JPH0911114A - Surface finish process method - Google Patents

Surface finish process method

Info

Publication number
JPH0911114A
JPH0911114A JP18114195A JP18114195A JPH0911114A JP H0911114 A JPH0911114 A JP H0911114A JP 18114195 A JP18114195 A JP 18114195A JP 18114195 A JP18114195 A JP 18114195A JP H0911114 A JPH0911114 A JP H0911114A
Authority
JP
Japan
Prior art keywords
fluid
electric field
vibration
hole
electrorheological fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18114195A
Other languages
Japanese (ja)
Inventor
Kenji Nuri
健治 塗
Tatsuya Ito
達也 伊藤
Kazuyuki Ito
一幸 伊藤
Shinzo Nishimura
信三 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP18114195A priority Critical patent/JPH0911114A/en
Publication of JPH0911114A publication Critical patent/JPH0911114A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a surface finish process method effective in the removal of loading in a thin hole in a precision workpiece and others. CONSTITUTION: A thin through hole 12 portion formed in a ceramic cap 11 is immersed in HR fluid 14. Electrodes 14, 15 are disposed respectively above and below the ER fluid 13 and an electric field is applied to the electrodes, while vibrations are giving between the ER fluid 13 and ceramic cap 11 by a vibrator 18. Fine granular clusters in the ER fluid 13 are formed in the thin through hole 12 of the ceramic cap 11 in parallel to the thin through hole 12 and the clusters act as a lapping rod to carry out the finish process for the inner surface of the thin through hole 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、各種機械加工部品の
孔内の詰まり除去、バリ取り、仕上げ研磨、精密丸み付
け等に適用される面仕上げ処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface finishing method applied to the removal of clogging in holes of various machined parts, deburring, finish polishing, precision rounding and the like.

【0002】[0002]

【従来の技術】通常、各種機械加工部品の仕上げ研磨に
は、微粒研磨材を用いた機械的な研磨が用いられる。し
かし部品によっては、研磨すべき面の形状や位置等が、
機械的圧力を加えることが不可能であったり、あるいは
著しく困難であったりする。曲面や円筒内面等の表面仕
上げに有効な研磨法として、磁性研磨材を用い、磁界の
作用で研磨圧力を生じさせる磁気研磨法が知られている
が、この方法でも適用が難しい精密部品がある。
2. Description of the Related Art Generally, mechanical polishing using a fine grain abrasive is used for finish polishing of various machined parts. However, depending on the part, the shape and position of the surface to be polished may
It is impossible or extremely difficult to apply mechanical pressure. A magnetic polishing method that uses a magnetic abrasive to generate a polishing pressure by the action of a magnetic field is known as an effective polishing method for the surface finish of a curved surface or an inner surface of a cylinder, but there are precision parts that are difficult to apply even with this method. .

【0003】その様な部品の一つとして例えば、図9に
示す限界電流式セラミック酸素センサ90のセラミック
キャップ94がある。このセラミック酸素センサ90
は、両面にポンピング用の電極92,93が形成された
セラミックイオン伝導体91と、その一方の面に設けら
れた貫通細孔95を持つセラミックキャップ94とから
構成される。セラミックキャップ94上にはヒータ96
が形成されている。セラミックキャップ94に開けられ
た貫通細孔95は、セラミックイオン伝導体91に対し
て拡散律速により酸素を供給するためのもので、これに
よりいわゆる限界電流特性が得られる。
One such component is, for example, the ceramic cap 94 of the limiting current type ceramic oxygen sensor 90 shown in FIG. This ceramic oxygen sensor 90
Is composed of a ceramic ion conductor 91 having pumping electrodes 92 and 93 formed on both surfaces thereof, and a ceramic cap 94 having through pores 95 provided on one surface thereof. A heater 96 is provided on the ceramic cap 94.
Are formed. The through-pores 95 opened in the ceramic cap 94 are for supplying oxygen to the ceramic ion conductor 91 by diffusion rate control, whereby so-called limiting current characteristics are obtained.

【0004】小型の限界電流式セラミック酸素センサで
は、貫通細孔95は、径が10μmあるいはそれ以下で
あり、深さが0.8mm程度である。この様な貫通細孔
95が予め形成されたセラミックキャップ94を機械研
磨すると、貫通細孔95には研磨砥粒が詰まる。貫通細
孔95は径が小さく且つ深いために、その後超音波洗浄
等を行っても、30%程度は研磨砥粒が取り除かれずに
残り、拡散律速孔として十分機能せず、不良品となる。
In the small-sized limiting current type ceramic oxygen sensor, the through pore 95 has a diameter of 10 μm or less and a depth of about 0.8 mm. When the ceramic cap 94 in which such through-holes 95 are formed in advance is mechanically polished, the through-holes 95 are clogged with abrasive grains. Since the diameter of the through pores 95 is small and deep, even if ultrasonic cleaning is performed thereafter, about 30% of the polishing abrasive grains remain without being removed and do not function sufficiently as diffusion-controlled pores, resulting in a defective product.

【0005】また、図10に示すように、金属製あるい
はプラスチック製のパイプ100に側面から孔101を
加工すると、パイプ内面にバリ102ができる。パイプ
100が極めて小さいものである場合、その内面のバリ
102を取る仕上げ研磨は困難である。
Further, as shown in FIG. 10, when a hole 101 is formed in a side surface of a metal or plastic pipe 100, a burr 102 is formed on the inner surface of the pipe. If the pipe 100 is extremely small, it is difficult to finish polish the burr 102 on the inner surface of the pipe 100.

