JPH0531323B2 - - Google Patents

Info

Publication number
JPH0531323B2
JPH0531323B2 JP61241410A JP24141086A JPH0531323B2 JP H0531323 B2 JPH0531323 B2 JP H0531323B2 JP 61241410 A JP61241410 A JP 61241410A JP 24141086 A JP24141086 A JP 24141086A JP H0531323 B2 JPH0531323 B2 JP H0531323B2
Authority
JP
Japan
Prior art keywords
igbt
gate
voltage
terminal
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61241410A
Other languages
Japanese (ja)
Other versions
JPS6395728A (en
Inventor
Hiroshi Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61241410A priority Critical patent/JPS6395728A/en
Publication of JPS6395728A publication Critical patent/JPS6395728A/en
Publication of JPH0531323B2 publication Critical patent/JPH0531323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08128Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in composite switches

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、スイツチング用半導体素子の一種
であるIGBT(Insulated Gate Bipolar mode
Transistor)の過電流保護回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to IGBT (Insulated Gate Bipolar mode) which is a type of semiconductor device for switching.
Transistor) overcurrent protection circuit.

〔従来の技術〕[Conventional technology]

IGBT素子はバイポーラトランジスタの有する
高耐圧、大容量化が容易であると云う長所と、パ
ワーMOSFETの有する高速なスイツチングが可
能でドライブも容易であると云う長所とをあわせ
もつ新しいデバイスとして最近注目されているも
ので、IGBT、COMFET、GEMFETまたは
BiFETなどの商品名でそれぞれ製品化されてい
る。
IGBT elements have recently attracted attention as a new device that combines the advantages of bipolar transistors, such as high breakdown voltage and easy capacity expansion, with the advantages of power MOSFETs, which enable high-speed switching and are easy to drive. IGBT, COMFET, GEMFET or
They have been commercialized under product names such as BiFET.

第2図にその等価回路を示す。すなわち、
IGBTは同図の如くNチヤンネルMOSFET21、
NPNトランジスタ22、PNPトランジスタ23
およびトランジスタ22のベース・エミツタ間短
絡用抵抗24からなり、トランジスタ22,23
からなるサイリスタ回路を内蔵している点が特徴
である。
Figure 2 shows the equivalent circuit. That is,
IGBT is N-channel MOSFET21 as shown in the figure.
NPN transistor 22, PNP transistor 23
and a short-circuiting resistor 24 between the base and emitter of the transistor 22, and the transistors 22, 23
The feature is that it has a built-in thyristor circuit.

なお、第2A図にIGBTのシンボルを示す。 In addition, the symbol of IGBT is shown in FIG. 2A.

かゝるIGBTの難点は、そのコレクタ電流が所
定値以上になるラツチアツプと云う現象(寄生サ
イリスタがターンオンしてしまう現象)を生じ、
電流をしや断できなくなることにあると云われて
いる。つまり、第2図の如くサイリスタ回路を内
蔵しているため、コレクタ電流が所定値を越える
とこのサイリスタ回路がターンオンし、IGBTが
ターンオフできなくなることである。このラツチ
アツプ現象はIGBTの素子破壊に直結するので、
これを生じないようにすることが必要となる。特
に、IGBTの過電流保護を行なう場合は、過電流
をこのラツチアツプを生じる電流(ラツチアツプ
電流とも云う。)以下に抑えなければならないこ
とから、ラツチアツプ現象は極めて重要な指標と
なることがわかる。
The problem with such IGBTs is that a phenomenon called latch-up (a phenomenon in which a parasitic thyristor turns on) occurs when the collector current exceeds a predetermined value.
It is said that this is due to the inability to cut off the current. In other words, since a thyristor circuit is built in as shown in FIG. 2, when the collector current exceeds a predetermined value, this thyristor circuit is turned on and the IGBT cannot be turned off. This latch-up phenomenon is directly linked to IGBT element destruction, so
It is necessary to prevent this from occurring. In particular, when performing overcurrent protection for IGBTs, the overcurrent must be suppressed below the current that causes this latch-up (also referred to as latch-up current), so it can be seen that the latch-up phenomenon is an extremely important indicator.

