JPWO2005008879A1 - 同期電動機の磁極位置推定装置 - Google Patents

同期電動機の磁極位置推定装置 Download PDF

Info

Publication number
JPWO2005008879A1
JPWO2005008879A1 JP2005504365A JP2005504365A JPWO2005008879A1 JP WO2005008879 A1 JPWO2005008879 A1 JP WO2005008879A1 JP 2005504365 A JP2005504365 A JP 2005504365A JP 2005504365 A JP2005504365 A JP 2005504365A JP WO2005008879 A1 JPWO2005008879 A1 JP WO2005008879A1
Authority
JP
Japan
Prior art keywords
magnetic pole
pole position
current
rotor magnetic
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005504365A
Other languages
English (en)
Other versions
JP4397889B2 (ja
Inventor
佐竹 彰
彰 佐竹
金原 義彦
義彦 金原
敏之 貝谷
敏之 貝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2005008879A1 publication Critical patent/JPWO2005008879A1/ja
Application granted granted Critical
Publication of JP4397889B2 publication Critical patent/JP4397889B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/086Commutation
    • H02P25/089Sensorless control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/098Arrangements for reducing torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Abstract

電動機の2重突極性に起因して生じる影響、すなわち回転子磁極位置θによる交番電流の軸ずれが磁極位置推定に与える影響を除去し、特に2重突極電動機の磁極を高精度に推定する。 電動機5に交番電圧を印加する交番電圧印加手段1と、電動機電流を検出する電流検出手段4と、電動機5の回転子磁極位置θから現在状態での基準方向θ’を出力する基準方向発生手段8と、検出した電動機電流を基準方向θ’に対する平行成分および直交成分に分離するベクトル変換手段6と、電動機電流の平行成分および直交成分のうち少なくとも一方に基づいて、電動機5の実際の回転子磁極位置θを推定する磁極位置推定手段11〜15とを設けた。