【0006】[0006]

【発明が解決しようとする課題】以上のように、精密機
械加工部品には、その形状や大きさ、位置等の点で面の
仕上げ処理が難しいものが少なくない。この発明は上記
の点に鑑みてなされたもので、機械加工部品の孔内の詰
まり除去、バリ取り、仕上げ研磨、精密丸み付け等に有
用な面仕上げ処理方法を提供することを目的としてい
る。
As described above, in many precision machined parts, it is difficult to finish the surface in terms of shape, size, position and the like. The present invention has been made in view of the above points, and an object of the present invention is to provide a surface finishing treatment method useful for removing clogging in holes of machined parts, deburring, finish polishing, precision rounding, and the like.

【0007】[0007]

【課題を解決するための手段】この発明に係る面仕上げ
処理方法は、第1に、機械加工部品の少なくとも仕上げ
処理すべき面を、絶縁性溶媒に誘電体微粒子を分散させ
た電気粘性流体中に浸し、前記電気粘性流体に電界を印
加し、前記電気粘性流体と前記機械加工部品の仕上げ処
理すべき面のとの間に摩擦力を生じさせる振動を与える
ことを特徴としている。
According to the surface finishing method of the present invention, first, at least the surface of a machined part to be finished is immersed in an electrorheological fluid in which dielectric fine particles are dispersed in an insulating solvent. And an electric field is applied to the electrorheological fluid to apply a vibration that causes a frictional force between the electrorheological fluid and the surface of the machined part to be finished.

【0008】この発明に係る面仕上げ処理方法は、第2
に、機械加工部品の少なくとも仕上げ処理すべき面を、
絶縁性溶媒に誘電体微粒子と共に強磁性体微粒子を分散
させた電気粘性流体中に浸し、前記電気粘性流体に電界
と磁界を印加し、前記電気粘性流体と前記機械加工部品
の仕上げ処理すべき面との間に摩擦力を生じさせる振動
を与えることを特徴としている。
The surface finishing method according to the present invention is a second method.
, At least the surface of the machined part to be finished,
The surface of the electrorheological fluid and the machined part to be finished by immersing it in an electrorheological fluid in which dielectric particles and ferromagnetic particles are dispersed in an insulating solvent and applying an electric field and a magnetic field to the electrorheological fluid. It is characterized by giving a vibration that causes a frictional force between and.

【0009】この発明において好ましくは、電気粘性流
体に印加する電界は、加工部品の仕上げ処理すべき面と
平行な方向とする。また電気粘性体と機械加工部品の間
に摩擦力を生じさせる振動は、機械加工部品を外部から
機械的に振動させるか、あるいは電気粘性流体に電界を
与えるための電極を外部から機械的に振動させればよ
い。あるいはこの様な機械的な振動ではなく、電気粘性
体に与える電界を比較的低周波の交流電界として、電気
粘性体中の誘電体微粒子を電気力のみで振動させる方法
でもよい。
In the present invention, preferably, the electric field applied to the electrorheological fluid is in a direction parallel to the surface of the workpiece to be finished. Further, the vibration that causes a frictional force between the electrorheological body and the machined component may mechanically vibrate the machined component from the outside, or may mechanically vibrate the electrode for applying an electric field to the electrorheological fluid from the outside. You can do it. Alternatively, instead of such mechanical vibration, a method of vibrating the dielectric fine particles in the electro-viscous body only by an electric force by using an electric field applied to the electro-viscous body as an alternating electric field of relatively low frequency may be used.

【0010】[0010]

【作用】電気粘性流体(Electro-Rheorogical Fluid 、
以下ER流体という)は、絶縁性溶媒に誘電体微粒子を
一様に分散させたコロイド溶液の一種であり、電界を印
加したときに分散微粒子が誘電分極を起こしてクラスタ
を形成し、見かけの粘性が変化するものとして知られて
いる。ER流体はその粘性変化を利用して、例えば車両
用ショックアブソーバ、クラッチ、エンジンマウント等
への応用が試みられている。
[Operation] Electro-Rheorogical Fluid,
The ER fluid) is a kind of colloidal solution in which dielectric particles are uniformly dispersed in an insulating solvent. When an electric field is applied, the dispersed particles cause dielectric polarization to form clusters, and an apparent viscosity. Is known to change. The ER fluid has been attempted to be applied to, for example, a vehicle shock absorber, a clutch, an engine mount, etc. by utilizing its viscosity change.

【0011】この発明は、ER流体に電界を印加したと
きの粘性増大(いわゆるER効果)の元になる、分散微
粒子が鎖状につながったクラスタを研磨材として利用す
るものである。即ち、ER流体に電界を印加してクラス
タを形成させ、ER流体と機械加工部品の仕上げ処理す
べき面との間にこのクラスタによる摩擦力を生じさせる
相対振動を与えると、面処理が可能になる。
The present invention utilizes, as a polishing agent, clusters in which dispersed fine particles are linked in a chain, which causes viscosity increase (so-called ER effect) when an electric field is applied to an ER fluid. That is, when an electric field is applied to the ER fluid to form clusters, and relative vibration is applied between the ER fluid and the surface of the machined part to be finished, which causes frictional force, surface treatment becomes possible. Become.

