JPS6394688A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPS6394688A
JPS6394688A JP24061786A JP24061786A JPS6394688A JP S6394688 A JPS6394688 A JP S6394688A JP 24061786 A JP24061786 A JP 24061786A JP 24061786 A JP24061786 A JP 24061786A JP S6394688 A JPS6394688 A JP S6394688A
Authority
JP
Japan
Prior art keywords
layer
gate electrode
type
gallium arsenide
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24061786A
Other languages
Japanese (ja)
Inventor
Fumiaki Katano
片野 史明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24061786A priority Critical patent/JPS6394688A/en
Publication of JPS6394688A publication Critical patent/JPS6394688A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate

Abstract

PURPOSE:To decrease a source resistance and to improve electrical characteristics of an element, by performing ion implantation with a gate electrode used as a mask so that a n-type region is formed and forming a high- concentration n-type GaAs layer ranging from the part below an ohmic electrode to the vicinity of the gate electrode. CONSTITUTION:A n-type AlGaAs layer 3 is formed on a GaAs layer 2 which is formed on a semi-insulating GaAs substrate 1. Next, a gate electrode 4 comprising a high-melting-point metallic layer is formed on this n-type AlGaAs layer 3. while the gate electrode 4 is used as a mask, an element 5 acting as a donor in the GaAs layer 2 and the AlGaAs layer 3 is ion-implanted, and annealing processing is performed to form a channel region under the gate electrode 4 and to form n-type regions 6 on both sides of this channel region. Next, an insulating film 7 coating the n-type AlGaAs layer 3 and the gate electrode 4 is etched to remain on the sides of the gate electrode 4. While the gate electrode 4 and the insulating film 7 are used as masks, epitaxial growth of a high-concentration n-type GaAs layer 8 is selectively performed on the n-type AlGaAs layer 3. Thus, a field-effect transistor having a hetero junction is formed, moreover, by sticking ohmic electrodes 9 on the surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電界効果トランジスタの製造方法に関し、特
にヘテロ接合を有する電界効果トランジスタの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a field effect transistor, and particularly to a method for manufacturing a field effect transistor having a heterojunction.

〔従来の技術〕[Conventional technology]

従来、ガリウム砒素を用いた半絶縁性の半導体基板にお
いて、アンドープガリウム砒素層(以下、GaAs層と
称す)とn型アルミニウム・ガリウム砒素層(以下、A
eGaAs層と称す〉とにより形成されるヘテロ構造は
、低温において電子の移動度が極めて大きくなることか
ら、これを利用した電界効果トランジスタ等では高速駆
動素子として注目を集めている。
Conventionally, in a semi-insulating semiconductor substrate using gallium arsenide, an undoped gallium arsenide layer (hereinafter referred to as a GaAs layer) and an n-type aluminum gallium arsenide layer (hereinafter referred to as an A
Since the heterostructure formed by the eGaAs layer has extremely high electron mobility at low temperatures, field effect transistors and the like using this heterostructure are attracting attention as high-speed driving elements.

例えば、従来のへテロ構造を有する電界効果トランジス
タの製造方法について、第2図(a)〜(d)を参照し
て説明する。
For example, a conventional method for manufacturing a field effect transistor having a heterostructure will be described with reference to FIGS. 2(a) to 2(d).

第211(a)〜(d)は工程順に示した前記電界効果
トランジスタの断面図である。
211(a) to 211(d) are cross-sectional views of the field effect transistor shown in the order of steps.

まづ、第2図(a)に示すように、半絶縁性GaAs基
板11上にキャリア密度1×1014Cal−3,厚さ
1μmのアンドープGaAs層12を形成し、このアン
ドープGaAs層12の上にドナーとなるシリコンを2
X1018C1l  ’ ドープした厚さ250人のn
型A&GaAs層13を形成る。次いで、このn型Af
GaAs層13の上に厚さ5000人の高融点金属層か
らなるゲート電極14を被着する。
First, as shown in FIG. 2(a), an undoped GaAs layer 12 with a carrier density of 1×10 14 Cal-3 and a thickness of 1 μm is formed on a semi-insulating GaAs substrate 11. 2 silicon as a donor
X1018C1l' doped thickness 250 n
A type A & GaAs layer 13 is formed. Next, this n-type Af
On top of the GaAs layer 13 is deposited a gate electrode 14 consisting of a layer of high melting point metal with a thickness of 5,000 thick.

