JPH095291A - Manufacture of limiting current type ceramic oxygen sensor - Google Patents

Manufacture of limiting current type ceramic oxygen sensor

Info

Publication number
JPH095291A
JPH095291A JP7181140A JP18114095A JPH095291A JP H095291 A JPH095291 A JP H095291A JP 7181140 A JP7181140 A JP 7181140A JP 18114095 A JP18114095 A JP 18114095A JP H095291 A JPH095291 A JP H095291A
Authority
JP
Japan
Prior art keywords
fluid
cap
oxygen sensor
hole
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7181140A
Other languages
Japanese (ja)
Inventor
Kenji Nuri
健治 塗
Tatsuya Ito
達也 伊藤
Kazuyuki Ito
一幸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP7181140A priority Critical patent/JPH095291A/en
Publication of JPH095291A publication Critical patent/JPH095291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE: To provide a manufacturing method for a limiting current type ceramic oxygen sensor wherein clogging in the narrow through hole of a cap is removed for improvement in yield of the oxygen sensor. CONSTITUTION: A narrow through hole 12 formed in a ceramic cap 11 is soaked in ER fluid 13, and electrodes 14 and 15 are assigned at the upper and lower parts of the ER fluid 13 for applying an electric field, and at the same time, an vibration exciter 18 applies vibration between the ER fluid 13 and the ceramic cap 11. In the narrow through hole 12 of the ceramic cap 11, a cluster of fine particles in the ER fluid 13 is farmed in parallel to the narrow through hole 12, and the cluster acts as a lapping rod so that grinding particles in the narrow through hole 12 are removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、限界電流式セラミッ
ク酸素センサの製造方法に係り、特にその貫通細孔が形
成されたキャップの貫通細孔内の詰まり除去方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a limiting current type ceramic oxygen sensor, and more particularly to a method for removing clogging in a through-hole of a cap having the through-hole.

【0002】[0002]

【従来の技術】通常、各種機械加工部品の仕上げ研磨に
は、微粒研磨材を用いた機械的な研磨が用いられる。し
かし部品によっては、研磨すべき面の形状や位置等が、
機械的圧力を加えることが不可能であったり、あるいは
著しく困難であったりする。曲面や円筒内面等の表面仕
上げに有効な研磨法として、磁性研磨材を用い、磁界の
作用で研磨圧力を生じさせる磁気研磨法が知られている
が、この方法でも適用が難しい精密部品がある。
2. Description of the Related Art Generally, mechanical polishing using a fine grain abrasive is used for finish polishing of various machined parts. However, depending on the part, the shape and position of the surface to be polished may
It is impossible or extremely difficult to apply mechanical pressure. A magnetic polishing method that uses a magnetic abrasive to generate a polishing pressure by the action of a magnetic field is known as an effective polishing method for the surface finish of a curved surface or an inner surface of a cylinder, but there are precision parts that are difficult to apply even with this method. .

【0003】その様な部品の一つとして、図6に示す限
界電流式セラミック酸素センサ60のセラミックキャッ
プ64がある。このセラミック酸素センサ60は、両面
にポンピング用の電極62,63が形成されたセラミッ
クイオン伝導体61と、その一方の面に設けられた貫通
細孔65を持つセラミックキャップ64とから構成され
る。セラミックキャップ64上にはヒータ66が形成さ
れている。セラミックキャップ64に開けられた貫通細
孔65は、セラミックイオン伝導体61に対して拡散律
速により酸素を供給するためのもので、これによりいわ
ゆる限界電流特性が得られる。
As one of such parts, there is a ceramic cap 64 of a limiting current type ceramic oxygen sensor 60 shown in FIG. The ceramic oxygen sensor 60 is composed of a ceramic ion conductor 61 having pumping electrodes 62 and 63 formed on both surfaces thereof, and a ceramic cap 64 having a through hole 65 provided on one surface thereof. A heater 66 is formed on the ceramic cap 64. The through-pores 65 formed in the ceramic cap 64 are for supplying oxygen to the ceramic ion conductor 61 by diffusion rate control, whereby so-called limiting current characteristics are obtained.