【0012】特に、ER流体に与える電界の方向及び相
対振動の方向を仕上げ処理すべき面と平行に設定する
と、従来困難であった貫通細孔内の詰まり除去や微小パ
イプの内面の仕上げ研磨が容易にできる。即ち上述のよ
うに電界と振動の方向を設定すると、ER流体では処理
すべき面と平行に鎖状につながった多数のクラスタが形
成され、これがいわば微小なラッピング棒として作用す
るからである。
In particular, when the direction of the electric field applied to the ER fluid and the direction of relative vibration are set parallel to the surface to be finished, it is possible to remove clogging in the through pores and finish polishing the inner surface of the micropipe, which were difficult in the past. You can easily. That is, when the directions of the electric field and the vibration are set as described above, a large number of clusters connected in a chain form are formed in the ER fluid in parallel with the surface to be processed, and this acts as a so-called minute lapping rod.

【0013】絶縁性溶媒に誘電体微粒子と共に強磁性体
微粒子を分散させたER流体を用いても、同様の面仕上
げ処理が可能である。この場合、ER流体に電界と磁界
を印加することで、誘電体微粒子による摩擦力と強磁性
体微粒子による摩擦力とを働かせることができる。従っ
てこれらの微粒子材料を選択することにより、効果的な
面仕上げ処理が可能になる。特に電界と磁界の組み合わ
せにより処理条件の多様性が得られる。
The same surface finishing treatment can be performed by using an ER fluid in which dielectric fine particles and ferromagnetic fine particles are dispersed in an insulating solvent. In this case, by applying an electric field and a magnetic field to the ER fluid, it is possible to exert the frictional force of the dielectric fine particles and the frictional force of the ferromagnetic fine particles. Therefore, by selecting these fine particle materials, effective surface finishing treatment becomes possible. In particular, the combination of electric and magnetic fields provides a wide variety of processing conditions.

【0014】[0014]

【実施例】以下、図面を参照して、この発明の実施例を
説明する。図1は、前述した限界電流式セラミック酸素
センサに用いられるセラミックキャップ11の貫通細孔
内部の詰まり除去に適用した実施例の装置構成を示して
いる。セラミックキャップ11は前述のように、微細な
貫通細孔12が予め形成された状態で機械研磨が行わ
れ、貫通細孔12には機械的に取り出すことができない
研磨材が詰まる。このセラミックキャップ11の一端を
支持部材19により固定する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an apparatus configuration of an embodiment applied to remove clogging inside a through hole of a ceramic cap 11 used in the above-described limiting current type ceramic oxygen sensor. As described above, the ceramic cap 11 is mechanically polished in the state in which the fine through holes 12 are formed in advance, and the through holes 12 are clogged with an abrasive that cannot be mechanically taken out. One end of this ceramic cap 11 is fixed by a supporting member 19.

【0015】セラミックキャップ11の貫通細孔12
は、ER流体13に浸された状態に保つ。具体的には例
えば、ER流体13をキャップ11の上方から滴下し、
これを下方から吸引して、貫通細孔12内が完全にER
流体13により満たされた状態にする。そしてER流体
13には、その上下に電界印加用のCu電極14,15
を配置し、これに電源16から電力を供給する。実施例
では電源16として20〜50Hzの交流電源を用いて
いる。
Through-pore 12 of ceramic cap 11
Are kept immersed in the ER fluid 13. Specifically, for example, the ER fluid 13 is dropped from above the cap 11,
By sucking this from below, the inside of the through hole 12 is completely ER
It is filled with the fluid 13. The ER fluid 13 has Cu electrodes 14 and 15 for applying an electric field above and below it.
Is arranged, and electric power is supplied from the power supply 16 to this. In the embodiment, an AC power supply of 20 to 50 Hz is used as the power supply 16.

【0016】電極14,15は支持部材17により支持
され、この支持部材17は、加振機18により図に矢印
で示すように振動が与えられるようになっている。即
ち、図1の場合処理すべき面はキャップ11の貫通細孔
12の内面であって、ER流体13にはその貫通細孔1
2に平行な電界が印加され、また電極14,15に貫通
細孔12に平行な振動が与えられる結果、ER流体13
と貫通細孔12の内壁との間に相対的な振動が与えられ
ることになる。
The electrodes 14 and 15 are supported by a support member 17, and the support member 17 is vibrated by a vibration exciter 18 as indicated by an arrow in the figure. That is, in FIG. 1, the surface to be treated is the inner surface of the through hole 12 of the cap 11, and the ER fluid 13 has the through hole 1 thereof.
2 is applied, and the electrodes 14 and 15 are vibrated in parallel to the through pores 12, resulting in the ER fluid 13
Relative vibration is applied between the inner wall of the through hole 12 and the through hole 12.

【0017】ER流体13は、例えば絶縁性溶媒として
アルキルナフタレン又はシリコーンオイルを用い、これ
に誘電体微粒子として硬度の高い炭酸カルシウムのヒゲ
状結晶(ウィスカー)を分散させたものである。ウィス
カーは長さが10〜30μm、径が1μm 程度のものと
する。
The ER fluid 13 is, for example, an alkylnaphthalene or silicone oil used as an insulating solvent, in which beard-like crystals (whiskers) of calcium carbonate having high hardness are dispersed as dielectric fine particles. The whiskers have a length of 10 to 30 μm and a diameter of about 1 μm.

【0018】図2は、ER流体13の粒子分散の様子を
示している。電極14,15間に電界を印加しない状態
では、図2(a)に示すように、ウィスカー13bは溶
媒13a中にランダムな方向を向いて一様分散してい
る。これに電界を印加すると、図2(b)に示すよう
に、個々のウィスカー13bが誘電分極すると同時に、
これらが互いに鎖状につながってクラスタ13cを形成
する。特に50Hz程度の交流電界を印加することによ
って、高い分極率が得られ、個々のウィスカーが電気双
極子となってこれらがつながってクラスタ13cが形成
される。
FIG. 2 shows how the particles of the ER fluid 13 are dispersed. When no electric field is applied between the electrodes 14 and 15, the whiskers 13b are uniformly dispersed in the solvent 13a in random directions, as shown in FIG. 2 (a). When an electric field is applied to this, as shown in FIG. 2B, at the same time as the individual whiskers 13b are dielectrically polarized,
These are connected to each other in a chain to form a cluster 13c. In particular, by applying an AC electric field of about 50 Hz, a high polarizability can be obtained, and individual whiskers become electric dipoles and are connected to each other to form the cluster 13c.

