JPS63115384A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63115384A
JPS63115384A JP26124986A JP26124986A JPS63115384A JP S63115384 A JPS63115384 A JP S63115384A JP 26124986 A JP26124986 A JP 26124986A JP 26124986 A JP26124986 A JP 26124986A JP S63115384 A JPS63115384 A JP S63115384A
Authority
JP
Japan
Prior art keywords
active layer
island
gate electrode
highly doped
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26124986A
Other languages
Japanese (ja)
Inventor
Hideki Yakida
八木田 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26124986A priority Critical patent/JPS63115384A/en
Publication of JPS63115384A publication Critical patent/JPS63115384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To effectively improve characteristics of devices such as FET's or the like without deterioration of Schottky characteristics or deterioration of a steep hetero junction interface, by selectively irradiating an island-shaped active layer with laser light in gaseous atmosphere of impurity atoms, instead of implanting ions, for forming highly doped regions. CONSTITUTION:A GaAs substrate is exposed only at the surface of an island- shaped active layer 102 while the other surface is covered with a dielectric mask 104. The substrate is then irradiated with laser light in the gaseous atmosphere containing impurity atoms to form highly doped regions 106 and 107. The temperature in the highly doped regions 106 and 107 are increased in an instant by irradiation of excimer laser 105 and doped with impurities while the temperature at the Schottky junction of a gate is held at room temperature and the Schottky characteristics are not deteriorated. Further, since the temperature is not increased, the distribution of impurity concentrations in a FET active layer directly under the gate is not varied. Thereafter, a source electrode 108 is provided on the highly doped region 106 while a drain electrode 109 is provided on the highly doped region 107, so that GaAs FET is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプレーナ型電界効果トランジスタの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a planar field effect transistor.

従来の技術 電界効果トランジスタ(以下FET )においては、ソ
ース抵抗、およびドレイン抵抗の減少がFETの特性向
上のために必要であること、特にソース抵抗は直接FE
Tの相互コンダクタンス(gm)に影響を与えるために
極力低い事が望ましいことはよく知られている。ソース
抵抗はソース電極の金属と半導体とのオーミック性接触
部に起因するコンタクト抵抗(Re)とソース電極金属
端からゲート電極金属端までの半導体活性層の層抵抗3
ページ (Rs)の和で表される。従ってソース抵抗の減少のた
めにソース電極部に高不純物濃度領域をイオン注入など
で形成しReを下げて同時にRsを下げることがなされ
ていた。
In conventional field effect transistors (hereinafter referred to as FETs), it is necessary to reduce the source resistance and drain resistance in order to improve the characteristics of the FET.
It is well known that it is desirable to be as low as possible in order to influence the transconductance (gm) of T. The source resistance is the contact resistance (Re) caused by the ohmic contact between the metal of the source electrode and the semiconductor, and the layer resistance 3 of the semiconductor active layer from the metal end of the source electrode to the metal end of the gate electrode.
It is expressed as a sum of pages (Rs). Therefore, in order to reduce the source resistance, a high impurity concentration region is formed in the source electrode portion by ion implantation or the like to lower the Re and at the same time the Rs.

高不純物濃度領域を形成することによってReが減少す
るのは、オーミック性接触部の半導体界面に形成される
ポテンシャル障壁が不純物濃度が高いためにより薄くな
るためである。このためには半導体表面付近においても
十分に高い不純物濃度を有する不純物濃度分布が望まし
い。しかしイオン注入は、得られる濃度分布がガウス分
布に近く、半導体表面付近で不純物濃度が下がるため最
適な濃度分布とは言えないが、浅い不純物濃度分布が比
較的容易に得られるためよく用いられている。
The reason why Re is reduced by forming the high impurity concentration region is that the potential barrier formed at the semiconductor interface of the ohmic contact becomes thinner due to the high impurity concentration. For this purpose, it is desirable to have an impurity concentration distribution that has a sufficiently high impurity concentration even near the semiconductor surface. However, with ion implantation, the concentration distribution obtained is close to a Gaussian distribution, and although it cannot be said to be the optimal concentration distribution because the impurity concentration decreases near the semiconductor surface, it is often used because it can relatively easily obtain a shallow impurity concentration distribution. There is.

