JPS6010785A - Field effect transistor and manufacture thereof - Google Patents

Field effect transistor and manufacture thereof

Info

Publication number
JPS6010785A
JPS6010785A JP11907483A JP11907483A JPS6010785A JP S6010785 A JPS6010785 A JP S6010785A JP 11907483 A JP11907483 A JP 11907483A JP 11907483 A JP11907483 A JP 11907483A JP S6010785 A JPS6010785 A JP S6010785A
Authority
JP
Japan
Prior art keywords
gate
field effect
effect transistor
gate electrode
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11907483A
Other languages
Japanese (ja)
Inventor
Kinshiro Kosemura
小瀬村 欣司郎
Yoshimi Yamashita
良美 山下
Megumi Arai
新居 恵
Kazukiyo Tsunenobu
和清 常信
Takashi Mimura
高志 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11907483A priority Critical patent/JPS6010785A/en
Publication of JPS6010785A publication Critical patent/JPS6010785A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices

Abstract

PURPOSE:To increase gate withstand voltage by forming a P-N junction gate in a field effect transistor, which is operated at high speed by utilizing a secondary electron gas and has the same conduction type hetero-junction. CONSTITUTION:A non-doped GaAs layer 1, an N type AlGaAs layer 2, an N type AlGaAs layer 3, the ratio of Al therein is decreased gradually, an N type GaAs layer 4 and lastly a P type AlGaAs layer 5 are grown on an insulating substrate in order from the lowermost section. A mesa is formed for an isolation. A gate electrode section is patterned by using a resist 6, and gate gold layers 7 and 8 are applied in vacuum, thus forming the gate electrode 8. Only the P type AlGaAs layer 5 is etched selectively. A P-N junction gate shorter than the gate length of the gate electrode 8 can be obtained extremely easily through a side etching up to the lower section of the gate electrode 8 at that time.

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は電界効果トランジスタ及びその製造方法に係り
、特に同一導電型のへテロ接合を有し2次元ガスを利用
して高速動作させる電界効果トランジスタ及びその製造
方法に関する。
Detailed Description of the Invention (1) Technical Field of the Invention The present invention relates to a field effect transistor and a method for manufacturing the same, and particularly to a field effect transistor having heterojunctions of the same conductivity type and operating at high speed using a two-dimensional gas. The present invention relates to a transistor and its manufacturing method.

(2) 技術の背景 ■−■族化合物半導体の1つであるガリウム・ヒ素(以
下G a A Sと記す)はシリコンStに比べて電子
移動度が約6倍あり、高周波素子や高速論理素子の材料
として注目を集めている。
(2) Technical background Gallium arsenide (hereinafter referred to as GaAS), which is one of the ■-■ group compound semiconductors, has an electron mobility approximately six times that of silicon St, and is used in high-frequency devices and high-speed logic devices. It is attracting attention as a material for

このGaAsを用いた電界効果トランジスタ(以下FE
Tと記す)としてはショットキーバリアFETや接合F
ETなどが提案されているが。
Field effect transistor (hereinafter referred to as FE) using this GaAs
(denoted as T) is a Schottky barrier FET or a junction FET.
ET etc. have been proposed.

その中でも特にヘテロ接合を用いたG a A s F
 ETはノンドープG a A S層の界面に形成され
る2次元電子ガスによって高速動作を達成している。
Among them, especially G a A s F using heterojunction
ET achieves high-speed operation by a two-dimensional electron gas formed at the interface of the non-doped GaAs layer.

(3) 従来技術と問題点 このヘテロ接合を有したG a A s F E Tの
構成を従来例を用いて簡単に説明する。
(3) Prior Art and Problems The structure of the GaAsFET having this heterojunction will be briefly explained using a conventional example.

先ず、半絶縁性のGaAs基板上にノンドープGaAs
1iを形成し、その上にアルミニウムAβが30%、ガ
リウムGaが70%の割合で化合したn形のアルミニウ
ム・ガリウムヒ素Aj!GaAS層(以下、n形Aj!
 (0,3)Ga (0,7)As層という形式で記す
ことにする)を形成する。
First, undoped GaAs was deposited on a semi-insulating GaAs substrate.
1i, and n-type aluminum-gallium-arsenide Aj! on which 30% aluminum Aβ and 70% gallium Ga are combined. GaAS layer (hereinafter referred to as n-type Aj!
(0,3)Ga(0,7)As layer) is formed.