【0004】小型の限界電流式セラミック酸素センサで
は、貫通細孔65は、径が10μmあるいはそれ以下で
あり、深さが0.8mm程度である。この様な貫通細孔
65が予め形成されたセラミックキャップ64を機械研
磨すると、貫通細孔65には研磨砥粒が詰まる。貫通細
孔65は径が小さく且つ深いために、その後超音波洗浄
等を行っても、30%程度は研磨砥粒が取り除かれずに
残り、拡散律速孔として十分機能せず、不良品となる。
In a small-sized limiting current type ceramic oxygen sensor, the through pores 65 have a diameter of 10 μm or less and a depth of about 0.8 mm. When mechanical polishing is performed on the ceramic cap 64 in which such through-holes 65 are formed in advance, the through-holes 65 are clogged with abrasive grains. Since the diameter of the through pores 65 is small and deep, even if ultrasonic cleaning is performed thereafter, about 30% of the polishing abrasive grains remain without being removed and do not sufficiently function as diffusion-controlled pores, resulting in a defective product.

【0005】[0005]

【発明が解決しようとする課題】以上のように、限界電
流式酸素センサのキャップは研磨加工後の超音波洗浄等
では貫通細孔の詰まり除去が困難で、これが製品の歩留
まり低下の大きな原因となっていた。この発明は上記の
点に鑑みてなされたもので、キャップの貫通細孔の詰ま
り除去を確実に行って酸素センサの歩留まり向上を可能
とした限界電流式セラミック酸素センサの製造方法を提
供することを目的としている。
As described above, in the cap of the limiting current type oxygen sensor, it is difficult to remove the clogging of the penetrating pores by ultrasonic cleaning after polishing, which is a major cause of the decrease in product yield. Was becoming. The present invention has been made in view of the above points, and provides a method of manufacturing a limiting current type ceramic oxygen sensor capable of reliably removing the clogging of the through pores of the cap and improving the yield of the oxygen sensor. Has an aim.

【0006】[0006]

【課題を解決するための手段】この発明は、両面に電極
が形成されたセラミックイオン伝導体の一方の面側に拡
散律速により酸素を供給するための貫通細孔が形成され
たキャップを接合して限界電流式セラミック酸素センサ
を製造する方法において、前記キャップを機械研磨した
後、そのキャップの少なくとも貫通細孔が形成された部
分を絶縁性溶媒に誘電体微粒子を分散させた電気粘性流
体中に浸し、前記電気粘性流体に電界を印加し、前記電
気粘性流体と前記貫通細孔の内面との間に摩擦力を生じ
させる振動を与えて、前記貫通細孔の内面の仕上げ処理
を行うことを特徴としている。
According to the present invention, a ceramic ion conductor having electrodes formed on both sides thereof is joined to one surface side thereof with a cap having through pores for supplying oxygen by diffusion control. In the method for manufacturing a limiting current type ceramic oxygen sensor, after mechanically polishing the cap, at least a portion of the cap where the through pores are formed is placed in an electrorheological fluid in which dielectric fine particles are dispersed in an insulating solvent. Immersion, applying an electric field to the electrorheological fluid, giving vibration that causes a frictional force between the electrorheological fluid and the inner surface of the through-hole, and performing a finishing treatment on the inner surface of the through-hole. It has a feature.

【0007】この発明において好ましくは、前記電気粘
性流体に印加する電界は、前記貫通細孔と平行な方向と
する。また電気粘性体とキャップの貫通細孔内面の間に
摩擦力を生じさせる振動は、キャップを外部から機械的
に振動させるか、あるいは電気粘性流体に電界を与える
ための電極を外部から機械的に振動させればよい。ある
いはこの様な機械的な振動ではなく、電気粘性体に与え
る電界を低周波の交流電界として、電気粘性体中の誘電
体微粒子を電気力で振動させる方法でもよい。
In the present invention, preferably, the electric field applied to the electrorheological fluid is in a direction parallel to the through pores. Further, the vibration that causes a frictional force between the electrorheological body and the inner surface of the through-hole of the cap mechanically vibrates the cap from the outside, or mechanically externally applies an electrode for applying an electric field to the electrorheological fluid. Just vibrate. Alternatively, instead of such mechanical vibration, a method of vibrating the dielectric fine particles in the electro-viscous body with an electric force by using an electric field applied to the electro-viscous body as a low-frequency AC electric field may be used.

