JPS6395730A - Drive circuit for igbt having overcurrent protective function - Google Patents

Drive circuit for igbt having overcurrent protective function

Info

Publication number
JPS6395730A
JPS6395730A JP61241412A JP24141286A JPS6395730A JP S6395730 A JPS6395730 A JP S6395730A JP 61241412 A JP61241412 A JP 61241412A JP 24141286 A JP24141286 A JP 24141286A JP S6395730 A JPS6395730 A JP S6395730A
Authority
JP
Japan
Prior art keywords
overcurrent
igbt
turn
resistor
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61241412A
Other languages
Japanese (ja)
Inventor
Masami Ichijo
一條 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61241412A priority Critical patent/JPS6395730A/en
Publication of JPS6395730A publication Critical patent/JPS6395730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To contrive the exparsion of the application range of an IGBT (Insu lated Gate Bipolar Mode Transistor) by providing a resistor variable means bringing the resistance of a latch up prevention resistor at normal state different from that at overcurrent state so as to apply overcurrent protection without losing high speed switching capability. CONSTITUTION:When the conduction of overcurrent is detected by a detector 5, its output is given to the gate of a transistor (TR) 4c and given to a control circuit (not shown). As a result, an off command is given to a terminal T and the TR 4c is turned on, then a TR 4b cannot be turned on and a resistor 2a is inserted to the off gate circuit of the IGBT 1 including the power supply 3. Thus, high speed turn-off is applied by a comparatively small resistance decided by the parallel resistance of the resistors 2a, 2b a normal turn-off and the turn-off at overcurrent is executed slowly by a compartively large resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、スイッチング用半導体素子の一種であるr
GBT (Insulated  GateBipol
ar  mode  ’[’ransistor)素子
の駆動回路、特に過電流保護機能を備えた駆動回路に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an r
GBT (Insulated Gate Bipol)
The present invention relates to a drive circuit for an ar mode '['transistor] element, and particularly to a drive circuit equipped with an overcurrent protection function.

〔従来の技術〕[Conventional technology]

IGETは、その等価回路を第2図に示すように、パワ
ーMO3FETIIと2個のバイポーラトランジスタ1
2.13で構成されたモノリシックのスイッチングデバ
イスであり、下記のような特長を有している。
The equivalent circuit of IGET is shown in Figure 2, which consists of a power MO3FET II and two bipolar transistors 1.
It is a monolithic switching device composed of 2.13 and has the following features.

(1)パワーMO3FETと同様に、電圧信号によって
、オン、オフ状態を制御できる。
(1) Like the power MO3FET, the on/off state can be controlled by a voltage signal.

(2)内蔵したバイポーラトランジスタの動作により、
パワーMOSFETより大きな電流が流せる。
(2) Due to the operation of the built-in bipolar transistor,
A larger current can flow than a power MOSFET.

(3)製造上の工夫によって高速スイッチングが可能で
ある。
(3) High-speed switching is possible through manufacturing innovations.

IGBTのこのような特長は、装置応用上極めて好まし
いものである。なお、IGBTはIGT。
These features of IGBTs are extremely favorable for device applications. In addition, IGBT is IGT.

C0MFET、BIFETなどの商品名でそれぞれ製品
化されている。また、I GBTをシンボル表示すると
第2A図のようになる。
They have been commercialized under trade names such as C0MFET and BIFET. Moreover, when IGBT is represented as a symbol, it becomes as shown in FIG. 2A.

しかし、このようなI GBTにも、大きな欠点がある
。以下、このことについて説明する。
However, such IGBTs also have major drawbacks. This will be explained below.

第2図に示すように、I GET内部の2個のバイポー
ラトランジスタ12.13はサイリスタ回路を構成して
いる。このサイリスタ回路は、IGBTの本来のスイッ
チング動作には不要なものであり、このため、同図の如
<NPNトランジスタ13のベース・エミッタ間に低抵
抗14を接続して、サイリスク回路が動作しないように
工夫している。そして、いかなる動作状態においてもサ
イリスク回路が動作しないようにするためには、上記N
PN )ランジスタ13のベース・エミッタ間抵抗14
をOΩとすれば良いが、I GBTの構造上これは極め
て困難である。この結果、I GBTは下記の欠点を有
することになる。
As shown in FIG. 2, two bipolar transistors 12 and 13 inside the I GET constitute a thyristor circuit. This thyristor circuit is unnecessary for the original switching operation of the IGBT, and therefore, as shown in the figure, a low resistance 14 is connected between the base and emitter of the NPN transistor 13 to prevent the thyristor circuit from operating. We are working on this. In order to prevent the Cyrisk circuit from operating under any operating condition, the above N
PN ) Base-emitter resistance 14 of transistor 13
It is possible to set the value to OΩ, but this is extremely difficult due to the structure of the IGBT. As a result, the IGBT has the following drawbacks.

