 mm is
4.33 mm (rotation speed N = 300 rpm)
2.58 mm (rotation speed N = 500 rpm)
It has become. Here, since the circumferential speed V is a single point speed on the circumference, it can be calculated by the above-described equation (2). The diameter d is the outer diameter or effective diameter de of the permanent magnet 20 of the magnetic field generation source, and the circumferential speed V is calculated from the equation (2) with the effective diameter de described above.
0.068m / sec (rotation speed N = 300rpm)
0.068m / sec (rotation speed N = 500rpm)
It is obtained.

隙間g=0.5mmにおいて永久磁石20の実効直径deは、
4.58mm(回転数N=300rpm)
2.81mm(回転数N=500rpm)
となっており、これらの実効直径deでは周速Vは式(2)から、
0.072m/sec(回転数N=300rpm)
0.074m/sec(回転数N=500rpm)
と求まる。
In the gap g = 0.5 mm, the effective diameter de of the permanent magnet 20 is
4.58mm (rotation speed N = 300rpm)
2.81 mm (rotation speed N = 500 rpm)
With these effective diameters de, the peripheral speed V is from equation (2):
0.072m / sec (rotation speed N = 300rpm)
0.074m / sec (rotation speed N = 500rpm)
It is obtained.

隙間g=1.0mmにおいて永久磁石20の実効直径deは、
5.22mm(回転数N=300rpm)
3.22mm(回転数N=500rpm)
となっており、これらの実効直径deでは周速Vは式(2)から、
0.082m/sec(回転数N=300rpm)
0.084m/sec(回転数N=500rpm)
と求まる。
In the gap g = 1.0 mm, the effective diameter de of the permanent magnet 20 is
5.22 mm (rotation speed N = 300 rpm)
3.22 mm (rotation speed N = 500 rpm)
With these effective diameters de, the peripheral speed V is from equation (2):
0.082m / sec (rotation speed N = 300rpm)
0.084m / sec (rotation speed N = 500rpm)
It is obtained.

次に、走査動作の移動速度を半分の60mm/minとし、2倍の研磨時間で同様に表面処理を行ったが、仕上げの境界Lはほとんど変わらなく実効直径deが略同値となることを確認した。このため、測定データの記載は省略する。   Next, the moving speed of the scanning operation was reduced to 60 mm / min, and the surface treatment was performed in the same manner with twice the polishing time. However, it was confirmed that the effective diameter de was almost the same with the finishing boundary L almost unchanged. did. For this reason, description of measurement data is omitted.

以上の実効直径deにおいて、周速Vは、回転数Nが50rpmから1000rpmの範囲では表1に示す値となる。

Figure 2009166199
At the effective diameter de described above, the peripheral speed V takes the values shown in Table 1 when the rotational speed N is in the range of 50 rpm to 1000 rpm.
Figure 2009166199

表1から明らかなように、周速Vは円周上の1点の速度なので、円周つまり実効直径deの回転数Nに応じて決定し、回転数Nが変われば当然ながら周速Vも変化するが、回転数Nを上げることでは仕上げの境界Lが上がり実効直径deが小さくなっていく。このため、回転数Nが変わっても研磨を適正に行い得る周速Vにはほとんど変動がない。したがって、実効直径deについて周速Vが所定以上であれば研磨は良好に行うことができ、周速Vは指標となる。仕上げの境界Lよりも上側では、周速Vが低いため微細な削り作用が大幅に低下しており、時間がかかり過ぎて実用的ではないと言える。   As apparent from Table 1, since the circumferential speed V is a single point on the circumference, it is determined in accordance with the circumference, that is, the rotational speed N of the effective diameter de. Although changing, increasing the rotation speed N increases the finishing boundary L and decreases the effective diameter de. For this reason, even if the rotation speed N changes, there is almost no change in the peripheral speed V at which polishing can be performed properly. Therefore, if the circumferential speed V is greater than or equal to the predetermined value for the effective diameter de, polishing can be performed satisfactorily, and the circumferential speed V is an index. Above the finishing boundary L, since the peripheral speed V is low, the fine cutting action is greatly reduced, and it can be said that it takes too much time and is not practical.