【0008】[0008]

【作用】電気粘性流体(Electro-Rheorogical Fluid 、
以下ER流体という)は、絶縁性溶媒に誘電体微粒子を
一様に分散させたコロイド溶液の一種であり、電界を印
加したときに分散微粒子が誘電分極を起こしてクラスタ
を形成し、見かけの粘性が変化するものとして知られて
いる。ER流体はその粘性変化を利用して、例えば車両
用ショックアブソーバ、クラッチ、エンジンマウント等
への応用が試みられている。
[Operation] Electro-Rheorogical Fluid,
The ER fluid) is a kind of colloidal solution in which dielectric particles are uniformly dispersed in an insulating solvent. When an electric field is applied, the dispersed particles cause dielectric polarization to form clusters, and an apparent viscosity. Is known to change. The ER fluid has been attempted to be applied to, for example, a vehicle shock absorber, a clutch, an engine mount, etc. by utilizing its viscosity change.

【0009】この発明は、ER流体に電界を印加したと
きの粘性増大(いわゆるER効果)の元になる、分散微
粒子が鎖状につながったクラスタを研磨材として利用す
るものである。即ち、ER流体に電界を印加してクラス
タを形成させ、ER流体と処理すべき面との間にこのク
ラスタによる摩擦力を生じさせる相対振動を与えると、
面仕上げ処理が可能になる。
The present invention utilizes a cluster of dispersed fine particles connected in a chain, which is a source of viscosity increase (so-called ER effect) when an electric field is applied to an ER fluid, as an abrasive. That is, when an electric field is applied to the ER fluid to form clusters and relative vibration that causes a frictional force due to the clusters between the ER fluid and the surface to be treated is applied,
Surface finish processing becomes possible.

【0010】特に、ER流体に与える電界の方向及び振
動の方向を処理すべき面と平行に設定すると、従来除去
が困難であった限界電流式セラミック酸素センサのキャ
ップの貫通細孔に詰まった砥粒を確実に除去することが
できる。即ち上述のように電界と振動の方向を設定する
と、ER流体では処理すべき貫通細孔と平行に鎖状につ
ながった多数のクラスタが形成され、これがいわば微小
なラッピング棒として作用するからである。
In particular, when the direction of the electric field and the direction of vibration applied to the ER fluid are set parallel to the surface to be treated, the grinding that clogs the through pores of the cap of the limiting current type ceramic oxygen sensor, which has been difficult to remove in the past. Grains can be reliably removed. That is, when the electric field and the direction of vibration are set as described above, a large number of clusters connected in a chain form in parallel with the through pores to be processed are formed in the ER fluid, and this acts as a so-called minute lapping rod. .

【0011】絶縁性溶媒に誘電体微粒子と共に強磁性体
微粒子を分散させたER流体を用いても、同様の面処理
が可能である。この場合、ER流体に電界と磁界を印加
すると同時に振動を与えることによって、誘電体微粒子
による摩擦力と強磁性体微粒子による摩擦力を貫通細孔
内面に作用させることができるから、これらの微粒子材
料を選択することにより、効果的なキャップの仕上げ処
理が可能になる。特に電界と磁界の組み合わせにより仕
上げ処理条件の多様性が得られる。
The same surface treatment can be performed by using an ER fluid in which dielectric fine particles and ferromagnetic fine particles are dispersed in an insulating solvent. In this case, by applying an electric field and a magnetic field to the ER fluid and simultaneously applying vibration, the frictional force due to the dielectric fine particles and the frictional force due to the ferromagnetic fine particles can be applied to the inner surface of the through-pores. By selecting, it is possible to effectively finish the cap. In particular, the combination of electric and magnetic fields provides a variety of finishing conditions.