(1)オン状態でのコレクタ電流がある値以上になると
サイリスタ回路が動作し、ターンオフできなくなる。
(1) When the collector current in the on state exceeds a certain value, the thyristor circuit operates and cannot be turned off.

(2)コレクタ電流がある値以上になるとターンオフ過
程中にサイリスタ回路が動作し、ターンオフできなくな
る。
(2) When the collector current exceeds a certain value, the thyristor circuit operates during the turn-off process and cannot be turned off.

このように、サイリスタ回路が動作してしまうコレクタ
電流のことを通常ラッチアップ電流、またサイリスク回
路が動作することをラフチアツブすると云うが、か\る
ラッチアップはオン状態よりもターンオフ過程中の方が
生じ易く、IGBT内部のパワーMOS F ETを速
くターンオフさせるほどラッチアンプし易くなることが
指摘されている。I GBTにおけるラッチアップの発
生は素子破壊につながるので、適用上はこれを避ける工
夫が必要不可欠である。
In this way, the collector current that causes a thyristor circuit to operate is usually called a latch-up current, and the thyristor circuit that operates is called a rough-up current, but such latch-up is more likely to occur during the turn-off process than in the on state. It has been pointed out that the faster the power MOS FET inside the IGBT is turned off, the easier it is to latch amplifier. Since the occurrence of latch-up in IGBTs leads to element destruction, it is essential to devise ways to avoid this in application.

ところで、上記欠点の内、オン状態でのラッチアップは
、前記NPNトランジスタのベース・エミッタ間低抵抗
化技術の進歩による大幅なラッチアップ電流の向上と、
I GBTの有する出力特性の協調を図ることが可能に
なり、オン状態では実質的にラッチアップしない素子が
製作可能になっている。すなわち、I GBTの出力特
性は第3図に示すように飽和出力形であり、素子自身が
電流を制限するようなものになる。過電流状態では最悪
の場合に素子の両端に直流電源電圧が印加されるが、こ
の時のコレクタ電流がラッチアップ電流以下であれば、
少なくともオン期間中は問題がなくなる。このようにし
て、オン期間中のラフチアツブは避けられるが、I G
BTを過電流破壊させないためには、熱破壊に至る前に
コレクタ電流をしゃ断することが必要である。
By the way, among the above-mentioned drawbacks, latch-up in the on state can be solved by a significant improvement in latch-up current due to advances in technology for lowering the resistance between the base and emitter of the NPN transistor.
It has become possible to coordinate the output characteristics of IGBTs, and it has become possible to manufacture elements that do not substantially latch up in the on state. That is, the output characteristics of the IGBT are of the saturated output type as shown in FIG. 3, and the element itself limits the current. In an overcurrent state, in the worst case, a DC power supply voltage is applied across the device, but if the collector current at this time is less than the latch-up current,
At least during the on period, the problem disappears. In this way, rough lumps during the on period are avoided, but the IG
In order to prevent BT from being destroyed by overcurrent, it is necessary to cut off the collector current before thermal damage occurs.

