JPS6378575A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS6378575A JPS6378575A JP22185786A JP22185786A JPS6378575A JP S6378575 A JPS6378575 A JP S6378575A JP 22185786 A JP22185786 A JP 22185786A JP 22185786 A JP22185786 A JP 22185786A JP S6378575 A JPS6378575 A JP S6378575A
- Authority
- JP
- Japan
- Prior art keywords
- photoresist
- insulating film
- gate
- electrode
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 50
- 239000002184 metal Substances 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000011368 organic material Substances 0.000 claims abstract description 5
- 238000005530 etching Methods 0.000 claims description 14
- 150000002500 ions Chemical class 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 10
- 239000007943 implant Substances 0.000 claims 1
- 238000001312 dry etching Methods 0.000 abstract description 10
- 239000007772 electrode material Substances 0.000 abstract description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 28
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000010931 gold Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000005468 ion implantation Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000001451 molecular beam epitaxy Methods 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910001425 magnesium ion Inorganic materials 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 230000005533 two-dimensional electron gas Effects 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 241000828585 Gari Species 0.000 description 1
- -1 NSi Chemical class 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28575—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
- H01L21/28587—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Bipolar Transistors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
第1の発明は、自己整合的な電極形成技術に係り、特に
、極めて近接した電極を絶縁性よく形成するのに好適な
半導体装置とその製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The first invention relates to a self-aligned electrode formation technique, and in particular, to a semiconductor device suitable for forming extremely close electrodes with good insulation, and a semiconductor device thereof. Regarding the manufacturing method.
第2の発明は、微小な電極形成に係り、特に、サブミク
ロンゲート電極、エミッタ電極形成に好適な半導体装置
の製造方法に関する。The second invention relates to the formation of minute electrodes, and particularly to a method of manufacturing a semiconductor device suitable for forming submicron gate electrodes and emitter electrodes.
従来、化合物半導体、砒化ガリウム(G a A s
)、アルミニウム砒化ガリウム(A n GaAs)の
へテロ接合を用いる2DEC−FET (2次元電子ガ
ス電界効果型トランジスタ)或いはHBT (へテロ接
合バイポーラトランジスタ)において、トランジスタ高
性能化を目的として、2DEC−FETにおいては、ソ
ース・ドレイン電極とゲート電極の間隔を縮め、寄生抵
抗R8□を低減させる工夫がなされてきた(電子通信学
会技術研究報告、 Vol、85. No、263.
PP、 103−110)、一方、HBTにおいても、
ベース抵抗rnn′低減を目的としてエミッタとベース
電極を縮める工夫がなされてきた。これについては、例
えば、インターナショナルエレクトロン・デバイス ミ
ーティング、1985年、第325頁(I nt、er
national Electron Devic
e Meet、ing。Conventionally, compound semiconductors, gallium arsenide (GaAs
), 2DEC-FET (two-dimensional electron gas field effect transistor) or HBT (heterojunction bipolar transistor) using a heterojunction of aluminum gallium arsenide (A n GaAs) for the purpose of improving transistor performance. In FETs, efforts have been made to reduce the parasitic resistance R8□ by shortening the distance between the source/drain electrodes and the gate electrode (IEICE Technical Research Report, Vol. 85. No. 263.
PP, 103-110), while in HBT,
Efforts have been made to shorten the emitter and base electrodes in order to reduce the base resistance rnn'. This is discussed, for example, in International Electron Devices Meeting, 1985, p. 325.
national electron device
eMeet, ing.
1985、p、325)に記載されている。1985, p. 325).
また、化合物半導体、特に砒化ガリウム(GaAs)を
用いたGaAs M E S F E T (Meta
lSemiconductor Field Ef
fect −工−ransist、or)を用いた大
規模集積回路(L arge S cale上ntog
rated C1rcuit、 (L S I ) )
(たとえば、プロミーディンゲス・オブ・ザ・アイ
イーイーイー・ガリヒ素アイシー・シンポジウム、第4
1頁〜44頁、11月、1985年(P roceed
ingsof the I E E E GaAs I
CSy+nposium。In addition, compound semiconductors, especially GaAs MESFET (Meta
lSemiconductor Field Ef
large-scale integrated circuits (intog
rated C1rcuit, (LSI))
(For example, Promedinges of the IEEI Gari Arsenic Icy Symposium, No. 4)
pp. 1-44, November, 1985 (Proceed
ingsof the I E E E GaAs I
CSy+nposium.
pp、41−44.Nov、1985)を参照)におい
て、従来、主として、高耐熱性金属(例えば、NSi、
WAfl)をゲート金属に用い、n+ (高濃度層)領
域形成のイオン注入形成を高耐熱金属をマスクイオンと
して、用いてきた。pp, 41-44. Nov, 1985), conventionally mainly high-temperature metals (e.g., NSi,
WAfl) was used as the gate metal, and ion implantation was used to form the n+ (high concentration layer) region using a highly heat-resistant metal as the mask ion.
FE’T主要部(ゲート電極同辺)の断面図を第5図(
a)、(b)に示す。Figure 5 shows a cross-sectional view of the main part of the FE'T (same side as the gate electrode).
Shown in a) and (b).
高耐熱金属14′をマスクにn中領域25がイオン注入
法で形成されているためにゲート金属14′の下方一部
がn十領域になっており、トランジスタの閾値電圧Vt
hがゲート長に依存する、いわゆる短チャンネル効果を
ひきおこしていた。Since the n medium region 25 is formed by ion implantation using the high heat resistant metal 14' as a mask, a part of the lower part of the gate metal 14' becomes an n+ region, and the transistor threshold voltage Vt
This caused a so-called short channel effect in which h was dependent on the gate length.
一方、その解決策として第5図(b)の様にn+領領域
ゲート金属の側壁絶縁膜109を用いる構造も実現され
てきている。On the other hand, as a solution to this problem, a structure using a sidewall insulating film 109 of gate metal in the n+ region has been realized as shown in FIG. 5(b).
上記従来技術においては、
(1)2DEG−FET形成にみられる様に、ゲートホ
トレジストをマスクイオンとしてゲート金属のサイドエ
ツチングを利用し、自己整合的にソース・ドレイン金属
を真空蒸着形成していた。この方法では、ソース・ドレ
イン金属が等方的に被着されるので、ソースゲート間シ
ョートがしばしば発生していた。In the above conventional technology, as seen in (1) 2DEG-FET formation, side etching of the gate metal is performed using a gate photoresist as a mask ion, and the source/drain metal is formed by vacuum evaporation in a self-aligned manner. In this method, the source and drain metals are deposited isotropically, so short-circuits between the source and gate often occur.