磁界発生源の永久磁石20と対象物1との隙間gに関しては、隙間gが大きくなるほど仕上げの境界Lが下がり、実効直径deが増す分は周速Vも高い値を示すことになる。仕上げの境界Lでの周速Vは隙間gに関してプロットすると図4に示すように略直線となり、1次の関数で表すことができる。つまり、周速Vは隙間gと1次の相関があり、図4に示す測定結果によれば、

V[m/sec]=0.0178g+0.0637 …(1)

と表すことができ、これは前述した関係式(1)になっている。
Regarding the gap g between the permanent magnet 20 of the magnetic field generation source and the object 1, the finishing boundary L decreases as the gap g increases, and the peripheral speed V increases as the effective diameter de increases. When the circumferential velocity V at the finishing boundary L is plotted with respect to the gap g, it becomes a substantially straight line as shown in FIG. 4 and can be expressed by a linear function. That is, the circumferential speed V has a first-order correlation with the gap g, and according to the measurement result shown in FIG.

V [m / sec] = 0.178 g + 0.0637 (1)

This is the relational expression (1) described above.

(45度斜面での検証)
試料の形状を変更し、同様の構成,手順により表面処理(研磨)を行った。試料はアクリル材料から形成した板部材とし、図5に示すように、研磨バイト2に対して45度の傾斜姿勢に保持することにした。
(Verification on 45 degrees slope)
The shape of the sample was changed, and surface treatment (polishing) was performed with the same configuration and procedure. The sample was a plate member made of an acrylic material, and was held in an inclined posture of 45 degrees with respect to the polishing tool 2 as shown in FIG.

表面処理の条件は、研磨バイト2は永久磁石20を球状のネオジウム磁石とし、外径6mm,角アール3mm(φ6R3)のものを用い、磁束密度は800mTとした。研磨バイト2と対象物1との隙間gは0.1mmとし、回転数Nは100,200,300,600,1000rpmの5値を選択し、走査動作は移動速度120mm/min,移動ピッチ0.1mmとした。磁気ペースト3は、磁性粉末75%,植物油脂25%に調製したものを使用した。   As for the surface treatment conditions, the polishing tool 2 used a permanent magnet 20 as a spherical neodymium magnet, an outer diameter of 6 mm, an angular radius of 3 mm (φ6R3), and a magnetic flux density of 800 mT. The gap g between the polishing tool 2 and the object 1 is 0.1 mm, the rotation speed N is selected from five values of 100, 200, 300, 600, and 1000 rpm, the scanning operation is a moving speed of 120 mm / min, a moving pitch of 0. It was 1 mm. As the magnetic paste 3, a powder prepared to 75% magnetic powder and 25% vegetable oil was used.

回転数Nを変更して試料の研磨を行い、それぞれ研磨後の表面粗さ(算術平均粗さRa,最大粗さRy)を評価した。試料の研磨を行ったところ図6に示す結果を得ており、回転数N=0での算術平均粗さRa,最大粗さRyが研磨前の値であり、算術平均粗さRa,最大粗さRyは回転数Nが200rpmから300rpmのときに最小値が得られることを確認した。   The sample was polished by changing the number of revolutions N, and the surface roughness (arithmetic average roughness Ra, maximum roughness Ry) after polishing was evaluated. When the sample was polished, the results shown in FIG. 6 were obtained. The arithmetic average roughness Ra and the maximum roughness Ry at the rotational speed N = 0 were values before polishing, and the arithmetic average roughness Ra and the maximum roughness were obtained. It was confirmed that the minimum value Ry was obtained when the rotational speed N was 200 rpm to 300 rpm.