一方、ターンオフ時のラフチアツブは、現状では完璧に
は解決されておらず、通常のコレクタ電流レベルでのス
イッチング動作時でも、I GBTを所定の速さ以上で
ターンオフさせてはならないとされている。そこで、I
 GBTをゆっくりターンオフさせるためのオフゲート
回路として、従来は第4図に示すように、抵抗2を介し
てオフゲート電圧3を与える方法が専ら用いられている
。すなわち、I GBTlのゲート・コレクタ間には入
力容量が存在するので、抵抗2の挿入によってゲート・
コレクタ間電圧がゆっくり減少するようになり、IGB
Tのターンオフ速度も遅くなる。
On the other hand, the ruff stub at turn-off has not been completely solved at present, and it is said that the IGBT must not be turned off at a speed higher than a predetermined speed even during switching operation at a normal collector current level. Therefore, I
Conventionally, as an off-gate circuit for slowly turning off a GBT, a method of applying an off-gate voltage 3 through a resistor 2, as shown in FIG. 4, has been exclusively used. In other words, since there is an input capacitance between the gate and collector of IGBTl, inserting resistor 2 reduces the gate and collector.
The voltage between the collectors begins to decrease slowly, and the IGB
The turn-off speed of T also becomes slower.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、過電流保護を行なう場合は、IGBTのター
ンオフを通常の場合よりも遅くする必要がある。しかる
に、第4図の如き回路では、過電流時にあわせて抵抗器
2の抵抗値が選ばれることから、通常時のターンオフ動
作が遅くなると云う問題が発生する。
By the way, when performing overcurrent protection, it is necessary to turn off the IGBT later than in a normal case. However, in the circuit shown in FIG. 4, since the resistance value of the resistor 2 is selected depending on the overcurrent, a problem arises in that the turn-off operation during normal operation is delayed.

したがって、この発明はI GBTの高速スイッチング
能力を損なうことなく過電流保護を行ない得るようにし
、I GBTの応用範囲の拡大を図ることを目的とする
Therefore, it is an object of the present invention to provide overcurrent protection without impairing the high-speed switching ability of the IGBT, and to expand the range of applications of the IGBT.

〔問題点を解決するための手段〕[Means for solving problems]

ラッチアップ防止用抵抗器の抵抗値を、通常時と過電流
時とで異なった値にする抵抗可変手段を設ける。
A resistance variable means is provided to make the resistance value of the latch-up prevention resistor different between normal times and overcurrent.

〔作用〕[Effect]

通常時と過電流時とでオフゲート電圧の与え方を変える
ことにより、通常時には高速なターンオフを可能とし、
過電流時にはラッチアップを確実に防止すべく比較的ゆ
っくりとターンオフさせ、I GBTの適用範囲の拡大
を図る。
By changing the way the off-gate voltage is applied during normal and overcurrent conditions, high-speed turn-off is possible during normal conditions.
In the event of overcurrent, the IGBT is turned off relatively slowly to prevent latch-up, thereby expanding the range of IGBT applications.

〔実施例〕〔Example〕

第1図はこの発明の実施例を示す回路図で、オフゲート
回路のみを示し、オンゲート回路は省略している。同図
において、1はIGBT% 2a。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, in which only an off-gate circuit is shown and an on-gate circuit is omitted. In the figure, 1 is IGBT% 2a.

2bは抵抗、3はオフゲート電源(または電圧)、4a
、4bおよび4cはトランジスタ、5は過電流検出器で
ある。
2b is a resistor, 3 is an off-gate power supply (or voltage), 4a
, 4b and 4c are transistors, and 5 is an overcurrent detector.

すなわち、IGBTIのゲート・エミッタ間には、トラ
ンジスタ4aを介して抵抗2aが、またトランジスタ4
bを介して抵抗2bがそれぞれ接続され、トランジスタ
4a、4bは端子Tより与えられるオフ指令によって駆
動される。さらに、トランジスタ4bのベース・エミッ
タ間にはトランジスタ4cが挿入され、このトランジス
タ4cのベースは過電流検出器5に接続されている。
That is, between the gate and emitter of IGBTI, a resistor 2a is connected via a transistor 4a, and a resistor 2a is connected between the gate and emitter of the IGBTI.
Resistors 2b are connected through terminals b, and transistors 4a and 4b are driven by an off command given from terminal T. Further, a transistor 4c is inserted between the base and emitter of the transistor 4b, and the base of the transistor 4c is connected to the overcurrent detector 5.