また一方、Rsを減少せしめるために高不純物濃度領域
をできる限りゲート電極に近ずけることがなされている
。その一つの方法としてゲート電極材料をマスクとして
自己整合的にイオン注入によって形成する方法がある。
On the other hand, in order to reduce Rs, the high impurity concentration region is moved as close as possible to the gate electrode. One method is to form the gate electrode by ion implantation in a self-aligned manner using the gate electrode material as a mask.

この方法では、ゲート電極金属形成後イオン注入層の熱
処理を行わなければならない。このためゲート電極金属
には高温においても良好なショットキ接合特性が保たれ
ると期待されるタングステン(W)などの、いわゆる高
融点金属が用いられる。しかしながら、このような高融
点金属をゲート材料にもちいても、800℃程度の高温
熱処理中にショットキ特性の悪化、材料の抵抗率が高い
、ゲート材料からの不純物の拡散、などの多くの問題が
FETの歩留まりと生産性を下げている。
In this method, the ion implantation layer must be heat-treated after the gate electrode metal is formed. For this reason, a so-called high melting point metal such as tungsten (W), which is expected to maintain good Schottky junction characteristics even at high temperatures, is used as the gate electrode metal. However, even if such a high-melting point metal is used as a gate material, there are many problems such as deterioration of Schottky characteristics, high resistivity of the material, and diffusion of impurities from the gate material during high-temperature heat treatment at about 800°C. This reduces FET yield and productivity.

また非常に急峻なヘテロ接合を利用した超高速トランジ
スタ(高電子移動度トランジスタあるいはHEMT )
のソース抵抗を減少せしめるために、先に説明した様に
イオン注入をゲート電極材料に自己整合的に行う方法が
ある。この場合においても先に示したゲート電極材料の
耐熱性の問題に加えて、高温熱処理中に急峻なヘテロ接
合界面の劣化を引き起こし界面の急峻性が失われる。こ
のためソース抵抗の減少が特性の向上に効果的に寄与し
ない。
Also, ultra-high speed transistors (high electron mobility transistors or HEMTs) that utilize extremely steep heterojunctions
In order to reduce the source resistance of the gate electrode, there is a method of self-aligning ion implantation into the gate electrode material as described above. In this case as well, in addition to the above-mentioned problem of heat resistance of the gate electrode material, the steep heterojunction interface deteriorates during high-temperature heat treatment and the steepness of the interface is lost. Therefore, the reduction in source resistance does not effectively contribute to improving the characteristics.

5ページ 発明が解決しようとする問題点 本発明が解決しようとする問題点は、半導体表面に高濃
度不純物混入領域をゲート電極材料に自己整合的に行う
場合に、イオン注入が用いられていたためにイオン注入
層の高温で長時間に渡る熱処理工程が必要であることで
ある。このためショットキ特性の劣化や急峻なヘテロ接
合界面の劣化が伴い、FETなどのデバイス特性の効果
的な改善が困難であることである。
Page 5 Problems to be Solved by the Invention The problems to be solved by the present invention are that ion implantation is used when forming a highly doped region on the semiconductor surface in a self-aligned manner with the gate electrode material. The problem is that a heat treatment process of the ion-implanted layer at high temperature and over a long period of time is required. This causes deterioration of Schottky characteristics and deterioration of steep heterojunction interfaces, making it difficult to effectively improve the characteristics of devices such as FETs.

問題点を解決するための手段 本発明による問題点を解決するための手段は、第1に、
半導体基板主表面に選択的に島状の活性層を形成する工
程と、前記島状の活性層上にショットキ性のゲート電極
を形成する工程と、前記ショットキ性のゲート電極を有
する島状の活性層が形成された基板を所定の不純物原子
を含むガス雰囲気中で前記島状の活性層上に選択的にレ
ーザ光を照射し高濃度不純物混入領域を形成する工程と
、前記高濃度不純物混入領域上にオーミック性の電極を
選択的に形成する工程を少なくとも含む半導体6ページ 装置の製造方法を用いることである。
Means for Solving the Problems First, the means for solving the problems according to the present invention are as follows:
a step of selectively forming an island-like active layer on the main surface of a semiconductor substrate; a step of forming a Schottky gate electrode on the island-like active layer; and a step of forming an island-like active layer having the Schottky gate electrode. selectively irradiating the island-shaped active layer with a laser beam on the substrate on which the layer has been formed in a gas atmosphere containing predetermined impurity atoms to form a highly concentrated impurity-containing region; and A method of manufacturing a semiconductor six-page device is used, which includes at least a step of selectively forming an ohmic electrode thereon.