永久磁石20が外径6mm(φ6R3)の場合、45度斜面に対して実効直径deは4.24mmとなり、これは計算から求まる。そして周速Vは、
0.022m/sec(回転数N=100rpm),
0.044m/sec(回転数N=200rpm),
0.067m/sec(回転数N=300rpm),
0.133m/sec(回転数N=600rpm),
0.222m/sec(回転数N=1000rpm)
となる。
When the permanent magnet 20 has an outer diameter of 6 mm (φ6R3), the effective diameter de is 4.24 mm with respect to the 45 ° slope, and this is obtained from the calculation. And the peripheral speed V is
0.022 m / sec (rotation speed N = 100 rpm),
0.044 m / sec (rotation speed N = 200 rpm),
0.067 m / sec (rotation speed N = 300 rpm),
0.133 m / sec (rotation speed N = 600 rpm),
0.222 m / sec (rotation speed N = 1000 rpm)
It becomes.

図6のグラフから明らかなように、回転数Nが200rpmから300rpmにおいて良好な仕上がりを得ることができ、周速Vは0.044m/secから0.067m/secの範囲となる。回転数Nが600rpm以上の研磨は、表面粗さは初期値よりも向上できているが表面にキズが生じることを確認した。したがって、試料(アクリル材料)に対して周速Vが0.133m/secは高すぎると言える。   As is apparent from the graph of FIG. 6, good finish can be obtained when the rotational speed N is 200 rpm to 300 rpm, and the peripheral speed V is in the range of 0.044 m / sec to 0.067 m / sec. Polishing with a rotational speed N of 600 rpm or more confirmed that the surface roughness was improved from the initial value, but the surface was scratched. Therefore, it can be said that the peripheral speed V of 0.133 m / sec is too high for the sample (acrylic material).

また、隙間gを0.1mm以下にすると、試料の表面を傷つけるリスクが高くなり、磁気ペースト3が当該隙間gに存在し難くなってしまい、微細な削り作用を得られなくなるので実用性が低い。   On the other hand, if the gap g is 0.1 mm or less, the risk of damaging the surface of the sample is increased, and the magnetic paste 3 becomes difficult to exist in the gap g. .

以上から45度斜面については、隙間gを0.1mmとした場合、実効直径de=4.24mmについて、周速Vが0.044m/secから0.067m/sec程度であれば研磨は良好に行うことができる。ただし、上記した式(1)から演算すると、周速Vは0.067m/secを得ることができ、周速Vが0.044m/secはアクリル材料を透明に仕上げる条件には不十分であることが分かっている。これらの点を考慮すると、隙間gが0.1mmの表面処理には、周速Vは0.067m/sec以上とし、これを下限値とすることがよい。   As for the 45-degree slope from the above, when the gap g is 0.1 mm, the effective diameter de = 4.24 mm, and the peripheral speed V is about 0.044 m / sec to 0.067 m / sec. It can be carried out. However, when calculating from the above equation (1), the peripheral speed V can be 0.067 m / sec, and the peripheral speed V of 0.044 m / sec is insufficient for the condition for finishing the acrylic material transparent. I know that. Considering these points, for the surface treatment with the gap g of 0.1 mm, the peripheral speed V is preferably 0.067 m / sec or more, and this should be the lower limit.

なお、試料はアクリル材料から形成するため比較的に柔らかく、硬度がより高い金属材料などは、ここで決定した下限値以上を必要となることはもちろんである。したがって、逆に言えることは、ここで決定したアクリル材料に係る値を下限値と考えてよく、実用上はむしろ都合がよい。   In addition, since a sample is formed from an acrylic material, it is needless to say that a metal material or the like that is relatively soft and has a higher hardness needs a value that is not less than the lower limit determined here. Therefore, conversely, the value relating to the acrylic material determined here may be considered as the lower limit value, which is rather convenient in practice.

(周速Vの上限値の検証)
周速Vの上限値を知るため、磁気ペースト3の飛散が起こる回転数Nを検証した。条件設定は上記した2例と概ね一致させてあり、研磨バイト2は永久磁石20を先が丸い棒形状のネオジウム磁石とし、外径6mm,角アール3mm(φ6R3)のものを用い、磁束密度は800mTとした。磁気ペースト3は、磁性粉末75%,植物油脂25%に調製したもの5gを使用した。
(Verification of upper limit of peripheral speed V)
In order to know the upper limit value of the peripheral speed V, the rotational speed N at which the magnetic paste 3 scatters was verified. The condition setting is generally the same as in the above two examples, and the polishing tool 2 is a neodymium magnet having a rounded rod shape as the permanent magnet 20, an outer diameter of 6 mm and a corner radius of 3 mm (φ6R3), and the magnetic flux density is 800 mT. As the magnetic paste 3, 5 g of 75% magnetic powder and 25% vegetable oil was prepared.