次に、第2図(b)に示すように、厚さ0.1μmの酸
化シリコン等の絶縁膜17をn型Aeに a A s層
13およびゲート電極14の上に被覆した後、反応性イ
オンエツチング法により絶縁膜17をエツチングし、ゲ
ート電極14の側面にのみ残存させる。
Next, as shown in FIG. 2(b), an insulating film 17 made of silicon oxide or the like having a thickness of 0.1 μm is coated on the n-type Ae layer 13 and the gate electrode 14, and then the reactive The insulating film 17 is etched by ion etching so that it remains only on the side surfaces of the gate electrode 14.

次に、第2図(c)に示すように、ゲート電極14およ
び絶縁膜17をマスクとしてn型AeGaAs層13上
に、厚さ100人、キャリア密度lXl0”C11−3
の高濃度n型GaAs層18を選択的にエピタキシャル
成長させる。
Next, as shown in FIG. 2(c), using the gate electrode 14 and the insulating film 17 as a mask, a film is deposited on the n-type AeGaAs layer 13 to a thickness of 100 mm and a carrier density of lXl0''C11-3.
A high concentration n-type GaAs layer 18 is selectively grown epitaxially.

更に、第2図(d)に示すように、高濃度n型GaAs
層18の上の所定の位置にオーム性電極(例えばAuG
e/N1)19を形成し、電界効果トランジスタとして
仕上げる。
Furthermore, as shown in FIG. 2(d), high concentration n-type GaAs
An ohmic electrode (e.g. AuG) is placed in place on layer 18.
e/N1) 19 is formed and completed as a field effect transistor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したn型Aj’GaAs層とアンドープGaAs層
によって形成されるヘテロlR造を有する電界効果トラ
ンジスタの製造において、電気的特性を高性能化するた
めにはソース抵抗を小さくすることが重要である。
In manufacturing a field effect transistor having a hetero-IR structure formed by the above-mentioned n-type Aj'GaAs layer and undoped GaAs layer, it is important to reduce the source resistance in order to improve the electrical characteristics.

この従来の製造方法によれば、高濃度n型GaAs層を
ゲート電極の近傍に形成できるためソース抵抗を小さく
するという効果があるが、一方この方法によれば、ゲー
ト電極の掻く近傍には高濃度n型GaAs層が設けられ
ていないため、ソース抵抗を十分小さくは出来ず、素子
の電気的特性を制限するという欠点があった。
According to this conventional manufacturing method, a high concentration n-type GaAs layer can be formed near the gate electrode, which has the effect of reducing the source resistance. Since no concentration n-type GaAs layer is provided, the source resistance cannot be made sufficiently small, which has the drawback of limiting the electrical characteristics of the device.

本発明の目的は、上述のソース抵抗を小さくするととも
に、素子の電気的特性を向上させた電界効果トランジス
タの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a field effect transistor in which the above-mentioned source resistance is reduced and the electrical characteristics of the device are improved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電界効果トランジスタの製造方法は、半絶縁性
GaAs基板上にアンドープGaAs層を設ける工程と
、前記アンドープGaAs層上にn型Al!GaAs層
を設ける工程と、前記n型Al!GaAs層上にゲート
電極としてバターニングされた高融点金属層、あるいは
高融点金属の化合物層、あるいはこれらのシリサイド層
を形成する工程と、前記ゲート電極として形成された前
記金属層あるいは前記化合物層あるいはこれらのシリサ
イド層をマスクとし、前記GaAs層および前記Aff
GaAs層に対するドナーとしての元素をイオン注入す
る工程と、アニール処理により注入された前記イオンを
活性化させる工程と、絶縁膜を被覆する工程と、前記絶
縁膜を異方性のドライエツチング法によりエツチングし
、前記ゲート電極の側面にのみ前記絶縁膜を残す工程と
、前記n型AeGaAs層上にのみ高濃度n型GaAs
層を選択的にエピタキシャル成長させる工程と、前記高
濃度n型Ga、As層上の所定位置にオーム性電極を形
成する工程とを含んで構成される。
The method for manufacturing a field effect transistor of the present invention includes the steps of providing an undoped GaAs layer on a semi-insulating GaAs substrate, and forming an n-type Al! layer on the undoped GaAs layer. A step of providing a GaAs layer and the n-type Al! A step of forming a patterned high melting point metal layer, a high melting point metal compound layer, or a silicide layer thereof on the GaAs layer as a gate electrode, and a step of forming the metal layer or the compound layer formed as the gate electrode, or Using these silicide layers as a mask, the GaAs layer and the Aff
A step of ion-implanting an element as a donor into the GaAs layer, a step of activating the implanted ions by annealing, a step of covering an insulating film, and etching the insulating film by an anisotropic dry etching method. a step of leaving the insulating film only on the side surfaces of the gate electrode; and a step of leaving the insulating film only on the side surfaces of the gate electrode, and forming a high concentration n-type GaAs layer only on the n-type AeGaAs layer.
The method includes a step of selectively epitaxially growing a layer, and a step of forming an ohmic electrode at a predetermined position on the high concentration n-type Ga, As layer.