このn形AA (0,3) Ga (0,7) As層
につづいてアルミニウムA!の割合を減少させたn形A
lx1Ga (1−x)As層を形成し、最後にアルミ
ニウムAAを含まないn形GaAs層を形成する。そし
てアイソレーションのためにメサ形成を行なった後にソ
ース及びドレイン電極を形成し1合金化処理によってオ
ーミック接触をとる。
Following this n-type AA (0,3) Ga (0,7) As layer, aluminum A! n-type A with a reduced proportion of
A lx1Ga (1-x)As layer is formed, and finally an n-type GaAs layer containing no aluminum AA is formed. After forming a mesa for isolation, source and drain electrodes are formed and ohmic contact is established by 1-alloying treatment.

そして最後にリフトオフ法によって、ゲート金属を真空
中でn形QaAs層表面に被着させ、ゲート電極を形成
する。このようにしてヘテロ接合を有するGaAsFE
Tが製造される。
Finally, a gate metal is deposited on the surface of the n-type QaAs layer in vacuum by a lift-off method to form a gate electrode. In this way, GaAsFE with a heterojunction
T is manufactured.

しかしながらGaAsFETでは、遮断周波数向上の点
でも、利得の点でも、また雑音低減の点でもゲート長を
極力小さく (1μm以下)する必要がある。そのため
に高度な微細加工技術が要求され、従来では2通常の光
露光ではなく電子ビームやX線露光を採用しなければな
らず、さらにゲートとソース及びドレインとの位置合せ
等も非常に複雑になるという欠点を有していた。
However, in GaAsFETs, it is necessary to make the gate length as small as possible (1 μm or less) in terms of improving the cutoff frequency, increasing gain, and reducing noise. This requires advanced microfabrication technology, which requires the use of electron beams or X-ray exposure instead of conventional light exposure, and the alignment of the gate, source, and drain, etc., is extremely complicated. It had the disadvantage of being

また従来では、ゲートがショットキー接触であ8′″″
5°゛117”1112〜3 (V) it!?、b 
In addition, in the past, the gate had a Schottky contact and was 8′″″
5°゛117”1112~3 (V) it!?, b
.

す、耐圧が低いという欠点があった。However, it had the disadvantage of low pressure resistance.

さらにゲートとソース及びドレインの位置合せが複雑で
あることも関連して、従来の方法ではソース、ドレイン
間の距離をゲート長より大きくとる必要があり、直列抵
抗Rsが大きくなって、その結果FETの伝達コンダク
タンスgmが小さく遮断周波数が低いという欠点も有し
ていた。
Furthermore, due to the complicated alignment of the gate, source, and drain, conventional methods require the distance between the source and drain to be larger than the gate length, which increases the series resistance Rs. It also had the disadvantage of a small transfer conductance gm and a low cut-off frequency.

(4) 発明の目的 本発明は上記従来の欠点に鑑み、目的とするところは、
ゲート耐圧の高い電界効果トランジスタを提供すること
にある。
(4) Purpose of the invention In view of the above-mentioned conventional drawbacks, the present invention aims to:
An object of the present invention is to provide a field effect transistor with high gate breakdown voltage.

さらに目的とするところは、光露光法を使用してゲート
長を1μm以下に小さくすると同時にソース、ドレイン
間距離を短縮して遮断周波数を向上させる電界効果トラ
ンジスタの製造方法を提供することにある。
A further object of the present invention is to provide a method for manufacturing a field effect transistor in which the gate length is reduced to 1 μm or less using a light exposure method, and at the same time the distance between the source and drain is shortened to improve the cutoff frequency.