【0019】図1の実施例の場合、その電界印加方向か
ら、図3(a)に拡大断面図を示したように、クラスタ
13cがキャップ11の貫通細孔12の中で貫通細孔1
2と平行に配列する。従って、電極14,15に上下振
動を与えると、図3(b)の平面図に示すように貫通細
孔12の内壁に付着している研磨砥粒20に対して、ク
ラスタ13cが微小ラッピング棒として働く。即ち、貫
通細孔12の内面に摩擦力が与えられて、研磨砥粒20
が掻き出されることになる。実際に、印加電圧を1〜2
kV(周波数20〜50Hz)、与える振動を全振幅
0.175mm(周波数20Hz)として、超音波洗浄
では取り出すことのできなかった貫通細孔12に詰まっ
た研磨材をきれいに除去できることが確認された。
In the case of the embodiment shown in FIG. 1, the cluster 13c has the through holes 1 in the through holes 12 of the cap 11 as shown in the enlarged cross-sectional view of FIG.
Arrange in parallel with 2. Therefore, when the electrodes 14 and 15 are vertically vibrated, as shown in the plan view of FIG. 3B, the cluster 13c causes the minute lapping bar to be formed against the abrasive grains 20 attached to the inner wall of the through hole 12. Work as. That is, a frictional force is applied to the inner surface of the through-pore 12 and the abrasive grains 20
Will be scraped out. Actually, the applied voltage is 1-2
It was confirmed that the abrasive clogged in the through-pores 12 that could not be taken out by ultrasonic cleaning could be removed cleanly by setting the kV (frequency 20 to 50 Hz) and the applied vibration to a total amplitude of 0.175 mm (frequency 20 Hz).

【0020】ER流体に分散させる誘電体微粒子につい
ては、炭酸カルシウムのウィスカーに限れらず、分極し
やすく、且つある程度以上硬度が高く研磨に適した他の
微粒子、例えばチタン酸バリウムやシリカ、更に絶縁被
覆された金属等を用いることができる。また微粒子の形
状もウィスカーに限らず、球状であってもよい。
The dielectric fine particles to be dispersed in the ER fluid are not limited to calcium carbonate whiskers, and other fine particles which are easily polarized and have a hardness higher than a certain degree and are suitable for polishing, such as barium titanate or silica, and insulating. A coated metal or the like can be used. The shape of the fine particles is not limited to whiskers, and may be spherical.

【0021】実際のセラミックキャップ13の面仕上げ
処理工程は、例えば図4に示すように行うことができ
る。貫通細孔12が形成された機械研磨済みのキャップ
11を図示しないベルトコンベア等の搬送手段で搬送し
ながら、(a)に示すようにER流体13を滴下して前
述のようにその貫通細孔12をER流体13で満たす。
次に(b)に示すように、上下から電極14,15をE
R流体13に接触させて電界をかけると同時に、電界と
同じ方向に電極14,15とキャップ11の間に相対振
動を与える。最後に(c)に示すように、ER流体13
を洗浄除去する。
The actual surface finishing process of the ceramic cap 13 can be performed, for example, as shown in FIG. While transporting the mechanically polished cap 11 having the through pores 12 formed thereon by a transporting means such as a belt conveyor (not shown), the ER fluid 13 is dropped as shown in FIG. Fill 12 with ER fluid 13.
Next, as shown in (b), E and
An electric field is applied by contacting with the R fluid 13, and at the same time, relative vibration is applied between the electrodes 14 and 15 and the cap 11 in the same direction as the electric field. Finally, as shown in (c), the ER fluid 13
Is removed by washing.

【0022】あるいは、図5に示すようなバッチ処理も
可能である。図示のように容器51にER流体53を入
れ、内部に支持トレー52により機械研磨済みの複数枚
のセラミックキャップ11を立てて保持する。トレー5
2は容器51を液密に貫通するロッド54により矢印方
向に振動が与えられるようになっている。またER流体
53中に、平行電極55,56を配置し、これを交流電
源57に接続する。そして、ER流体53に電界を印加
しながら、キャップ11に電界と平行な振動を与えて、
貫通細孔内の掃除を行う。
Alternatively, batch processing as shown in FIG. 5 is also possible. As shown in the figure, the ER fluid 53 is put in the container 51, and a plurality of mechanically polished ceramic caps 11 are erected and held therein by the support tray 52. Tray 5
2 is vibrated in the arrow direction by a rod 54 that penetrates the container 51 in a liquid-tight manner. Further, parallel electrodes 55 and 56 are arranged in the ER fluid 53, and these are connected to an AC power source 57. Then, while applying the electric field to the ER fluid 53, the cap 11 is vibrated in parallel with the electric field,
Clean the inside of the through pores.