したがって、過電流が流れない通常時には、端子Tを介
して与えられるオフ指令により、トランジスタ4a、4
bはともにオンとなり、電源3を含むI GBTlのオ
フゲート回路には抵抗2aおよび2bが並列に挿入され
ることになる。一方、過電流が流れたことが検出器5に
て検出されると、その出力はトランジスタ4cのゲート
に与えられると\もに、図示されない制御回路にも与え
られ、その結果、端子Tにはオフ指令が与えられる。こ
れにより、トランジスタ4Cがオンとなるため、トラン
ジスタ4bはオンすることができず、したがって電源3
を含むI GBTlのオフゲート回路には抵抗2aのみ
が挿入されることになる。その結果、通常のターンオフ
時には抵抗2aと2bの並列抵抗値で定まる比較的小さ
な抵抗で高速なターンオフが行なわれる一方、過電流時
のターンオフは抵抗2aのみの比較的大きな抵抗でゆっ
くりと行なわれることになり、所期の目的が達成される
ことになる。
Therefore, under normal conditions when no overcurrent flows, the transistors 4a and 4 are
Both resistors 2a and 2b are turned on, and the resistors 2a and 2b are inserted in parallel into the off-gate circuit of the IGBT1 including the power supply 3. On the other hand, when the detector 5 detects that an overcurrent has flowed, its output is given to the gate of the transistor 4c as well as to a control circuit (not shown). An off command is given. As a result, transistor 4C is turned on, transistor 4b cannot be turned on, and therefore power supply 3
Only the resistor 2a is inserted into the off-gate circuit of the IGBT1 including the IGBT1. As a result, during normal turn-off, fast turn-off is performed with a relatively small resistance determined by the parallel resistance value of resistors 2a and 2b, while turn-off in the event of overcurrent is performed slowly with a relatively large resistance of only resistor 2a. and the intended purpose will be achieved.

なお、以上では過電流時に抵抗2aのみを生かすように
したが、抵抗2bのみを生かすようにすることもできる
。また、2つのゲート抵抗を直列に接続し、過電流検出
レベル未満では片方のゲート抵抗を短絡してオフゲート
電圧を供給し、過電流検出レベル以上では2つのゲート
抵抗を直列に接続してオフゲート電圧を供給する方法や
、ゲート抵抗は変えずに過電流検出レベル未満では高い
オフゲート電圧を供給し、過電流検出レベル以上では低
いオフゲート電圧を供給するなどの方法も考えられる。
In the above description, only the resistor 2a is used during overcurrent, but it is also possible to use only the resistor 2b. In addition, two gate resistors are connected in series, and when the overcurrent detection level is lower than the overcurrent detection level, one gate resistor is shorted to supply the off-gate voltage, and when the overcurrent detection level is exceeded, the two gate resistors are connected in series to supply the off-gate voltage. Alternatively, a method of supplying a high off-gate voltage below the overcurrent detection level and a low off-gate voltage above the overcurrent detection level without changing the gate resistance may also be considered.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、通常のスイッチング動作時にはIG
BTを可能な限り速(ターンオフさせることができ、さ
らに過電流保護も確実に行なえるので、I GBTがよ
り広範囲な用途に適用できるようになる利点がもたらさ
れる。
According to this invention, during normal switching operation, the IG
Being able to turn off the BT as quickly as possible and also ensuring overcurrent protection provides the advantage of making the IGBT applicable to a wider range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す回路図、第2図はIG
BTを示す等価回路図、第2A図はrGBTをシンボル
化した回路記号図、第3図はIGBTの出力特性を示す
特性図、第4図はI GBT駆動回路の従来例を示す回
路図である。 〔符号説明〕 1 ・I G B T、2.2a、2b、14−抵抗、
3・・・オフゲート電源、4a、4b、4c、13・・
・NPN )ランジスタ、5・・・過電流検出器、6・
・・スイッチ、11・・・NチャンネルMO5FET、
12・・・PNP )ランジスタ。 代理人 弁理士 松 崎   清 第 12 濱2@            、y2A圀第 3 図 c 博 4 図
Fig. 1 is a circuit diagram showing an embodiment of this invention, Fig. 2 is an IG
Fig. 2A is an equivalent circuit diagram showing a BT, Fig. 2A is a circuit symbol diagram symbolizing an rGBT, Fig. 3 is a characteristic diagram showing the output characteristics of an IGBT, and Fig. 4 is a circuit diagram showing a conventional example of an IGBT drive circuit. . [Explanation of symbols] 1 ・IGBT, 2.2a, 2b, 14-resistance,
3... Off-gate power supply, 4a, 4b, 4c, 13...
・NPN) transistor, 5... overcurrent detector, 6.
...Switch, 11...N-channel MO5FET,
12...PNP) transistor. Agent Patent Attorney Kiyoshi Matsuzaki 12 Hama 2@, y2A Kuni No. 3 Figure c Hiroshi 4 Figure