検証は図7に示すように、研磨バイト2の先端部分を囲うように容器6を配置し、回転数Nは500rpmから100rpmステップで順次に上昇させ、飛散が始まる回転数Nを記録した。   As shown in FIG. 7, the container 6 was arranged so as to surround the tip portion of the polishing tool 2 as shown in FIG. 7, and the rotational speed N was sequentially increased from 500 rpm in 100 rpm steps, and the rotational speed N at which scattering started was recorded.

その結果、回転数Nは1700rpmまでは飛散がなく、1800rpmでは飛散が起きることを確認した。研磨バイト2の永久磁石20は外径6mm,角アール3mm(φ6R3)なので、回転数N=1700rpmは周速V=0.534m/secであり、したがって、飛散を起こさない最大周速Vmaxは0.534m/secとなり、これが上限値となる。   As a result, it was confirmed that the rotation speed N was not scattered up to 1700 rpm, and scattering occurred at 1800 rpm. Since the permanent magnet 20 of the polishing tool 2 has an outer diameter of 6 mm and an angular radius of 3 mm (φ6R3), the rotational speed N = 1700 rpm is the peripheral speed V = 0.534 m / sec, and therefore the maximum peripheral speed Vmax that does not cause scattering is 0. .534 m / sec, which is the upper limit.

磁気ペースト3の飛散は、研磨バイト2の回転数Nによる遠心力が、磁気的な吸着力を上回った際に生じるので、最大周速Vmaxの値は永久磁石20の磁束密度および磁気ペースト3の磁性組成に依存して変わるが、上記したように、ここで決定した最大周速Vmaxは回転数Nが1700rpmであり、表面処理はより低回転で行うことから実用面からは上限値と考えてよい。   The scattering of the magnetic paste 3 occurs when the centrifugal force due to the rotational speed N of the polishing tool 2 exceeds the magnetic attractive force, so that the value of the maximum peripheral speed Vmax is the magnetic flux density of the permanent magnet 20 and the magnetic paste 3. Although it depends on the magnetic composition, as described above, the maximum peripheral speed Vmax determined here is 1700 rpm, and the surface treatment is performed at a lower speed, so that it is considered to be an upper limit from a practical aspect. Good.

(磁束密度の検証)
複数の研磨バイト2について磁束密度を測定した。研磨バイト2は、永久磁石20を球状のネオジウム磁石とし、外径6mm,角アール3mm(φ6R3)と、外径10mm,角アール5mm(φ10R5)と、外径15mm,角アール7.5mm(φ15R7.5)との3つを用意し、先端頂部および中心軸との挟み角が45度の部位とについてそれぞれ磁束密度を測定した。先端頂部はTOPと呼ぶことにする。そして、中心軸との挟み角が45度の部位は、図5に示す45度斜面と対面する部位であり、45度部位と呼ぶことにする。
(Verification of magnetic flux density)
The magnetic flux density was measured for a plurality of polishing tools 2. In the polishing tool 2, the permanent magnet 20 is a spherical neodymium magnet, the outer diameter is 6 mm, the corner radius is 3 mm (φ6R3), the outer diameter is 10 mm, the corner radius is 5 mm (φ10R5), the outer diameter is 15 mm, and the corner radius is 7.5 mm (φ15R7). .5) were prepared, and the magnetic flux density was measured for the tip apex portion and the portion having a sandwich angle of 45 degrees with the central axis. The top of the tip will be called TOP. And the part where the angle between the central axis and the central axis is 45 degrees is a part facing the 45 degree slope shown in FIG. 5 and will be called a 45 degree part.