また第2に、異種の半導体、もしくは不純物濃度の異な
る半導体層が10nm以下の急峻な境界層を介したエピ
タキシャル成長層を有する半導体基板主表面を選択的に
活性層を分離形成する工程と、前記島状の活性層上にシ
ョットキ性のゲート電極を形成する工程と、前記ショッ
トキ性のゲート電極を有する島状の活性層が形成された
基板を所定の不純物原子を含むガス雰囲気中で前記島状
の活性層上に選択的にレーザ光を照射し高濃度不純物混
入領域を形成する工程と、前記高濃度不純物混入領域上
にオーミック性の電極を選択的に形成する工程を少なく
とも含む半導体装置の製造方法。
Second, a step of selectively separating and forming an active layer on the main surface of a semiconductor substrate having an epitaxially grown layer of different types of semiconductors or semiconductor layers having different impurity concentrations via a steep boundary layer of 10 nm or less; forming a Schottky gate electrode on a Schottky active layer; and forming a substrate on which an island-shaped active layer having a Schottky gate electrode is formed in a gas atmosphere containing predetermined impurity atoms. A method for manufacturing a semiconductor device, comprising at least the steps of selectively irradiating a laser beam onto an active layer to form a high concentration impurity mixed region, and selectively forming an ohmic electrode on the high concentration impurity mixed region. .

作用 本発明によればイオン注入の換わりに、不純物原子を含
むガス雰囲気中で前記島状の活性層」二に選択的にレー
ザ光を照射し高濃度不純物混入領域を形成する方法(以
下略してレーザドーピングとl]′!ぶ)用いるもので
ある。このため、第1に不純7ページ 物濃度分布は浅く、しかも急峻な分布が得られること、
また半導体表面付近においても十分に高い不純物濃度が
得られる。第2に、レーザの波長を選択することによっ
て、ゲート電極金属と半導体との界面を加熱することな
しに半導体表面にドーピングが可能であるために通常の
ゲート電極金属に対して自己整合的に半導体表面に高濃
度不純物混入領域を形成することができる。さらに急峻
なヘテロ接合を利用したFETの活性領域も、ゲート電
極の直下はレーザ光が陰となるので温度上昇せず、界面
の急峻性はレーザドーピングによって悪化しない。
According to the present invention, instead of ion implantation, a method (hereinafter abbreviated as abbreviated as a method) in which the island-shaped active layer is selectively irradiated with laser light in a gas atmosphere containing impurity atoms to form a highly concentrated impurity-containing region. It is used with laser doping. For this reason, firstly, the impurity concentration distribution is shallow and yet steep;
Furthermore, a sufficiently high impurity concentration can be obtained near the semiconductor surface. Second, by selecting the laser wavelength, it is possible to dope the semiconductor surface without heating the interface between the gate electrode metal and the semiconductor. A highly doped region can be formed on the surface. Furthermore, in the active region of an FET that uses a steep heterojunction, the temperature does not rise because the area directly under the gate electrode is shaded by the laser beam, and the steepness of the interface is not deteriorated by laser doping.

実施例 本発明を実施例によってさらに詳しく説明する。Example The present invention will be explained in more detail by way of examples.