(2)一方HBT形成例にみられる様に、エミッタ領域
とベース電極を電気的に分離するため、エミッタ領域側
壁に5i02を被着する方法がとられていた。しかしな
がら、この様に、エミッタ領域形成後ホトレジストを除
去し、SiO2を形成する方法では、ベース電極を取り
出すため、新たなリソグラフィ一工程を要し、プロセス
工程が複雑になる欠点が存在した。(2) On the other hand, as seen in the HBT formation example, in order to electrically isolate the emitter region and the base electrode, a method was used in which 5i02 was deposited on the sidewalls of the emitter region. However, this method of removing the photoresist and forming SiO2 after forming the emitter region has the drawback that a new lithography step is required to take out the base electrode, which complicates the process steps.
さらに、上記従来技術では、n+領域125がゲート金
gl14’の下部にまで形成される(第5図(a))た
め、ソース・ゲート間寄生抵抗R,,の低域には極めて
有効であり、高いトランジスタ性能(たとえば相互コン
ダクタンスgm〜200〜3oOmS/lll11)を
実現してきた。Furthermore, in the above conventional technique, the n+ region 125 is formed even below the gate gold GL14' (FIG. 5(a)), so it is extremely effective for reducing the low range of the source-gate parasitic resistance R, . , high transistor performance (for example, transconductance gm~200~3oOmS/lll11) has been achieved.
しかしながら、上記従来技術では、
(3)ゲート金属加工技術の限界からゲート長Lgが不
可避的に、ロット間でバラツキ、その結果、短チャンネ
ル効果のために、閾値電圧Vthが変動してしまい、L
SIのアクセス時間の低下とバラツキの主たる原因とな
っていた。However, in the above conventional technology, (3) due to the limitations of gate metal processing technology, the gate length Lg inevitably varies from lot to lot, and as a result, the threshold voltage Vth fluctuates due to the short channel effect.
This was the main cause of the decline and variation in SI access time.
(4)ゲート金属114′を形成後、高温(800°C
前後)アニールによりn+領領域活性化するため、ゲー
ト金属とn型能動層110との間の反応により、閾値電
圧Vthが変動してしまい、LSIアクセス時間の低下
をひき起してきた。(4) After forming the gate metal 114', high temperature (800°C)
Since the n+ region is activated by annealing (before and after), the threshold voltage Vth fluctuates due to a reaction between the gate metal and the n-type active layer 110, causing a reduction in LSI access time.
上記問題点(3)、(4)は、係る高耐熱金属をn“イ
オン注入のマスク材として用いるプロセスに不可避的な
問題があった。The above-mentioned problems (3) and (4) are unavoidable problems in the process of using such a high heat-resistant metal as a mask material for n'' ion implantation.
特に、LSI高性能化にはゲート長のサブミクロン化が
、不可欠であり、その場合には、上記問題点(3)の問
題を解決することが本質的であった。In particular, submicron gate length is essential for improving the performance of LSIs, and in this case, it is essential to solve problem (3) above.
本発明の目的は、上記問題点を解決できる半導体装置の
製造方法を提供することにある。An object of the present invention is to provide a method for manufacturing a semiconductor device that can solve the above problems.
上記問題点(1)、(2)は、パターンの形成さ九たホ
トレジスト等の有機材料上に、ホトレジストを変形させ
ることなく、被着できる低温絶縁膜形成技術を用いて解
決できる。The above-mentioned problems (1) and (2) can be solved by using a low-temperature insulating film forming technique that allows formation of a pattern on an organic material such as photoresist without deforming the photoresist.
発明の要点を、第1図(a)、(b)、(c)を用いて
説明する。The main points of the invention will be explained using FIGS. 1(a), (b), and (c).
通例1〜数μm長のパターニングされたホトレジスト2
をマスク材として、ドライエツチング等のエツチングを
用いて、電極を形成したい半導体層3を露出させる。1
は半導体層3に形成される電極5と電気的に絶縁したい
部分の総称で、領域1と名付けておく。この状態で、ホ
トレジスト2を変形させない低温で絶縁膜(たとえば、
光CVD法によるSiN等)4を形成する。Patterned photoresist 2, typically 1 to several μm long
Using etching as a mask material, etching such as dry etching is used to expose the semiconductor layer 3 where electrodes are to be formed. 1
is a general term for a portion of the semiconductor layer 3 that is desired to be electrically insulated from the electrode 5, and is named region 1. In this state, an insulating film (for example,
(SiN, etc.) 4 is formed by a photo-CVD method.
この場合、ステップカバレッジの良い絶縁膜形成方法を
用いる。即ち領域1の側壁部分に絶縁膜4を被着させる
ことが必要である(第1図(a))。In this case, an insulating film formation method with good step coverage is used. That is, it is necessary to deposit the insulating film 4 on the side wall portion of the region 1 (FIG. 1(a)).
次にドライエツチング等の方法で、ホトレジスト2をマ
スクにして平坦部分の絶縁膜4を選択的に除去する。続
いて電極金属5を被着させ、ホトレジスト部分の電極を
リフトオフ等の方法を用いて除去する(第1図(C))
。Next, using a method such as dry etching, the flat portions of the insulating film 4 are selectively removed using the photoresist 2 as a mask. Subsequently, electrode metal 5 is deposited, and the electrode in the photoresist portion is removed using a method such as lift-off (Fig. 1 (C)).
.
上記問題点(3)、(4)は、n十領域形成後。The above problems (3) and (4) occur after the formation of the n10 regions.
ゲート金属を形成する工程をとることで回避できる。This can be avoided by taking a step to form the gate metal.
ゲート長のバラツキは、一つのウェーハ内でのバラツキ
は一般に小さく、ウェーハ間、或いはロフト間でのバラ
ツキが大きくなる傾向が知られていた。そこで、ゲート
加工後にゲート表を調整できるプロセス工程であること
が非常に望ましい。It has been known that the variation in gate length is generally small within one wafer, but tends to be large between wafers or between lofts. Therefore, it is highly desirable to have a process step that allows adjustment of the gate surface after gate processing.
第4図(a)〜(g)を用いて、説明する。This will be explained using FIGS. 4(a) to 4(g).