【0023】図6は、この発明の別の実施例であり、小
さいパイプ65の側面に孔66を開ける加工を行った
後、その内面のバリ取りを行う実施例である。図示のよ
うにER流体62を入れた容器61には、液密を保って
進退できるロッド63が配置される。仕上げ処理するパ
イプ65は、ロッド63に固定された支持台64に支持
される形でER流体62に浸す。ER流体62中には、
パイプ65を挟むように平行電極67,68を配置して
これに電源69を接続する。
FIG. 6 shows another embodiment of the present invention, in which a small pipe 65 is machined to form a hole 66 and then the inner surface thereof is deburred. As shown in the figure, a container 63 containing an ER fluid 62 is provided with a rod 63 that can move forward and backward while maintaining liquid tightness. The pipe 65 to be finished is immersed in the ER fluid 62 while being supported by a support base 64 fixed to the rod 63. In the ER fluid 62,
Parallel electrodes 67 and 68 are arranged so as to sandwich the pipe 65, and a power source 69 is connected thereto.

【0024】そして、ER流体62にパイプ65の長手
方向と平行に電界を印加し、同時にロッド63には電界
と平行な往復振動を与える。これにより、ER流体62
にはパイプ65と平行に並ぶクラスタが形成され、且つ
ロッド63からパイプ65に与えられる振動により、ク
ラスタとパイプ65の内面に摩擦力が生じて、バリ取り
ができる。
Then, an electric field is applied to the ER fluid 62 in parallel with the longitudinal direction of the pipe 65, and at the same time, a reciprocating vibration parallel to the electric field is applied to the rod 63. As a result, the ER fluid 62
A cluster is formed in parallel with the pipe 65, and the vibration applied from the rod 63 to the pipe 65 causes a frictional force between the cluster and the inner surface of the pipe 65 to enable deburring.

【0025】図1の実施例では、電界を印加するための
電極を振動させてER流体を振動させ、図6の実施例で
は、処理すべき加工部品を振動させている。要するに、
加工部品の仕上げ処理すべき面とこれに接触するER流
体との間で摩擦力を生じるように相対振動させればよい
ことになる。一方、ここまでの実施例はいずれも、ER
流体に与える電界は、加工部品の研磨すべき面と平行に
なるようにした。しかし、これと直交する方向の電界を
印加して面処理を行うこともできる。
In the embodiment of FIG. 1, the electrode for applying the electric field is vibrated to vibrate the ER fluid, and in the embodiment of FIG. 6, the work part to be treated is vibrated. in short,
It suffices to perform relative vibration so as to generate a frictional force between the surface of the work part to be finished and the ER fluid in contact therewith. On the other hand, in all the examples so far, ER
The electric field applied to the fluid was arranged to be parallel to the surface of the work piece to be polished. However, surface treatment can also be performed by applying an electric field in a direction orthogonal to this.

【0026】図7は、その様な実施例を示している。平
行配置された電極72,73の間にER流体71を満た
し、ER流体71中に電極73に支持される形で表面の
仕上げ研磨を行うべき機械加工部品たる板体74を配置
する。そして電源75から電極72,73に電力を供給
しながら、板体74にその面と平行な矢印で示すように
往復振動を与える。
FIG. 7 shows such an embodiment. An ER fluid 71 is filled between the electrodes 72 and 73 arranged in parallel, and a plate body 74 which is a machined component to be subjected to finish polishing of the surface is placed in the ER fluid 71 while being supported by the electrode 73. Then, while supplying electric power from the power source 75 to the electrodes 72, 73, the plate 74 is reciprocally oscillated as shown by an arrow parallel to the surface thereof.

【0027】この実施例の場合、ER流体71内に形成
される鎖状のクラスタは、板体74の表面に垂直にな
る。従って板体74に振動を与えると、多数のクラスタ
が研磨ブラシとなって板体74の表面に摩擦力を及ぼ
し、表面仕上げ研磨が行われる。
In the case of this embodiment, the chain-like clusters formed in the ER fluid 71 are perpendicular to the surface of the plate 74. Therefore, when the plate body 74 is vibrated, a large number of clusters serve as polishing brushes to exert a frictional force on the surface of the plate body 74, and surface finishing polishing is performed.

【0028】図8は、この発明の更に別の実施例であ
る。この実施例では、誘電体微粒子と同時に強磁性体微
粒子を分散させたER流体82を用いて、電界と磁界を
同時に印加して加工部品研磨を行う。強磁性体微粒子と
しては、例えばマグネタイト粉末等を用る。図6の実施
例と同様に、容器81にER流体82を入れ、この中に
仕上げ研磨すべき板体85を浸す。板体85を横方向か
ら挟むように、平行電極86,87をER流体82中に
配置し、これに電源88を接続する。また、容器81の
底部、即ち板体85の下方にはマグネットのS極84を
配置し、板体85の上方にN極83を配置する。
FIG. 8 shows still another embodiment of the present invention. In this embodiment, an ER fluid 82 in which ferromagnetic particles are dispersed at the same time as dielectric particles is used to apply an electric field and a magnetic field at the same time to polish a processed part. Magnetite powder or the like is used as the ferromagnetic fine particles. Similar to the embodiment of FIG. 6, the container 81 is filled with the ER fluid 82, and the plate body 85 to be finish-polished is dipped therein. The parallel electrodes 86 and 87 are arranged in the ER fluid 82 so as to sandwich the plate body 85 from the lateral direction, and the power source 88 is connected thereto. Further, the S pole 84 of the magnet is arranged at the bottom of the container 81, that is, below the plate body 85, and the N pole 83 is arranged above the plate body 85.