Description

この発明は、永久磁石モータや同期リラクタンスモータなどの、交流同期電動機の回転子および固定子が電気的突極性を有する2重突極電動機の回転子磁極位置を推定するための、同期電動機の磁極位置推定装置に関するものである。
永久磁石モータや同期リラクタンスモータなどの同期電動機(以下、単に「電動機」という)は、回転子磁極の位置に応じて固定子に適切な電流を流す必要があるので、原理的には駆動に回転子磁極位置センサが必要である。しかしながら回転子磁極位置センサを用いた場合には、コストの増加、信頼性や耐久性の低下、電気配線の増加などの問題があり、回転子磁極位置センサを用いないセンサレス制御方式が望まれている。このような課題を解決するために、たとえば、特許文献1(特許第3312472号)に記載された技術が開示されている。
特許文献1に開示された従来装置は、電動機に交番電圧を印加する交番電圧印加手段と、電動機電流を検出する電流検出手段と、検出した電動機電流を、印加している交番電圧に対する平行成分および直交成分に分離するベクトル変換手段と、電動機電流の平行成分および直交成分のうち少なくとも一方に基づいて電動機の回転子磁極位置を推定する磁極位置推定手段とを備えている。
上記従来装置においては、たとえば特許文献1の数式8に示されるように、交番電圧を印加する方向と磁極方向との間に位相差(特許文献1では、相差角θ)が存在すると、印加した交番電圧(特許文献1では、dc軸方向)に対して直交する方向(特許文献1ではqc軸方向)に、sin2θに比例した振幅を有する交流電流が発生する現象を利用して、回転子磁極位置を推定している。
この現象が発生する理由は、一般に、突極性を有する電動機では、回転子磁極方向のインダクタンスが最大(正突極性)または最小(逆突極性)になるからである。ところが、実際の電動機では、交番電圧を印加する方向と実際の磁極方向とが一致していても、交番電圧に対して直行する方向に、交番電流が発生する場合がある。
図4はその一例を実験結果で示しており、回転子磁極位置と交番電圧印加方向とが一致している場合において、交番電圧に直交する方向の電流振幅の、回転子磁極位置による変化を表している。
図4において、横軸は時間[s]を示しており、縦軸は電気角での回転子磁極位置(細線)[10/360度]および電流振幅(太線)[A]を示している。図4から明らかなように、回転子磁極位置の変化にともない、交番電圧を印加する方向と回転子磁極位置とが一致しているにもかかわらず、電流振幅が周期的に変化していることが分かる。
この現象が発生する理由は、実際の電動機では、回転子磁極位置とインダクタンス最小(または、インダクタンス最大)方向とが一致せず、両者のずれ量が回転子磁極位置によって変化することにある。
図5は、図4の実験に用いた埋込磁石永久磁石電動機の断面を示したものであり、回転子上の8つの矩形の部分は、回転子上に埋め込まれた永久磁石である。この電動機は、回転子は8極で、固定子は12のスロットを有する集中巻電機子からなる。埋込磁石永久磁石電動機は、永久磁石を埋め込むために回転子の磁気回路形状が軸対象ではなく、このため電気的突極性を有することが知られている。
図5の電動機の鉄心構造を、1極対分だけ取り出して簡略化したものを図6に示す。ただし、図5の埋込磁石永久磁石電動機は、回転子磁極方向(回転子磁極位置)がインダクタンス最小である逆突極性であるが、図6の電動機モデルでは、回転子磁極方向がインダクタンス最大である正突極性である点に注意されたい。なお、電動機の逆突極性および正突極性の違いは、定義する磁極方向が電気角で90度だけずれていることのみであり、本質的な違いはない。
ここで、観測軸による電動機のインダクタンス変化を、固定子と回転子とについて、それぞれに分けて考える。
まず、図7のように、図6の電動機において回転子に突極性がない場合のインダクタンス変化を考えれば、インダクタンスは回転子磁極位置にかかわりなく、固定子上の観測軸の方向により一意的に決まる。
図7において、観測軸γ=0上のインダクタンスと、観測軸γ=π/3(=60度)上のインダクタンスとは、観測軸と固定子の鉄心との相対的な位置関係が同じなので、値が等しくなる。
これに対して、観測軸γ=0上のインダクタンスと、観測軸γ=π/6(=30度)上のインダクタンスとは、観測軸と固定子の鉄心との相対的な位置関係が異なるので、値が等しくなるとは限らない。
ここで、仮に、観測軸γ=0と観測軸γ=π/6(=30度)とで、観測軸方向のインダクタンスが異なり、且つ、γ=0からγ=π/6(=30度)までの間、および、γ=π/6(=30度)からγ=π/3(=60度)までの間で、観測軸方向のインダクタンスが単調に変化するものと仮定する。このとき、図7に示したモデルの観測軸によるインダクタンスの変化は、図8内の破線で示すように、電気角の60度周期で変動すると考えられる。
モータ設計においては、この変動を極力小さくするように様々な工夫が成されているが、特に図6のような集中巻電機子においては、この変動を零にすることは難しい。
上記のようにインダクタンス変化が大きい電動機は、固定子も突極性を有していると考えられ、図6に示したような構造の電動機は、回転子および固定子の双方が突極性を有することから、2重突極電動機(Doubly−Salient Motor)と呼ばれる。
次に、図9のように、固定子に突極性がない場合のインダクタンスの変化を考えれば、インダクタンスは、回転子磁極位置と観測軸との間の角度によって決定する。
図9において、観測軸δ=0上のインダクタンスと観測軸δ=π(=180度)上のインダクタンスとは、観測軸と回転子の鉄心との相対的な位置関係が同じなので、値が等しくなる。
これに対して、観測軸δ=0上のインダクタンスと観測軸δ=π/2(=90度)上のインダクタンスとは、観測軸と回転子の鉄心との相対的な位置関係が異なるので、等しくならない。