半導体層110上に、絶縁層121,122゜123を
形成後、ゲートホトレジスト124を形成する。ドライ
又はウェットエツチングを除いて、ゲートホトレジスト
124をマスクに選択的に、絶縁層122,123を除
去する。After forming insulating layers 121, 122 and 123 on the semiconductor layer 110, a gate photoresist 124 is formed. The insulating layers 122 and 123 are selectively removed using the gate photoresist 124 as a mask, except by dry or wet etching.
大略、ゲートホトレジスト124の幅は、通常0.8μ
m〜10μm程度である。Roughly speaking, the width of the gate photoresist 124 is usually 0.8μ.
m to about 10 μm.
続いて必要な領域にホトレジスト加工を施し、124.
123,122をマスク材としてS+等のイオン125
を、絶縁膜121をスルー膜としてイオン注入する(第
4図(b))、更にホトレジスト124等は除去洗浄後
、アニール活性化し、ホトレジスト126を全面に塗布
平坦化し、第4図(c)の如き状態とする。絶縁膜12
2に対して絶縁膜123を選択的に除去し、光CVD等
ホトレジスト126に変形を与えず、ステップカバレッ
ジの良い絶縁膜形成方法を用いて低温絶縁膜113を形
成する。更に、実方性ドライエツチングを用いてホトレ
ジスト上絶縁膜113及び、絶縁物122,121を除
去する。(第4図(e))。Next, photoresist processing is applied to the necessary areas, and step 124 is performed.
Ions 125 such as S+ using 123 and 122 as mask materials
Ions are implanted using the insulating film 121 as a through film (FIG. 4(b)). Furthermore, the photoresist 124 etc. are removed and cleaned, annealed and activated, and a photoresist 126 is applied and planarized over the entire surface, as shown in FIG. 4(c). The state shall be as follows. Insulating film 12
2, the insulating film 123 is selectively removed, and a low-temperature insulating film 113 is formed using an insulating film forming method with good step coverage without deforming the photoresist 126, such as photo-CVD. Furthermore, the insulating film 113 on the photoresist and the insulators 122 and 121 are removed using real-tropic dry etching. (Figure 4(e)).
この場合、絶縁膜122はエツチング時にサイドエツチ
ングが生じる方が望ましい。又、絶縁膜121ではサイ
ドエツチングが生じない方が望ましい。In this case, it is preferable that side etching occurs in the insulating film 122 during etching. Further, it is desirable that side etching does not occur in the insulating film 121.
次に、全面に電極メタル114を被着し、リフトオフ法
により、W1極114を形成する(第4図(f))。Next, an electrode metal 114 is deposited on the entire surface, and a W1 pole 114 is formed by a lift-off method (FIG. 4(f)).
次に、ソース・ドレイン電極130,131を形成して
、工程を終了する。Next, source/drain electrodes 130 and 131 are formed to complete the process.
第1図のように第1の発明では、パターニングされたホ
トレジスト下部の領域1と電極5を1回のリソグラフィ
一工程で、自己整合的に分離できるので、非常に工程が
簡略化される。又、被着させる絶縁膜4として光CVD
5iN等を選ぶと、非常に被着速度が遅い(3nm/分
)ので極めて膜厚制御性が良く、かつ非常に薄く側壁絶
縁膜を形成できるので、FETにおいてはきわめて、寄
生抵抗Rsgの小さい構造を実現でき、HBTにおいて
は、ベース抵抗rnn′の極めて小さい構造を実現でき
る。As shown in FIG. 1, in the first invention, the region 1 under the patterned photoresist and the electrode 5 can be separated in a self-aligned manner in one lithography step, so the process is greatly simplified. In addition, photo-CVD is used as the insulating film 4 to be deposited.
If 5iN or the like is selected, the deposition rate is very slow (3 nm/min), so the film thickness can be controlled very well, and a very thin sidewall insulating film can be formed, so it is possible to create a structure with extremely low parasitic resistance Rsg in FETs. In the HBT, a structure with an extremely small base resistance rnn' can be realized.
第4図に示したように第2の発明の半導体装置の製造方
法においては、ダミーゲート加工(第4図(b)、(c
)、(d))において、ダミーゲート長を実測できる。As shown in FIG. 4, in the method for manufacturing a semiconductor device according to the second invention, dummy gate processing (FIGS. 4(b) and 4(c)) is performed.
), (d)), the dummy gate length can be actually measured.
ダミーゲート長実測後、非常に被着速度の遅い(2−1
0nm/分)光CVD絶縁膜113の膜厚を所望のゲー
ト長になる様に調整することができる。After measuring the dummy gate length, the deposition speed was very slow (2-1
(0 nm/min) The film thickness of the photo-CVD insulating film 113 can be adjusted to a desired gate length.
又、n中領域125は拡散によりダミーゲート長に比べ
大略0.2μm程度内側に入る(第4図(C))。しか
し、光CVD絶縁膜113の膜厚を0.1〜0.4μm
程度にうまく膜厚を選ぶことで、ゲートメタル114と
n十領域125の距離を実に制御性良く決定することが
できる。Furthermore, the n medium region 125 is located approximately 0.2 μm inside the dummy gate length due to diffusion (FIG. 4(C)). However, the film thickness of the photo-CVD insulating film 113 is set to 0.1 to 0.4 μm.
By appropriately selecting the film thickness, the distance between the gate metal 114 and the n+ region 125 can be determined with excellent controllability.
以上の方法により、上記問題点の一つであるゲート長の
バラツキによる短チャンネル効果、ゲート耐圧向上の問
題は解決することができる。By the above method, it is possible to solve one of the above-mentioned problems, that is, the short channel effect due to variations in gate length and the problem of improving gate breakdown voltage.
又、ゲートメタルを形成後高温プロセスを通すことがな
いので、高温プロセスに特有なしきい値電圧Vthの変
動はなくなった。Furthermore, since a high temperature process is not performed after forming the gate metal, fluctuations in the threshold voltage Vth peculiar to high temperature processes are eliminated.
以下、第1の発明を実施例1,2を通して更に詳しく説
明する。Hereinafter, the first invention will be explained in more detail through Examples 1 and 2.
(実施例1)
本発明を2DEC−FETに適用した場合の実施例を第
2図(a)、(b)に示す。(Example 1) An example in which the present invention is applied to a 2DEC-FET is shown in FIGS. 2(a) and 2(b).
半絶縁性G a A s基板lo上に、MBE(分子線
エピタキシー法)を用いてアンドープGaAs1lを1
μm、アンドープAQ)(Gal−XA5 (x〜0.