【0029】この様にして、ER流体82に、板体85
の研磨すべき表面に平行な電界を印加すると同時に、図
8に円弧状矢印で示すように磁極を所定角度範囲で回転
させてER流体82に回転磁界を印加し、また板体85
に直線往復振動を与える。これにより、ER流体82中
の誘電体微粒子による面処理効果と、強磁性体微粒子に
よる面処理効果の相乗効果により、板体85の表面がよ
く研磨される。
In this way, the plate body 85 is added to the ER fluid 82.
At the same time as applying an electric field parallel to the surface to be polished, the magnetic pole is rotated within a predetermined angle range as indicated by an arc-shaped arrow in FIG.
Give a linear reciprocating vibration to. As a result, the surface of the plate body 85 is well polished by the synergistic effect of the surface treatment effect of the dielectric fine particles in the ER fluid 82 and the surface treatment effect of the ferromagnetic fine particles.

【0030】この実施例は、ER効果を利用した研磨と
磁気研磨の手法を組み合わせたものとなり、電界の他に
磁界がパラメータとして入るから、面処理条件の多様性
が高いものとなる。従って板体の表面仕上げに限らず、
図1の実施例で説明した貫通細孔の内面加工、図6の実
施例で説明した微小パイプの内部のバリ取りは勿論、各
種精密加工部品の複雑な曲面や球面等の仕上げ研磨、精
密丸み付け等の加工に適用することができる。
This embodiment is a combination of the polishing and the magnetic polishing methods utilizing the ER effect, and since the magnetic field enters as a parameter in addition to the electric field, the surface treatment conditions are highly diverse. Therefore, it is not limited to the surface finish of the plate,
In addition to the inner surface processing of the through pores described in the embodiment of FIG. 1 and the deburring of the inside of the minute pipe described in the embodiment of FIG. 6, finish polishing of complicated curved surfaces and spherical surfaces of various precision machined parts, precision rounding It can be applied to processing such as attachment.

【0031】以上の実施例では、ER流体に交流電界と
同時に機械的振動を与えたが、機械的振動を加えること
なく、交流電界のみでER流体中の微粒子に振動を与え
ることもできる。特に、印加する交流電界を10Hz程
度の低周波電界とすると、ER流体中の誘電体微粒子の
分極の遅れ、即ち電気双極子形成の電界変化に対する遅
れが生じること、各微粒子間でも分極の変化に差が生じ
て微粒子相互間に電気力が作用すること、また図2
(a)の状態と同図(b)の状態の間で僅かな状態遷移
が生じること、等に起因して振動を生じさせることがで
きる。
In the above embodiments, the ER fluid is mechanically vibrated at the same time as the AC electric field, but it is also possible to vibrate the fine particles in the ER fluid only by the AC electric field without applying mechanical vibration. In particular, when the AC electric field to be applied is a low-frequency electric field of about 10 Hz, there is a delay in the polarization of the dielectric particles in the ER fluid, that is, a delay with respect to the electric field change of the electric dipole formation. The difference causes the electric force to act between the particles, and FIG.
Vibration can be caused by a slight state transition between the state of (a) and the state of (b) in the figure.

【0032】[0032]

【発明の効果】以上述べたようにこの発明によれば、E
R流体に電界を印加したときの分散微粒子が鎖状につな
がったクラスタを研磨材として利用して、ER流体と機
械加工部品の仕上げ処理すべき面との間に摩擦力を生じ
させる相対振動を与えて、従来困難であって貫通細孔や
小さいパイプの内面等の仕上げ処理が可能である。また
この発明によると、誘電体微粒子と共に強磁性体微粒子
を分散させたER流体を用い、これに電界と磁界を与え
ると共に振動を与えることによって、誘電体微粒子と強
磁性体微粒子の摩擦力を作用させて、効果的な面仕上げ
処理が可能になり、パラメータ増大による面仕上げ処理
条件の多様性が実現できる。
As described above, according to the present invention, E
When an electric field is applied to the R fluid, a cluster of dispersed fine particles connected in a chain is used as an abrasive to generate a relative vibration that causes a frictional force between the ER fluid and the surface of the machined part to be finished. Given that, it is possible to finish the through-pores and the inner surface of a small pipe, which are difficult in the past. Further, according to the present invention, an ER fluid in which ferromagnetic fine particles are dispersed together with dielectric fine particles is used, and an electric field and a magnetic field are applied to the ER fluid and vibration is applied thereto, thereby exerting a frictional force between the dielectric fine particles and the ferromagnetic fine particles. As a result, effective surface finishing processing becomes possible, and a variety of surface finishing processing conditions can be realized by increasing parameters.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の一実施例によるキャップの処理方
法を示す。
FIG. 1 shows a method of treating a cap according to an embodiment of the present invention.

【図2】 同実施例のER流体の媒質分散の様子を示
す。
FIG. 2 shows a state of medium dispersion of an ER fluid in the same example.

【図3】 同実施例による貫通細孔内面処理の様子を拡
大して示す。
FIG. 3 is an enlarged view showing a state of inner surface treatment of a through-hole according to the same embodiment.

【図4】 この発明の他の実施例の処理方法を示す。FIG. 4 shows a processing method of another embodiment of the present invention.

【図5】 この発明の更に他の実施例の処理方法を示
す。
FIG. 5 shows a processing method according to still another embodiment of the present invention.

【図6】 この発明の更に他の実施例の処理方法を示
す。
FIG. 6 shows a processing method according to still another embodiment of the present invention.

【図7】 この発明の更に他の実施例の研磨方法を示
す。
FIG. 7 shows a polishing method according to still another embodiment of the present invention.

【図8】 この発明の更に他の実施例の研磨方法を示
す。
FIG. 8 shows a polishing method according to still another embodiment of the present invention.