ここで、仮に、観測軸δ=0からδ=π/2(=90度)までの間、および、δ=π/2(=90度)からδ=π(=180度)までの間で、観測軸方向のインダクタンスが単調に変化するものと仮定すれば、図9に示したモデルの観測軸によるインダクタンスの変化は、図8内の細線で示すように、電気角の180度周期で変動すると考えられる。
図6に示した電動機の観測軸によるインダクタンス変化の特性は、上記の2つのインダクタンス特性を合成すれば得られる。
図8は、回転子磁極位置θ=0(U相巻線と回転子磁極が正対している状態)の場合における、固定子分インダクタンス(破線)、回転子分インダクタンス(細線)および合成インダクタンス(太線)を示している。ただし、図8において、各インダクタンスの大きさは、正規化されているものとする。
図8の状態では、回転子突極方向と合成インダクタンスの最大方向は、それぞれ一致しており、電気角0およびπ(=180度)で最大インダクタンスとなる。
これに対して、図10は、回転子磁極方向(回転子磁極位置)θ=π/12(=15度)の場合における、各インダクタンスの観測軸によるインダクタンス変化の特性を示している。
図10の状態では、回転子磁極方向(回転子インダクタンスの最大方向)と合成インダクタンスの最大方向との間にずれ量(ずれ角)が発生していることが分かる。
図11は、回転子磁極方向θを0からπ(=180度)まで変化させた場合の、回転子磁極方向と合成インダクタンスの最大方向との間のずれ角[度]の変化の様子を示している。
図11から明らかなように、ずれ角は、電気角60度の周期で、周期的に変化することが分かる。したがって、図6に示すような2重突極特性を有する電動機においては、回転子磁極方向と合成インダクタンスの最大方向との間のずれ角が、電気角で1回転の間(0〜360度)に6周期発生すると考えられる。
また、図10から分かるように、同様の現象は、回転子磁極方向から90度進んだ方向(すなわち、回転子逆突極方向)と、合成インダクタンス最小方向とについても発生している。
このため、図4の実験のように、回転子磁極方向(すなわち回転子逆突極方向)に交番電圧を印加した状態で回転子を回転させると、交番電圧の印加方向と合成インダクタンス最小方向との間に、電気角で1回転に6周期のずれ角が発生して、これにより図4に示すように、交番電圧と直行する方向に交番電流が発生するものと考えられる。
この発明は、このような課題を解決するためになされたもので、電動機の2重突極性に起因して発生する影響、すなわち回転子磁極位置による交番電流の軸ずれが磁極位置推定に与える影響を除去することにより、いわゆる2重突極性を有する電動機においても、回転子磁極位置を良好に推定することができる同期電動機の磁極位置推定装置を提供するものである。
この発明による同期電動機の磁極位置推定装置は、電動機に交番電圧を印加する交番電圧印加手段と、電動機電流を検出する電流手段と、電動機の回転子磁極位置から現在状態での基準方向(インダクタンス最小方向)を出力する基準方向発生手段と、検出された電動機電流を基準方向に対する平行成分および直交成分に分離するベクトル変換手段と、電動機電流の平行成分および直交成分の少なくとも一方の成分に基づいて電動機の実際の回転子磁極位置を推定する磁極位置推定手段とを備えたものである。
また、この発明による同期電動機の磁極位置推定装置は、電動機に交番電圧を印加する交番電圧印加手段と、交番電圧に応答して電動機に流れる電流を検出する電流検出手段と、電動機の回転子磁極位置および固定子電流に応じた所定のずれ量を回転子磁極位置に加算して基準方向を出力する基準方向発生手段と、電流検出手段により検出された電動機電流を、基準方向に対する平行成分および直交成分に分離するベクトル変換手段と、電動機電流の平行成分および直交成分の少なくとも一方の成分に基づいて電動機の実際の回転子磁極位置を推定する磁極位置推定手段とを備えたものである。
また、この発明による同期電動機の磁極位置推定装置は、電動機の回転子磁極位置に応じた所定のずれ量を回転子磁極位置に加算して、交番電圧印加方向に対応した基準方向を出力する交番電圧印加方向発生手段と、電動機の交番電圧印加方向に交番電圧を印加する交番電圧印加手段と、交番電圧に応答して電動機に流れる電流を検出する電流検出手段と、電流検出手段により検出された電動機電流を、回転子磁極位置に対する平行成分および直交成分に分離するベクトル変換手段と、電動機電流の平行成分および直交成分の少なくとも一方の成分に基づいて電動機の実際の回転子磁極位置を推定する磁極位置推定手段とを備えたものである。
図1はこの発明の実施の形態1による同期電動機の磁極位置推定装置の機能構成を示す回路ブロック図である。
図2はこの発明の実施の形態2による同期電動機の磁極位置推定装置の機能構成を示す回路ブロック図である。
図3はこの発明の実施の形態3による同期電動機の磁極位置推定装置の機能構成を示す回路ブロック図である。
図4は従来の同期電動機の磁極位置推定装置における動作を実験結果により示す説明図であり、回転子磁極位置と交番電圧印加方向とが一致している場合における、交番電圧に直交する方向の電流振幅および回転子磁極位置の時間変化を示している。
図5は図4の実験に用いられた電動機を示す断面図である。
図6は図5の電動機の鉄心構造を1極対分だけ取り出して簡略化して示す断面図である。
図7は図6内の回転子に突極性がない場合を示す断面図であり、インダクタンス変化を説明するために固定子上の観測軸方向が示されている。
図8は図7に示した電動機モデルの観測軸によるインダクタンス変化を示す説明図である。
図9は図6内の固定子に突極性がない場合を示す断面図であり、インダクタンス変化を説明するために、回転子磁極位置と観測軸との間の角度が示されている。