【0012】[0012]

【実施例】以下、図面を参照して、この発明の実施例を
説明する。図1は、前述した限界電流式セラミック酸素
センサに用いられるセラミックキャップ11の貫通細孔
の詰まり除去に適用した実施例の装置構成を示してい
る。セラミックキャップ11は前述のように、微細な貫
通細孔12が予め形成された状態で機械研磨が行われ、
貫通細孔12には機械的に取り出すことができない研磨
材が詰まる。このセラミックキャップ11の一端を支持
部材19により固定する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an apparatus configuration of an embodiment applied to remove clogging of through pores of a ceramic cap 11 used in the above-described limiting current type ceramic oxygen sensor. As described above, the ceramic cap 11 is mechanically polished in the state where the fine through pores 12 are formed in advance,
The through holes 12 are clogged with an abrasive that cannot be mechanically taken out. One end of this ceramic cap 11 is fixed by a supporting member 19.

【0013】セラミックキャップ11の貫通細孔12
は、ER流体13に浸された状態に保つ。具体的には例
えば、ER流体13をキャップ11の上方から滴下し、
これを下方から吸引して、貫通細孔12内が完全にER
流体13により満たされた状態にする。そしてER流体
13には、その上下に電界印加用のCu電極14,15
を配置し、これに電源16から電力を供給する。実施例
では電源16として20〜50Hzの交流電源を用いて
いる。
Through-pore 12 of ceramic cap 11
Are kept immersed in the ER fluid 13. Specifically, for example, the ER fluid 13 is dropped from above the cap 11,
By sucking this from below, the inside of the through hole 12 is completely ER
It is filled with the fluid 13. The ER fluid 13 has Cu electrodes 14 and 15 for applying an electric field above and below it.
Is arranged, and electric power is supplied from the power supply 16 to this. In the embodiment, an AC power supply of 20 to 50 Hz is used as the power supply 16.

【0014】電極14,15は支持部材17により支持
され、この支持部材17は、加振機18により図に矢印
で示すように振動が与えられるようになっている。即
ち、図1の場合処理すべき面はキャップ11の貫通細孔
12の内面であって、ER流体13にはその貫通細孔1
2に平行な電界が印加され、また電極14,15に貫通
細孔12に平行な振動が与えられる結果、ER流体13
と貫通細孔12の内壁との間に相対的な振動が与えられ
ることになる。
The electrodes 14 and 15 are supported by a supporting member 17, and the supporting member 17 is vibrated by a vibration exciter 18 as indicated by an arrow in the figure. That is, in FIG. 1, the surface to be treated is the inner surface of the through hole 12 of the cap 11, and the ER fluid 13 has the through hole 1 thereof.
2 is applied, and the electrodes 14 and 15 are vibrated in parallel to the through pores 12, resulting in the ER fluid 13
Relative vibration is applied between the inner wall of the through hole 12 and the through hole 12.

【0015】ER流体13は、例えば絶縁性溶媒として
アルキルナフタレン又はシリコーンオイルを用い、これ
に誘電体微粒子として硬度の高い炭酸カルシウムのヒゲ
状結晶(ウィスカー)を分散させたものである。ウィス
カーは長さが10〜30μm、径が1μm 程度のものと
する。
The ER fluid 13 is, for example, an alkylnaphthalene or silicone oil used as an insulating solvent, in which beard-like crystals (whiskers) of high hardness calcium carbonate are dispersed as dielectric fine particles. The whiskers have a length of 10 to 30 μm and a diameter of about 1 μm.