3)12を3nm、Siを2 X 1018an−3ド
ープしたn型AQ xGal−xAs (x 〜0.3
)13を30nm、Stをわずかに(〜10 ”ell
−3)ドープしたn−GaASWJl 4を20nm形
成した。1 liter of undoped GaAs was deposited on a semi-insulating GaAs substrate lo using MBE (molecular beam epitaxy).
μm, undoped AQ) (Gal-XA5 (x~0.
3) n-type AQ xGal-xAs (x ~ 0.3
) 13 at 30 nm, St slightly (~10”ell
-3) 20 nm of doped n-GaASWJl 4 was formed.
メサエッチングによる素子間分離の後、ゲート電極金属
1(Afl、又はM o / A u等)を50cmm
被着させた。更に0.9μm長で厚さ0.8μmのホト
レジスト2のパターニングを行なった。After device isolation by mesa etching, gate electrode metal 1 (Afl, Mo/Au, etc.) is separated by 50 cm.
It was covered. Further, a photoresist 2 having a length of 0.9 μm and a thickness of 0.8 μm was patterned.
続いて、ドライエツチングを用いてゲート金属1をホト
レジスト2をマスクとして選択的に加工した。この時ゲ
ートメタルのサイドエツチング量は0.25μmであっ
た。更に、光CVD法を用いて、SiNを150nm全
面に被着させた。更にCF 4系ガスを用いたドライエ
ツチングで、平坦部のSiNを除去した。次にソース・
ドレイン電極メタル(AuGe/ N i / A u
)を200nm被着させた(第2図(b))。Subsequently, gate metal 1 was selectively processed by dry etching using photoresist 2 as a mask. At this time, the amount of side etching of the gate metal was 0.25 μm. Furthermore, SiN was deposited on the entire surface to a thickness of 150 nm using a photo-CVD method. Furthermore, SiN on the flat portions was removed by dry etching using CF 4 gas. Next, the source
Drain electrode metal (AuGe/Ni/Au
) was deposited to a thickness of 200 nm (FIG. 2(b)).
次に、通常のリフトオフ工程を用いてゲート電極1上の
ホトレジスト2及び、ソース・ドレイン電極メタル15
を除去した。この場合のゲート電極ゲート長は0.4μ
mであり、高周波12GHz、でのノイズ指数は1.0
dBであり、きわめて低ノイズのFETを実現できた。Next, the photoresist 2 on the gate electrode 1 and the source/drain electrode metal 15 are removed using a normal lift-off process.
was removed. The gate electrode gate length in this case is 0.4μ
m, and the noise figure at high frequency 12 GHz is 1.0.
dB, making it possible to realize an extremely low noise FET.
又、本発明では、オーミック電極15とゲート電極1と
が光CVD5iN膜4により電気的にきわめて良く分離
されているので、今までの公知例でしばしば生じていた
ソース・ゲート間の接触不良という現象はなくなった。Furthermore, in the present invention, since the ohmic electrode 15 and the gate electrode 1 are electrically isolated very well by the photo-CVD 5iN film 4, the phenomenon of poor contact between the source and gate, which often occurred in conventional known examples, can be avoided. is gone.
本実施例では通常の2DEC−FETに本発明を適用し
た場合について説明した。In this embodiment, a case where the present invention is applied to a normal 2DEC-FET has been described.
しかしながら、ゲート電極1をp型G a A s或い
はp型C,aAs/AQGaAsにおきかえ、又、アン
ドープGaAs1lを膜厚300nm程度におさえ、ア
ンドープGaAs1lと、基板IOの間にP+GGaA
s400n形成した。いわゆる2DEC−HBT (2
次元電子ガス・ペテロバイボーラトランジスタ)におい
ても適用可能である。However, the gate electrode 1 is replaced with p-type GaAs or p-type C, aAs/AQGaAs, and the thickness of the undoped GaAs 1l is kept to about 300 nm, and P+GGaA is formed between the undoped GaAs 1l and the substrate IO.
s400n was formed. The so-called 2DEC-HBT (2
It is also applicable to dimensional electron gas/Petero bibolar transistors).
(実施例2)
HB Tのエミッタ及びベース電極形成に本発明を適用
した場合の実施例を第3図(a)、(b)。(Example 2) FIGS. 3(a) and 3(b) show an example in which the present invention is applied to the formation of emitter and base electrodes of HB T.
(c)、(d)に示す。Shown in (c) and (d).
半絶縁性GaAs基板lO上に、MOCVD (有機金
属熱分解法)を用いて、アンドープP−G a A s
層51をバッファ一層として1μm形成後、Siを5
X 10 ”cm−”含有するn”GaAS層52を3
000人更に、Siを5 X 1015cm−’含有す
るn型GaAs56を3000人、更にMgをI×10
19Cal−3含有するp ”GaAs54を1000
人。Undoped P-G a As was deposited on a semi-insulating GaAs substrate lO using MOCVD (metal organic pyrolysis).
After forming the layer 51 with a thickness of 1 μm as a buffer layer, 5
The n" GaAS layer 52 containing X 10 "cm-"
000 people, 3000 people of n-type GaAs56 containing 5 x 1015 cm-' of Si, and furthermore I x 10 of Mg.
1000 p”GaAs54 containing 19Cal-3
Man.
Siを5×10171″″3含有する
A Q O3Gao 7 As55を2000人、同じ
ドーピングのn型GaAs56を1000人、Siを5
X 1016cm−3含有するn”GaAs57を20
00人形成した。続いて、エミッタ領域を形成するホト
レジスト58を形成、CCU 2 F 2/He混合ガ
スを用いてn−GaAs56まで選択的にエツチング後
、化学エツチングにより、n型AQGaAs55を除去
した。引き続き光CVD 5iN60を3000人被
着後2ドライエツチングにより平坦部のSiNを除去し
た。ホトレジスト58をマスクとしてAuZn2000
人を被着させ、リフトオフ後450℃のアロイを行なっ
た。(第3図(b))、引き続き、プラスvcVDsi
N61を3000人形成後、平坦化プロセスを用いて、
エミッタ部分を露出させた後、エミッタな極6ごとにA
uGe/N t/Auを形成した。2000 A Q O3 Gao 7 As55 containing 5 x 10171''3 Si, 1000 n-type GaAs56 with the same doping, 5 Si
x 1016cm-3 containing n”GaAs57
00 people formed. Subsequently, a photoresist 58 forming an emitter region was formed, and after selectively etching down to the n-GaAs 56 using a CCU 2 F 2 /He mixed gas, the n-type AQGaAs 55 was removed by chemical etching. Subsequently, 3000 layers of 5iN60 were deposited by photo-CVD, and then the SiN on the flat portions was removed by dry etching. AuZn2000 using photoresist 58 as a mask
After the lift-off, alloying was carried out at 450°C. (Figure 3(b)), then continue with the positive vcVDsi
After forming 3000 N61, using a flattening process,
After exposing the emitter part, A for every 6 emitter poles.
uGe/Nt/Au was formed.