図10は従来の同期電動機の磁極位置推定装置における各観測軸によるインダクタンス変化の特性を示す説明図である。
図11は従来の同期電動機の磁極位置推定装置における回転子磁極方向と合成インダクタンスの最大方向との間のずれ変化を示す説明図である。
以下、図面を参照しながら、この発明の実施の形態1について詳細に説明する。
図1はこの発明の実施の形態1による同期電動機の磁極位置推定装置の機能構成を示す回路ブロック図である。
図1において、この発明の実施の形態1による同期電動機の磁極位置推定装置は、発振器1、座標変換器2、ドライブ回路3、電流センサ4、電動機5、座標変換器6、軸ずれテーブル7、加算器8、信号発生器9、ベクトル発生器10、制御器11、乗算器12、減算器13、乗算器14および15を備えている。
発振器1は、電動機5に印加される交番電圧(dq軸)のd軸信号Vdを発生し、座標変換器2は、2軸回転座標系(dq軸)の交番電圧(Vd,Vq)を3相固定座標系(UVW)の電圧(Vu,Vv,Vw)に座標変換し、これを出力電圧指令として出力する。
ドライブ回路3は、出力電圧指令に応じた3相出力電圧を電動機5に印加し、電流センサ4は、3相出力電圧に応じて電動機5に供給される3相の電動機電流(iu,iv,iw)を検出する。
座標変換器6は、基準方向(インダクタンス最小方向θ’)に対する平行成分および直交成分(αβ)に分離するベクトル変換手段を構成しており、電動機電流(iu,iv,iw)を2相固定座標(αβ)上の電流ベクトル(iα,iβ)に座標変換する。
軸ずれテーブル7は、回転子磁極位置θとずれ角ζとの関係をあらかじめ記憶しており、回転子磁極位置θの入力値(推定値)に応じたずれ角ζを出力する。
加算器8は、ずれ角ζと回転子磁極位置θとを加算してインダクタンス最小方向θ’を求め、ベクトル発生器10は、インダクタンス最小方向θ’の単位基準ベクトル(α,β)を求める。
乗算器14は、基準ベクトル(α,β)のα成分と電流ベクトル(iα,iβ)のβ成分iβとを乗算し、乗算器15は、基準ベクトルのβ成分と電流ベクトルのα成分iαとを乗算し、減算器13は、乗算器14の出力値から乗算器15の出力値を減算する。
乗算器14、15および減算器13は、基準ベクトル(α,β)と2相固定座標上の電流ベクトル(iα,iβ)との外積を計算し、これにより、電流ベクトル(iα,iβ)のうち、基準ベクトル(α,β)に対して直交する成分を求める。
信号発生器9は、発振器1の出力電圧と同一周波数で且つ位相が90度遅れた信号を発生し、乗算器12は、信号発生器9の出力信号と減算器13の出力信号とを乗算する。
制御器11は、乗算器12の出力値から回転子磁極位置θを推定演算し、推定された回転子磁極位置θを、座標変換器2、軸ずれテーブル7および加算器8に入力する。
次に、図1に示したこの発明の実施の形態1による動作について説明する。
まず、発振器1から生成される交番電圧Vdは、座標変換器2に対して、d軸信号として入力される。一方、座標変換器2のq軸信号Vqとしては、グランド電位「0」が入力される。
座標変換器2は、入力信号(d軸信号Vd,q軸信号Vq)を回転子磁極位置θ(推定値)にしたがって変換し、2軸回転座標系(dq軸)から3相固定座標(UVW)の電圧出力値(Vu,Vv,Vw)に座標変換する。
座標変換器2の変換出力(3相の出力電圧指令Vu,Vv,Vw)は、ドライブ回路3の電圧指令として入力され、ドライブ回路3は、出力電圧指令に相当する電圧を、電動機5の3相巻線端子に印加する。
電動機5の各相(UVW)の巻線に流れる電動機電流(iu,iv,iw)は、電流センサ4により検出され、電流センサ4の検出信号は、座標変換器6を介して、3相固定座標(UVW)から2相固定座標(αβ軸)の電流ベクトル(iα,iβ)に変換される。
このとき、たとえば、電動機5が2重突極電動機(図6参照)の場合には、前述したように、回転子磁極位置θ(回転子逆突極方向)とインダクタンス最小方向θ’との間に、電気角に対応した周期的なずれ量(ずれ角[度])が発生する(図11参照)。
このずれ量は、電動機5内の回転子と固定子の突極性との相互作用によって発生するものであり、観測軸γ(図7参照)の電気角(回転子位置)に対応して決定された値となる。したがって、あらかじめ回転子位置に対するずれ量の関係を求めておけば、回転子磁極位置θを認識することにより、認識した時点(現在状態)でのインダクタンス最小方向θ’(インダクタンスが最小になる方向)を一意的に求めることができる。
軸ずれテーブル7は、回転子磁極位置θと、回転子磁極位置θとインダクタンス最小軸とのずれ角ζとの関係を、あらかじめテーブルとして記憶しており、回転子磁極位置θ(推定値)に対応したずれ角ζを一意的に求めて出力する。
続いて、加算器8は、軸ずれテーブル7で求められたずれ角ζと回転子磁極位置θとを加算し、インダクタンス最小方向θ’を求める。
また、ベクトル発生器10は、位相がインダクタンス最小方向θ’となる2相固定座標(αβ軸)上の単位基準ベクトル(α,β)を求める。
次に、乗算器14、15および減算器13は、基準ベクトル(α,β)と2相固定座標上の電流ベクトル(iα,iβ)との外積を計算することにより、電流ベクトル(iα,iβ)のうちの、基準ベクトル(α,β)に対して直交する成分を求める。
信号発生器9は、発振器1の出力周波数と同一周波数で位相が90度遅れた信号を発生している。したがって、信号発生器9の出力信号は、電動機5に印加された交番電圧によって発生する交番電流と位相が一致している。
乗算器12は、信号発生器9の出力信号と、減算器13の出力信号すなわち基準ベクトル(α,β)に直交する電流ベクトルの成分(外積値)とを乗算し、これにより、交番電圧によって発生した交番電流の、基準ベクトル(α,β)に直交する成分(すなわち、インダクタンス最小方向θ’と直交する成分)を求める。