(5) 発明の構成 上記目的は本発明によれば、同一導電型のへテロ接合を
有し、2次電子ガスを利用して高速動作させる電界効果
トランジスタにおいて、PN接合5− ゲートを設けた電界効果トランジスタを提供することに
より達成される。また、上記目的は本発明によれば、同
一導電形のへテロ接合を有し2次元電子ガスを利用して
高速動作させる電界効果トランジスタの製造方法におい
て、該電界効果トランジスタの半導体積層構造の表面に
形成された一導電形の半導体層の上に反対導電形の半導
体層を成長させる工程と、該反対導電形半導体層の上に
形成されたゲート電極をマスクにして上記反対導電形半
導体層を選択的にエツチングする工程と、上記ゲート電
極をマスクにしてソース電極とドレイン電極を被着形成
する工程とを設けたことを特徴とする電界効果トランジ
スタの製造方法を提供することによって達成される。
(5) Structure of the Invention According to the present invention, the above object is to provide a field effect transistor having heterojunctions of the same conductivity type and operating at high speed using secondary electron gas, in which a PN junction 5-gate is provided. This is achieved by providing a field effect transistor. According to the present invention, the above object is a method for manufacturing a field effect transistor that has heterojunctions of the same conductivity type and operates at high speed using two-dimensional electron gas. a step of growing a semiconductor layer of an opposite conductivity type on a semiconductor layer of one conductivity type formed on a semiconductor layer of one conductivity type; and a step of growing a semiconductor layer of an opposite conductivity type using a gate electrode formed on the opposite conductivity type semiconductor layer as a mask. This is achieved by providing a method for manufacturing a field effect transistor, which comprises a selective etching step and a step of depositing and forming a source electrode and a drain electrode using the gate electrode as a mask.

(6) 発明の実施例 以下本発明の実施例を図面を用いて詳細に説明する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(alないし第1図(elは本発明による電界効
果トランジスタの一実施例の製岳工程順図である。
FIGS. 1A to 1E are sequential diagrams of the manufacturing process of an embodiment of a field effect transistor according to the present invention.

先ず、第1図(a)において1図示されていない半6− 絶縁性基板上にノンドープGaAs層1を3000人、
その上に約2×10 印 のn形AI! (0,3)G
a (0,7)As層2を約300人、つづいてAβの
比率を漸減させた約2×10 cm のn形A/! (
X) Ga (1−X) As層3を約300人、その
上に2×10〜2×10 cm のn形G a A s
 ii 4を約300人、そして最後に約2×10 印
 のP形An (0,3)Ga (0,7)As層5を
約300人を連続的に分子線エピタキシ(MBE)等を
用いて成長させる。つづいてアイソレーションのために
メサ形成を行なう。
First, in FIG. 1(a), a non-doped GaAs layer 1 was deposited on a semi-insulating substrate (not shown) by 3,000 people.
On top of that is an n-type AI with about 2×10 marks! (0,3)G
a (0,7) As layer 2 of about 300 layers, followed by about 2×10 cm of n-type A/! with a gradually decreasing proportion of Aβ! (
X) About 300 Ga (1-
ii 4 by about 300 people, and finally about 2 × 10 marks of P-type An (0,3) Ga (0,7) As layer 5 by about 300 people using molecular beam epitaxy (MBE) etc. and grow it. Next, a mesa is formed for isolation.

そして第1図(blに示すように、レジスト6を用い、
既成の光露光法によってゲート電極部をバターニングし
、真空中にてゲート金属7及び8 (アルミニウムA7
!等)を被着させることによって厚さ0.5〜1μmの
ゲート電極8が形成される。
Then, as shown in FIG. 1 (bl), using resist 6,
The gate electrode portion is patterned using a conventional light exposure method, and gate metals 7 and 8 (aluminum A7
! etc.) to form a gate electrode 8 having a thickness of 0.5 to 1 μm.

第1図(C)には、リフトオフ法によってゲート電極8
以外の不要部分9を取除いた状態が示されている。
In FIG. 1(C), a gate electrode 8 is formed by the lift-off method.
The state is shown with unnecessary parts 9 other than those removed.