Claims (1)

【特許請求の範囲】 通常動作にもとづくオフ指令または過電流検出にもとづ
くオフ指令が発せられたとき、IGBTに所定の抵抗器
を介してオフゲート電圧を与えてこれをターンオフさせ
る駆動回路において、前記抵抗器の抵抗値を通常時と過
電流時とで異なった値にする抵抗可変手段を設け、 過電流時には該抵抗値を大きくしてIGBTをターンオ
フさせることを特徴とする過電流保護機能をもつIGB
Tの駆動回路。
[Claims] In a drive circuit that applies an off-gate voltage to an IGBT via a predetermined resistor to turn it off when an off command based on normal operation or an off command based on overcurrent detection is issued, the resistor An IGBT having an overcurrent protection function, which is equipped with a variable resistance means that changes the resistance value of the device to different values in normal times and in the event of overcurrent, and in the event of overcurrent, the resistance value is increased to turn off the IGBT.
T drive circuit.
JP61241412A 1986-10-13 1986-10-13 Drive circuit for igbt having overcurrent protective function Pending JPS6395730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61241412A JPS6395730A (en) 1986-10-13 1986-10-13 Drive circuit for igbt having overcurrent protective function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61241412A JPS6395730A (en) 1986-10-13 1986-10-13 Drive circuit for igbt having overcurrent protective function

Publications (1)

Publication Number Publication Date
JPS6395730A true JPS6395730A (en) 1988-04-26

Family

ID=17073904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61241412A Pending JPS6395730A (en) 1986-10-13 1986-10-13 Drive circuit for igbt having overcurrent protective function

Country Status (1)

Country Link
JP (1) JPS6395730A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839686A (en) * 1987-07-10 1989-06-13 Minolta Camera Kabushiki Kaisha Flash device
US6009281A (en) * 1987-07-10 1999-12-28 Minolta Co., Ltd. Flash device
JP5377756B2 (en) * 2010-04-14 2013-12-25 本田技研工業株式会社 Short circuit protection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839686A (en) * 1987-07-10 1989-06-13 Minolta Camera Kabushiki Kaisha Flash device
US4951081A (en) * 1987-07-10 1990-08-21 Minolta Camera Kabushiki Kaisha Flash device
US6009281A (en) * 1987-07-10 1999-12-28 Minolta Co., Ltd. Flash device
JP5377756B2 (en) * 2010-04-14 2013-12-25 本田技研工業株式会社 Short circuit protection method

Similar Documents

Publication Publication Date Title
JP3141613B2 (en) Method and circuit for driving voltage-driven element
US4672245A (en) High frequency diverse semiconductor switch
EP0392831A2 (en) Power transistor drive circuit with improved short circuit protection
JP2001211059A (en) Overcurrent protection circuit for semiconductor switch device
JP3414859B2 (en) Turn-off circuit device for overcurrent of semiconductor device
JPH0531323B2 (en)
JPH05218836A (en) Driving circuit for insulated gate element
JPS6395730A (en) Drive circuit for igbt having overcurrent protective function
JP2985431B2 (en) Transistor overcurrent protection circuit
JPH03183209A (en) Drive circuit for voltage driven type semiconductor element
JPS6395724A (en) Driving circuit for igbt gate
JP3453718B2 (en) Current interrupter
JP2973997B2 (en) Drive circuit for voltage-driven semiconductor devices
JP2000101408A (en) Gate drive circuit for power semiconductor element
JP2002153043A (en) Gate-driving device for voltage-driving semiconductor element
JPS6395722A (en) Overcurrent protection circuit for igbt element
JP2002135973A (en) Overvoltage protective circuit
JPH05111144A (en) Overcurrent protective circuit for transistor
JPH02179262A (en) Gate drive circuit of voltage drive type semiconductor element
JPH0810821B2 (en) Overcurrent protection drive circuit for IGBT
JP3918778B2 (en) Protection circuit
JPH0685496B2 (en) Gate drive circuit for electrostatic induction type self-extinguishing device
JPH0336450B2 (en)
JPS6395727A (en) Gate driving circuit for igbt
JPH1168535A (en) Semiconductor device