【図9】 限界電流式セラミック酸素センサを示す。FIG. 9 shows a limiting current type ceramic oxygen sensor.

【図10】 パイプ加工によるバリ形成の様子を示す。FIG. 10 shows how burrs are formed by pipe processing.

【符号の説明】[Explanation of symbols]

11…セラミックキャップ、12…貫通細孔、13…E
R流体、14,15…電極、16…電源、17…電極支
持部材、18…加振器、13a…絶縁性溶媒、13b…
ウィスカー(誘電体微粒子)、13c…クラスタ、35
…容器、52…支持トレー、53,62,71,82…
ER流体、54,63…ロッド、55,56,67,6
8,72,73,86,87…電極、57,69,7
5,88…電源、65…パイプ、74,85…板体、8
3…N極、84…S極。
11 ... Ceramic cap, 12 ... Through pores, 13 ... E
R fluid, 14, 15 ... Electrode, 16 ... Power supply, 17 ... Electrode support member, 18 ... Vibrator, 13a ... Insulating solvent, 13b ...
Whiskers (dielectric fine particles), 13c ... Cluster, 35
... Containers, 52 ... Support trays, 53, 62, 71, 82 ...
ER fluid, 54, 63 ... Rod, 55, 56, 67, 6
8, 72, 73, 86, 87 ... Electrodes, 57, 69, 7
5, 88 ... Power source, 65 ... Pipe, 74, 85 ... Plate, 8
3 ... N pole, 84 ... S pole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 信三 秋田県秋田市新屋字砂奴寄4番地の11 秋 田県工業技術センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinzo Nishimura 11 Akita Prefectural Industrial Technology Center, 4-4, Sunaya, Shinya, Akita City, Akita Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 機械加工部品の少なくとも仕上げ処理す
べき面を、絶縁性溶媒に誘電体微粒子を分散させた電気
粘性流体中に浸し、 前記電気粘性流体に電界を印加し、 前記電気粘性流体と前記機械加工部品の仕上げ処理すべ
き面との間に摩擦力を生じさせる振動を与えることを特
徴とする面仕上げ処理方法。
1. A surface of a machined component to be subjected to a finishing treatment is immersed in an electrorheological fluid in which dielectric particles are dispersed in an insulating solvent, and an electric field is applied to the electrorheological fluid. A surface finishing method comprising applying a vibration that causes a frictional force between the machined part and a surface to be finished.
【請求項2】 機械加工部品の少なくとも仕上げ処理す
べき面を、絶縁性溶媒に誘電体微粒子と共に強磁性体微
粒子を分散させた電気粘性流体中に浸し、 前記電気粘性流体に電界と磁界を印加し、 前記電気粘性流体と前記機械加工部品の仕上げ処理すべ
き面との間に摩擦力を生じさせる振動を与えることを特
徴とする面仕上げ処理方法。
2. An electrorheological fluid in which at least a surface of a machined part to be subjected to finishing treatment is dispersed in an insulating solvent in which dielectric particles and ferromagnetic particles are dispersed, and an electric field and a magnetic field are applied to the electrorheological fluid. A surface finishing treatment method is characterized in that a vibration that causes a frictional force is applied between the electrorheological fluid and the surface of the machined component to be finished.
【請求項3】 前記電気粘性流体に印加する電界は、前
記機械加工部品の仕上げ処理すべき面と平行な方向とす
ることを特徴とする請求項1又は2に記載の面仕上げ処
理方法。
3. The surface finishing treatment method according to claim 1, wherein the electric field applied to the electrorheological fluid is in a direction parallel to a surface of the machined component to be finished.
【請求項4】 前記振動は、前記電気粘性流体と前記機
械加工部品との間に外部から機械的な振動として与える
ことを特徴とする請求項1又は2に記載の面仕上げ処理
方法。
4. The surface finishing treatment method according to claim 1, wherein the vibration is externally applied as mechanical vibration between the electrorheological fluid and the machined component.
JP18114195A 1995-06-23 1995-06-23 Surface finish process method Pending JPH0911114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18114195A JPH0911114A (en) 1995-06-23 1995-06-23 Surface finish process method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18114195A JPH0911114A (en) 1995-06-23 1995-06-23 Surface finish process method

Publications (1)

Publication Number Publication Date
JPH0911114A true JPH0911114A (en) 1997-01-14

Family

ID=16095613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18114195A Pending JPH0911114A (en) 1995-06-23 1995-06-23 Surface finish process method

Country Status (1)