ここでP形Aj! (0,3)Ga (0,7)As層
5のみを選択的にエツチングするエツチング液(塩酸H
CIとりん酸H3P0aとの混合液)によってエツチン
グを行なう。その際ゲート電極8の下までサイドエツチ
ングすることによってゲート電極8のゲート長よりも短
い、すなわち1μm以下のPN接合ゲートを極めて容易
に得ることができる。第1図(d+はエツチングによっ
てP形Al2(0,3)Ga (0,7)As層5がゲ
ート電極8より短縮化された状態を示している。
P-type Aj here! (0,3) Ga (0,7) As an etching solution (hydrochloric acid, H
Etching is performed using a mixed solution of CI and phosphoric acid H3P0a). At this time, by performing side etching to the bottom of the gate electrode 8, a PN junction gate having a length shorter than the gate length of the gate electrode 8, that is, 1 μm or less, can be obtained very easily. FIG. 1 (d+ shows a state in which the P-type Al2(0,3)Ga(0,7)As layer 5 is shortened from the gate electrode 8 by etching.

そして最後にゲート電極8をマスクにしてソース及びド
レイン電極を形成する。その際、先ず12重量%の金−
ゲルマニウム合金(以下AuGeと記す)を被着させ1
次に酸化防止のために金AuをAuGeの上に被着させ
る。そしてAuGeとn形GaAs層4とをオーミック
接触させるために450℃の窒素雰囲気中で2分間合金
化処理を行ない、第1図(e)に示すようにソース電極
12、ドレイン電極13が形成される。同図中において
ゲート電極8上にはソース電極12及びド 。
Finally, source and drain electrodes are formed using the gate electrode 8 as a mask. At that time, first 12% by weight of gold-
Germanium alloy (hereinafter referred to as AuGe) is deposited 1
Next, gold (Au) is deposited on the AuGe to prevent oxidation. Then, in order to make ohmic contact between the AuGe and the n-type GaAs layer 4, an alloying process is performed for 2 minutes in a nitrogen atmosphere at 450° C., and a source electrode 12 and a drain electrode 13 are formed as shown in FIG. 1(e). Ru. In the figure, a source electrode 12 and a gate electrode are provided on the gate electrode 8.

レイン電極13と同じAu及びAu00層11が形成さ
れるがゲートの特性に影響を及ぼすことはない。また2
次元ガス層14はノンドープGaA3層1の界面付近に
生成するもので、このガス層14によってFETの高速
動作が可能となる。
Although the same Au and Au00 layers 11 as the rain electrode 13 are formed, they do not affect the characteristics of the gate. Also 2
The dimensional gas layer 14 is generated near the interface of the non-doped GaA 3 layer 1, and this gas layer 14 enables high-speed operation of the FET.

なおソース電極12及びドレイン電極13を形成する前
に、ゲート電極8をマスクとしてイオン注入を施して予
めN 層を形成し、熱処理によって活性化した後でソー
ス電極12及゛びドレイン電極13を形成してもよい。
Note that before forming the source electrode 12 and drain electrode 13, an N layer is formed in advance by ion implantation using the gate electrode 8 as a mask, and after activation by heat treatment, the source electrode 12 and drain electrode 13 are formed. You may.

ただしその場合は熱処理工程を要するためにゲートの材
料をシリサイド(TtWSiあるいはWSt等)の耐熱
性のある高融点金属にする必要がある。
However, in that case, since a heat treatment process is required, the material of the gate needs to be a heat-resistant, high-melting point metal such as silicide (TtWSi, WSt, etc.).

(7) 発明の効果 以上詳細に説明したように本発明による電界効果トラン
ジスタは、PN接合ゲートを有するために従来のショッ
トキ形ゲートに比べて高耐圧となり、10v以上の電圧
を印加することが可能となる。
(7) Effects of the Invention As explained in detail above, the field effect transistor according to the present invention has a PN junction gate, so it has a higher withstand voltage than the conventional Schottky gate, and can apply a voltage of 10 V or more. becomes.