ここで、推定された回転子磁極位置θと実際の回転子磁極位置とが一致していれば、発生する交番電流と基準ベクトル(α,β)との方向が一致するので、乗算器12の出力値は「0」になる。
一方、回転子磁極位置θと実際の回転子磁極位置との間に誤差があると、発生する交番電流と基準ベクトル(α,β)との方向がずれるので、乗算器12の出力値は、回転子磁極位置θの誤差に応じた値となって制御器11に入力される。
制御器11は、乗算器12から出力される誤差信号に応じて、適切な制御を行うことにより、図6に示すような2重突極電動機において、磁極とインダクタンス最小軸とのずれ角ζの影響(図4参照)を受けることなく、回転子磁極位置θを実際の回転子磁極位置と一致させて、精度よく推定演算を行う。
このように、電動機5がいわゆる2重突極性を有する場合でも、回転子磁極位置θを良好に推定することができる。
なお、上記実施の形態1(図1)では、電動機の磁極位置推定装置のみが示されているが、実際に電動機制御系に適用する際には、図1に示した磁極位置推定装置を、通常の電動機5の駆動制御系に組み込んで使用される。したがって、図1には示されていない各種の回路構成(たとえば、後述する電流制御器など)が関連することになるが、制御系全体の構成については、説明が煩雑になるので、ここでは省略する。
また、上記実施の形態1では、回転子磁極位置θに対するインダクタンス最小軸のずれ角ζを軸ずれテーブル7に記憶させたが、軸ずれテーブル7の代わりに、回転子磁極位置θを入力パラメータとする数式を用いた演算手段を設けてもよい。
また、電流ベクトル(iα,iβ)から基準ベクトル(α,β)に直交する成分を抽出するために、外積値を計算したが、同様の作用を有する他のベクトル計算方式(座標変換など)を用いてもよい。
さらに、交番電圧を電動機5に印加して、発生する交番電流を検出して処理することにより磁極位置を推定したが、たとえば特許文献1に記載されたように、交番電流を電動機5に流して、発生する交番電圧を検出して処理することにより磁極位置を推定してもよい。
実施の形態2.
なお、上記実施の形態1では、2重突極電動機(図6参照)からなる電動機5の回転子磁極方向θ(すなわち、回転子逆突極方向)とインダクタンス最小方向θ’との間に発生する、電気角に対応した周期的なずれ角ζ(ずれ量)のみを考慮して処理する軸ずれテーブル7を設けたが、回転子および固定子のインダクタンスが電動機電流による磁気飽和で変化する場合に、周期的なずれ量の様態が電動機電流により変化することに鑑みて、電動機電流によるずれ量の変化の関係も考慮した軸ずれテーブルを設けてもよい。
この場合、ずれ量の様態の変化は、電動機電流によって一意的に決まるので、電動機電流によるずれ量の変化の関係をあらかじめ求めておけば、電動機電流と回転子磁極位置θとから、現在状態でインダクタンスが最小になる方向θ’を一意的に求めることができる。
図2は電動機電流によるずれ量の変化をも考慮して処理するための軸ずれテーブル7Aを設けたこの発明の実施の形態2による同期電動機の磁極位置推定装置による機能構成を示す回路ブロック図である。
図2において、前述(図1参照)と同様のものについては、前述と同一符号を付して、または符号の後に「A」を付して詳述を省略する。
この発明の実施の形態2による同期電動機の磁極位置推定装置は、前述と同様の発振器1、座標変換器2、ドライブ回路3、電流センサ4、電動機5、座標変換器6、軸ずれテーブル7A、加算器8、信号発生器9、ベクトル発生器10、制御器11、乗算器12、減算器13、乗算器14および15に加えて、ドライブ回路3および軸ずれテーブル7Aに関連した電流制御器16および加算器17を備えている。
図2においては、制御系全体の回路構成のうち、磁極位置推定装置に直接関連する電流制御器16が示されている。
電流制御器16は、通常の電動機制御に用いられるものであり、電動機電流(iu,iv,iw)、回転子磁極位置θおよび2軸回転座標系(dq軸)での電流指令(id,iq)を入力信号とし、2軸回転座標系(dq軸)での電動機電流(id,iq)および3相固定座標(UVW)上の電圧指令を出力信号としている。
すなわち、電流制御器16は、電流指令(id,iq)にしたがい、3相固定座標(UVW)上の電動機電流(iu,iv,iw)から、3相固定座標(UVW)上の電圧指令を生成するとともに、2軸回転座標系(dq軸)での電動機電流(id,iq)を軸ずれテーブル7Aに入力する。
加算器17は、電流制御器16からの電圧指令と、座標変換器2からの磁極位置推定用の交番信号とを加算し、出力電圧指令(Vu,Vv,Vw)としてドライブ回路3に入力する。
このとき、電流制御器16と交番電圧による磁極位置推定との間で干渉を起こさないように、磁極位置推定に使用される交番電圧の周波数は、電流制御器16の電流応答周波数よりも高く設定されている。または、干渉を回避するための他の対策として、電流制御器16内に電流信号の高周波成分を除去するフィルタを設けてもよい。
軸ずれテーブル7Aは、回転子磁極位置θおよび電動機電流(id,iq)に対する、回転子磁極位置θとインダクタンス最小軸とのずれ角ζの関係を記憶しており、電流制御器16から出力された電動機電流(id,iq)と、制御器11から出力された回転子磁極位置θとから、ずれ角ζを求めて出力する。
以下、前述と同様に、ずれ角ζを用いた推定演算処理を実行することにより、電動機電流(iu,iv,iw)によるインダクタンス変化の影響を受けることなく、高精度に回転子磁極位置を推定することができる。
実施の形態3.
なお、上記実施の形態1、2では、電動機5の回転子磁極方向に交番電圧を印加して、発生する交番電流の回転子磁極方向に基づき、電動機5の2重突極性を考慮して、ずれ角ζ(ずれ量)を処理したが、電動機5の回転子磁極方向からずらして交番電圧を印加し、交番電圧のずれ角を用いて、交番電圧印加時に発生する交番電流が回転子磁極方向と一致するように処理してもよい。