Country Link
JP (1) JPH0911114A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19902422A1 (en) * 1999-01-22 2000-08-03 Bosch Gmbh Robert Workpiece surface machining involves applying electric field to surface area to be machined to increase viscosity of grinding medium contg. electrorheological liquid with abrasive additive
WO2006030854A1 (en) * 2004-09-17 2006-03-23 Fdk Corporation Complex profile body polishing method and polishing apparatus
JP2006281424A (en) * 2005-04-05 2006-10-19 Toshiba Mach Co Ltd Abrasive, polishing tool, polishing device, manufacturing method for abrasive, manufacturing method for polishing tool, and polishing method
CN102139365A (en) * 2010-12-30 2011-08-03 东莞市星河精密压铸模具有限公司 Processing technique for removing burrs of die casting
CN108436748A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of blade edge liquid metal burnishing device
CN108436743A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of the liquid metal burnishing device and method of the two-way variation of electric field magnetic field
CN108466165A (en) * 2018-05-21 2018-08-31 浙江工业大学 A kind of liquid metal burnishing device using eccentric wheel control blade rotation
CN108481142A (en) * 2018-05-21 2018-09-04 浙江工业大学 A kind of three electric pole type blade edge liquid metal burnishing devices
CN108637883A (en) * 2018-05-21 2018-10-12 浙江工业大学 A kind of continually changing liquid metal burnishing device of electric field and method
CN108673330A (en) * 2018-05-21 2018-10-19 浙江工业大学 A kind of field rotation type blade liquid metal burnishing device
CN108772775A (en) * 2018-05-21 2018-11-09 浙江工业大学 A kind of device that blade is polished using rotary brush control liquid metal polishing fluid
CN109773587A (en) * 2019-01-31 2019-05-21 泉州装备制造研究所 A kind of power control precise machining equipment
CN110587468A (en) * 2019-10-16 2019-12-20 浙江工业大学 Rotary polishing device and method for polishing by using liquid metal under electromagnetic field
JP2020116722A (en) * 2019-01-28 2020-08-06 独立行政法人国立高等専門学校機構 Fluid polishing device and fluid polishing method
CN108436748B (en) * 2018-05-21 2024-04-23 浙江工业大学 Blade edge liquid metal burnishing device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19902422A1 (en) * 1999-01-22 2000-08-03 Bosch Gmbh Robert Workpiece surface machining involves applying electric field to surface area to be machined to increase viscosity of grinding medium contg. electrorheological liquid with abrasive additive
DE19902422B4 (en) * 1999-01-22 2005-07-14 Robert Bosch Gmbh Process for the surface treatment of a workpiece
WO2006030854A1 (en) * 2004-09-17 2006-03-23 Fdk Corporation Complex profile body polishing method and polishing apparatus
JPWO2006030854A1 (en) * 2004-09-17 2008-05-15 Fdk株式会社 Polishing method and polishing apparatus for complex shapes
JP2006281424A (en) * 2005-04-05 2006-10-19 Toshiba Mach Co Ltd Abrasive, polishing tool, polishing device, manufacturing method for abrasive, manufacturing method for polishing tool, and polishing method
CN102139365A (en) * 2010-12-30 2011-08-03 东莞市星河精密压铸模具有限公司 Processing technique for removing burrs of die casting
CN108466165A (en) * 2018-05-21 2018-08-31 浙江工业大学 A kind of liquid metal burnishing device using eccentric wheel control blade rotation
CN108436743A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of the liquid metal burnishing device and method of the two-way variation of electric field magnetic field
CN108436748A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of blade edge liquid metal burnishing device
CN108481142A (en) * 2018-05-21 2018-09-04 浙江工业大学 A kind of three electric pole type blade edge liquid metal burnishing devices
CN108637883A (en) * 2018-05-21 2018-10-12 浙江工业大学 A kind of continually changing liquid metal burnishing device of electric field and method
CN108673330A (en) * 2018-05-21 2018-10-19 浙江工业大学 A kind of field rotation type blade liquid metal burnishing device
CN108772775A (en) * 2018-05-21 2018-11-09 浙江工业大学 A kind of device that blade is polished using rotary brush control liquid metal polishing fluid
CN108436743B (en) * 2018-05-21 2024-04-09 浙江工业大学 Liquid metal polishing device and method with electric field and magnetic field changed bidirectionally
CN108436748B (en) * 2018-05-21 2024-04-23 浙江工业大学 Blade edge liquid metal burnishing device
JP2020116722A (en) * 2019-01-28 2020-08-06 独立行政法人国立高等専門学校機構 Fluid polishing device and fluid polishing method
CN109773587A (en) * 2019-01-31 2019-05-21 泉州装备制造研究所 A kind of power control precise machining equipment
WO2020155630A1 (en) * 2019-01-31 2020-08-06 泉州装备制造研究所 Force-controlled precision machining apparatus
CN110587468A (en) * 2019-10-16 2019-12-20 浙江工业大学 Rotary polishing device and method for polishing by using liquid metal under electromagnetic field

Similar Documents

Publication Publication Date Title
JPH0911114A (en) Surface finish process method
US5531861A (en) Chemical-mechanical-polishing pad cleaning process for use during the fabrication of semiconductor devices
CN111716158B (en) Method and device for polishing inner surface
US2796702A (en) Method and apparatus for sonic polishing and grinding
US3698408A (en) Ultrasonic processing apparatus
US3423880A (en) Surface-treating device
US3533928A (en) Method of and apparatus for the deburring of workpieces
US4581853A (en) Apparatus for internal finishing of metal parts
KR920021258A (en) Micro Grinding Method and Micro Grinding Tool
JP2017104926A (en) Magnetic polishing device and magnetic polishing method
EP1178868A1 (en) Ferrofluidic finishing
JP2007223026A (en) Vibration type polishing device
Deepak et al. Effect of rotational motion on the flat work piece magnetic abrasive finishing
JPH095291A (en) Manufacture of limiting current type ceramic oxygen sensor
JP2007021661A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
WO2006030854A1 (en) Complex profile body polishing method and polishing apparatus
CN116512006A (en) Ultrasonic-assisted magnetorheological fluid grinding and polishing integrated processing device and method
EP1066132B1 (en) A method and apparatus for polishing parts
JPH0234923A (en) Ultrasonic cleaner
RU1836206C (en) Method of polishing by free abrasive
US2912804A (en) Method for polishing articles
KR101931202B1 (en) The liquid stirring apparatus using a ultrasonic vibrator and the liquid stirring method using there for
JP2836888B2 (en) Cleaning method for plate
JP3595219B2 (en) Processing method using particle-dispersed dielectric fluid
JP2000167715A (en) Honing method grinding method and device for carrying out these methods