また製造方法において、P形AβGaAs層を9− ゲート電極をマスクにして選択的にエツチングを行ない
、さらにサイドエツチングすることで微細なゲートを得
ることができ、遮断周波数の向上をもたらす。さらにゲ
ート電極をマスクにしてソース、ドレイン電極を形成す
るために、工程数が少なり、シかも精密制御を要する工
程が事実上ゲート電極形成工程のみであり、電界効果ト
ランジスタの均一性や安定性が向上する。またソース、
ドレイン電極間の直列抵抗が低減するので伝達コンダク
タンスが向上する。また表面の露出面はGaAs面にな
るので特性の劣化が少ない等の効果がある。
In addition, in the manufacturing method, the P-type AβGaAs layer is selectively etched using the 9-gate electrode as a mask, and further side etching is performed to obtain a fine gate and improve the cutoff frequency. Furthermore, since the source and drain electrodes are formed using the gate electrode as a mask, the number of steps is reduced, and the only step that requires precise control is actually the gate electrode formation step, which improves the uniformity and stability of the field effect transistor. will improve. Also sauce,
Since the series resistance between the drain electrodes is reduced, the transfer conductance is improved. Furthermore, since the exposed surface is a GaAs surface, there is an effect that there is less deterioration of characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の製造工程順図である。 1・・・ノンドープGaAsfW、 2・・・n形AI
V、(0,3)Ga (0,7)As層。 3・・・n形A# (x) Ga (1−X) As層
。 4−=n形GaAs層、 5・・−p形A1 (0,3
)Ga (0,7)As層、 8・10− ・・ゲート電極、 12・・・ソース電極。 13・・・ドレイン電極、 14・・・二次元ガス 11− 第1図
FIG. 1 is a sequential diagram of a manufacturing process according to an embodiment of the present invention. 1... Non-doped GaAsfW, 2... n-type AI
V, (0,3)Ga(0,7)As layer. 3...n-type A# (x) Ga (1-X) As layer. 4-=n-type GaAs layer, 5...-p-type A1 (0,3
)Ga(0,7)As layer, 8.10-...gate electrode, 12...source electrode. 13...Drain electrode, 14...Two-dimensional gas 11- Fig. 1

Claims (6)

【特許請求の範囲】[Claims] (1) 同−導電形のへテロ接合を有し2次元電子ガス
を利用して高速動作させる電界効果トランジスタにおい
て、PN接合ゲートを設けたことを特徴とする電界効果
トランジスタ。
(1) A field effect transistor having a heterojunction of the same conductivity type and operating at high speed using two-dimensional electron gas, characterized in that it is provided with a PN junction gate.
(2) 前記PN接合ゲートのゲート長がゲート電極よ
り短いことを特徴とする特許請求の範囲第1項記載の電
界効果トランジスタ。
(2) The field effect transistor according to claim 1, wherein the gate length of the PN junction gate is shorter than the gate electrode.
(3) 同−導電形のへテロ接合を有し2次元電子ガス
を利用して高速動作させる電界効果トランジスタの製造
方法において、該電界効果トランジスタの半導体積層構
造の表面に形成された一導電形の半導体層の上に反対導
電形の半導体層を成長させる工程と、該反対導電形半導
体層の上に形成されたゲート電極をマスクにして上記反
対導電形半導体層を選択的にエツチングする工程と、上
記ゲート電極をマスクにしてソース電極とドレイン電極
を被着形成する工程とを設けたことを特徴とする電界効
果トランジスタの製造方法。
(3) In a method for manufacturing a field effect transistor that has a heterojunction of the same conductivity type and operates at high speed using two-dimensional electron gas, a field effect transistor of one conductivity type formed on the surface of a semiconductor stacked structure of the field effect transistor a step of growing a semiconductor layer of an opposite conductivity type on the semiconductor layer of the opposite conductivity type, and a step of selectively etching the opposite conductivity type semiconductor layer using a gate electrode formed on the opposite conductivity type semiconductor layer as a mask. A method for manufacturing a field effect transistor, comprising the step of depositing and forming a source electrode and a drain electrode using the gate electrode as a mask.
(4) 上記反対導電形半導体層を選択的にエツチング
する工程はゲート電極下のサイドエツチングを含むこと
を特徴とする特許請求の範囲第3項記載の電界効果トラ
ンジスタの製造方法。
(4) The method of manufacturing a field effect transistor according to claim 3, wherein the step of selectively etching the opposite conductivity type semiconductor layer includes side etching under the gate electrode.
(5) 上記−導電形の半導体はn形のガリウムヒ素で
あることを特徴とする特許請求の範囲第3項記載の電界
効果トランジスタの製造方法。
(5) The method for manufacturing a field effect transistor according to claim 3, wherein the - conductivity type semiconductor is n-type gallium arsenide.
(6) 上記反対導電形半導体はP形のアルミニウム・
ガリウムヒ素であることを特徴とする特許請求の範囲第
3項記載の電界効果トランジスタの製造方法。
(6) The above-mentioned opposite conductivity type semiconductor is P-type aluminum.
4. The method of manufacturing a field effect transistor according to claim 3, wherein the material is gallium arsenide.
JP11907483A 1983-06-30 1983-06-30 Field effect transistor and manufacture thereof Pending JPS6010785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11907483A JPS6010785A (en) 1983-06-30 1983-06-30 Field effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11907483A JPS6010785A (en) 1983-06-30 1983-06-30 Field effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6010785A true JPS6010785A (en) 1985-01-19