図3は交番電圧印加方向の回転子磁極方向からのずれ角ζ’を用いて交番電流を回転子磁極方向と一致するようにしたこの発明の実施の形態3による同期電動機の磁極位置推定装置の機能構成を示す回路ブロック図である。
図3において、前述(図1参照)と同様のものについては、前述と同一符号を付して、または、符号の後に「B」または「’」を付して詳述を省略する。
この発明の実施の形態3による同期電動機の磁極位置推定装置は、前述と同様の発振器1B、座標変換器2B、ドライブ回路3、電流センサ4、電動機5、座標変換器6B、電圧ずれテーブル7B、加算器8B、信号発生器9、制御器11および乗算器12Bを備えている。
この場合、発振器1Bから出力される交番電圧Vd’(d軸信号)は、回転子磁極方向からずらして電動機5に印加されるようになっている。
座標変換器2Bは、ずれ角ζ’および回転子磁極位置θから算出された交番電圧印加方向θ’Bにしたがって、2軸回転座標系の入力信号(d軸信号Vd’,q軸信号Vq’)を3相固定座標の電圧出力値に座標変換する。
座標変換器6Bは、電流センサ4により検出された電動機電流を、回転子磁極位置θに対する平行成分および直交成分(dq)に分離するベクトル変換手段を構成しており、2相の電流ベクトル(id,iq)を出力する。
乗算器12Bは、電流ベクトルのq軸成分iqと信号発生器9の出力信号とを乗算して制御器11に入力する。電流ベクトルの他方のd軸成分idは、図示されない制御系で用いられる。
制御器11は、乗算器12Bの乗算値から回転子磁極位置θを求め、電圧ずれテーブル7B、加算器8Bおよび座標変換器6Bに入力する。
電圧ずれテーブル7Bは、回転子磁極位置θと、回転子磁極位置θと交番電圧印加方向とのずれ角ζ’の関係をテーブルとして記憶しており、回転子磁極位置θ(推定値)に応じて、ずれ角ζ’を出力する。
加算器8Bは、交番電圧印加方向発生手段を構成しており、ずれ角ζ’と回転子磁極位置θとを加算して、交番電圧印加方向θ’Bを求め、これを基準方向として座標変換器2Bに入力する。
ここで、電動機5が2重突極電動機(図6参照)の場合、前述(図1、図2参照)のように、電動機5に対して回転子磁極位置θと一致した方向に交番電圧を印加すると、回転子磁極位置θ(回転子逆突極方向)とインダクタンス最小方向θ’との間に、電気角に対応した周期的なずれ角ζが発生し、回転子磁極位置θに対応して一意的に決定するずれ角ζが発生するので、ずれ角ζだけシフトした方向に交番電流が発生する。
このとき、電動機5に印加する交番電圧の方向を、ずれ角ζによるシフト方向とは逆方向に適当にずらせば、交番電流の方向と回転子磁極方向θとを一致させることが可能なことは自明である。したがって、前述の2重突極電動機における回転子磁極方向(回転子磁極位置θ)とインダクタンス最小方向θ’との関係から、交番電流の方向と回転子磁極方向(回転子磁極位置θ)とが一致するような交番電圧印加方向のずれ角ζ’は、回転子磁極位置θにより一意的に決まる。
そこで、電圧ずれテーブル7Bは、回転子磁極位置θと交番電圧印加方向のずれ角ζ’との関係を記憶し、加算器8Bは、ずれ角ζ’と推定回転子磁極位置θとを加算して交番電圧印加方向θ’Bを求め、座標変換器2Bは、交番電圧印加方向θ’Bにしたがい、発振器1Bが発生する交番電圧の座標変換を行う。
電流センサ4により検出された電動機電流は、座標変換器6Bにおいて、推定回転子磁極位置θに基づき、3相固定座標(UVW)から2相回転座標(dq軸)に変換される。
乗算器12Bは、信号発生器9からの出力信号と、座標変換器6Bから出力される電動機電流のq軸成分iqとを乗算することにより、交番電圧により発生した電動機電流のうちの、回転子磁極方向θと直交する成分を求め、これを制御器11に入力する。
このとき、推定された回転子磁極位置θが実際の回転子磁極位置と一致していれば、発生する交番電流と回転子磁極方向(回転子磁極位置θ)とが一致するので、乗算器12Bの出力値は「0」になる。
一方、推定された回転子磁極位置θと実際の回転子磁極位置との間に誤差が存在すると、乗算器12Bの出力値は、誤差に応じた値を有することになる。
したがって、乗算器12Bからの誤差信号を制御器11に入力し、適切な制御を行うことにより、前述の実施の形態1、2と同様に、回転子磁極位置θを実際の回転子磁極位置と一致させて、高精度に回転子磁極位置θを推定演算することができる。
また、図3の場合、推定された回転子磁極位置θと実際の回転子磁極位置とが一致していれば、回転子磁極方向(回転子磁極位置θ)に対して直交する交番電流が発生しないので、電動機5の磁極検出時の交番電流に起因した電動機5のトルク脈動の発生を回避することができる。
発明の効果
以上述べた通り、この発明の交流同期電動機の磁極位置推定装置によれば、電動機5に交番電圧を印加する交番電圧印加手段と、電動機電流を検出する電流検出手段と、電動機の回転子磁極位置から現在状態での基準方向(インダクタンス最小方向)を出力する基準方向発生手段と、検出した電動機電流を基準方向に対する平行成分および直交成分に分離するベクトル変換手段と、電動機電流の平行成分および直交成分のうち少なくとも一方に基づいて電動機の実際の回転子磁極位置を推定する磁極位置推定手段とを設けたので、電動機の2重突極性に起因して生じる影響(すなわち、回転子磁極位置θによる交番電流の軸ずれが磁極位置推定に与える影響)を除去することができ、2重突極電動機の磁極を高精度に推定することができる。
産業上の利用の可能性
この発明は、永久磁石モータや同期リラクタンスモータなどの、交流同期電動機の回転子および固定子が電気的突極性を有する2重突極電動機の回転子磁極位置を推定するための、同期電動機の磁極位置推定装置として利用される。