その結果、図8,図9,図10に示すグラフを得た。これらのグラフは、横軸が間隔つまり表面処理における隙間gになっており、実線がTOPでの磁束密度、点線が45度部位での磁束密度である。図8は磁界発生源の永久磁石20が(φ6R3)、図9は磁界発生源の永久磁石20が(φ10R5)、図10は磁界発生源の永久磁石20が(φ15R7.5)のデータであり、何れにおいても、隙間gが1.0mmでは磁束密度は400mTを上回って得ることができるが、隙間gが2.0mmになると磁束密度は400mT以下にしか得られないことを確認した。   As a result, the graphs shown in FIGS. 8, 9, and 10 were obtained. In these graphs, the horizontal axis is the interval, that is, the gap g in the surface treatment, the solid line is the magnetic flux density at TOP, and the dotted line is the magnetic flux density at the 45-degree region. 8 shows the data of the permanent magnet 20 of the magnetic field generation source (φ6R3), FIG. 9 shows the data of the permanent magnet 20 of the magnetic field generation source (φ10R5), and FIG. 10 shows the data of the permanent magnet 20 of the magnetic field generation source (φ15R7.5). In any case, it was confirmed that when the gap g is 1.0 mm, the magnetic flux density can exceed 400 mT, but when the gap g is 2.0 mm, the magnetic flux density can be obtained only at 400 mT or less.

以上の検証から以下に述べる見解に至った。   The above verification has led to the following view.

(ドーム状凸面での検証)から明らかなように、実効直径deでの周速Vが所定値以上であれば研磨は良好に行うことができ、回転数Nを上げることでは仕上げの境界Lが上がり実効直径deが小さくなっていくため、回転数Nが変わっても研磨を適正に行い得る周速Vにはほとんど変動がない。したがって、実効直径deについて周速Vが所定以上であれば研磨は良好に行うことができ、これは指標となる。そして、磁界発生源の永久磁石20と対象物1との隙間gに関しては、周速Vは隙間gと1次の相関があり、上記した式(1)により表すことができる。   As is clear from (verification on the dome-shaped convex surface), the polishing can be performed satisfactorily if the peripheral speed V at the effective diameter de is equal to or higher than a predetermined value, and the finishing boundary L is increased by increasing the rotational speed N. Since the effective effective diameter de increases, the peripheral speed V at which the polishing can be properly performed hardly varies even when the rotational speed N changes. Therefore, if the peripheral speed V is greater than or equal to a predetermined value for the effective diameter de, polishing can be performed satisfactorily, which is an index. And regarding the clearance g between the permanent magnet 20 of the magnetic field generation source and the object 1, the peripheral speed V has a first-order correlation with the clearance g and can be expressed by the above-described equation (1).

周速Vは円周上の1点の速度なので、前述した式(2)により算出することができ、直径dは磁界発生源の永久磁石20の外径、あるいは実効直径deであり、その直径dあるいは実効直径deは0.1mmから10mmの範囲、回転数Nは200rpmから2100rpmの範囲では、周速Vは表2に示すように求まる。

Figure 2009166199
Since the peripheral speed V is a single point speed on the circumference, it can be calculated by the above-described equation (2), and the diameter d is the outer diameter or effective diameter de of the permanent magnet 20 of the magnetic field generation source. When d or effective diameter de is in the range of 0.1 mm to 10 mm, and the rotation speed N is in the range of 200 rpm to 2100 rpm, the peripheral speed V is obtained as shown in Table 2.
Figure 2009166199