引き続きコレクタ電極及び素子間分離は通常の方法を用
いて行なった。Subsequently, collector electrodes and isolation between elements were performed using conventional methods.
本実施例では通常のnpn型HBTに本発明を適用した
場合について説明したが、注入効率に優れるpnp型H
BTにおいても適用可能である。In this example, the case where the present invention is applied to a normal npn-type HBT was explained, but the pnp-type HBT, which has excellent injection efficiency,
It is also applicable to BT.
以下、第2の発明の実施例について述べる。Examples of the second invention will be described below.
(実施例3)
GaAs−MESFETにおいて、0.5 ttmFE
Tを形成する場合の実施例を第4図に示す工程に具体的
材質、膜厚、ドーピングレベルを書き下す形で示してい
く。(Example 3) In GaAs-MESFET, 0.5 ttmFE
An example of forming T is shown in the steps shown in FIG. 4, with specific materials, film thicknesses, and doping levels written down.
半絶縁性G a A s基板にイオン注入法で形成され
たn型能動層領域110上に5iN121を50n m
CV D法で形成する。つづいてSi、02122を
300 nm、更にS i N 123を400nm形
成する。長さ1.2μmのゲートホトレジスト124を
加工後、ドライエツチングと化学エツチングを用いて、
絶縁膜122,123を選択的に除去する。Siイオン
125をドース量3X1013am−3、加速電圧17
0keVの条件下でホトレジスト124、絶縁膜122
,123をマスクにしてイオン注入する。(第4図(b
))ホトレジ久ト除去後、800℃、10分のアニール
を行ない、Siイオン125を活性化させた。次に平坦
化プロセスを用いて、ダミーゲート123゜122(第
4図(C))の高さまで、ホトレジスト126の埋込み
を行なった(第4図(C))。50 nm of 5iN121 was deposited on the n-type active layer region 110 formed by ion implantation on a semi-insulating GaAs substrate.
Formed by CVD method. Subsequently, 300 nm of Si 02122 and 400 nm of S i N 123 are formed. After processing the gate photoresist 124 with a length of 1.2 μm, using dry etching and chemical etching,
Insulating films 122 and 123 are selectively removed. Si ions 125 at a dose of 3 x 1013 am-3 and an accelerating voltage of 17
The photoresist 124 and the insulating film 122 under the condition of 0 keV
, 123 as a mask, ions are implanted. (Figure 4(b)
)) After removing the photoresist, annealing was performed at 800° C. for 10 minutes to activate the Si ions 125. Next, using a planarization process, photoresist 126 was buried up to the height of the dummy gate 123.degree. 122 (FIG. 4(C)) (FIG. 4(C)).
次に、S i N 123を除去し、光CVD法を用い
て5iN113を300nm形成した。Next, the S i N 123 was removed, and 5iN 113 was formed to a thickness of 300 nm using a photo-CVD method.
異方性エツチングを用いて、光CVD5iN113の平
坦部分を除去し、更に等方性エツチングでSi○212
2.更にS i N 121を除去する(第4図(e)
)。Using anisotropic etching, the flat part of the photo-CVD 5iN113 is removed, and then isotropic etching is used to remove the Si○212
2. Furthermore, S i N 121 is removed (Fig. 4(e)
).
ゲートメタルとしてT i / P t / A u或
いは、Au或いはM o / A uを200nm程度
真空蒸着し、リフトオフにより、ゲート電極114を形
成する(第4図(f))。A gate electrode 114 is formed by vacuum-depositing Ti/Pt/Au, Au, or Mo/Au to a thickness of about 200 nm as a gate metal and lift-off (FIG. 4(f)).
最後に、マスク合せによりソース・ドレイン電極130
,131を形成する。Finally, the source/drain electrodes 130 are
, 131 are formed.
本実施例では、三層のダミーゲート絶縁膜121.12
2,123を用いたが、これは必ずしも必要ではない。In this embodiment, three layers of dummy gate insulating films 121 and 12 are used.
2,123 was used, but this is not necessary.
単一の絶縁膜、或いは二層の絶縁膜でもよい。A single insulating film or a two-layer insulating film may be used.
又、GaAs ME S F E Tのゲート電極形成
に応用した例で示したが、AQGaAs/GaAsヘテ
ロ接合を用いた、2DEG−FETにおいても本発明は
有効である。本FETでは、ゲート長は0.5μmであ
り、ゲート電圧O■での相互コンダクタンスgmは35
0m5/mmであった。従来の構造のものより50〜1
00m5/aha大きい相互コンダクタンスを得た。Furthermore, although the present invention has been shown as an example in which it is applied to the formation of a gate electrode of a GaAs MESFET, the present invention is also effective in a 2DEG-FET using an AQGaAs/GaAs heterojunction. In this FET, the gate length is 0.5 μm, and the mutual conductance gm at gate voltage O is 35
It was 0m5/mm. 50-1 compared to the conventional structure
00m5/aha large mutual conductance was obtained.
(実施例4)
ダミーゲート絶縁膜に対して、自己整合的にソース・ド
レイン電極を形成した場合のG a A sMESFE
Tに本発明を適用した場合の実施例の主要部を第6図(
a)、(b)、(c)、(d)に示す。(Example 4) G a A sMESFE when source and drain electrodes are formed in a self-aligned manner with respect to a dummy gate insulating film
The main parts of an embodiment in which the present invention is applied to a T are shown in Figure 6 (
Shown in a), (b), (c), and (d).
実施例3でn+イオン注入(第4図(b))Siをアニ
ールした後の断面構造を第6図(、)に示す。The cross-sectional structure after n+ ion implantation (FIG. 4(b)) and annealing of Si in Example 3 is shown in FIG. 6(,).