第3図はIGBTの出力特性を示す特性図であ
る。同図からも明らかなように、IGBTはコレク
タ電流Icが所定値を越えると、そのコレクタ・エ
ミツタ間電圧VCEが急激に大きくなる特性を有し
ている。このため、IGBTの過電流の到達値はそ
の出力特性で制限された値となる。したがつて、
IGBTをスイツチング素子とする例えばインバー
タ装置で短絡事故が発生すると、IGBTのコレク
タ・エミツタ間に直流電源電圧が印加されること
になるが、このときの電流がラツチアツプ電流を
越えなければ、IGBTをターンオフさせることに
よつて過電流保護が可能となる。
FIG. 3 is a characteristic diagram showing the output characteristics of IGBT. As is clear from the figure, the IGBT has a characteristic that when the collector current I c exceeds a predetermined value, the collector-emitter voltage V CE increases rapidly. Therefore, the overcurrent value of the IGBT is limited by its output characteristics. Therefore,
For example, if a short circuit occurs in an inverter device that uses an IGBT as a switching element, a DC power supply voltage will be applied between the collector and emitter of the IGBT, but if the current does not exceed the latch-up current, the IGBT will be turned off. By doing so, overcurrent protection becomes possible.

さて、第3図はゲート電圧VGEをパラメータと
して3本の特性曲線が示されているが、これから
も明らかなように、ゲート電圧が高い程大きなコ
レクタ電流を流せることがわかる。一方、現在の
IGBTではこのラツチアツプ電流は極めて大きい
と云う程のレベルではなく、このためゲート電圧
を或る程度以下に抑えないと、高電圧印加時のコ
レクタ電流がラツチアツプ電流を越えてしまう程
度のレベルにある。そこで、過電流保護を行なう
場合は、ゲート電圧を所定値以下に制限して適用
せざるを得ないことになる。ところが、ゲート電
圧を下げることは、常用するコレクタ電流域での
オン電圧を高めることになり、適用上好ましくな
い。このため、ゲート電圧は過電流保護が可能な
範囲で、できるだけ高く設定して用いるようにし
ているのが現状である。
Now, FIG. 3 shows three characteristic curves using the gate voltage V GE as a parameter, and as is clear from these curves, it can be seen that the higher the gate voltage, the larger the collector current can flow. On the other hand, the current
In an IGBT, this latch-up current is not at such a level that it is extremely large; therefore, unless the gate voltage is suppressed to a certain level, the collector current when a high voltage is applied will exceed the latch-up current. Therefore, when performing overcurrent protection, it is necessary to limit the gate voltage to a predetermined value or less. However, lowering the gate voltage increases the on-voltage in the commonly used collector current range, which is not preferred in terms of application. For this reason, the current situation is to set the gate voltage as high as possible within the range that allows overcurrent protection.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、実際の装置で過電流状態が発生
すると、このときのゲート電圧がゲートドライブ
回路より供給している電圧を上回わることがあ
り、その結果、想定した値よりも大きな電流が流
れることが判明している。
However, if an overcurrent condition occurs in an actual device, the gate voltage at this time may exceed the voltage supplied by the gate drive circuit, and as a result, a larger current than expected may flow. It's clear.

第4図はこのことを説明するための、短絡事故
時の等価回路を示す回路図であり、第5図はその
動作を説明するための各部波形図である。なお、
第4図において、1はIGBT、3は抵抗、11は
スイツチ、12は直流電源である。
FIG. 4 is a circuit diagram showing an equivalent circuit at the time of a short circuit accident to explain this, and FIG. 5 is a waveform diagram of each part to explain the operation. In addition,
In FIG. 4, 1 is an IGBT, 3 is a resistor, 11 is a switch, and 12 is a DC power supply.