そこで例えば、研磨バイト2は球状の永久磁石20が外径10mm,角アール5mm(φ10R5)であり、対象物1との隙間gを1.5mmとした場合を考える。まず、隙間gとの関係式(1)へ代入することにより、下限値となる周速Vは0.0904m/secであることが求まる。そして、(周速Vの上限値の検証)からは最大周速Vmax=0.534m/secなので、0.534m/secは表2から分かるように、直径d=10mmでは回転数Nが1000rpmを上回るところにあるため、1000rpmが回転数Nの限界であると言える。以上の下限値と上限値を表2に当てはめてみると、直径dが1.8mm程度までは表面の仕上げを適正,良好に完了し得ると言え、つまり、磁界発生源の実効直径deは、最小値が1.8mm程度となることが判明する。   Therefore, for example, consider a case where the polishing tool 2 has a spherical permanent magnet 20 with an outer diameter of 10 mm and an angular radius of 5 mm (φ10R5), and a gap g with the object 1 of 1.5 mm. First, by substituting into the relational expression (1) with respect to the gap g, it is found that the peripheral speed V that is the lower limit value is 0.0904 m / sec. Since (the verification of the upper limit value of the circumferential speed V) is the maximum circumferential speed Vmax = 0.534 m / sec, as can be seen from Table 2, 0.534 m / sec has a rotational speed N of 1000 rpm when the diameter d = 10 mm. Since it is in the place where it exceeds, it can be said that 1000 rpm is the limit of the rotation speed N. When the above lower limit value and upper limit value are applied to Table 2, it can be said that the finishing of the surface can be completed properly and satisfactorily until the diameter d is about 1.8 mm. That is, the effective diameter de of the magnetic field source is It turns out that the minimum value is about 1.8 mm.

このように、周速Vの関係式(1)は、表面の仕上げを適正,良好に完了し得るための指標とすることができ、その指標を利用することにより非接触による微細な削り作用を失敗なく確実に得ることができる。   Thus, the relational expression (1) of the peripheral speed V can be used as an index for completing the surface finishing properly and satisfactorily. By using the index, a fine cutting action by non-contact can be achieved. You can get it without failure.

また、検証の結果を整理すると、隙間gに対しては周速Vは表3に示す値になっている。図11は表3をプロットしたグラフであり、研磨が良好に得られる周速Vの範囲を示している。

Figure 2009166199
Further, when the results of the verification are arranged, the peripheral speed V is a value shown in Table 3 for the gap g. FIG. 11 is a graph in which Table 3 is plotted, and shows the range of the peripheral speed V at which polishing can be satisfactorily obtained.
Figure 2009166199

隙間gを大きくすることで、周速Vは下限値が順次に高くなっていき、対応させて大きく設定する必要がある。   By increasing the gap g, the lower limit value of the peripheral speed V increases in order, and it is necessary to set a larger value correspondingly.

隙間gが0.1mm以下の場合は、走査動作のばらつき等に起因した研磨バイト2のぶれ動作などのため互いが接触し、対象物1を損傷してしまうリスクが高くなる。また、永久磁石20と対象物1との間に砥粒が存在し難くなり、微細な削りの作用力が低下して処理時間が長くなるため実用に適さなく、隙間g=0.1mmが下限と考えてよい。   When the gap g is 0.1 mm or less, there is a high risk that the objects 1 may be damaged by contact with each other due to the movement of the polishing tool 2 due to variations in scanning operation. In addition, it becomes difficult for abrasive grains to exist between the permanent magnet 20 and the object 1, and the working force for fine shaving is reduced and the processing time is prolonged, so that it is not suitable for practical use, and the gap g = 0.1 mm is the lower limit. You may think.

隙間gが2.0mm以上の場合は、(磁束密度の検証)から言って、磁束密度が400mT以下に低減してしまい、400mT以下は微細な削りの作用力が低下して処理時間が長くなる傾向があり実用性が低い。したがって、隙間g=2.0mmが上限と考えてよい。   When the gap g is 2.0 mm or more, the magnetic flux density is reduced to 400 mT or less from (verification of magnetic flux density), and when 400 mT or less, the working force for fine shaving is reduced and the processing time is increased. There is a tendency and practicality is low. Therefore, the gap g = 2.0 mm may be considered as the upper limit.