ダミーゲート122,123をマスクにn+領域125
上、絶縁膜121を除去する。続いて、AuGe/N
i/Auを150rzn真空蒸着し、平坦化プロセスを
用いて、ダミーゲート123上のAuGe/N i/A
uを除去し、ホトレジスト126の埋込みを行なう。n+ region 125 using dummy gates 122 and 123 as a mask
The upper insulating film 121 is removed. Next, AuGe/N
AuGe/Ni/A on the dummy gate 123 by vacuum evaporating 150rzn of i/Au and using a planarization process.
u is removed and a photoresist 126 is buried.
その後、実施例3の第4図(d)以下の工程を行なった
。Thereafter, the steps shown in FIG. 4(d) and subsequent steps of Example 3 were performed.
この様に、自己整合的にオーミック電極を形成すること
で、ソースゲート電極間距離を大略0.2μm程度にま
で近づけることが可能になり、ソース・ゲート低抗を大
幅に低減できる。By forming the ohmic electrodes in a self-aligned manner in this way, it is possible to reduce the distance between the source and gate electrodes to approximately 0.2 μm, and the source-gate resistance can be significantly reduced.
又、ダミーゲート絶縁膜をマスク材としてn+イオン注
入を行なうので、マスク材の両端から大略0.2μm程
度内側にn+Hが侵入しており、光CVDやSjNを0
.3μm被着させることにより、ゲート長を極めて小さ
くでき、ゲート金屈をn中領域に接触させないで済むと
いう効果がある。そのため、ソース・ゲート得たVBは
10〜14Vと非常に高くできる。In addition, since n+ ions are implanted using the dummy gate insulating film as a mask material, n+H penetrates approximately 0.2 μm inward from both ends of the mask material, making it difficult to perform photo-CVD or SjN.
.. By depositing 3 μm, the gate length can be made extremely small, and there is an effect that the gate metal layer does not need to come into contact with the n-middle region. Therefore, the VB obtained from the source and gate can be as high as 10 to 14V.
ダミーゲート絶縁膜長さは、ドライエツチングの条件、
ホトレジスト長の形成条件等で通常±0.2μm程度の
バラツキを生じる。The length of the dummy gate insulating film is determined by the dry etching conditions.
Generally, variations of about ±0.2 μm occur depending on the formation conditions of the photoresist length.
光CVDは極めて、絶縁膜被着速度を遅く(〜3nm/
m1n)できるので、ダミーゲート長を計測後、所望の
ゲート電極長を実現できる様に、被着膜厚を調整できる
という大きな長所がある。Photo-CVD has an extremely slow insulating film deposition rate (~3 nm/
m1n), it has the great advantage that after measuring the dummy gate length, the thickness of the deposited film can be adjusted so that the desired gate electrode length can be achieved.
本発明は、2DEG−FETにも応用できる。The present invention can also be applied to 2DEG-FETs.
(実施例5)
単一絶縁膜を用いて本発明を実施した場合のGaAs
MESFET作成例を第7図に示す。(Example 5) GaAs when the present invention is implemented using a single insulating film
An example of MESFET fabrication is shown in FIG.
能動層110上ニCVD SiO2122を700n
m形成後、ゲートホトレジスト124を形成する。ドラ
イ加工によりSiO2を除去し、Stイオン125を注
入する。ホトレジストに除去後5iN127を200n
m被着させ、アニールを行なう。実施例4と同じく、ダ
ミーゲート122に対してソース・ドレイン電極130
゜131を被着させ、平坦化プロセスを用いて、ホトレ
ジスト126を埋込み5i02122を除去後、光CV
D5iN′を被着加工する(第7図(d))。700n of CVD SiO2122 on the active layer 110
After forming the gate photoresist 124, a gate photoresist 124 is formed. SiO2 is removed by dry processing, and St ions 125 are implanted. 200n of 5iN127 after removal on photoresist
m is deposited and annealed. As in the fourth embodiment, the source/drain electrodes 130 are connected to the dummy gate 122.
131 is deposited, a planarization process is used to embed photoresist 126, and after removing 5i02122, optical CV is applied.
D5iN' is applied (FIG. 7(d)).
続いて、ゲートメタルとしてはT i / P t /
Auを蒸着したが−A Q y M o / A u等
を用いて蒸着リフトオフしてもよい。Next, as the gate metal, T i / P t /
Although Au was deposited, the deposition lift-off may be performed using -A Q y M o /A u or the like.
(実施例6)
npn型HBT (ペテロ接合バイポーラトランジスタ
)のエミッタ領域、及びベース領域形成に本発明を適用
した場合の実施例を第8図に示す。(Embodiment 6) FIG. 8 shows an embodiment in which the present invention is applied to the formation of an emitter region and a base region of an npn-type HBT (peterojunction bipolar transistor).
MBE (分子線エピタキシー法)を用いて、半絶縁性
G a A s基板150上に、n中型G a A 5
151、n−型GaAs152 (mlレクタ領域)p
”GaAs153(ベース領域)、n型AQGaAs
154(エミッタ領域)、n型GaAs155、n十型
GaAs156 (キャップ領域)を各々形成した。膜
厚、ドーピングレベルは、公知の仕様である。Using MBE (molecular beam epitaxy), an n medium-sized Ga As 5 was deposited on a semi-insulating Ga As substrate 150.
151, n-type GaAs152 (ml director region) p
”GaAs153 (base region), n-type AQGaAs
154 (emitter region), n-type GaAs 155, and n-type GaAs 156 (cap region) were formed. The film thickness and doping level are according to known specifications.
実施例3〜5のダミーゲート絶縁膜157を用いて、エ
ミッタ領域を形成する。このエミッタ領域形成用絶縁膜
157をマスクにn”GaAsキャップ層156をエツ
チング除去する。Mgイオン158をエミッタ領域形成
用絶縁膜57をマスク材として175 k eV 7
X 1014cm−2のドース量の条件で注入(Si
O2を200nm被着し、1000℃、10秒間のラン
プアニールを行ない、Mgイオン158を活性化した。An emitter region is formed using the dummy gate insulating film 157 of Examples 3 to 5. Using this emitter region forming insulating film 157 as a mask, the n'' GaAs cap layer 156 is removed by etching. Mg ions 158 are etched at 175 keV 7 using the emitter region forming insulating film 57 as a mask material.
Implantation (Si
O2 was deposited to a thickness of 200 nm, and lamp annealing was performed at 1000° C. for 10 seconds to activate Mg ions 158.