【0016】図2は、ER流体13の粒子分散の様子を
示している。電極14,15間に電界を印加しない状態
では、図2(a)に示すように、ウィスカー13bは溶
媒13a中にランダムな方向を向いて一様分散してい
る。これに電界を印加すると、図2(b)に示すよう
に、個々のウィスカー13bが誘電分極すると同時に、
これらが互いに鎖状につながってクラスタ13cを形成
する。特に50Hz程度の交流電界を印加することによ
って、高い分極率が得られ、個々のウィスカーが電気双
極子となってこれらがつながってクラスタ13cが形成
される。
FIG. 2 shows how the particles of the ER fluid 13 are dispersed. When no electric field is applied between the electrodes 14 and 15, the whiskers 13b are uniformly dispersed in the solvent 13a in random directions, as shown in FIG. 2 (a). When an electric field is applied to this, as shown in FIG. 2B, at the same time as the individual whiskers 13b are dielectrically polarized,
These are connected to each other in a chain to form a cluster 13c. In particular, by applying an AC electric field of about 50 Hz, a high polarizability can be obtained, and individual whiskers become electric dipoles and are connected to each other to form the cluster 13c.

【0017】図1の実施例の場合、その電界印加方向か
ら、図3(a)に拡大断面図を示したように、クラスタ
13cがキャップ11の貫通細孔12の中で貫通細孔1
2と平行に配列する。従って、電極14,15に上下振
動を与えると、図3(b)の平面図に示すように貫通細
孔12の内壁に付着している研磨砥粒20に対して、ク
ラスタ13cが微小ラッピング棒として働く。即ち、貫
通細孔12の内面に摩擦力が与えられて、研磨砥粒20
が掻き出されることになる。実際に、印加電圧を1〜2
kV(周波数20〜50Hz)、与える振動を全振幅
0.175mm(周波数20Hz)として、超音波洗浄
では取り出すことのできなかった貫通細孔12に詰まっ
た研磨材をきれいに除去できることが確認された。
In the case of the embodiment shown in FIG. 1, the cluster 13c is located in the through-pore 1 of the cap 11 from the direction of the electric field application, as shown in the enlarged sectional view of FIG.
Arrange in parallel with 2. Therefore, when the electrodes 14 and 15 are vertically vibrated, as shown in the plan view of FIG. 3B, the cluster 13c causes the minute lapping bar to be formed against the abrasive grains 20 attached to the inner wall of the through hole 12. Work as. That is, a frictional force is applied to the inner surface of the through-pore 12 and the abrasive grains 20
Will be scraped out. Actually, the applied voltage is 1-2
It was confirmed that the abrasive clogged in the through-pores 12 that could not be taken out by ultrasonic cleaning could be removed cleanly by setting the kV (frequency 20 to 50 Hz) and the applied vibration to a total amplitude of 0.175 mm (frequency 20 Hz).

【0018】ER流体に分散させる誘電体微粒子につい
ては、炭酸カルシウムのウィスカーに限れらず、分極し
やすく、且つある程度以上硬度が高く研磨に適した他の
微粒子、例えばチタン酸バリウムやシリカ、更に絶縁被
覆された金属等を用いることができる。また微粒子の形
状もウィスカーに限らず、球状であってもよい。
The dielectric fine particles to be dispersed in the ER fluid are not limited to calcium carbonate whiskers, and other fine particles that are easily polarized and have a hardness higher than a certain degree and are suitable for polishing, such as barium titanate and silica, and insulating. A coated metal or the like can be used. The shape of the fine particles is not limited to whiskers, and may be spherical.

【0019】実際のセラミックキャップ13の仕上げ処
理工程は、例えば図4に示すように行うことができる。
貫通細孔12が形成された機械研磨済みのキャップ11
を図示しないベルトコンベア等の搬送手段で搬送しなが
ら、(a)に示すようにER流体13を滴下して前述の
ようにその貫通細孔12をER流体13で満たす。次に
(b)に示すように、上下から電極14,15をER流
体13に接触させて電界をかけると同時に、電界と同じ
方向に電極14,15とキャップ11の間に相対振動を
与える。最後に(c)に示すように、ER流体13を洗
浄除去する。
The actual finishing process of the ceramic cap 13 can be performed, for example, as shown in FIG.
Mechanically polished cap 11 having through holes 12 formed therein
While being carried by a carrying means such as a belt conveyor (not shown), the ER fluid 13 is dropped as shown in (a) to fill the through pores 12 with the ER fluid 13 as described above. Next, as shown in (b), the electrodes 14 and 15 are brought into contact with the ER fluid 13 from above and below to apply an electric field, and at the same time, relative vibration is applied between the electrodes 14 and 15 and the cap 11 in the same direction as the electric field. Finally, as shown in (c), the ER fluid 13 is washed away.