第1図は、本発明による第1の実施例でG a A 5
FETの製造方法であるが、同図(a)に示すように、
半絶縁性G a A s半導体基板101の主表面にn
型導電層の活性層102を形成した。この活性層は S
lイオンを5QkeVの加速エネルギで、3 X 10
12c m−2の注入量のイオン注入を用いて形成した
。次ぎに同図(b)に示すように、断面形状がT型であ
るゲート電極108を活性層上に形成した。このゲート
電極金属にはAI/Ti (3000A/100OA)
の2層金属膜を電子ビーム蒸着によって蒸着したものを
用いた。このゲート電極のショットキ接合はAIによっ
て得られ、よく知られているようにAIはG a A 
s半導体FEETのゲート金属としてはごく一般にもち
いられているゲート材料である。またゲート電極の断面
をT型にするのは、後に形成する高不純物濃度層がゲー
ト電極に直接接触することを防ぐもので、ゲート電極材
料のAIを選択的に横方向にエツチングすることによっ
て得られた。
FIG. 1 shows a first embodiment of the present invention in which G a A 5
As shown in Figure (a), the FET manufacturing method is as follows:
n on the main surface of the semi-insulating GaAs semiconductor substrate 101
An active layer 102 of a type conductive layer was formed. This active layer is S
3 x 10 l ions with an acceleration energy of 5QkeV
It was formed using ion implantation with an implantation dose of 12 cm-2. Next, as shown in FIG. 5B, a gate electrode 108 having a T-shaped cross section was formed on the active layer. This gate electrode metal is made of AI/Ti (3000A/100OA)
A two-layer metal film deposited by electron beam evaporation was used. This Schottky junction of the gate electrode is obtained by AI, and as is well known, AI is G a A
This is a gate material that is very commonly used as a gate metal for s-semiconductor FEETs. The T-shaped cross section of the gate electrode prevents the high impurity concentration layer that will be formed later from coming into direct contact with the gate electrode. It was done.

とのG a A s基板は同図(c)に示すように、島
状の活性層102の表面だけが露出し、その他の表面を
誘電体のマスク材104で覆い、その後不純物原子を含
むガス雰囲気中でレーザ光を照射し高濃度不純物混入領
域106.107を形成する。
As shown in the same figure (c), the GaAs substrate is exposed only on the surface of the island-shaped active layer 102, the other surfaces are covered with a dielectric mask material 104, and then a gas containing impurity atoms is exposed. High concentration impurity mixed regions 106 and 107 are formed by irradiating laser light in an atmosphere.

不純物原子を含むガスは水素ガスとアルシンガスおよび
ジシランガスの混合ガスで、またレーザ光9ページ としてはキセノンクロライドを用いたエキシマレーザ(
308nm)を使用した。このときGaAs基板の温度
は室温に保たれた。エキシマレーザの照射によって高濃
度不純物混入領域106.107の温度は瞬間的に高温
になり不純物が混入されるが、ゲートのショットキ接合
部の温度は室温に保たれるためショットキ特性の劣化は
ない。またゲート直下のFET活性層の不純物濃度分布
も温度上昇しないために分布が変化することはない。
The gas containing impurity atoms is a mixed gas of hydrogen gas, arsine gas, and disilane gas, and the laser beam (page 9) is an excimer laser using xenon chloride (
308 nm) was used. At this time, the temperature of the GaAs substrate was kept at room temperature. Although the temperature of the heavily doped regions 106 and 107 instantaneously rises to a high temperature due to excimer laser irradiation and impurities are mixed therein, the Schottky characteristics of the gate do not deteriorate because the temperature of the Schottky junction of the gate is maintained at room temperature. Furthermore, the impurity concentration distribution in the FET active layer directly under the gate does not change because the temperature does not rise.

その後同図(d)に示すように高濃度不純物混入領域1
06上にソース電極108、高濃度不純物混入領域10
7上にドレイン電極109を形成してG a A s 
F E Tを製造した。
After that, as shown in the same figure (d), the high concentration impurity mixed region 1
06, a source electrode 108 and a heavily doped region 10
A drain electrode 109 is formed on G a A s
FET was manufactured.

第2図は本発明による第2の実施例で高電子移動度トラ
ンジスタ(HEMT)の製造方法であるが、同図(a)
はHEMT用のG a A sエビ基板である。
FIG. 2 shows a second embodiment of the present invention, which is a method for manufacturing a high electron mobility transistor (HEMT).
is a GaAs shrimp substrate for HEMT.