特に、本発明においては、電界効果I・ランジスタのゲ
ート電極をマスクとしてイオン注入を行ないn型領域を
設けることと、オーム性電極の下からゲート電極の近傍
まで高濃度n型GaAs層を設けることが重要な点であ
り、それによってチャンネル領域とn型領域とが隣接し
、且つオーム性電極がGaAs層に対して形成されるた
め、ソース抵抗が小さく良好な電気的特性を有する電界
効果トランジスタが形成される。
In particular, in the present invention, ion implantation is performed using the gate electrode of the field effect transistor as a mask to provide an n-type region, and a highly concentrated n-type GaAs layer is provided from below the ohmic electrode to near the gate electrode. This is an important point, because the channel region and the n-type region are adjacent to each other, and the ohmic electrode is formed on the GaAs layer, resulting in a field effect transistor with low source resistance and good electrical characteristics. It is formed.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)〜(f)は本発明の一実施例を説明するた
めの工程順に示した電界効果トランジスタの断面図であ
る。
FIGS. 1(a) to 1(f) are cross-sectional views of a field effect transistor shown in order of steps for explaining an embodiment of the present invention.

第1図(a)に示すように、半絶縁性GaAs基板1上
にキャリア密度lXl0”C1l’、厚さ1μmのアン
ドープGaAs層2を形成し、このGaAs層2の上に
シリコンドナーを2×1018cra−’ドープした厚
さ250人のn型A!Q a A s層3を形成する9
次いで、このn型AfG a A s層3の上に厚さ5
000人のタングステンのような高融点金属層でゲート
電極4を形成する。
As shown in FIG. 1(a), an undoped GaAs layer 2 with a carrier density of lXl0"C1l' and a thickness of 1 μm is formed on a semi-insulating GaAs substrate 1, and a silicon donor is deposited 2× on this GaAs layer 2. 1018 cr-' doped 9 to form a 250 n-type A!Q a As layer 3
Then, on top of this n-type AfGaAs layer 3, a layer with a thickness of 5
The gate electrode 4 is formed of a high melting point metal layer such as tungsten.

次に、第1図(b)に示すように、ゲート電極4をマス
クとして、GaAs層2およびAffGaAs層3に対
してドナーとして作用する元素5(例えば、シリコン、
サレファ等)をイオン注入する。次に、必要であればこ
の段階でアニール処理を行ない、n型領域6を形成する
。これによりゲート電極4の下にチャンネル領域が形成
され、その両側にn型領域6が形成される。尚、この段
階でのアニール処理は必ずしも必要ではなく、後に説明
する工程において実施してもよい。
Next, as shown in FIG. 1(b), using the gate electrode 4 as a mask, an element 5 (for example, silicon,
Salefa etc.) are ion-implanted. Next, if necessary, an annealing treatment is performed at this stage to form the n-type region 6. As a result, a channel region is formed under the gate electrode 4, and n-type regions 6 are formed on both sides of the channel region. Note that the annealing treatment at this stage is not necessarily necessary, and may be performed in a step to be described later.

次に、第1図(c)に示すように、n型AeGaAs層
3およびゲート電極4の上に厚さが0.1μmの酸化シ
リコンのような絶縁膜7を被覆する。
Next, as shown in FIG. 1(c), the n-type AeGaAs layer 3 and the gate electrode 4 are covered with an insulating film 7 such as silicon oxide having a thickness of 0.1 μm.

次に、第1図(d)に示すように、この絶縁膜7を例え
ば四弗化炭素ガスCF4を用いた反応性イオンエツチン
グ法によりエツチングし、ゲート電極4の側面にのみ絶
縁膜7を残す。
Next, as shown in FIG. 1(d), this insulating film 7 is etched, for example, by a reactive ion etching method using carbon tetrafluoride gas CF4, leaving the insulating film 7 only on the side surfaces of the gate electrode 4. .