こゝで、短絡直前のIGBT1のコレクタ・エミ
ツタ間電圧は略0Vである。この状態で、スイツチ
11を第5図ロの如く閉成すると短絡回路が形成
され、これによりIGBT1のコレクタ・エミツタ
間には第5図ハの如きステツプ状の電圧VCEが印
加される。IGBTは、実際には第6図の如く各端
子間にコンデンサが存在するので、そのコレク
タ・ゲート間の容量をCCG、ゲート・エミツタ間
のそれをCGE、コレクタ・エミツタ間に印加され
る電圧をEdとすると、主回路の直流電源12の
電圧によりIGBTのゲート電圧が次式による分だ
け、すなわち第5図イにΔVGEで示す分だけ上昇
することになる。
Here, the voltage between the collector and emitter of IGBT1 immediately before the short circuit is approximately 0 V. In this state, when the switch 11 is closed as shown in FIG. 5B, a short circuit is formed, and thereby a step-like voltage V CE as shown in FIG. 5C is applied between the collector and emitter of the IGBT 1. IGBT actually has a capacitor between each terminal as shown in Figure 6, so the capacitance between the collector and gate is C CG , the capacitance between the gate and emitter is C GE , and the capacitance applied between the collector and emitter is C GE . When the voltage is E d , the voltage of the DC power supply 12 of the main circuit causes the gate voltage of the IGBT to rise by an amount according to the following equation, that is, an amount shown by ΔV GE in FIG. 5A.

ΔVGE=Ed・CCG/CGE こゝで、例えばCCG/CGE=0.01、Ed=300Vとす
ると、 ΔVGE=3V の電圧上昇が生じ、その結果、ゲート電圧がドラ
イブ回路の電圧を大きく上回わり、大きなコレク
タ電流が流れることになる。このような場合にも
ラツチアツプしないようにするには、この電圧上
昇分を考慮してドライブ回路の電圧を低くしてお
けばよいが、このようにすると、前述の如く常用
のコレクタ電流領域でのオン電圧までが高くなつ
てしまう。
ΔV GE = E d・C CG / C GE Here, for example, if C CG / C GE = 0.01 and E d = 300 V , a voltage increase of ΔV GE = 3 V will occur, and as a result, the gate voltage will drive This greatly exceeds the circuit voltage, resulting in a large collector current flowing. In order to prevent latch-up in such a case, it is possible to lower the voltage of the drive circuit by taking this voltage increase into account, but in this case, as mentioned above, the voltage of the drive circuit in the normal collector current range Even the on-voltage becomes high.

一方、これまでの説明ではドライブ回路側の出
力インピーダンスが高い、すなわち第4図の抵抗
3が大きい場合を想定している。これは、例えば
第4図の抵抗3を0Ωとすると、ゲート電圧はド
ライブ回路の電圧を上回わることはないが、
IGBTではターンオフ時にもラツチアツプすると
云う現象があり、これを避けるために50〜100Ω
の如く比較的大きな抵抗を介してドライブしなけ
ればならないと云う理由に依るものである。した
がつて、この程度の抵抗があれば、ドライブ回路
側はともかく、ゲート電圧の上昇だけを考えれば
良いことになる。
On the other hand, the explanation so far assumes that the output impedance on the drive circuit side is high, that is, the resistor 3 in FIG. 4 is large. For example, if the resistor 3 in Fig. 4 is 0Ω, the gate voltage will not exceed the voltage of the drive circuit, but
IGBTs have a phenomenon of latch-up even at turn-off, so to avoid this, a 50-100Ω
This is due to the fact that it must be driven through a relatively large resistance. Therefore, with this level of resistance, it is only necessary to consider the increase in gate voltage, regardless of the drive circuit side.

なお、短絡後に時間の経過とゝもに、コレクタ
電流が第5図ニの如く減少するのは、上述のコン
デンサによる蓄積電荷が抵抗を介して放電され、
ゲート電圧がドライブ回路の電圧に向かつて減少
して行くためである。
The reason why the collector current decreases as time passes after a short circuit, as shown in Figure 5D, is because the charge accumulated in the capacitor mentioned above is discharged through the resistor.
This is because the gate voltage decreases as it approaches the voltage of the drive circuit.

したがつて、この発明は過電流の到達値がドラ
イブ回路の出力電圧値が決まる値を越えないよう
にして、ドライブ回路の出力電圧を高目に設定で
きるようにし、過電流保護を可能としながら、常
用のコレクタ電流域では低いオン電圧が得られる
ようにすることを目的とする。
Therefore, the present invention prevents the reached value of overcurrent from exceeding the value that determines the output voltage value of the drive circuit, allows the output voltage of the drive circuit to be set to a high value, and enables overcurrent protection. , the purpose is to obtain a low on-state voltage in the commonly used collector current range.