201は半絶縁性GaAs基板で、202はノンドープ
G a A sバッファ層で、厚みは1μm、キャリア
濃度はI X 1015c m−3である。203はノ
ンドープG a A s上に急峻な界面を有するように
10ページ エピ成長されたA I 0.3G a O,7A s層
でキャリア濃度は1 x 1018c m−3であり、
厚みは20OAであるがG a A sとの界面に約2
0AのノンドープA I 0.3G ao、7A s層
のスペーサ層を含んでいる。204は約5OAの厚みを
有する高不純物濃度のG a A s層でA I 0.
3G a 0.7A s層の酸化を防ぎ、またオーミッ
ク性の電極の接触抵抗を改善させるために用いられる。
201 is a semi-insulating GaAs substrate, 202 is a non-doped GaAs buffer layer, the thickness is 1 μm, and the carrier concentration is I x 1015 cm-3. 203 is an A I 0.3G a O,7A s layer epitaxially grown for 10 pages to have a steep interface on a non-doped Ga As layer, and the carrier concentration is 1 x 10 18 cm -3 .
The thickness is 20OA, but there is about 2
It includes a spacer layer of 0A non-doped AI 0.3G ao and 7A s layer. 204 is a highly impurity-concentrated GaAs layer with a thickness of about 5OA and an A I 0.
It is used to prevent oxidation of the 3G a 0.7A s layer and to improve the contact resistance of ohmic electrodes.

同図(b)に示される様に、エビ基板の活性層202.
203.204を島状に選択的に205に示される様に
分離する。次ぎに同図(c)、(d)および(e)に示
されるゲート電極206の形成、レーザドーピング方法
による高不純物濃度層209.210の形成、およびソ
ース電極211、ドレイン電極212の形成については
本発明による第1の実施例の場合とまったく同様である
As shown in Figure (b), the active layer 202 of the shrimp substrate.
203 and 204 are selectively separated into islands as shown at 205. Next, regarding the formation of the gate electrode 206, the formation of the high impurity concentration layers 209 and 210 by the laser doping method, and the formation of the source electrode 211 and the drain electrode 212, as shown in FIGS. This is exactly the same as in the first embodiment according to the invention.

この結果ゲート電極206の直下の活性層205はエキ
シマレーザ光がゲート電極の陰になるため温度は上昇せ
ず同図(a)に示された通りの急峻なヘテロ界面を維持
しているので界面に発生して11ページ いる2次元電子ガスの特性を劣化させることなしにソー
ス抵抗を減少せしめることができる。
As a result, the temperature of the active layer 205 directly under the gate electrode 206 does not rise because the excimer laser light is in the shadow of the gate electrode, and the steep hetero-interface as shown in FIG. It is possible to reduce the source resistance without deteriorating the characteristics of the two-dimensional electron gas generated.

本実施例においてはG a A s F E TとGa
AsHEMTの製造例を示したが、この他のSlやIn
Pなとの半導体を用いたFETやHEMTの製造におい
ても本発明による効果はまったく同様である。
In this example, Ga As F ET and Ga
Although we have shown an example of manufacturing AsHEMT, other methods such as Sl and In
The effects of the present invention are exactly the same in the manufacture of FETs and HEMTs using P semiconductors.

またレーザ光としてキセノンクロライドのエキシマレー
ザを用いたが、特にこれに限らないことは明らかである
。またレーザドーピング用の混合ガスとして水素ガスと
アルシンガスおよびジシランガスの混合ガスを用いたが
、特にこれに限らない。例えばSl半導体ではN型用と
してアルシンやフォスフインガスを含む混合ガス、P型
用としてジボランガスを含む混合ガスを用いることがで
きる。
Further, although a xenon chloride excimer laser was used as the laser beam, it is clear that the present invention is not limited to this. Further, although a mixed gas of hydrogen gas, arsine gas, and disilane gas was used as a mixed gas for laser doping, the present invention is not limited to this. For example, in the case of a Sl semiconductor, a mixed gas containing arsine or phosphine gas can be used for N-type, and a mixed gas containing diborane gas can be used for P-type.

ざらにレーザドーピング時にG a A s基板の温度
は室温に保たれたが、約400度以下の温度、即ちG 
a A s基板の熱分解以下の温度であれば基板温度は
任意に設定できる。
During laser doping, the temperature of the GaAs substrate was kept at room temperature;
The substrate temperature can be set arbitrarily as long as the temperature is below the thermal decomposition of the a As substrate.