ベース電極エミッタ電極形成には、実施例3又は4の方
法を用いた。但し、ベース電極材料にはA u Z n
、エミッタ電極材料にはAuGe/N i/Auを用い
た。The method of Example 3 or 4 was used to form the base electrode and emitter electrode. However, the base electrode material contains A u Z n
, AuGe/Ni/Au was used as the emitter electrode material.
コレクタ電極形成素子間分離には1通常の方法を用いた
。A conventional method was used to separate the collector electrode forming elements.
本実施例では、npn型HBTに本発明を適用した場合
を示したが、pnp型HBTにおいても適用可能である
。その場合ベース領域形成にはSiイオン注入を用いる
。ベース電極にはA u G e/ N i/ A u
を、エミッタ電極にはA u Z nを用いる。Although this embodiment shows a case where the present invention is applied to an npn-type HBT, it is also applicable to a pnp-type HBT. In that case, Si ion implantation is used to form the base region. The base electrode has A u G e/N i/ A u
, and A u Z n is used for the emitter electrode.
また、n型AΩGaAsとアンドープG a A s界
面に形成される2次元電子ガスをベース層として用いる
型のpnp型HBT (2DEG−HBTと称する。)
にも本発明は適用できる。In addition, there is a pnp-type HBT (referred to as 2DEG-HBT) that uses a two-dimensional electron gas formed at the interface between n-type AΩGaAs and undoped GaAs as a base layer.
The present invention is also applicable to
この場合、エミッタ領域形成用ダミー絶縁膜を用い、P
副領域の、GaAs或いはAQGaAsを除去後、5i
02を50nm被着させ、Siを175keV 5X
1013cm−2のドース量で注入し、ランプアニール
を用いて活性化した。このときイオン注入されたn型ベ
ース領域のシート抵抗は70Ω/口であった。In this case, a dummy insulating film for emitter region formation is used, and P
After removing GaAs or AQGaAs in the sub-region, 5i
02 to 50 nm and Si at 175 keV 5X
It was implanted at a dose of 1013 cm-2 and activated using lamp annealing. At this time, the sheet resistance of the n-type base region into which ions were implanted was 70Ω/hole.
第1の発明によれば、パターニングされたホトレジスト
上からステップカバレッジが良く、きわめて薄い絶縁膜
を形成できるため、
(1)プロセス工程が簡略化され、かつ、ソース・ゲー
ト間、或いは、エミッタ・ベース間をきわめて安定に電
気的に分離できる。According to the first invention, an extremely thin insulating film with good step coverage can be formed on the patterned photoresist. It is possible to electrically isolate the two regions in an extremely stable manner.
(2)電界効果トランジスタに応用した場合には、FE
Tのソースゲート抵抗Rs gを大幅に低減できる。ペ
テロ接合バイポーラトランジスタに応用した場合、ベー
ス抵抗rnn′を大幅に低減できる。(2) When applied to field effect transistors, FE
The source gate resistance Rsg of T can be significantly reduced. When applied to a Peter junction bipolar transistor, the base resistance rnn' can be significantly reduced.
また、第2の発明によれば、ダミーゲート(又はエミッ
タ)絶R膜をマスクとしてn千成いはP中領域を形成で
き、ホトレジスト埋込み平坦化後、ダミー絶縁膜を除去
し、光CVD等のホトレジストを変形させない絶縁膜を
側壁に被着後、ゲートメタル或いはエミッタメタルを被
着させるので、
(1)FETに適用した場合には、n中領域あるいは、
ソース・ドレイン全屈とゲートメタルは接触することな
く、極めて近接(〜0.1μm)に形成できるため、ソ
ース・ゲート間寄生抵抗Rsgを極限にまで小さくでき
る。Furthermore, according to the second invention, an n-thickness or P-medium region can be formed using a dummy gate (or emitter) insulating film as a mask, and after the photoresist is buried and flattened, the dummy insulating film is removed and photo-CVD, etc. After depositing an insulating film that does not deform the photoresist on the sidewalls, gate metal or emitter metal is deposited.
Since the source/drain total bend and the gate metal can be formed very close together (up to 0.1 μm) without contacting, the parasitic resistance Rsg between the source and gate can be minimized.
又、光CvD等の極めて被着速度の遅い(〜3n m
7分)絶縁膜を用いるので極めて制御性良くゲート長を
制御できる。In addition, the deposition speed of photo-CvD is extremely slow (~3nm
7 minutes) Since an insulating film is used, the gate length can be controlled with extremely good controllability.
(2)HBTに適用した場合には、n千成いはP+側部
ベース領域の低いシート抵抗を実現でき、n + (或
いはp”)領域又はベース電極とエミッタ領域を極めて
近接(〜0.1μm)に形成でき、ベース抵抗をきわめ
て低減できる。(2) When applied to an HBT, it is possible to achieve a low sheet resistance of the n+ side base region or the p+ side base region, and to place the n+ (or p'') region or base electrode and emitter region very close together (~0. 1 μm), and the base resistance can be extremely reduced.
第1図は第1の発明を説明する原理図、第2図。
第3図はそれぞれ、2DEG−FETとHB Tに第1
の発明を適用した場合の断面構造図、第4図は第2の発
明の原理を示す工程図、第5図は、従来FETの断面構
造図、第6.第7図は第2の発明をFETに適用したと
きの主要工程図、第8図はnpn型HBTのエミッタ及
びベース領域形成に第2の発明を適用した時の主要断面
構造図である。
1・・・エミッタ或いはゲート領域、4・・・光CVD
絶縁膜、2・・・ホトレジスト、5・・・電極全屈、3
・・・半導体、13.55−n型AAGaAS、12−
・・アンドープA Q GaAs、11,51・・・ア
ンドープG a A s、10−・・半絶縁性G a
A s基板、54− p ” GaAs、53.14・
=n−GaAs、52、 57−n ”GaAs、 5
6− n GaAs。
124・・・ゲート エミッタホトレジスト、121
.122,123・・・絶縁膜、110・・・半導体層
、126・・・埋込みホトレジスト、113・・・光C
VD絶縁膜、114・・・ゲート電極、130.131
・・・ソース・ドレイン電極、125・・・Siイオン
、158・・・Mgイオン、154・・・P+GaAs
、156−n ”GaAs、155−n型G a A
s、152−・n−GaAs、151−n ”GaAs
。
′く、
第7TI21
J¥帽13
芋20
第、3図
多3 ヨ
蜂4ス
71θ
染4 v
$5記
ノ2f
12り
隼Z口
卒 7 口FIG. 1 is a principle diagram explaining the first invention, and FIG. Figure 3 shows the first
FIG. 4 is a process diagram showing the principle of the second invention. FIG. 5 is a cross-sectional diagram of a conventional FET. FIG. 7 is a main process diagram when the second invention is applied to an FET, and FIG. 8 is a main sectional structural diagram when the second invention is applied to the formation of an emitter and base region of an npn type HBT. 1... Emitter or gate region, 4... PhotoCVD
Insulating film, 2... Photoresist, 5... Electrode full bending, 3
...Semiconductor, 13.55-n-type AAGaAS, 12-
... Undoped A Q GaAs, 11,51... Undoped Ga As, 10-... Semi-insulating Ga
As substrate, 54-p” GaAs, 53.14.