Family

ID=14752233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11907483A Pending JPS6010785A (en) 1983-06-30 1983-06-30 Field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6010785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117666A (en) * 1985-11-15 1987-05-29 Fuji Photo Film Co Ltd Coating method
US5591266A (en) * 1994-03-25 1997-01-07 Tdk Corporation Extrusion type coating head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123090A (en) * 1974-08-20 1976-02-24 Matsushita Electronics Corp SETSUGOGEETOGATADENKAIKOKATORANJISUTA
JPS51115780A (en) * 1974-10-31 1976-10-12 Matsushita Electric Ind Co Ltd Hetero junction gate form fieid effect transistor and manufacturing me thod
JPS5922367A (en) * 1982-07-29 1984-02-04 Nec Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123090A (en) * 1974-08-20 1976-02-24 Matsushita Electronics Corp SETSUGOGEETOGATADENKAIKOKATORANJISUTA
JPS51115780A (en) * 1974-10-31 1976-10-12 Matsushita Electric Ind Co Ltd Hetero junction gate form fieid effect transistor and manufacturing me thod
JPS5922367A (en) * 1982-07-29 1984-02-04 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117666A (en) * 1985-11-15 1987-05-29 Fuji Photo Film Co Ltd Coating method
US5591266A (en) * 1994-03-25 1997-01-07 Tdk Corporation Extrusion type coating head

Similar Documents

Publication Publication Date Title
US4889831A (en) Method of forming a high temperature stable ohmic contact to a III-V substrate
US4617724A (en) Process for fabricating heterojunction bipolar transistor with low base resistance
JPH0353563A (en) Semiconductor device composed of heterojunction bipolar transistor and manufacturing method of the same
JPH03229426A (en) Integrated circuit and manufacture there- of
JPH0797589B2 (en) Method for manufacturing heterojunction bipolar transistor
JP3439578B2 (en) Semiconductor device and manufacturing method thereof
JP3119248B2 (en) Field effect transistor and method of manufacturing the same
EP0130774A1 (en) Process for fabricating bipolar transistor
JPS6010785A (en) Field effect transistor and manufacture thereof
JPS59181060A (en) Semiconductor device
JPS61276261A (en) Manufacture of high-speed bipolar transistor
JPH08191055A (en) Compound semiconductor device and manufacture thereof
JP2504782B2 (en) Method for manufacturing field effect transistor
JPS63287058A (en) Manufacture of hetero-junction bipolar transistor
JPH02188964A (en) Semiconductor device and manufacture thereof
JPS6143443A (en) Manufacture of semiconductor device
JPS63115384A (en) Manufacture of semiconductor device
JPS6378575A (en) Manufacture of semiconductor device
JPH01194469A (en) Compound semiconductor device
JPH0327537A (en) Modulation-doped field effect transistor
JPS62224073A (en) Manufacture of hetero-junction bipolar transistor
JPS6394688A (en) Manufacture of field-effect transistor
JPH05275462A (en) Compound semiconductor integrated circuit device
JPS63275185A (en) Field effect transistor
JPH04214637A (en) Semiconductor device