〔問題点を解決するための手段〕[Means for solving problems]

IGBT素子のゲート端子とゲート駆動用電源の
正側端子との間にダイオードを接続する。
A diode is connected between the gate terminal of the IGBT element and the positive terminal of the gate drive power supply.

〔作用〕[Effect]

上記ダイオードにより、IGBTのゲート・エミ
ツタ間電圧の最大値がゲート駆動用電源回路の電
圧値を越えないようにクランプ(制限)し、過電
流の尖頭地(ピーク値)を抑制してラツチアツプ
の防止を図る。
The above diode clamps (limits) the maximum value of the IGBT gate-emitter voltage so that it does not exceed the voltage value of the gate drive power supply circuit, suppresses the peak value of the overcurrent, and prevents latch-up. Try to prevent it.

〔実施例〕〔Example〕

第1図はこの発明の実施例を示す回路図であ
る。同図において、1はIGBT、2はゲート駆動
用電源、3,4,5は抵抗、6,7,8はトラン
ジスタ、9はフオトカプラ、10はダイオードで
ある。
FIG. 1 is a circuit diagram showing an embodiment of the invention. In the figure, 1 is an IGBT, 2 is a gate drive power source, 3, 4, and 5 are resistors, 6, 7, and 8 are transistors, 9 is a photocoupler, and 10 is a diode.

こゝでは、IGBT1をオン、オフ駆動するため
の駆動信号は、フオトカプラ9により絶縁して与
えられる。いま、フオトカプラ9の一次側に電流
を流すと、フオトカプラ9はオンとなり、トラン
ジスタ6がオフとなる。これにより、トランジス
タ7がオンして、IGBT1のゲート・エミツタ間
には電源2の電圧がトランジスタ7および抵抗3
を介して加わる。一方、フオトカプラ9の一次側
の電流をしや断すると、フオトカプラはオフし、
トランジスタ6がオンする。従つて、トランジス
タ7はオフとなり、トランジスタ8がオンして
IGBT1のゲート・エミツタ間容量CGEに蓄積さ
れた電荷を抵抗3を介して放出する。
Here, a drive signal for driving the IGBT 1 on and off is provided in an insulated manner by the photocoupler 9. Now, when a current is passed through the primary side of the photocoupler 9, the photocoupler 9 is turned on and the transistor 6 is turned off. As a result, transistor 7 is turned on, and the voltage of power supply 2 is applied between transistor 7 and resistor 3 between the gate and emitter of IGBT1.
Join via. On the other hand, when the current on the primary side of the photocoupler 9 is cut off, the photocoupler turns off.
Transistor 6 turns on. Therefore, transistor 7 is turned off and transistor 8 is turned on.
The charge accumulated in the gate-emitter capacitance CGE of IGBT1 is discharged via resistor 3.