次に、第1図(e)に示すように、ゲート電極4と絶縁
膜7をマクスとしてn型A eGa A s層3上に厚
さ100人、キャリア密度1×1OI9c111−1程
度の高濃度n型GaAs層8を減圧MOCVD法(有機
金属気相成長法〉等により選択的にエピタキシャル成長
させる。
Next, as shown in FIG. 1(e), with the gate electrode 4 and the insulating film 7 as a mask, a high concentration film with a thickness of 100 nm and a carrier density of about 1×1 OI9c111-1 is deposited on the n-type AeGaAs layer 3. The n-type GaAs layer 8 is selectively epitaxially grown by low pressure MOCVD (metal organic chemical vapor deposition) or the like.

尚、前記アルニール処理は、第1図(c)に示す絶縁膜
7の形成工程、あるいは第1図(e)に示す高濃度n型
GaAs層8の形成工程の後に行ってもよく、また、高
濃度n型GaAs層8の形成工程前に砒化水素(AsH
3)中で行なってもよい。
Note that the alnealing process may be performed after the step of forming the insulating film 7 shown in FIG. 1(c) or the step of forming the high concentration n-type GaAs layer 8 shown in FIG. 1(e). Before forming the high concentration n-type GaAs layer 8, hydrogen arsenide (AsH)
3) You can also do it inside.

更に、第1図(f)に示すように、高濃度n型Q a 
A s層に対してAuとGeの合金層にNiをつけて形
成するオーム性電極9を被着して、ヘテロ接合を有する
電界効果トランジスタが形成される。
Furthermore, as shown in FIG. 1(f), high concentration n-type Q a
An ohmic electrode 9 formed by adding Ni to an alloy layer of Au and Ge is applied to the As layer to form a field effect transistor having a heterojunction.

このようにして形成された電界効果トランジスタのソー
ス抵抗は0.15Ω・關と小さく、相互コンダクタンス
は400m5/龍と大きい電気的特性の良好なものが得
られる。
The field effect transistor thus formed has a source resistance as small as 0.15 ohms, a mutual conductance as high as 400 m5/dragon, and good electrical characteristics.