=n-GaAs, 52, 57-n"GaAs, 5
6-n GaAs. 124...Gate emitter photoresist, 121
.. 122, 123... Insulating film, 110... Semiconductor layer, 126... Buried photoresist, 113... Light C
VD insulating film, 114...gate electrode, 130.131
...Source/drain electrode, 125...Si ion, 158...Mg ion, 154...P+GaAs
, 156-n"GaAs, 155-n type GaA
s, 152-n-GaAs, 151-n ”GaAs
. 'ku, 7th TI21 J¥hat 13 Potato 20 No. 3 Figure 3 Yobee 4s 71θ Dye 4 v $5 No. 2f 12 Ri Hayabusa Z mouth graduation 7 mouth
Claims (1)
に位置する凸状領域に対して、上記ホトレジスト等の有
機物を形成した状態で、絶縁膜を凸状領域側面に形成し
て配する工程と、上記側壁絶縁膜を介して、凸状平坦部
に配される電極金属が被着された後、上記ホトレジスト
部分を除去する工程を含むことを特徴とする半導体装置
の製造方法。 2、パターニングされたホトレジスト或いは有機物をマ
スクとして加工あるいはエッチングされた凸状領域に対
してホトマスク或いは、凸状領域をマスクとしてイオン
注入或いは金属を被着後凸状領域を平坦にするホトレジ
スト埋込み後、上記凸状領域を選択的にエッチング除去
し、上記ホトレジストを変形させない程度の低温でステ
ップカバレジの良い絶縁膜を被着後、被着平坦部の絶縁
膜をエッチング除去後、金属を被着させ該凹部分にのみ
金属を形成することを特徴とする半導体装置の製造方法
。[Claims] 1. For a convex region located directly below a patterned organic material such as a photoresist, an insulating film is formed on the side surface of the convex region while the organic material such as the photoresist is formed. A method for manufacturing a semiconductor device, comprising the steps of: removing the photoresist portion after the electrode metal disposed on the convex flat portion is deposited via the sidewall insulating film. 2. Using a patterned photoresist or an organic material as a mask, use a photomask for the processed or etched convex region, or use a photomask to implant ions or deposit metal on the convex region, and then embed the photoresist to flatten the convex region. After selectively etching away the convex areas and depositing an insulating film with good step coverage at a low temperature that does not deform the photoresist, etching away the flat part of the insulating film, then depositing a metal. A method for manufacturing a semiconductor device, characterized in that metal is formed only in concave portions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61221857A JPH0815159B2 (en) | 1986-09-22 | 1986-09-22 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61221857A JPH0815159B2 (en) | 1986-09-22 | 1986-09-22 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6378575A true JPS6378575A (en) | 1988-04-08 |
JPH0815159B2 JPH0815159B2 (en) | 1996-02-14 |
Family
ID=16773275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61221857A Expired - Lifetime JPH0815159B2 (en) | 1986-09-22 | 1986-09-22 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0815159B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11538921B2 (en) | 2017-05-15 | 2022-12-27 | Mitsubishi Electric Corporation | Method for manufacturing semiconductor device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5582469A (en) * | 1978-12-14 | 1980-06-21 | Sony Corp | Preparation of semiconductor device |
JPS59127875A (en) * | 1983-01-13 | 1984-07-23 | Nec Corp | Manufacture of schottky barrier gate type field effect transistor |
JPS616871A (en) * | 1984-06-21 | 1986-01-13 | Matsushita Electric Ind Co Ltd | Manufacture of field-effect transistor |
-
1986
- 1986-09-22 JP JP61221857A patent/JPH0815159B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5582469A (en) * | 1978-12-14 | 1980-06-21 | Sony Corp | Preparation of semiconductor device |
JPS59127875A (en) * | 1983-01-13 | 1984-07-23 | Nec Corp | Manufacture of schottky barrier gate type field effect transistor |
JPS616871A (en) * | 1984-06-21 | 1986-01-13 | Matsushita Electric Ind Co Ltd | Manufacture of field-effect transistor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11538921B2 (en) | 2017-05-15 | 2022-12-27 | Mitsubishi Electric Corporation | Method for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH0815159B2 (en) | 1996-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4711858A (en) | Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer | |
JP2599381B2 (en) | Method of manufacturing FET device | |
JPS5950567A (en) | Manufacture of field effect transistor | |
JPH0555558A (en) | Gaas hetero-structure metallic insulator semiconductor and manufacture thereof | |
JPS63276267A (en) | Manufacture of semiconductor device | |
JP2003209124A (en) | Method of manufacturing field-effect semiconductor device, and field-effect semiconductor device | |
JPS634955B2 (en) | ||
JPH0622243B2 (en) | Heterojunction bipolar transistor type semiconductor device manufacturing method | |
US4895811A (en) | Method of manufacturing semiconductor device | |
JPS6378575A (en) | Manufacture of semiconductor device | |
JPS5832513B2 (en) | Method of manufacturing field effect transistor | |
JPH0260222B2 (en) | ||
JPH0329302B2 (en) | ||
JPH0523497B2 (en) | ||
JP3035917B2 (en) | Field effect type semiconductor device and method of manufacturing the same | |
JPS59181060A (en) | Semiconductor device | |
JPH0249012B2 (en) | HANDOTAISOCHINOSEIZOHOHO | |
JP3438100B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JP5307995B2 (en) | Manufacturing method of semiconductor device | |
JPH0758715B2 (en) | Method for manufacturing field effect transistor | |
JPS6010785A (en) | Field effect transistor and manufacture thereof | |
JPS63228762A (en) | Manufacture of semiconductor device | |
JPS6143443A (en) | Manufacture of semiconductor device | |
JPH0797634B2 (en) | Field effect transistor and manufacturing method thereof | |
JPS6258154B2 (en) |