本発明の好適な一実施の形態を示す側面図である。1 is a side view showing a preferred embodiment of the present invention. 対象物の一例を示し、アクリル材料から形成したブロック体の斜視図である。It is a perspective view of the block body which showed an example of the target object and was formed from the acrylic material. 研磨バイトによる微細な削り作用を説明する側面図であり、球状の磁界発生源の実効直径deと仕上げの境界Lとの関係を示している。It is a side view explaining the fine cutting action by the grinding tool, and shows the relationship between the effective diameter de of the spherical magnetic field generation source and the finishing boundary L. 磁界発生源と対象物との隙間gに関する周速Vを示すグラフである。It is a graph which shows the peripheral speed V regarding the clearance gap g between a magnetic field generation source and a target object. 研磨バイトによる微細な削り作用を説明する斜視図であり、45度斜面での例を示している。It is a perspective view explaining the fine shaving effect | action by a grinding | polishing bite, and has shown the example in a 45 degree slope. 45度斜面の試料について表面粗さの測定結果を示すグラフであり、回転数N=0は微細な削り処理前の表面粗さを表示している。It is a graph which shows the measurement result of surface roughness about the sample of a 45 degree | times slope, and the rotation speed N = 0 has displayed the surface roughness before a fine cutting process. 周速の上限値を検証するための構成であり研磨バイトの部分を示す側面図である。FIG. 6 is a side view showing a polishing tool portion that is a configuration for verifying an upper limit value of a peripheral speed. 研磨バイトについて磁束密度の測定結果を示すグラフであり、磁界発生源は球状(φ6R3)である。It is a graph which shows the measurement result of magnetic flux density about a grinding tool, and a magnetic field generation source is spherical (φ6R3). 研磨バイトについて磁束密度の測定結果を示すグラフであり、磁界発生源は球状(φ10R5)である。It is a graph which shows the measurement result of magnetic flux density about a grinding tool, and a magnetic field generation source is spherical (φ10R5). 研磨バイトについて磁束密度の測定結果を示すグラフであり、磁界発生源は球状(φ15R7.5)である。It is a graph which shows the measurement result of magnetic flux density about a grinding tool, and a magnetic field generation source is spherical (φ15R7.5). 磁界発生源と対象物との隙間gに関する周速Vを示すグラフであり、研磨が良好に得られる周速の範囲を示している。It is a graph which shows the peripheral speed V regarding the clearance gap g of a magnetic field generation source and a target object, and has shown the range of the peripheral speed from which grinding | polishing is acquired favorably.

符号の説明Explanation of symbols

1 対象物
2 研磨バイト
3 磁気ペースト
4 支持台
5 駆動手段
6 容器
20 永久磁石(磁界発生源)
DESCRIPTION OF SYMBOLS 1 Object 2 Polishing tool 3 Magnetic paste 4 Support stand 5 Drive means 6 Container 20 Permanent magnet (magnetic field generation source)

Claims (2)

対象物に対して磁界発生源を非接触に対面させ、周辺に存在させた磁気ペーストを連動し、磁界により生じた粒子集団の微細な削り作用による表面処理を行う表面処理方法であって、
前記対象物と前記磁界発生源との隙間gは0.1mmから2.0mmの範囲とし、前記磁界発生源の回転動作の周速Vは、

V[m/sec]=0.0178g+0.0637

という関係式により算出して下限値とし、前記周速Vが前記下限値以上となる表面処理を行うことを特徴とする微細な削り作用による表面処理方法。
A surface treatment method in which a magnetic field generation source is faced in a non-contact manner with respect to an object, a magnetic paste existing in the periphery is interlocked, and a surface treatment is performed by a fine shaving action of a particle population generated by a magnetic field,
The gap g between the object and the magnetic field generation source is in the range of 0.1 mm to 2.0 mm, and the peripheral speed V of the rotating operation of the magnetic field generation source is

V [m / sec] = 0.178 g + 0.0637

A surface treatment method using a fine shaving action, characterized in that the surface treatment is carried out so that the peripheral speed V is not less than the lower limit value.
前記周速Vは上限値を、前記磁気ペーストが飛散を起こさない最大周速Vmax=0.534m/secとし、前記周速Vが前記下限値および前記上限値の範囲内となる表面処理を行うことを特徴とする請求項1に記載の微細な削り作用による表面処理方法。   The peripheral speed V has an upper limit value that is a maximum peripheral speed Vmax = 0.534 m / sec at which the magnetic paste does not scatter, and the peripheral speed V is within a range between the lower limit value and the upper limit value. The surface treatment method according to claim 1, wherein the surface treatment method is based on a fine shaving action.
JP2008008913A 2008-01-18 2008-01-18 Surface processing method using fine cutting action Pending JP2009166199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008913A JP2009166199A (en) 2008-01-18 2008-01-18 Surface processing method using fine cutting action