こゝで短絡事故時を考えると、IGBTのコレク
タ・エミツタ間にステツプ状に印加された電圧に
よつて、コレクタ・ゲート間の容量CCGを介して
同図の実線のルートで電流が流れ、これに伴ない
ゲート・エミツタ間電圧VGEが上昇する。この電
圧VGEが電源電圧を越えるとダイオード10が導
通し、同図の一点鎖線のルートで電流がバイパス
される結果、ゲート電圧VGEはほぼ電源電圧に等
しい値にクランプ(制限)される。
Now, considering a short-circuit accident, a voltage applied in steps between the collector and emitter of the IGBT causes a current to flow along the route shown by the solid line in the figure via the collector-gate capacitance CCG . Along with this, the gate-emitter voltage V GE increases. When this voltage V GE exceeds the power supply voltage, the diode 10 becomes conductive and the current is bypassed along the route indicated by the dashed line in the figure, so that the gate voltage V GE is clamped (limited) to a value approximately equal to the power supply voltage.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、IGBTのゲート端子とゲー
ト駆動用電源の正側端子との間にダイオードを接
続するようにしたので、IGBTのゲート・エミツ
タ間電圧の最大値を上記電源電圧にクランプする
ことが可能となり、ゲート・エミツタ間の過電圧
による破壊を防止できると共に短絡事故時の過電
流の尖頭値(ピーク値)を抑制できる利点がもた
らされる。
According to this invention, since a diode is connected between the gate terminal of the IGBT and the positive terminal of the gate driving power supply, the maximum value of the gate-emitter voltage of the IGBT can be clamped to the above power supply voltage. This makes it possible to prevent damage caused by overvoltage between the gate and emitter, and also to suppress the peak value of overcurrent in the event of a short circuit accident.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す回路図、第2
図はIGBTを示す等価回路図、第2A図はIGBT
のシンボルを示す回路記号図、第3図はIGBTの
出力特性を示す特性図、第4図は短絡事故時を説
明するための等価回路図、第5図はその動作を説
明するための説明図、第6図はIGBTの端子間容
量を含む等価回路図である。 符号説明、1……IGBT、2……ゲート駆動用
電源、3,4,5,24……抵抗、6,7,8,
22,23……トランジスタ、9……フオトカプ
ラ、10……ダイオード、11……スイツチ、1
2……直流電源(主回路電源)、21……Nチヤ
ンネルMOSFET。
Fig. 1 is a circuit diagram showing an embodiment of this invention, Fig. 2 is a circuit diagram showing an embodiment of the present invention;
The figure shows an equivalent circuit diagram of an IGBT, and Figure 2A shows an IGBT.
Figure 3 is a characteristic diagram showing the output characteristics of IGBT, Figure 4 is an equivalent circuit diagram to explain the short-circuit accident, and Figure 5 is an explanatory diagram to explain its operation. , FIG. 6 is an equivalent circuit diagram including the inter-terminal capacitance of IGBT. Description of symbols, 1... IGBT, 2... Gate drive power supply, 3, 4, 5, 24... Resistor, 6, 7, 8,
22, 23...Transistor, 9...Photocoupler, 10...Diode, 11...Switch, 1
2...DC power supply (main circuit power supply), 21...N-channel MOSFET.

Claims (1)

【特許請求の範囲】 1 ゲート端子とコレクタ端子とエミツタ端子を
持つIGBTが、オン駆動されたとき、ゲート駆動
用電源からの正極性電圧がそのゲート端子とエミ
ツタ端子との間に印加され、オフ駆動されたとき
は、そのゲート端子とエミツタ端子との間の容量
に、それまでに蓄積された電荷を抵抗を介して放
電するようにした前記IGBTのオン、オフ駆動回
路において、 前記IGBTのゲート端子と前記ゲート駆動用電
源の正側端子との間に接続され、前記IGBTに過
電流が流れてそのゲート・エミツタ間電圧が上昇
し前記ゲート駆動用電源からの電圧値を超えると
導通して、前記ゲート・エミツタ間電圧を前記ゲ
ート駆動用電源からの電圧値に制限するダイオー
ドを備えたことを特徴とするIGBTの過電流保護
回路。
[Claims] 1. When an IGBT having a gate terminal, a collector terminal, and an emitter terminal is turned on, a positive voltage from the gate drive power source is applied between the gate terminal and the emitter terminal, and the IGBT is turned off. When the IGBT is driven, the IGBT on/off drive circuit discharges the charge accumulated in the capacitance between the gate terminal and the emitter terminal through the resistor. The IGBT is connected between the terminal and the positive terminal of the gate driving power source, and becomes conductive when an overcurrent flows through the IGBT and the voltage between the gate and emitter increases and exceeds the voltage value from the gate driving power source. . An overcurrent protection circuit for an IGBT, comprising a diode that limits the gate-emitter voltage to a voltage value from the gate drive power source.
JP61241410A 1986-10-13 1986-10-13 Overcurrent protection circuit for igbt Granted JPS6395728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61241410A JPS6395728A (en) 1986-10-13 1986-10-13 Overcurrent protection circuit for igbt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61241410A JPS6395728A (en) 1986-10-13 1986-10-13 Overcurrent protection circuit for igbt

Publications (2)