また、上述の実施例においては、ゲート電極として高融
点金属層を用いて説明したが、高融点金属の化合物層あ
るいは高融点金属のシリサイド層あるいは高融点金属の
化合物のシリサイド層を用いても同様に本発明を実施す
ることができる。
Further, in the above embodiment, a high melting point metal layer is used as the gate electrode, but the same effect can be obtained by using a high melting point metal compound layer, a high melting point metal silicide layer, or a high melting point metal compound silicide layer. The present invention can be implemented in the following manner.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の電界効果I−ランジスタ
の製造方法は、チャンネル領域とn型領域が隣接し且つ
オーム性電極がGaAs層に対して形成されるため、ソ
ース抵抗が小さく、相互コンダクタンスが大きいという
良好な特性を有する電界効果トンジスタの製造方法を得
られるという効用がある。
As explained above, in the method for manufacturing a field effect I-transistor of the present invention, the channel region and the n-type region are adjacent to each other and the ohmic electrode is formed on the GaAs layer, so the source resistance is small and the mutual conductance is low. There is an advantage that a method for manufacturing a field effect transistor having good characteristics such as a large value can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の一実施例を説明するた
めの工程順に示した電界効用トランジスタの断面図、第
2図(a)〜(d)は従来の製造方法を説明するための
工程順に示した電界効果トランジスタの断面図である。 1・・・半絶縁性GaAs基板、2・・・アンドープG
aAs層、3−n型AeGaAs層、4・・・デー1〜
電極、5・・・注入イオン、6・・・n型領域、7・・
・絶縁膜、8・・・高濃度n型GaAs層、9・・・オ
ーム性電第 1 図
Figures 1 (a) to (f) are cross-sectional views of a field effect transistor shown in the order of steps to explain an embodiment of the present invention, and Figures 2 (a) to (d) illustrate a conventional manufacturing method. FIG. 3 is a cross-sectional view of a field effect transistor shown in the order of steps for manufacturing. 1... Semi-insulating GaAs substrate, 2... Undoped G
aAs layer, 3-n type AeGaAs layer, 4... Day 1~
electrode, 5... implanted ion, 6... n-type region, 7...
・Insulating film, 8... High concentration n-type GaAs layer, 9... Ohmic conduction Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性ガリウム砒素基板上にアンドープガリウム砒素
層を設ける工程と、前記アンドープガリウム砒素層上に
n型アルミニウム・ガリウム砒素層を設ける工程と、前
記n型アルミニウム・ガリウム砒素層上にゲート電極と
してパターニングされた高融点金属層、高融点金属の化
合物層、前記金属層と前記化合物層のシリサイド層のう
ち少なくとも一つを形成する工程と、前記ゲート電極と
して形成された層をマスクとし、前記ガリウム砒素層お
よび前記アルミニウム・ガリウム砒素層に対するドナー
としての元素をイオン注入する工程と、アニール処理に
より注入された前記イオンを活性化させる工程と、絶縁
膜を被覆する工程と、前記絶縁膜を異方性のドライエッ
チング法によりエッチングし、前記ゲート電極の側面に
のみ前記絶縁膜を残す工程と、前記n型アルミニウム・
ガリウム砒素層上にのみ高濃度n型ガリウム砒素層を選
択的にエピタキシャル成長させる工程と、前記高濃度n
型ガリウム砒素層上の所定位置にオーム性電極を形成す
る工程とを含むことを特徴とする電界効果トランジスタ
の製造方法。
providing an undoped gallium arsenide layer on a semi-insulating gallium arsenide substrate; providing an n-type aluminum gallium arsenide layer on the undoped gallium arsenide layer; and patterning the n-type aluminum gallium arsenide layer as a gate electrode. forming at least one of a high melting point metal layer, a high melting point metal compound layer, and a silicide layer of the metal layer and the compound layer, and using the layer formed as the gate electrode as a mask, the gallium arsenide implanting an element as a donor to the aluminum gallium arsenide layer and the aluminum gallium arsenide layer, activating the implanted ions by an annealing process, coating an insulating film, and anisotropically forming the insulating film. etching using a dry etching method to leave the insulating film only on the side surfaces of the gate electrode;
selectively epitaxially growing a high concentration n-type gallium arsenide layer only on the gallium arsenide layer;
forming an ohmic electrode at a predetermined position on a gallium arsenide layer.
JP24061786A 1986-10-08 1986-10-08 Manufacture of field-effect transistor Pending JPS6394688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24061786A JPS6394688A (en) 1986-10-08 1986-10-08 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24061786A JPS6394688A (en) 1986-10-08 1986-10-08 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPS6394688A true JPS6394688A (en) 1988-04-25

Family

ID=17062160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24061786A Pending JPS6394688A (en) 1986-10-08 1986-10-08 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPS6394688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539693A2 (en) * 1991-10-29 1993-05-05 Rohm Co., Ltd. Compound semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539693A2 (en) * 1991-10-29 1993-05-05 Rohm Co., Ltd. Compound semiconductor device
EP0539693A3 (en) * 1991-10-29 1994-02-02 Rohm Co Ltd

Similar Documents

Publication Publication Date Title
US4889831A (en) Method of forming a high temperature stable ohmic contact to a III-V substrate
JP3449116B2 (en) Semiconductor device
JP3368449B2 (en) Semiconductor device and manufacturing method thereof
JP4050128B2 (en) Heterojunction field effect transistor and manufacturing method thereof
JPS6184869A (en) Semiconductor device
JPS6394688A (en) Manufacture of field-effect transistor
EP0833379A2 (en) Semiconductor device and manufacturing method thereof
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JPS6115375A (en) Hetero junction fet
JP2541230B2 (en) Method for manufacturing field effect transistor
JPS62204578A (en) Manufacture of field-effect transistor
JP3018885B2 (en) Method for manufacturing semiconductor device
JPS6390865A (en) Manufacture of field-effect transistor
JPH03280552A (en) Manufacture of field effect transistor
JPS63228762A (en) Manufacture of semiconductor device
JPH05275464A (en) Manufacture of compound semiconductor integrated circuit device
JPH0349242A (en) Field effect transistor and its manufacture
JPS60136264A (en) Manufacture of semiconductor device
JPH03231424A (en) Manufacture of compound semiconductor device
JPS63115384A (en) Manufacture of semiconductor device
JPS6010785A (en) Field effect transistor and manufacture thereof
JPH043944A (en) Field-effect transistor
JPS62224086A (en) Manufacture of field-effect transistor
JPS6143443A (en) Manufacture of semiconductor device
JPH02191345A (en) Manufacture of field-effect transistor