発明の効果 本発明による効果として、第1にゲート電極金属に対し
て自己整合的に半導体表面に高濃度不純物混入領域を形
成する工程を含んでいるにもかかわらずゲート電極材料
として高融点材料を用いる必要がなく一般に用いられて
いるA1などの金属が使用できる。このため特殊な製造
工程を必要としないために生産性、信頼性を損なうこと
なくFETの特性を向上できる。第2に急峻なヘテロ界
面を有する、あるいは超格子構造を有する半導体基板上
にゲート電極金属に対して自己整合的に半導体表面に高
濃度不純物混入領域を形成する場合においてもゲート電
極の陰になる領域において急峻なヘテロ構造、あるいは
超格子構造を劣化することがない。このため高電子移動
度トランジスタ(HEMT)、ホットエレクトロントラ
ンジスタ(HET)、共鳴トンネリング素子、量子井戸
デバイスなどの基板に特性を損なうこと無く良好な電極
が自己整合的に形成することが可能となった。
Effects of the Invention As an effect of the present invention, firstly, although it includes a step of forming a highly doped region on the semiconductor surface in a self-aligned manner with respect to the gate electrode metal, it is possible to use a high melting point material as the gate electrode material. A commonly used metal such as A1 can be used. Therefore, since no special manufacturing process is required, the characteristics of the FET can be improved without impairing productivity or reliability. Second, when forming a highly doped region on the semiconductor surface in a self-aligned manner with respect to the gate electrode metal on a semiconductor substrate with a steep hetero-interface or a superlattice structure, it will also be in the shadow of the gate electrode. There is no deterioration of steep heterostructures or superlattice structures in the region. This has made it possible to form good electrodes in a self-aligned manner on the substrates of high electron mobility transistors (HEMTs), hot electron transistors (HETs), resonant tunneling elements, quantum well devices, etc. without impairing their properties. .

【図面の簡単な説明】[Brief explanation of the drawing]

13ページ 第1図は本発明による第1の実施例のGaAsFETの
製造工程断面図、第2図は本発明による第2の実施例の
G a A s HE M Tの製造工程断面図である
。 101・・・G a A s基板、102・・・島状の
活性層、108・・・ゲート電極、105・・・エキシ
マレーザ光、106.107・・・高濃度不純物混入領
域、108.109・・・ソース、ドレイン電極、20
1゜202.203,204−−−HEMT用G a 
A s基板、205・・・島状に分離された活性層、2
06・・・ゲート電極、208・・・エキシマレーザ光
、209.210・・・高濃度不純物混入領域、211
゜212・・・ソース、ドレイン電極。
FIG. 1 on page 13 is a cross-sectional view of the manufacturing process of a GaAsFET according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view of the manufacturing process of a GaAs HEMT according to the second example of the present invention. 101...GaAs substrate, 102...Island-shaped active layer, 108...Gate electrode, 105...Excimer laser light, 106.107...High concentration impurity mixed region, 108.109 ...source, drain electrode, 20
1゜202.203,204---Ga for HEMT
A s substrate, 205... active layer separated into islands, 2
06...Gate electrode, 208...Excimer laser light, 209.210...High concentration impurity mixed region, 211
゜212...Source, drain electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板主表面に選択的に島状の活性層を形成
する工程と、前記島状の活性層上にショットキ性のゲー
ト電極を形成する工程と、前記ショットキ性のゲート電
極を有する島状の活性層が形成された基板を所定の不純
物原子を含むガス雰囲気中で前記島状の活性層上に選択
的にレーザ光を照射し高濃度不純物混入領域を形成する
工程と、前記高濃度不純物混入領域上にオーミック性の
電極を選択的に形成する工程を少なくとも含む半導体装
置の製造方法。
(1) A step of selectively forming an island-like active layer on the main surface of a semiconductor substrate, a step of forming a Schottky gate electrode on the island-like active layer, and an island having the Schottky gate electrode. selectively irradiating the island-shaped active layer with a laser beam in a gas atmosphere containing predetermined impurity atoms to form a highly-concentrated impurity-containing region; A method of manufacturing a semiconductor device including at least a step of selectively forming an ohmic electrode on an impurity-doped region.
(2)異種の半導体、もしくは不純物濃度の異なる半導
体層が10nm以下の急峻な境界層を介したエピタキシ
ャル成長層を有する半導体基板主表面を選択的に活性層
を分離形成する工程と、前記島状の活性層上にショット
キ性のゲート電極を形成する工程と、前記ショットキ性
のゲート電極を有する島状の活性層が形成された基板を
所定の不純物原子を含むガス雰囲気中で前記島状の活性
層上に選択的にレーザ光を照射し高濃度不純物混入領域
を形成する工程と、前記高濃度不純物混入領域上にオー
ミック性の電極を選択的に形成する工程を少なくとも含
む半導体装置の製造方法。
(2) selectively separating and forming an active layer on the main surface of a semiconductor substrate having an epitaxial growth layer of different types of semiconductors or semiconductor layers with different impurity concentrations via a steep boundary layer of 10 nm or less; a step of forming a Schottky gate electrode on the active layer; and a step of forming the island-shaped active layer on the substrate in which the island-shaped active layer having the Schottky gate electrode is formed in a gas atmosphere containing predetermined impurity atoms. A method for manufacturing a semiconductor device including at least the steps of selectively irradiating a laser beam onto the region to form a highly doped region, and selectively forming an ohmic electrode on the highly doped region.
JP26124986A 1986-10-31 1986-10-31 Manufacture of semiconductor device Pending JPS63115384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26124986A JPS63115384A (en) 1986-10-31 1986-10-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26124986A JPS63115384A (en) 1986-10-31 1986-10-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63115384A true JPS63115384A (en) 1988-05-19

Family

ID=17359204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26124986A Pending JPS63115384A (en) 1986-10-31 1986-10-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63115384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312824A (en) * 1988-06-13 1989-12-18 Kanagawa Pref Gov Method of selective diffusion by laser
EP0416798A2 (en) * 1989-09-04 1991-03-13 Canon Kabushiki Kaisha Manufacturing method for semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312824A (en) * 1988-06-13 1989-12-18 Kanagawa Pref Gov Method of selective diffusion by laser
EP0416798A2 (en) * 1989-09-04 1991-03-13 Canon Kabushiki Kaisha Manufacturing method for semiconductor device
US5656511A (en) * 1989-09-04 1997-08-12 Canon Kabushiki Kaisha Manufacturing method for semiconductor device

Similar Documents

Publication Publication Date Title
JPS63276267A (en) Manufacture of semiconductor device
JP3792390B2 (en) Semiconductor device and manufacturing method thereof
KR900005560B1 (en) Semiconductor device and manufacturing method thereof
JPS61256675A (en) Manufacture of schottky gate field effect transistor
JPH0324782B2 (en)
US5381027A (en) Semiconductor device having a heterojunction and a two dimensional gas as an active layer
JPS63115384A (en) Manufacture of semiconductor device
JP2000021897A (en) Field effect transistor and its manufacture
JP2548801B2 (en) Field effect transistor and method of manufacturing the same
JP2708492B2 (en) Method for manufacturing semiconductor device
JPS6115375A (en) Hetero junction fet
JPH08186271A (en) Manufacturing method for tunnel transistor
JP3442498B2 (en) Compound semiconductor device and method of manufacturing the same
JP3083683B2 (en) Semiconductor device
JP2695832B2 (en) Heterojunction field effect transistor
JPS60136380A (en) Semiconductor device
JP2616032B2 (en) Method for manufacturing field effect transistor
JP2890885B2 (en) Semiconductor device and manufacturing method thereof
JPS63228762A (en) Manufacture of semiconductor device
JPH0327537A (en) Modulation-doped field effect transistor
JPH07153779A (en) Field effect transistor and manufacture thereof
JPS6010785A (en) Field effect transistor and manufacture thereof
JPS6394688A (en) Manufacture of field-effect transistor
JPH07106525A (en) Field-effect transistor and compound semiconductor integrated circuit
JPH02209738A (en) Manufacture of semiconductor device