Publication Number Publication Date
JPS6395728A JPS6395728A (en) 1988-04-26
JPH0531323B2 true JPH0531323B2 (en) 1993-05-12

Family

ID=17073874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61241410A Granted JPS6395728A (en) 1986-10-13 1986-10-13 Overcurrent protection circuit for igbt

Country Status (1)

Country Link
JP (1) JPS6395728A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009281A (en) * 1987-07-10 1999-12-28 Minolta Co., Ltd. Flash device
JPS6417033A (en) * 1987-07-10 1989-01-20 Minolta Camera Kk Automatic dimming system flash device
JPH02262822A (en) * 1989-03-08 1990-10-25 Hitachi Ltd Overcurrent protective circuit for electrostatic induction self-arcextinguishing element
JPH0431830U (en) * 1990-07-05 1992-03-16
JP2674355B2 (en) * 1991-05-15 1997-11-12 三菱電機株式会社 Power element overcurrent protection device
JP3373704B2 (en) * 1995-08-25 2003-02-04 三菱電機株式会社 Insulated gate transistor drive circuit
JPH1051285A (en) 1996-05-28 1998-02-20 Mitsubishi Electric Corp Drive circuit for voltage controlled transistor
US6392364B1 (en) * 1999-06-21 2002-05-21 Denso Corporation High voltage discharge lamp apparatus for vehicles
US6717785B2 (en) 2000-03-31 2004-04-06 Denso Corporation Semiconductor switching element driving circuit
JP4218221B2 (en) * 2001-04-02 2009-02-04 富士電機デバイステクノロジー株式会社 Power converter drive circuit
JP2008211721A (en) * 2007-02-28 2008-09-11 Fuji Electric Device Technology Co Ltd Display device drive circuit
JP2008306618A (en) * 2007-06-11 2008-12-18 Nissan Motor Co Ltd Drive circuit for driving voltage driven element
JP5542719B2 (en) * 2011-03-04 2014-07-09 三菱電機株式会社 Drive protection circuit for power semiconductor device
US8767369B2 (en) * 2011-12-20 2014-07-01 General Electric Company Method, power unit, and power system having gate voltage limiting circuit
JP6549451B2 (en) * 2015-09-02 2019-07-24 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device and electronic device
WO2018179274A1 (en) * 2017-03-30 2018-10-04 三菱電機株式会社 Drive circuit for power semiconductor element, and motor drive device

Also Published As

Publication number Publication date
JPS6395728A (en) 1988-04-26

Similar Documents

Publication Publication Date Title
KR930008464B1 (en) Power converter
US5091664A (en) Insulated gate bipolar transistor circuit with overcurrent protection
JPH0531323B2 (en)
JP2001245466A (en) Electric power converter
JPH1032476A (en) Overcurrent protection circuit
JP3414859B2 (en) Turn-off circuit device for overcurrent of semiconductor device
JPH05218836A (en) Driving circuit for insulated gate element
JPH11205112A (en) High voltage resistant power integrated circuit
JP2913699B2 (en) Drive circuit for voltage-driven semiconductor devices
JP2985431B2 (en) Transistor overcurrent protection circuit
JP3598870B2 (en) Drive circuit
JPS6395722A (en) Overcurrent protection circuit for igbt element
JP3661813B2 (en) Drive circuit for voltage-driven semiconductor element
JP3649154B2 (en) Overcurrent protection device
JP2973997B2 (en) Drive circuit for voltage-driven semiconductor devices
JP2002153043A (en) Gate-driving device for voltage-driving semiconductor element
JPH0810821B2 (en) Overcurrent protection drive circuit for IGBT
JPS6395724A (en) Driving circuit for igbt gate
JPH02179262A (en) Gate drive circuit of voltage drive type semiconductor element
EP0614278B1 (en) Drive circuit for use with voltage-driven semiconductor device
JPH06105448A (en) Switch device with protecting function
EP0920114A1 (en) Power converter wherein mos gate semiconductor device is used
JP3284809B2 (en) Large capacity semiconductor device
JP3468067B2 (en) Overcurrent suppression circuit for voltage-driven semiconductor devices
JPS6395727A (en) Gate driving circuit for igbt

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term