Claims (5)

  1. 電動機に交番電圧を印加する交番電圧印加手段と、
    前記交番電圧に応答して前記電動機に流れる電流を検出する電流検出手段と、
    前記電動機の回転子磁極位置に応じた所定のずれ量を前記回転子磁極位置に加算して基準方向を出力する基準方向発生手段と、
    前記電流検出手段により検出された電動機電流を、前記基準方向に対する平行成分および直交成分に分離するベクトル変換手段と、
    前記電動機電流の平行成分および直交成分の少なくとも一方の成分に基づいて前記電動機の実際の回転子磁極位置を推定する磁極位置推定手段と
    を備えた同期電動機の磁極位置推定装置。
  2. 前記電動機に交番電圧を印加する交番電圧印加手段と、
    前記交番電圧に応答して前記電動機に流れる電流を検出する電流検出手段と、
    前記電動機の回転子磁極位置および固定子電流に応じた所定のずれ量を前記回転子磁極位置に加算して基準方向を出力する基準方向発生手段と、
    前記電流検出手段により検出された電動機電流を、前記基準方向に対する平行成分および直交成分に分離するベクトル変換手段と、
    前記電動機電流の平行成分および直交成分の少なくとも一方の成分に基づいて前記電動機の実際の回転子磁極位置を推定する磁極位置推定手段と
    を備えた同期電動機の磁極位置推定装置。
  3. 前記所定のずれ量を前記回転子磁極位置に加算した基準方向は、前記電動機の現在状態でのインダクタンス最小方向に対応することを特徴とする請求項1または請求項2に記載の同期電動機の磁極位置推定装置。
  4. 電動機の回転子磁極位置に応じた所定のずれ量を前記回転子磁極位置に加算して、交番電圧印加方向に対応した基準方向を出力する交番電圧印加方向発生手段と、
    前記電動機の前記交番電圧印加方向に交番電圧を印加する交番電圧印加手段と、
    前記交番電圧に応答して前記電動機に流れる電流を検出する電流検出手段と、
    前記電流検出手段により検出された電動機電流を、前記回転子磁極位置に対する平行成分および直交成分に分離するベクトル変換手段と、
    前記電動機電流の平行成分および直交成分の少なくとも一方の成分に基づいて前記電動機の実際の回転子磁極位置を推定する磁極位置推定手段と
    を備えた同期電動機の磁極位置推定装置。
  5. 前記所定のずれ量を回転子磁極位置に加算した基準方向は、前記電動機の現在状態で発生する交番電流が回転子磁極位置と一致するような、前記交番電圧の印加方向に対応することを特徴とする請求項4に記載の同期電動機の磁極位置推定装置。
JP2005504365A 2003-07-16 2003-07-16 同期電動機の磁極位置推定装置 Expired - Fee Related JP4397889B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/009031 WO2005008879A1 (ja) 2003-07-16 2003-07-16 同期電動機の磁極位置推定装置