【0020】あるいは、図5に示すようなバッチ処理も
可能である。図示のように容器51にER流体53を入
れ、内部に支持トレー52により機械研磨済みの複数枚
のセラミックキャップ11を立てて保持する。トレー5
2は容器51を液密に貫通するロッド54により矢印方
向に振動が与えられるようになっている。またER流体
53中に、平行電極55,56を配置し、これを交流電
源57に接続する。そして、ER流体53に電界を印加
しながら、キャップ11に電界と平行な振動を与えて、
仕上げ処理を行う。
Alternatively, batch processing as shown in FIG. 5 is also possible. As shown in the figure, the ER fluid 53 is put in the container 51, and a plurality of mechanically polished ceramic caps 11 are erected and held therein by the support tray 52. Tray 5
2 is vibrated in the arrow direction by a rod 54 that penetrates the container 51 in a liquid-tight manner. Further, parallel electrodes 55 and 56 are arranged in the ER fluid 53, and these are connected to an AC power source 57. Then, while applying the electric field to the ER fluid 53, the cap 11 is vibrated in parallel with the electric field,
Perform finishing process.

【0021】以上の実施例では、ER流体に交流電界と
同時に機械的振動を与えたが、機械的振動を加えること
なく、交流電界のみでER流体中の微粒子に振動を与え
ることもできる。特に、印加する交流電界を10Hz程
度の低周波電界とすると、ER流体中の誘電体微粒子の
分極の遅れ、即ち電気双極子形成の電界変化に対する遅
れが生じること、各微粒子間でも分極の変化に差が生じ
て微粒子相互間に電気力が作用すること、また図2
(a)の状態と同図(b)の状態の間で僅かな状態遷移
を生じること、等に起因して振動を生じさせることがで
きる。
In the above embodiments, the ER fluid is mechanically vibrated at the same time as the AC electric field, but it is also possible to vibrate the fine particles in the ER fluid only by the AC electric field without applying mechanical vibration. In particular, when the AC electric field to be applied is a low-frequency electric field of about 10 Hz, there is a delay in the polarization of the dielectric particles in the ER fluid, that is, a delay with respect to the electric field change of the electric dipole formation. The difference causes the electric force to act between the particles, and FIG.
Vibration can be generated due to a slight state transition between the state of (a) and the state of (b) of FIG.

【0022】また実施例では、ER流体として誘電体微
粒子のみを分散させたものを用いたが、誘電体微粒子と
同時に、例えばマグネタイト等の強磁性体微粒子を分散
させたER流体を用いて、電界と同時に磁界を印加し
て、同様の仕上げ処理が可能である。この場合、振動を
与えると同時に印加磁界を適当な周期で回転させると、
誘電体微粒子による摩擦力と強磁性体微粒子による摩擦
力が働いて、効果的な面処理が可能になる。この方法
は、ER効果を利用した研磨と磁気研磨の手法を組み合
わせたものとなり、電界の他に磁界がパラメータとして
入るから、面仕上げ処理条件の多様性が高いものとな
る。
In the embodiment, the ER fluid in which only the dielectric fine particles are dispersed is used. However, the ER fluid in which the ferromagnetic fine particles such as magnetite are dispersed is used at the same time as the dielectric fine particles. At the same time, a magnetic field can be applied to perform the same finishing treatment. In this case, if vibration is applied and the applied magnetic field is rotated at an appropriate cycle,
The frictional force of the dielectric fine particles and the frictional force of the ferromagnetic fine particles work to enable effective surface treatment. This method is a combination of a method of polishing using the ER effect and a method of magnetic polishing, and since a magnetic field enters as a parameter in addition to the electric field, the surface finishing processing conditions are highly diverse.

【0023】[0023]

【発明の効果】以上述べたようにこの発明によれば、E
R流体に電界を印加したときの分散微粒子が鎖状につな
がったクラスタを研磨材として利用して、ER流体とセ
ラミックキャップの貫通細孔内面との間に摩擦力を生じ
させる振動を与えて、従来困難であって貫通細孔の詰ま
り除去が可能となり、限界電流式セラミック酸素センサ
の歩留まり向上を図ることができる。
As described above, according to the present invention, E
By using a cluster in which dispersed fine particles are connected in a chain shape when an electric field is applied to the R fluid as an abrasive, vibration causing a frictional force between the ER fluid and the inner surface of the through hole of the ceramic cap is applied, Conventionally, it is possible to remove clogging of the through pores, and it is possible to improve the yield of the limiting current type ceramic oxygen sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例の処理方法を示す。FIG. 1 shows a processing method according to an embodiment of the present invention.

【図2】 同実施例のER流体の媒質分散の様子を示
す。
FIG. 2 shows a state of medium dispersion of an ER fluid in the same example.

【図3】 同実施例の貫通細孔処理の様子を拡大して示
す。
FIG. 3 is an enlarged view showing a state of through-pore treatment in the same example.

【図4】 この発明の他の実施例の処理方法を示す。FIG. 4 shows a processing method of another embodiment of the present invention.

【図5】 この発明の更に他の実施例の処理方法を示
す。
FIG. 5 shows a processing method according to still another embodiment of the present invention.

【図6】 限界電流式セラミック酸素センサを示す。FIG. 6 shows a limiting current type ceramic oxygen sensor.

【符号の説明】[Explanation of symbols]

11…セラミックキャップ、12…貫通細孔、13…E
R流体、14,15…電極、16…電源、17…電極支
持部材、18…加振器、13a…絶縁性溶媒、13b…
ウィスカー(誘電体微粒子)、13c…クラスタ、51
…容器、52…支持トレー、53…ER流体、54…ロ
ッド、55,56…電極、37…電源、60…限界電流
式セラミック酸素センサ、61…セラミックイオン伝導
体、62,63…電極、64…セラミックキャップ、6
5…貫通細孔、66…ヒーター。
11 ... Ceramic cap, 12 ... Through pores, 13 ... E
R fluid, 14, 15 ... Electrode, 16 ... Power supply, 17 ... Electrode support member, 18 ... Vibrator, 13a ... Insulating solvent, 13b ...
Whiskers (dielectric fine particles), 13c ... Cluster, 51
... Container, 52 ... Support tray, 53 ... ER fluid, 54 ... Rod, 55, 56 ... Electrode, 37 ... Power supply, 60 ... Limiting current type ceramic oxygen sensor, 61 ... Ceramic ion conductor, 62, 63 ... Electrode, 64 … Ceramic cap, 6
5 ... Through pores, 66 ... Heater.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 両面に電極が形成されたセラミックイオ
ン伝導体の一方の面側に拡散律速により酸素を供給する
ための貫通細孔が形成されたキャップを接合して限界電
流式セラミック酸素センサを製造する方法において、 前記キャップを機械研磨した後、そのキャップの少なく
とも貫通細孔が形成された部分を絶縁性溶媒に誘電体微
粒子を分散させた電気粘性流体中に浸し、前記電気粘性
流体に電界を印加し、前記電気粘性流体と前記貫通細孔
の内面との間に摩擦力を生じさせる振動を与えて、前記
貫通細孔の内面の仕上げ処理を行うことを特徴とする限
界電流式セラミック酸素センサの製造方法。
1. A limiting current type ceramic oxygen sensor comprising: a ceramic ion conductor having electrodes formed on both sides thereof; and a cap having through pores for supplying oxygen by diffusion control formed on one side of the ceramic ion conductor. In the manufacturing method, after mechanically polishing the cap, at least a portion of the cap in which the through pores are formed is immersed in an electrorheological fluid in which dielectric particles are dispersed in an insulating solvent, and the electrorheological fluid is subjected to an electric field. Is applied to give a vibration that causes a frictional force between the electrorheological fluid and the inner surface of the through-hole, and the finishing process of the inner surface of the through-hole is performed. Sensor manufacturing method.
【請求項2】 前記電気粘性流体に印加する電界は、前
記貫通細孔と平行な方向とすることを特徴とする請求項
1記載の限界電流式セラミック酸素センサの製造方法。
2. The method of manufacturing a limiting current type ceramic oxygen sensor according to claim 1, wherein the electric field applied to the electrorheological fluid is in a direction parallel to the through pores.
【請求項3】 前記振動は、前記電気粘性流体と前記キ
ャップとの間に外部から機械的振動として与えることを
特徴とする請求項1記載の限界電流式セラミック酸素セ
ンサの製造方法。
3. The method for manufacturing a limiting current type ceramic oxygen sensor according to claim 1, wherein the vibration is externally applied as mechanical vibration between the electrorheological fluid and the cap.
JP7181140A 1995-06-23 1995-06-23 Manufacture of limiting current type ceramic oxygen sensor Pending JPH095291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7181140A JPH095291A (en) 1995-06-23 1995-06-23 Manufacture of limiting current type ceramic oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7181140A JPH095291A (en) 1995-06-23 1995-06-23 Manufacture of limiting current type ceramic oxygen sensor

Publications (1)

Publication Number Publication Date
JPH095291A true JPH095291A (en) 1997-01-10

Family

ID=16095595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7181140A Pending JPH095291A (en) 1995-06-23 1995-06-23 Manufacture of limiting current type ceramic oxygen sensor

Country Status (1)

Country Link
JP (1) JPH095291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287390A (en) * 2017-05-19 2017-10-24 北京科技大学 Eccentric single-mouth refining furnace and refinery practice
CN108481142A (en) * 2018-05-21 2018-09-04 浙江工业大学 A kind of three electric pole type blade edge liquid metal burnishing devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287390A (en) * 2017-05-19 2017-10-24 北京科技大学 Eccentric single-mouth refining furnace and refinery practice
CN108481142A (en) * 2018-05-21 2018-09-04 浙江工业大学 A kind of three electric pole type blade edge liquid metal burnishing devices

Similar Documents

Publication Publication Date Title
US5531861A (en) Chemical-mechanical-polishing pad cleaning process for use during the fabrication of semiconductor devices
JPH0911114A (en) Surface finish process method
US4079552A (en) Diamond bonding process
US2616820A (en) Vibratory cleansing of objects
US2796702A (en) Method and apparatus for sonic polishing and grinding
US4581853A (en) Apparatus for internal finishing of metal parts
JPH095291A (en) Manufacture of limiting current type ceramic oxygen sensor
US3589071A (en) Surface polishing apparatus and method therefor
US7303599B2 (en) Manufacture of lapping board
JPH0234923A (en) Ultrasonic cleaner
EP0161260B1 (en) Method for the abrasive treatment of a casting
JPS6336534A (en) Cleaning equipment
KR101931202B1 (en) The liquid stirring apparatus using a ultrasonic vibrator and the liquid stirring method using there for
JP3927936B2 (en) Single wafer cleaning method and cleaning apparatus
US5551907A (en) System for ultrasonic lap grinding and polishing
JP4251824B2 (en) Stripping method and stripping device for wire surface material
JP2836888B2 (en) Cleaning method for plate
JP2016147348A (en) Processing method using zeta potential control method
JP3595219B2 (en) Processing method using particle-dispersed dielectric fluid
KR20190017579A (en) method of hole washing for showerhead using pattern tool
JPS62154798A (en) Manufacturing apparatus of printed wiring board
SU1219283A1 (en) Method of electric discharge application of coatings
JP2002079198A (en) Ultrasonic cleaning method and its device
JPH04331068A (en) Work grinding method
SU967778A1 (en) Method of vibration working