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008913A JP2009166199A (en) 2008-01-18 2008-01-18 Surface processing method using fine cutting action

Publications (1)

Publication Number Publication Date
JP2009166199A true JP2009166199A (en) 2009-07-30

Family

ID=40967973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008913A Pending JP2009166199A (en) 2008-01-18 2008-01-18 Surface processing method using fine cutting action

Country Status (1)

Country Link
JP (1) JP2009166199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108268728A (en) * 2018-01-22 2018-07-10 上海交通大学 Automobile tail gate structural optimization method based on two-step Modified particle swarm optimization algorithm
CN111451899B (en) * 2020-03-16 2021-09-10 华中科技大学 Automatic blade grinding and polishing method and device, electronic equipment and readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167969A (en) * 2005-12-19 2007-07-05 Fdk Corp Scratch machining method and machining device
JP2007296598A (en) * 2006-04-28 2007-11-15 Fdk Corp Magnetic polishing method and wafer polishing device
JP2007313634A (en) * 2006-04-28 2007-12-06 Fdk Corp Polishing tool and mirror surface polishing method using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167969A (en) * 2005-12-19 2007-07-05 Fdk Corp Scratch machining method and machining device
JP2007296598A (en) * 2006-04-28 2007-11-15 Fdk Corp Magnetic polishing method and wafer polishing device
JP2007313634A (en) * 2006-04-28 2007-12-06 Fdk Corp Polishing tool and mirror surface polishing method using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108268728A (en) * 2018-01-22 2018-07-10 上海交通大学 Automobile tail gate structural optimization method based on two-step Modified particle swarm optimization algorithm
CN108268728B (en) * 2018-01-22 2021-03-16 上海交通大学 Automobile tail door structure optimization method based on two-step improved particle swarm optimization algorithm
CN111451899B (en) * 2020-03-16 2021-09-10 华中科技大学 Automatic blade grinding and polishing method and device, electronic equipment and readable storage medium

Similar Documents

Publication Publication Date Title
Jiao et al. Study on improving the trajectory to elevate the surface quality of plane magnetic abrasive finishing
Zhang et al. A novel magnetically driven polishing technique for internal surface finishing
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
Mutalib et al. Magnetorheological finishing on metal surface: A review
CN107498446B (en) A kind of elastic polished equipment and method of special-shaped workpiece
JP2009166199A (en) Surface processing method using fine cutting action
JP5036374B2 (en) Paste material
Feng et al. Effect of the components of Magnetic Compound Fluid (MCF) slurry on polishing characteristics in aspheric-surface finishing with the doughnut-shaped MCF tool
JP6371645B2 (en) Magnetic polishing method and magnetic polishing apparatus using a magnet tool
JP2007021661A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
JPWO2006030854A1 (en) Polishing method and polishing apparatus for complex shapes
JP2007296598A (en) Magnetic polishing method and wafer polishing device
JP5025275B2 (en) Polishing tool
Shanbhag et al. Modelling for evaluation of surface roughness in magnetic abrasive finishing of flat surfaces
Saraswathamma Magnetorheological finishing: a review
Park et al. Ultra-high-precision machining of microscale-diameter zirconia ceramic bars by means of magnetic abrasive finishing
CN104858721B (en) Grinding method of high-precision beryllium semi-spherical through hole
Heng et al. A novel auto-gaping magnetic pole system for inner surface finishing of non-circular pipes using magnetic abrasive finishing process
JP2009095960A (en) Surface treatment method of film-like object
JP2010214505A (en) Method for increasing form restoring force of particle dispersion type mixture functional fluid using varied magnetic field and polishing method and polishing device using the same
JP2006082213A (en) Method of cutting work and cutting work/mirror polishing device
JP5110678B2 (en) Magnetic polishing method
Feng et al. Polishing investigation on zirconia ceramics using magnetic compound fluid slurry
Jiao et al. The study of plane magnetic abrasive finishing based on axial pressure
JP2016137553A (en) Polishing apparatus and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130314