Publications (2)

Publication Number Publication Date
JPWO2005008879A1 true JPWO2005008879A1 (ja) 2006-09-07
JP4397889B2 JP4397889B2 (ja) 2010-01-13

Family

ID=34074101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005504365A Expired - Fee Related JP4397889B2 (ja) 2003-07-16 2003-07-16 同期電動機の磁極位置推定装置

Country Status (4)

Country Link
US (1) US7161324B1 (ja)
EP (1) EP1646138B1 (ja)
JP (1) JP4397889B2 (ja)
WO (1) WO2005008879A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735287B2 (ja) * 2006-01-25 2011-07-27 株式会社デンソー 同期モータの制御装置およびこの同期モータの制御装置を用いた制御方法
JP2007336641A (ja) * 2006-06-13 2007-12-27 Denso Corp 同期モータの位置センサレス駆動装置
JP4434184B2 (ja) * 2006-08-17 2010-03-17 アイシン・エィ・ダブリュ株式会社 電気モータのフィードバック制御方法および装置
JP5194838B2 (ja) * 2008-01-29 2013-05-08 三菱電機株式会社 交流同期モータの磁極位置推定方法
FR2933550B1 (fr) * 2008-07-01 2012-10-12 Schneider Toshiba Inverter Europe Sas Procede de determination des inductances d'une machine synchrone a aimants permanents
JP5913869B2 (ja) 2011-08-31 2016-04-27 林純薬工業株式会社 エッチング液組成物およびエッチング方法
DE102013204194A1 (de) * 2013-03-12 2014-09-18 Robert Bosch Gmbh Regelungssystem für eine Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine
JP6104021B2 (ja) * 2013-04-05 2017-03-29 三菱電機株式会社 交流回転機の制御装置
CN103595313B (zh) * 2013-11-21 2016-04-13 南京航空航天大学 一种基于端电压的电励磁双凸极电机低速运行无位置传感器法
US10595754B2 (en) 2014-03-13 2020-03-24 Sano Intelligence, Inc. System for monitoring body chemistry
CN111366846B (zh) * 2020-03-31 2022-06-21 江苏金丰机电有限公司 一种电动车电机正反码学习方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3026202A1 (de) * 1980-07-10 1982-02-04 Siemens AG, 1000 Berlin und 8000 München Drehfeldmaschinenantrieb mit einer umrichtergespeisten drehfeldmaschine und einer mit zwei wechselspannungsintegratoren und einer rechenmodellschaltung verbundenen umrichtersteuerung
NO851324L (no) * 1984-05-18 1985-11-19 Siemens Ag Fremgangsmaate og anordning til aa bestemme en dreiefelt-maskins fluksvektor.
US4680526A (en) * 1984-08-21 1987-07-14 Hitachi, Ltd. Method of controlling inverter-driven induction motor
EP0228535A1 (de) * 1985-12-04 1987-07-15 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Bestimmung des Flusswinkels einer Drehfeldmaschine bzw. zum Lageorientierten Betrieb der Maschine
FI883335A (fi) * 1988-01-14 1989-07-15 Siemens Ag Foerfarande och anordning foer bestaemmande av rotorresistensen hos en vridfaeltmaskin.
JP3064671B2 (ja) * 1992-04-27 2000-07-12 富士電機株式会社 電力変換装置の制御回路
JP3312472B2 (ja) 1994-03-01 2002-08-05 富士電機株式会社 電動機の磁極位置検出装置
JP3550584B2 (ja) * 1995-04-21 2004-08-04 正 深尾 電磁回転機械
JPH10341599A (ja) * 1997-06-06 1998-12-22 Fuji Electric Co Ltd 電動機の制御装置
US6137258A (en) * 1998-10-26 2000-10-24 General Electric Company System for speed-sensorless control of an induction machine
JP2000152687A (ja) * 1998-11-05 2000-05-30 Daikin Ind Ltd ブラシレスdcモータ制御方法およびその装置
US6069467A (en) * 1998-11-16 2000-05-30 General Electric Company Sensorless rotor tracking of induction machines with asymmetrical rotor resistance
JP3656944B2 (ja) * 1999-09-21 2005-06-08 潔 大石 同期電動機の制御方法
JP3411878B2 (ja) * 2000-03-06 2003-06-03 株式会社日立製作所 同期モータの回転子位置推定方法、位置センサレス制御方法及び制御装置
JP3979561B2 (ja) * 2000-08-30 2007-09-19 株式会社日立製作所 交流電動機の駆動システム
JP3840905B2 (ja) * 2001-03-08 2006-11-01 株式会社日立製作所 同期電動機の駆動装置
JP2003037990A (ja) * 2001-07-24 2003-02-07 Hitachi Ltd モータ制御装置
JP3668870B2 (ja) * 2001-08-09 2005-07-06 株式会社日立製作所 同期電動機駆動システム
US6906491B2 (en) * 2003-06-20 2005-06-14 Rockwell Automation Technologies, Inc. Motor control equipment
JP2006238631A (ja) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Id/Iqテーブルを使用したモータの制御方法

Also Published As

Publication number Publication date
US7161324B1 (en) 2007-01-09
EP1646138A4 (en) 2008-12-10
EP1646138B1 (en) 2012-11-28
EP1646138A1 (en) 2006-04-12
WO2005008879A1 (ja) 2005-01-27
JP4397889B2 (ja) 2010-01-13
US20070018605A1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4674525B2 (ja) 磁極位置推定方法及びモータ制御装置
JP4674516B2 (ja) 同期モータの磁極位置推定方法
TWI499198B (zh) 馬達控制設備及馬達控制方法
JP4989075B2 (ja) 電動機駆動制御装置及び電動機駆動システム
JP4687846B2 (ja) 同期電動機の磁極位置推定方法および制御装置
JP3805336B2 (ja) 磁極位置検出装置及び方法
JP2002320398A (ja) Dcブラシレスモータのロータ角度検出装置
JP2003199389A (ja) モータの制御装置及びその制御方法
JP5428202B2 (ja) 永久磁石形同期電動機の制御装置
JP3832443B2 (ja) 交流電動機の制御装置
JP4397889B2 (ja) 同期電動機の磁極位置推定装置
CN109391186B (zh) 控制装置以及控制方法
JP2000156993A (ja) 永久磁石型同期機の制御装置及びその制御方法
JP4590761B2 (ja) 永久磁石形同期電動機の制御装置
JP5618854B2 (ja) 同期電動機駆動システム
JP7304891B2 (ja) 回転機の制御装置および電動車両の制御装置
JP2006230200A (ja) 交流電動機の制御装置
JP2014117069A (ja) 交流回転機の制御装置および交流回転機の制御方法
JP5104213B2 (ja) 永久磁石形同期電動機の制御装置
JP2012186911A (ja) モータ制御装置
JP2010028981A (ja) 同期モータの回転子位置推定方法および同期モータの制御装置
JP2007082380A (ja) 同期モータ制御装置
JP2015192463A (ja) モータ制御装置及び発電機制御装置
JP2002136198A (ja) 電動機の制御装置
JP2002191198A (ja) モータ駆動装置の直流電圧検出値補正方法、モータ駆動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4397889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees